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Abstract
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric
streaming model, introduced by Saks and Seshadhri [26]. As an intermediate model between the
random access model and the streaming model, this model allows one to have streaming access to
one string and random access to the other string. Meanwhile, ED and LCS are both fundamental
problems that are often studied on large strings, thus the (asymmetric) streaming model is ideal for
studying these problems.

Our first main contribution is a systematic study of space lower bounds for ED and LCS in
the asymmetric streaming model. Previously, there are no explicitly stated results in this context,
although some lower bounds about LCS can be inferred from the lower bounds for longest increasing
subsequence (LIS) in [28, 16, 14]. Yet these bounds only work for large alphabet size. In this paper,
we develop several new techniques to handle ED in general and LCS for small alphabet size, thus
establishing strong lower bounds for both problems. In particular, our lower bound for ED provides
an exponential separation between edit distance and Hamming distance in the asymmetric streaming
model. Our lower bounds also extend to LIS and longest non-decreasing subsequence (LNS) in the
standard streaming model. Together with previous results, our bounds provide an almost complete
picture for these two problems.

As our second main contribution, we give improved algorithms for ED and LCS in the asymmetric
streaming model. For ED, we improve the space complexity of the constant factor approximation
algorithms in [15, 13] from Õ( nδ

δ
) to O( dδ

δ
polylog(n)), where n is the length of each string and

d is the edit distance between the two strings. For LCS, we give the first 1/2 + ε approximation
algorithm with space nδ for any constant δ > 0, over a binary alphabet. Our work leaves a plethora
of intriguing open questions, including establishing lower bounds and designing algorithms for
a natural generalization of LIS and LNS, which we call longest non-decreasing subsequence with
threshold (LNST).
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1 Introduction

Edit distance (ED) and longest common subsequence (LCS) are two classical problems studied
in the context of measuring similarities between two strings. Edit distance is defined as the
smallest number of edit operations (insertions, deletions, and substitutions) to transform one
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string to the other, while longest common subsequence is defined as the longest string that
appears as a subsequence in both strings. These two problems have found wide applications
in areas such as bioinformatics, text and speech processing, compiler design, data analysis,
image analysis and so on. In turn, these applications have led to an extensive study of both
problems.

With the era of information explosion, nowadays these two problems are often studied
on very large strings. For example, in bioinformatics a human genome can be represented
as a string with 3 billion letters (base pairs). Such data provides a huge challenge to the
algorithms for ED and LCS, as the standard algorithms for these two problems using dynamic
programming need Θ(n2) time and Θ(n) space where n is the length of each string. These
bounds quickly become infeasible or too costly as n becomes large, such as in the human
genome example. Especially, some less powerful computers may not even have enough
memory to store the data, let alone processing it.

One appealing approach to dealing with big data is designing streaming algorithms, which
are algorithms that process the input as a data stream. Typically, the goal is to compute or
approximate the solution by using sublinear space (e.g., nα for some constant 0 < α < 1 or
even polylog(n)) and a few (ideally one) passes of the data stream. These algorithms have
become increasingly popular, and attracted a lot of research activities recently.

Designing streaming algorithms for ED and LCS, however, is not an easy task. For ED,
only a couple of positive results are known. In particular, assuming that the edit distance
between the two strings is bounded by some parameter k, [10] gives a randomized one pass
algorithm achieving an O(k) approximation of ED, using linear time and O(log n) space, in
a variant of the streaming model where one can scan the two strings simultaneously in a
coordinated way. In the same model [10] also give randomized one pass algorithms computing
ED exactly, using space O(k6) and time O(n+k6). This was later improved to space O(k) and
time O(n + k2) in [11, 7]. Furthermore, [7] give a randomized one pass algorithm computing
ED exactly, using space Õ(k8) and time Õ(k2n), in the standard streaming model. We note
that all of these algorithms are only interesting if k is small, e.g., k ≤ nα where α is some
small constant, otherwise the space complexity can be as large as n. For LCS, strong lower
bounds are given in [22, 28], which show that for exact computation, even constant pass
randomized algorithms need space Ω(n); while any constant pass deterministic algorithm
achieving a 2√

n
approximation of LCS also needs space Ω(n), if the alphabet size is at least n.

Motivated by this situation and inspired by the work of [4], Saks and Seshadhri [26] studied
the asymmetric data streaming model. This model is a relaxation of the standard streaming
model, where one has streaming access to one string (say x), and random access to the other
string (say y). In this model, [26] gives a deterministic one pass algorithm achieving a 1 + ε

approximation of n − LCS using space O(
√

(n log n)/ε), as well as a randomized one pass
algorithm algorithm achieving an εn additive approximation of LCS using space O(k log2 n/ε)
where k is the maximum number of times any symbol appears in y. Another work by Saha
[25] also gives an algorithm in this model that achieves an εn additive approximation of ED
using space O(

√
n

ϵ ).
The asymmetric streaming model is interesting for several reasons. First, it still inherits

the spirit of streaming algorithms, and is particularly suitable for a distributed setting. For
example, a local, less powerful computer can use the streaming access to process the string
x, while sending queries to a remote, more powerful server which has access to y. Second,
because it is a relaxation of the standard streaming model, one can hope to design better
algorithms for ED or to beat the strong lower bounds for LCS in this model. The latter point
is indeed verified by two recent works [15, 13] (recently accepted to ICALP as a combined
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paper [12]), which give a deterministic one pass algorithm achieving a O(21/δ) approximation
of ED, using space Õ(nδ/δ) and time Õδ(n4) for any constant δ > 0, as well as deterministic
one pass algorithms achieving 1 ± ε approximation of ED and LCS, using space Õ(

√
n

ε ) and
time Õε(n2).

A natural question is how much we can improve these results. Towards answering this
question, we study both lower bounds and upper bounds for the space complexity of ED and
LCS in the asymmetric streaming model, and we obtain several new, non-trivial results.

Related work. On a different topic, there are many works that study the time complexity
of ED and LCS. In particular, while [6, 1] showed that ED and LCS cannot be computed
exactly in truly sub-quadratic time unless the strong Exponential time hypothesis [19] is
false, a successful line of work [9, 8, 20, 5, 18, 23, 24] has led to randomized algorithms that
achieve constant approximation of ED in near linear time, and randomized algorithms that
provide various non-trivial approximation of LCS in linear or sub-quadratic time. Another
related work is [4], where the authors proved a lower bound on the query complexity for
computing ED in the asymmetric query model, where one have random access to one string
but only limited number of queries to the other string.

1.1 Our Contribution

We initiate a systematic study on lower bounds for computing or approximating ED and LCS
in the asymmetric streaming model. To simplify notation we always use 1 + ε approximation
for some ε > 0, i.e., outputting an λ with OPT ≤ λ ≤ (1 + ε)OPT, where OPT is either
ED(x, y) or LCS(x, y). We note that for LCS, this is equivalent to a 1/(1 + ε) approximation
in the standard notation.

Previously, there are no explicitly stated space lower bounds in this model, although as
we will discuss later, some lower bounds about LCS can be inferred from the lower bounds
for longest increasing subsequence LIS in [28, 16, 14]. As our first contribution, we prove
strong lower bounds for ED in the asymmetric streaming model.

▶ Theorem 1. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck, given
an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming model that
decides if ED(x, y) ≥ k for two strings x, y ∈ Σn with success probability ≥ 2/3 must use
space Ω(min(k, |Σ|)/R).

This theorem implies the following corollary.

▶ Corollary 2. Given an alphabet Σ, the following space lower bounds hold for any constant
pass randomized algorithm with success probability ≥ 2/3 in the asymmetric streaming model.
1. Ω(n) for computing ED(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.
2. Ω( 1

ε ) for 1 + ε approximation of ED(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

Our theorems thus provide a justification for the study of approximating ED in the
asymmetric streaming model. Furthermore, we note that previously, unconditional lower
bounds for ED in various computational models are either weak, or almost identical to the
bounds for Hamming distance. For example, a simple reduction from the equality function
implies the deterministic two party communication complexity (and hence also the space
lower bound in the standard streaming model) for computing or even approximating ED is
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Ω(n).1 However the same bound holds for Hamming distance. Thus it has been an intriguing
question to prove a rigorous, unconditional separation of the complexity of ED and Hamming
distance. To the best of our knowledge the only previous example achieving this is the
work of [3] and [2], which showed that the randomized two party communication complexity
of achieving a 1 + ε approximation of ED is Ω( log n

(1+ε) log log n ), while the same problem for
Hamming distance has an upper bound of O( 1

ε2 ). Thus if ε is a constant, this provides a
separation of Ω( log n

log log n ) vs. a constant. However, this result also has some disadvantages:
(1) It only works in the randomized setting; (2) The separation becomes obsolete when ε is
small, e.g., ε = 1/

√
log n; and (3) The lower bound for ED is still weak and thus it does not

apply to the streaming setting, as there even recoding the index needs space log n.
Our result from Corollary 2, on the other hand, complements the above result in the

aforementioned aspects by providing another strong separation of ED and Hamming distance.
Note that even exact computation of the Hamming distance between x and y is easy in the
asymmetric streaming model with one pass and space O(log n). Thus our result provides
an exponential gap between edit distance and Hamming distance, in terms of the space
complexity in the asymmetric streaming model (and also the communication model since
our proof uses communication complexity), even for deterministic exact computation.

Next we turn to LCS, which can be viewed as a generalization of LIS. For example, if
the alphabet Σ = [n], then we can fix the string y to be the concatenation from 1 to n,
and it’s easy to see that LCS(x, y) = LIS(x). Therefore, the lower bound of computing LIS
for randomized streaming in [28] with |Σ| ≥ n also implies a similar bound for LCS in the
asymmetric streaming model. However, the bound in [28] does not apply to the harder case
where x is a permutation of y, and their lower bound where |Σ| < n is actually for longest
non-decreasing subsequence, which does not give a similar bound for LCS in the asymmetric
streaming model. 2 Therefore, we first prove a strong lower bound for LCS in general.

▶ Theorem 3. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck, given
an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming model that
decides if LCS(x, y) ≥ k for two strings x, y ∈ Σn with success probability ≥ 2/3 must use
space Ω

(
min(k, |Σ|)/R

)
. Moreover, this holds even if x is a permutation of y when |Σ| ≥ n

or |Σ| ≤ k.

Similar to the case of ED, this theorem also implies the following corollary.

▶ Corollary 4. Given an alphabet Σ, the following space lower bounds hold for any constant
pass randomized algorithm with success probability ≥ 2/3 in the asymmetric streaming model.
1. Ω(n) for computing LCS(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.
2. Ω( 1

ε ) for 1 + ε approximation of LCS(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

We then consider deterministic approximation of LCS. Here, the work of [16, 14] gives a
lower bound of Ω

(
1
R

√
n
ε log

(
|Σ|
εn

))
for any R pass streaming algorithm achieving a 1 + ε

approximation of LIS, which also implies a lower bound of Ω
( 1

R

√
n
ε log

( 1
ε

))
for asymmetric

streaming LCS when |Σ| ≥ n. These bounds match the upper bound in [17] for LIS and LNS,
and in [15, 13] for LCS. However, a major drawback of this bound is that it gives nothing
when |Σ| is small (e.g., |Σ| ≤ εn). For even smaller alphabet size, the bound does not even

1 We include this bound in the appendix for completeness, as we cannot find any explicit statement in
the literature.

2 One can get a similar reduction to LCS, but now y needs to be the sorted version of x, which gives
additional information about x in the asymmetric streaming model since we have random access to y.
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give anything for exact computation. For example, in the case of a binary alphabet, we know
that LIS(x) ≤ 2 and thus taking ε = 1/2 corresponds to exact computation. Yet the bound
gives a negative number.

This is somewhat disappointing as in most applications of ED and LCS, the alphabet size
is actually a fixed constant. These include for example the English language and the human
DNA sequence (where the alphabet size is 4 for the 4 bases). Therefore, in this paper we
focus on the case where the alphabet size is small, and we have the following theorem.

▶ Theorem 5. Given an alphabet Σ, for any ε > 0 where |Σ|2

ε = O(n), any R-pass
deterministic algorithm in the asymmetric streaming model that computes a 1+ε approximation
of LCS(x, y) for two strings x, y ∈ Σn must use space Ω

(
|Σ|
ε /R

)
.

Thus, even for a binary alphabet, achieving 1 + ε approximation for small ε (e.g., ε = 1/n

which corresponds to exact computation) can take space as large as Ω(n) for any constant
pass algorithm. Further note that by taking |Σ| =

√
εn, we recover the Ω

( √
n

ε /R
)

bound
with a much smaller alphabet.

Finally, we turn to LIS and longest non-decreasing subsequence (LNS), as well as a natural
generalization of LIS and LNS which we call longest non-decreasing subsequence with threshold
(LNST). Given a string x ∈ Σn and a threshold t ≤ n, LNST(x, t) denotes the length of the
longest non-decreasing subsequence in x such that each symbol appears at most t times. It
is easy to see that the case of t = 1 corresponds to LIS and the case of t = n corresponds to
LNS. Thus LNST is indeed a generalization of both LIS and LNS. It is also a special case
of LCS when |Σ|t ≤ n as we can take y to be the concatenation of t copies of each symbol,
in the ascending order (and possibly padding some symbols not in x). How hard is LNST?
We note that in the case of t = 1 (LIS) and t = n (LNS) a simple dynamic programming
can solve the problem in one pass with space O(|Σ| log n), and 1 + ε approximation can be
achieved in one pass with space Õ(

√
n
ε ) by [17]. Thus one can ask what is the situation for

other t. Again we focus on the case of a small alphabet and have the following theorem.

▶ Theorem 6. Given an alphabet Σ, for deterministic (1 + ε) approximation of LNST(x, t)
for a string x ∈ Σn in the streaming model with R passes, we have the following space lower
bounds:
1. Ω(min(

√
n, |Σ|)/R) for any constant t (this includes LIS), when ε is any constant.

2. Ω(|Σ| log(1/ε)/R) for t ≥ n/|Σ| (this includes LNS), when |Σ|2/ε = O(n).

3. Ω
(√

|Σ|
ε /R

)
for t = Θ(1/ε), when |Σ|/ε = O(n).

Thus, case 1 and 2 show that even for any constant approximation, any constant pass
streaming algorithm for LIS and LNS needs space Ω(|Σ|) when |Σ| ≤

√
n, matching the

O(|Σ| log n) upper bound up to a logarithmic factor. Taking ε = 1/ 3
√

n and |Σ| ≤ 3
√

n for
example, we further get a lower bound of Ω(|Σ| log n) for approximating LNS using any
constant pass streaming algorithm. This matches the O(|Σ| log n) upper bound. These
results complement the bounds in [16, 14, 17] for the important case of small alphabet, and
together they provide an almost complete picture for LIS and LNS. Case 3 shows that for
certain choices of t and ε, the space we need for LNST can be significantly larger than those
for LIS and LNS. It is an intriguing question to completely characterize the behavior of LNST
for all regimes of parameters.

We also give improved algorithms for asymmetric streaming ED and LCS. For ED, [15, 13]
gives a O(21/δ)-approximation algorithm with Õ(nδ) space for any constant δ ∈ (0, 1). We
further reduced the space needed from Õ(nδ

δ ) to O(dδ

δ polylog(n)) where d = ED(x, y).
Specifically, we have the following theorem.

FSTTCS 2021
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▶ Theorem 7. Assume ED(x, y) = d, in the asymmetric streaming model, there are one-pass
deterministic algorithms in polynomial time with the following parameters:
1. A (3 + ε)-approximation of ED(x, y) using O(

√
d polylog(n)) space.

2. For any constant δ ∈ (0, 1/2), a 2O( 1
δ )-approximation of ED(x, y) using O( dδ

δ polylog(n))
space.

For LCS over a large alphabet, the upper bounds in [15, 13] match the lower bounds
implied by [16, 14]. We thus again focus on small alphabet. Note that our Theorem 5 does
not give anything useful if |Σ| is small and ε is large (e.g., both are constants). Thus a
natural question is whether one can get better bounds. In particular, is the dependence on
1/ε linear as in our theorem, or is there a threshold beyond which the space jumps to say for
example Ω(n)? We note that there is a trivial one pass, O(log n) space algorithm even in the
standard streaming model that gives a |Σ| approximation of LCS (or 1/|Σ| approximation
in standard notation), and no better approximation using sublinear space is known even in
the asymmetric streaming model. Thus one may wonder whether this is the threshold. We
show that this is not the case, by giving a one pass algorithm in the asymmetric streaming
model over the binary alphabet that achieves a 2 − ε approximation of LCS (or 1/2 + ε

approximation in standard notation), using space nδ for any constant δ > 0.

▶ Theorem 8. For any constant δ ∈ (0, 1/2), there exists a constant ε > 0 and a one-pass
deterministic algorithm that outputs a 2 − ε approximation of LCS(x, y) for any two strings
x, y ∈ {0, 1}n, with Õ(nδ/δ) space and polynomial time in the asymmetric streaming model.

Finally, as mentioned before, we now have an almost complete picture for LIS and LNS,
but for the more general LNST the situation is still far from clear. Since LNST is a special
case of LCS, if |Σ|t = O(n) then the upper bound of Õ(

√
n

ε ) in [15, 13] still applies and
this matches our lower bound in case 3, Theorem 6 by taking |Σ| = εn. One can then ask
the natural question of whether we can get a matching upper bound for the case of small
alphabet. We are not able to achieve this, but we provide a simple algorithm that can use
much smaller space for certain regimes of parameters in this case.

▶ Theorem 9. Given an alphabet Σ with |Σ| = r. For any ε > 0 and t ≥ 1, there is a
one-pass streaming algorithm that computes a (1 + ε) approximation of LNST(x, t) for any
x ∈ Σn with Õ

((
min(t, r/ε) + 1

)r
)

space.

1.2 Overview of our Techniques
Here we provide an informal overview of the techniques used in this paper.

1.2.1 Lower Bounds
Our lower bounds use the general framework of communication complexity. To limit the
power of random access to the string y, we always fix y to be a specific string, and consider
different strings x. In turn, we divide x into several blocks and consider the two party/multi
party communication complexity of ED(x, y) or LCS(x, y), where each party holds one block
of x. However, we need to develop several new techniques to handle edit distance and small
alphabets.

Edit distance. We start with edit distance. One difficulty here is to handle substitutions,
as with substitutions edit distance becomes similar to Hamming distance, and this is exactly
one of the reasons why strong complexity results separating edit distance and Hamming
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distance are rare. Indeed, if we define ED(x, y) to be the smallest number of insertions and
deletions (without substitutions) to transform x into y, then ED(x, y) = 2n − 2LCS(x, y)
and thus a lower bound for exactly computing LCS (e.g., those implied from [16, 14]) would
translate directly into the same bound for exactly computing ED. On the other hand, with
substitutions things become more complicated: if LCS(x, y) is small (e.g., LCS(x, y) ≤ n/2)
then in many cases (such as examples obtained by reducing from [16, 14]) the best option to
transform x into y is just replacing each symbol in x by the corresponding symbol in y if
they are different, which makes ED(x, y) exactly the same as their Hamming distance.

To get around this, we need to ensure that LCS(x, y) is large. We demonstrate our ideas
by first describing an Ω(n) lower bound for the deterministic two party communication
complexity of ED(x, y), using a reduction from the equality function which is well known
to have an Ω(n) communication complexity bound. Towards this, fix Σ = [3n] ∪ {a} where
a is a special symbol, and fix y = 1 ◦ 2 ◦ · · · ◦ 3n. We divide x into two parts x = (x1, x2)
such that x1 is obtained from the string (1, 2, 4, 5, · · · , 3i − 2, 3i − 1, · · · , 3n − 2, 3n − 1)
by replacing some symbols of the form 3j − 1 by a, while x2 is obtained from the string
(2, 3, 5, 6, · · · , 3i − 1, 3i, · · · , 3n − 1, 3n) by replacing some symbols of the form 3j − 1 by
a. Note that the way we choose (x1, x2) ensures that LCS(x, y) ≥ 2n before replacing any
symbol by a.

Intuitively, we want to argue that the best way to transform x into y, is to delete a
substring at the end of x1 and a substring at the beginning of x2, so that the resulted string
becomes an increasing subsequence as long as possible. Then, we insert symbols into this
string to make it match y except for those a symbols. Finally, we replace the a symbols by
substitutions. If this is true then we can finish the argument as follows. Let T1, T2 ⊂ [n] be
two subsets with size t = Ω(n), where for any i ∈ {1, 2}, all symbols of the form 3j − 1 in xi

with j ∈ Ti are replaced by a. Now if T1 = T2 then it doesn’t matter where we choose to
delete the substrings in x1 and x2, the number of edit operations is always 3n − 2 + t by a
direct calculation. On the other hand if T1 ̸= T2 and assume for simplicity that the smallest
element they differ is an element in T2, then there is a way to save one substitution, and the
the number of edit operations becomes 3n − 3 + t.

The key part is now proving our intuition. For this, we consider all possible r ∈ [3n]
such that x1 is transformed into y[1 : r] and x2 is transformed into y[r + 1 : 3n], and
compute the two edit distances respectively. To analyze the edit distance, we first show by
a greedy argument that without loss of generality, we can assume that we apply deletions
first, followed by insertions, and substitutions at last. This reduces the edit distance problem
to the following problem: for a fixed number of deletions and insertions, what is the best
way to minimize the Hamming distance (or maximize the number of agreements of symbols
at the same indices) in the end. Now we break the analysis of ED(x1, y[1 : r]) into two
cases. Case 1 is where the number of deletions (say dd) is large. In this case, the number
of insertions (say di) must also be large, and we argue that the number of agreements is at
most LCS(x1, y[1 : r]) + di. Case 2 is where dd is small. In this case, di must also be small.
Now we crucially use the structure of x1 and y, and argue that symbols in x1 larger than 3di

(or original index beyond 2di) are guaranteed to be out of agreement. Thus the number of
agreements is at most LCS(x1[1 : 2di], y[1 : r]) + di. In each case combining the bounds gives
us a lower bound on the total number of operations. The situation for x2 and y[r + 1 : 3n] is
completely symmetric and this proves our intuition.

In the above construction, x and y have different lengths (|x| = 4n while |y| = 3n). We
can fix this by adding a long enough string z with distinct symbols than those in {x, y} to
the end of both x and y, and then add n symbols of a at the end of z for y. We argue that
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the best way to do the transformation is to transform x into y, and then insert n symbols of
a. To show this, we first argue that at least one symbol in z must be kept, for otherwise
the number of operations is already larger than the previous transformation. Then, using a
greedy argument we show that the entire z must be kept, and thus the natural transformation
is the optimal.

To extend the bound to randomized algorithms, we modify the above construction and
reduce from Set Disjointness (DIS), which is known to have randomized communication
complexity Ω(n). Given two strings α, β ∈ {0, 1}n representing the characteristic vectors of
two sets A, B ⊆ [n], DIS(α, β) = 0 if and only if A ∩ B ̸= ∅, or equivalently, ∃j ∈ [n], αj =
βj = 1. For the reduction, we first create two new strings α′, β′ ∈ {0, 1}2n which are
“balanced” versions of α, β. Formally, ∀j ∈ [n], α′

2j−1 = αj and α′
2j = 1 − αj . We create β′

slightly differently, i.e., ∀j ∈ [n], β′
2j−1 = 1 − βj and β′

2j = βj . Now both α′ and β′ have
n 1’s, we can use them as the characteristic vectors of the two sets T1, T2 in the previous
construction. A similar argument now leads to the bound for randomized algorithms.

Longest common subsequence. Our lower bounds for randomized algorithms computing
LCS exactly are obtained by a similar and simpler reduction from DIS: we still fix y to be an
increasing sequence of length 8n and divide y evenly into 4n blocks of constant size. Now
x1 consists of the blocks with an odd index, while x2 consists of the blocks with an even
index. Thus x is a permutation of y. Next, from α, β ∈ {0, 1}n we create α′, β′ ∈ {0, 1}2n

in a slightly different way and use α′, β′ to modify the 2n blocks in x1 and x2 respectively.
If a bit is 1 then we arrange the corresponding block in the increasing order, otherwise we
arrange the corresponding block in the decreasing order. A similar argument as before now
gives the desired Ω(n) bound. We note that [28] has similar results for LIS by reducing from
DIS. However, our reduction and analysis are different from theirs. Thus we can handle LCS,
and even the harder case where x is a permutation of y.

We now turn to LCS over a small alphabet. To illustrate our ideas, let’s first consider
Σ = {0, 1} and choose y = 0n/21n/2. It is easy to see that LCS(x, y) = LNST(x, n/2). We now
represent each string x ∈ {0, 1}n as follows: at any index i ∈ [n] ∪ {0}, we record a pair (p, q)
where p = min(the number of 0’s in x[1 : i], n/2) and q = min(the number of 1’s in x[i + 1 :
n], n/2). Thus, if we read x from left to right, then upon reading a 0, p may increase by 1
and q does not change; while upon reading a 1, p does not change and q may decrease by 1.
Hence if we use the horizontal axis to stand for p and the vertical axis to stand for q, then
these points (p, q) form a polygonal chain. We call p + q the value at point (p, q) and it is
easy to see that LCS(x, y) must be the value of an endpoint of some chain segment.

Using the above representation, we now fix Σ = {0, 1, 2} and choose y = 0n/31n/32n/3, so
LCS(x, y) = LNST(x, n/3). We let x = (x1, x2) such that x1 ∈ {0, 1}n/2 and x2 ∈ {1, 2}n/2.
Since any common subsequence between x and y must be of the form 0a1b2c it suffices to
consider common subsequence between x1 and 0n/31n/3, and that between x2 and 1n/32n/3,
and combine them together. Towards that, we impose the following properties on x1, x2:
(1) The number of 0’s, 1’s, and 2’s in each string is at most n/3; (2) In the polygonal chain
representation of each string, the values of the endpoints strictly increase when the number
of 1’s increases; and (3) For any endpoint in x1 where the number of 1’s is some r, there is a
corresponding endpoint in x2 where the number of 1’s is n/3 − r, and the values of these two
endpoints sum up to a fixed number t = Ω(n). Note that property (2) implies that LCS(x, y)
must be the sum of the values of an endpoint in x1 where the number of 1’s is some r, and
an endpoint in x2 where the number of 1’s is n/3 − r, while property (3) implies that for
any string x1, there is a unique corresponding string x2, and LCS(x, y) = t (regardless of the
choice of r).
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We show that under these properties, all possible strings x = (x1, x2) form a set S with
|S| = 2Ω(n), and this set gives a fooling set for the two party communication problem of
computing LCS(x, y). Indeed, for any x = (x1, x2) ∈ S, we have LCS(x, y) = t. On the other
hand, for any (x1, x2) ̸= (x′

1, x′
2) ∈ S, the values must differ at some point for x1 and x′

1.
Hence by switching, either (x1, x′

2) or (x′
1, x2) will have a LCS with y that has length at least

t + 1. Standard arguments now imply an Ω(n) communication complexity lower bound. A
more careful analysis shows that we can even replace the symbol 2 by 0, thus resulting in a
binary alphabet.

The above argument can be easily modified to give a Ω(1/ε) bound for 1+ε approximation
of LCS when ε < 1, by taking the string length to be some n′ = Θ(1/ε). To get a better
bound, we combine our technique with the technique in [14] and consider the following direct
sum problem: we create r copies of strings {xi, i ∈ [r]} and {yi, i ∈ [r]} where each copy uses
distinct alphabets with size 2. Assume for xi and yi the alphabet is {ai, bi}, now xi again
consists of r copies of (xi

j1, xi
j2), j ∈ [r], where each xi

jℓ ∈ {ai, bi}n′/2 for ℓ ∈ [2]; while yi

consists of r copies yi
j = a

n′/3
i b

n′/3
i a

n′/3
i , j ∈ [r]. The direct sum problem is to decide between

the following two cases for some t = Ω(n′): (1) ∃i such that there are Ω(r) copies (xi
j1, xi

j2)
in xi with LCS((xi

j1 ◦ xi
j2), yi

j) ≥ t + 1, and (2) ∀i and ∀j, LCS((xi
j1 ◦ xi

j2), yi
j) ≤ t. We do

this by arranging the xi’s row by row into an r × 2r matrix (each entry is a length n′/2
string) and letting x be the concatenation of the columns. We call these strings the contents
of the matrix, and let y be the concatenation of the yi’s. Now intuitively, case (1) and case
(2) correspond to deciding whether LCS(x, y) ≥ 2rt + Ω(r) or LCS(x, y) ≤ 2rt, which implies
a 1 + Ω(1/t) = 1 + ε approximation. The lower bound follows by analyzing the 2r-party
communication complexity of this problem, where each party holds a column of the matrix.

However, unlike the constructions in [16, 14] which are relatively easy to analyze because
all symbols in x (respectively y) are distinct, the repeated symbols in our construction make
the analysis of LCS much more complicated (we can also use distinct symbols but that
will only give us a bound of

√
|Σ|
ε instead of |Σ|

ε ). To ensure that the LCS is to match each
(xi

j1, xi
j2) to the corresponding yi

j , we use another r symbols {ci, i ∈ [r]} and add buffers of
large size (e.g., size n′) between adjacent copies of (xi

j1, xi
j2). We do the same thing for yi

j

correspondingly. Moreover, it turns out we need to arrange the buffers carefully to avoid
unwanted issues: in each row xi, between each copy of (xi

j1, xi
j2) we use a buffer of new

symbol. Thus the buffers added to each row xi are cn′

1 , cn′

2 , · · · , cn′

r sequentially and this is
the same for every row. That is, in each row the contents use the same alphabet {ai, bi}
but the buffers use different alphabets {ci, i ∈ [r]}. Now we have a r × 3r matrix and we
again let x be the concatenation of the columns while let y be the concatenation of the yi’s.
Note that we are using an alphabet of size |Σ| = 3r. We use a careful analysis to argue that
case (1) and case (2) now correspond to deciding whether LCS(x, y) ≥ 2rn′ + rt + Ω(r) or
LCS(x, y) ≤ 2rn′ + rt, which implies a 1 + ε approximation. The lower bound follows by
analyzing the 3r-party communication complexity of this problem, and we show a lower
bound of Ω(r/ε) = Ω(|Σ|/ε) by generalizing our previous fooling set construction to the
multi-party case, where we use a good error correcting code to create the Ω(r) gap.

The above technique works for ε < 1. For the case of ε ≥ 1 our bound for LCS can be
derived directly from our bound for LIS, which we describe next.

Longest increasing/non-decreasing subsequence. Our Ω(|Σ|) lower bound over small
alphabet is achieved by modifying the construction in [14] and providing a better analysis.
Similar as before, we consider a matrix B ∈ {0, 1} r

c ×r where c is a large constant and r = |Σ|.
We now consider the r-party communication problem where each party holds one column of
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B, and the problem is to decide between the following two cases for a large enough constant
l: (1) for each row in B, there are at least l 0’s between any two 1’s, and (2) there exists
a row in B which has more than αr 1’s, where α ∈ (1/2, 1) is a constant. We can use a
similar argument as in [14] to show that the total communication complexity of this problem
is Ω(r2) and hence at least one party needs Ω(r). The difference is that [14] sets l = 1 while
we need to pick l to be a larger constant to handle the case ε ≥ 1. For this we use the
Lovász Local Lemma with a probabilistic argument to show the existence of a large fooling
set. To reduce to LIS, we define another matrix B̃ such that B̃i,j = (i − 1) r

c + j if Bi,j = 1
and B̃i,j = 0 otherwise. Now let x be the concatenation of all columns of B̃. We show that
case (2) implies LIS(x) ≥ αr and case (1) implies LIS(x) ≤ (1/c + 1/l)r. This implies a 1 + ε

approximation for any constant ε > 0 by setting c and l appropriately.
The construction is slightly different for LNS. This is because if we keep the 0’s in B̃, they

will already form a very long non-decreasing subsequence and we will not get any gap. Thus,
we now let the matrix B have size r × cr where c can be any constant. We replace all 0’s in
column i with a symbol bi for i ∈ [cr], such that b1 > b2 > · · · > bcr. Similarly we replace all
1’s in row j with a symbol aj for j ∈ [r], such that a1 < a2 < · · · < ar. Also, we let a1 > b1.
We can show that the two cases now correspond to LNS(x) > αcr and LNS(x) ≤ (2 + c/l)r.

We further prove an Ω(|Σ| log(1/ε)) lower bound for 1 + ε approximation of LNS when
ε < 1. This is similar to our previous construction for LCS, except we don’t need buffers here,
and we only need to record the number of some symbols. More specifically, let l = Θ(1/ε)
and S be the set of all strings x = (x1, x2) over alphabet {a, b} with length 2l such that
x1 = a

3
4 l+tb

1
4 l−t and x2 = a

3
4 l−tb

1
4 l+t for any t ∈ [ l

4 ]. Thus S has size l
4 = Ω(1/ε) and

∀x ∈ S, the number of a’s in x is exactly 3
2 l. Further, for any (x1, x2) ̸= (x′

1, x′
2) ∈ S, either

(x1, x′
2) or (x′

1, x2) has more than 3
2 l a’s. We now consider the r × 2r matrix where each row

i consists of {(xi
j1, xi

j2), j ∈ [r]} such that each xi
jℓ has length l for ℓ ∈ [2], and for the same

row i all {(xi
j1, xi

j2)} use the same alphabet {ai, bi} while for different rows the alphabets
are disjoint. To make sure the LNS of the concatenation of the columns is roughly the sum
of the number of ai’s, we require that br < br−1 < · · · < b1 < a1 < a2 < · · · < ar. Now
we analyze the 2r party communication problem of deciding whether the concatenation of
the columns has LNS ≥ crl + Ω(r) or LNS ≤ crl for some constant c, which implies a 1 + ε

approximation. The lower bound is again achieved by generalizing the set S to a fooling set
for the 2r party communication problem using an error correcting code based approach.

In Theorem 6, we give three lower bounds for LNST. The first two lower bounds are
adapted from our lower bounds for LIS and LNS, while the last lower bound is adapted from
our lower bound for LCS by ensuring all symbols in different rows or columns of the matrix
there are different.

Improved algorithms. We defer the technique overview of our improved algorithms to
Section B.

1.3 Open Problems

Our work leaves a plethora of intriguing open problems. The main one is to close the gap
between our lower bounds and the upper bounds of known algorithms, especially for the case
of small alphabets and large (say constant) approximation. We believe that in this case it
is possible to improve both the lower bounds and the upper bounds. Another interesting
problem is to completely characterize the space complexity of LNST.
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2 Organization of the paper

The rest of the paper is organized as follows. In Section 3, we give a formal description of
the problems we study. We then present our lower bounds for edit distance in Section 4
and lower bounds for LCS in Section 5. In the appendix, we give our lower bounds for LIS,
LNS, LNST, and an algorithm for LNST in Section A. In Section B, we present our improved
algorithms for asymmetric streaming edit distance and LCS. Finally in Section C, we present
a proof for the strong linear lower bound for approximating ED in the standard streaming
model. Due to the page limit, some of the proofs are deferred to the full version.

3 Preliminaries

We use the following conventional notations. Let x ∈ Σn be a string of length n over alphabet
Σ. By |x|, we mean the length of x. We denote the i-th character of x by xi and the substring
from the i-th character to the j-th character by x[i : j]. We denote the concatenation of two
strings x and y by x ◦ y. By [n], we mean the set of positive integers no larger than n.
Edit Distance. The edit distance (or Levenshtein distance) between two strings x, y ∈ Σ∗,

denoted by ED(x, y), is the smallest number of edit operations (insertion, deletion, and
substitution) needed to transform one into another.

Longest Common Subsequence. We say the string s ∈ Σt is a subsequence of x ∈ Σn if
there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such that s = xi1xi2 · · · xit . A string s

is called a common subsequence of strings x and y if s is a subsequence of both x and
y. Given two strings x and y, we denote the length of the longest common subsequence
(LCS) of x and y by LCS(x, y).

Longest Increasing Subsequence. In the longest increasing subsequence problem, we assume
there is a given total order on the alphabet set Σ. We say the string s ∈ Σt is an
increasing subsequence of x ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such
that s = xi1xi2 · · · xit and xi1 < xi2 < · · · < xit . We denote the length of the longest
increasing subsequence (LIS) of string x by LIS(x).

Longest Non-decreasing Subsequence. The longest non-decreasing subsequence is a variant
of the longest increasing problem. The difference is that in a non-decreasing subsequence
s = xi1xi2 · · · xit

, we only require xi1 ≤ xi2 ≤ · · · ≤ xit
.

4 Lower Bounds for Edit Distance

We show a reduction from the Set Disjointness problem (DIS) to computing ED between
two strings in the asymmetric streaming model. For this, we define the following two party
communication problem between Alice and Bob.

Given an alphabet Σ and three integers n1, n2, n3. Suppose Alice has a string x1 ∈ Σn1

and Bob has a string x2 ∈ Σn1 . There is another fixed reference string y ∈ Σn3 that is known
to both Alice and Bob. Alice and Bob now tries to compute ED((x1 ◦ x2), y).We call this
problem EDcc(y). We prove the following theorem.

▶ Theorem 10. Suppose each input string to DIS has length n and let Σ = [6n] ∪ {a}. Fix
y = (1, 2, · · · , 6n). Then R1/3(EDcc(y)) ≥ R1/3(DIS).

To prove this theorem, we first construct the strings x1, x2 based on the inputs α, β ∈
{0, 1}n to DIS. From α, Alice constructs the string α′ ∈ {0, 1}2n such that ∀j ∈ [n], α′

2j−1 =
αj and α′

2j = 1 − αj . Similarly, from β, Bob constructs the string β′ ∈ {0, 1}2n such that
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∀j ∈ [n], β′
2j−1 = 1 − βj and β′

2j = βj . Now Alice lets x1 be a modification from the string
(1, 2, 4, 5, · · · , 3i − 2, 3i − 1, · · · , 6n − 2, 6n − 1) such that ∀j ∈ [2n], if α′

j = 0 then the symbol
3j − 1 (at index 2j) is replaced by a. Similarly, Bob lets x2 be a modification from the string
(2, 3, 5, 6, · · · , 3i − 1, 3i, · · · , 6n − 1, 6n) such that ∀j ∈ [2n], if β′

j = 0 then the symbol 3j − 1
(at index 2j − 1) is replaced by a.

Given the construction, we have the following lemma.

▶ Lemma 11. If DIS(α, β) = 1 then ED((x1 ◦ x2), y) ≥ 7n − 2.

To prove the lemma we observe that in a series of edit operations that transforms (x1, x2)
to y, there exists an index r ∈ [6n] s.t. x1 is transformed into [1 : r] and x2 is transformed
into [r + 1 : n]. We analyze the edit distance in each part. We first have the following claim:

▷ Claim 12. For any two strings u and v, there is a sequence of optimal edit operations
(insertion/deletion/substitution) that transforms u to v, where all deletions happen first,
followed by all insertions, and all substitutions happen at the end of the operations.

We defer the proof of this claim to the full version. For any i, let Γ1(i) denote the number
of a symbols up to index 2i in x1. Note that Γ1(i) is equal to the number of 0’s in α′[1 : i].
We have the following lemma.

▶ Lemma 13. For any p ∈ [n], let r = 3p − q where 0 ≤ q ≤ 2, then ED(x1, [1 : r]) =
4n − p − q + Γ1(p) if q = 0, 1 and ED(x1, [1 : r]) = 4n − p + Γ1(p − 1) if q = 2.

Proof. By Claim 12 we can first consider deletions and insertions, and then compute the
Hamming distance after these operations (for substitutions).

We consider the three different cases of q. Let the number of insertions be di and the
number of deletions be dd. Note that di − dd = r − 4n. We define the number of agreements
between two strings to be the number of positions where the two corresponding symbols are
equal.

The case of q = 0 and q = 1. Here again we have two cases.
Case (a): dd ≥ 4n − 2p. In this case, notice that the LCS after the operations between x1

and y is at most the original LCS(x1, y) = 2p − Γ1(p). With di insertions, the number of
agreements can be at most LCS(x1, y) + di = 2p − Γ1(p) + di, thus the Hamming distance
at the end is at least r − 2p + Γ1(p) − di. Therefore, in this case the number of edit
operations is at least di + dd + r − 2p + Γ1(p) − di ≥ 4n − p − q + Γ1(p), and the equality
is achieved when dd = 4n − 2p.

Case (b): dd < 4n−2p. In this case, notice that all original symbols in x1 larger than 3di (or
beyond index 2di before the insertions) are guaranteed to be out of agreement. Thus the
only possible original symbols in x1 that are in agreement with y after the operations are
the symbols with original index at most 2di. Note that the LCS between x1[1 : 2di] and y

is 2di − Γ1(di). Thus with di insertions the number of agreements is at most 3di − Γ1(di),
and the Hamming distance at the end is at least r − 3di + Γ1(di).
Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) = r − di +
(dd − di) + Γ1(di) = 4n − di + Γ1(di). Now notice that di = dd + r − 4n < p and the
quantity di − Γ1(di) is non-decreasing as di increases. Thus the number of edit operations
is at least 4n − p + Γ1(p) ≥ 4n − p − q + Γ1(p).

The other case of q is similar, as follows.
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The case of q = 2. Here again we have two cases.
Case (a): dd ≥ 4n − 2p + 1. In this case, notice that the LCS after the operations between x1

and y is at most the original LCS(x1, y) = 2(p−1)−Γ1(p−1)+1 = 2p−1−Γ1(p−1). With di

insertions, the number of agreements can be at most LCS(x1, y)+di = 2p−1−Γ1(p−1)+di,
thus the Hamming distance at the end is at least r − 2p + 1 + Γ1(p − 1) − di. Therefore, in
this case the number of edit operations is at least di + dd + r − 2p + 1 + Γ1(p − 1) − di ≥
4n − p + Γ1(p − 1), and the equality is achieved when dd = 4n − 2p + 1.

Case (b): dd ≤ 4n−2p. In this case, notice that all original symbols in x1 larger than 3di (or
beyond index 2di before the insertions) are guaranteed to be out of agreement. Thus the
only possible original symbols in x1 that are in agreement with y after the operations are
the symbols with original index at most 2di. Note that the LCS between x[1 : 2di] and y

is 2di − Γ1(di). Thus with di insertions the number of agreements is at most 3di − Γ1(di),
and the Hamming distance at the end is at least r − 3di + Γ1(di).
Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) = r − di +
(dd − di) + Γ1(di) = 4n − di + Γ1(di). Now notice that di = dd + r − 4n < p − 1 and the
quantity di − Γ1(di) is non-decreasing as di increases. Thus the number of edit operations
is at least 4n − (p − 1) + Γ1(p − 1) > 4n − p + Γ1(p − 1). ◀

We can now prove a similar lemma for x2. For any i, let Γ2(i) denote the number of
a symbols from index 2i + 1 to 4n in x2. Note that Γ2(i) is equal to the number of 0’s in
β′[i + 1 : 2n].

▶ Lemma 14. Let r = 3p + q where 0 ≤ q ≤ 2, then ED(x2, [r + 1 : 6n]) = 2n + p − q + Γ2(p)
if q = 0, 1 and ED(x2, [r + 1 : 6n]) = 2n + p + Γ2(p + 1) if q = 2.

Proof. We can reduce to Lemma 13. To do this, use 6n + 1 to minus every symbol in x2
and in [r + 1 : 6n], while keeping all the a symbols unchanged. Now, reading both strings
from right to left, x2 becomes the string x2 = 1, 2, · · · , 3i − 2, 3i − 1, · · · , 6n − 2, 6n − 1 with
some symbols of the form 3j − 1 replaced by a’s. Similarly [r + 1 : 6n] becomes [1 : 6n − r]
where 6n − r = 3(2n − p) − q.

If we regard x2 as x1 as in Lemma 13 and define Γ1(i) as in that lemma, we can see that
Γ1(i) = Γ2(2n − i).

Now the lemma basically follows from Lemma 13. In the case of q = 0, 1, we have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)−q+Γ1(2n−p) = 2n+p−q+Γ2(p).

In the case of q = 2, we have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)+Γ1(2n−p−1) = 2n+p+Γ2(p+1).◀

We can now prove Lemma 11.

Proof of Lemma 11. We show that for any r ∈ [6n], ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) ≥
7n − 2. First we have the following claim.

▷ Claim 15. If DIS(α, β) = 1, then for any i ∈ [2n], we have Γ1(i) + Γ2(i) ≥ n.

To see this, note that when i is even, we have Γ1(i) = i/2 and Γ1(i) = n − i/2 so
Γ1(i) + Γ2(i) = n. Now consider the case of i being odd and let i = 2j − 1 for some j ∈ [2n].
We know Γ1(i − 1) = (i − 1)/2 = j − 1 and Γ2(i + 1) = n − (i + 1)/2 = n − j, so we only
need to look at x1[2i − 1, 2i] and x2[2i + 1, 2i + 2] and count the number of symbols a’s in
them. If the number of a’s is at least 1, then we are done.
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The only possible situation where the number of a’s is 0 is that α′
i = β′

i+1 = 1 which
means αj = βj = 1 and this contradicts the fact that DIS(α, β) = 1.

We now have the following cases.
Case (a): r = 3p. In this case, by Lemma 13 and Lemma 14 we have ED(x1, [1 : r]) =

4n − p + Γ1(p) and ED(x2, [r + 1 : 6n]) = 2n + p + Γ2(p). Thus we have ED(x1, [1 :
r]) + ED(x2, [r + 1 : 6n]) = 6n + n = 7n.

Case (b): r = 3p − 1 = 3(p − 1) + 2. In this case, by Lemma 13 and Lemma 14 we have
ED(x1, [1 : r]) = 4n − p − 1 + Γ1(p) and ED(x2, [r + 1 : 6n]) = 2n + (p − 1) + Γ2(p), thus
we have ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) = 6n − 2 + n = 7n − 2.

Case (c): r = 3p − 2 = 3(p − 1) + 1. In this case, by Lemma 13 and Lemma 14 we have
ED(x1, [1 : r]) = 4n − p + Γ1(p − 1) and ED(x2, [r + 1 : 6n]) = 2n + (p − 1) − 1 + Γ2(p − 1),
thus we have ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) = 6n − 2 + n = 7n − 2. ◀

We now prove Theorem 10.

Proof of Theorem 10. We begin by upper bounding ED((x1 ◦ x2), y) when DIS(α, β) = 0.

▷ Claim 16. If DIS(α, β) = 0 then ED((x1 ◦ x2), y) ≤ 7n − 3.

To see this, note that if DIS(α, β) = 0 then there exists a j ∈ [n] such that αj = βj = 1.
Thus α′

2j−1 = 1, β′
2j−1 = 0 and α′

2j = 0, β′
2j = 1. Note that the number of 0’s in α′[1 : 2j −1]

is j − 1 and thus Γ1(2j − 1) = j − 1. Similarly the number of 0’s in β′[2j : 2n] is n − j and
thus Γ2(2j − 1) = n − j. To transform (x1, x2) to y, we choose r = 6j − 2, transform x1 to
y[1 : r], and transform x2 to y[r + 1 : 6n].

By Lemma 13 and Lemma 14 we have ED(x1, [1 : r]) = 4n − 2j + Γ1(2j − 1) and
ED(x2, [r + 1 : 6n]) = 2n + (2j − 1) − 1 + Γ2(2j − 1). .Thus we have ED(x1, [1 : r]) +
ED(x2, [r + 1 : 6n]) = 6n − 2 + Γ1(2j − 1) + Γ2(2j − 1) = 6n − 2 + n − 1 = 7n − 3. Therefore
ED((x1, x2), y) ≤ 7n − 3.

Therefore, in the case of DIS(α, β) = 1, we have ED((x1 ◦ x2), y) ≥ 7n − 2 while in the
case of DIS(α, β) = 0, we have ED((x1 ◦ x2), y) ≤ 7n − 3. Thus any protocol that solves
EDcc(y) can also solve DIS, hence the theorem follows. ◀

In the proof of Theorem 10, the two strings x = (x1 ◦ x2) and y have different lengths,
however we can extend it to the case where the two strings have the same length and prove
the following theorem.

▶ Theorem 17. Suppose each input string to DIS has length n and let Σ = [16n] ∪ {a}.
Fix ỹ = (1, 2, · · · , 16n, a2n), let x̃1 ∈ Σ4n and x̃2 ∈ Σ14n. Define EDcc(ỹ) as the two party
communication problem of computing ED((x̃1 ◦ x̃2), ỹ). Then R1/3(EDcc(ỹ)) ≥ R1/3(DIS).

We defer the proof of Theorem 17 to the full version. From Theorem 17 we immediately
have the following theorem.

▶ Theorem 18. Any R-pass randomized algorithm in the asymmetric streaming model that
computes ED(x, y) exactly between two strings x, y of length n with success probability at least
2/3 must use space at least Ω(n/R).

We can generalize the theorem to the case of deciding if ED(x, y) is at least a given
number k. We have the following theorem. The proof is deferred to the full version.

▶ Theorem 19 (Restatement of Theorem 1). There is a constant c > 1 such that for
any k, n ∈ N with n ≥ ck, given an alphabet Σ, any R-pass randomized algorithm in the
asymmetric streaming model that decides if ED(x, y) ≥ k between two strings x, y ∈ Σn with
success probability at least 2/3 must use space at least Ω(min(k, |Σ|)/R).
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For 0 < ε < 1, by taking k = 1/ε we also get the following corollary:

▶ Corollary 20. Given an alphabet Σ, for any 0 < ε < 1, any R-pass randomized
algorithm in the asymmetric streaming model that achieves a 1 + ε approximation of ED(x, y)
between two strings x, y ∈ Σn with success probability at least 2/3 must use space at least
Ω(min(1/ε, |Σ|)/R).

5 Lower Bounds for LCS

In this section, we study the space lower bounds for asymmetric streaming LCS.

5.1 Exact computation
5.1.1 Binary alphabet, deterministic algorithm
In this section, without loss of generality, we assume n can be diveded by 60 and let l = n

30 −1.
We assume the alphabet is Σ = {a, b}. Consider strings x of the form

x = b10as1b10as2b10 · · · b10aslb10. (1)

That is, x contains l blocks of consecutive a symbols. Between each block of a symbols,
we insert 10 b’s and we also add 10 b’s to the front, and the end of x. s1, . . . , sl are l integers
such that

l∑
i=1

si = n

6 + 5, (2)

1 ≤ si ≤ 9, ∀i ∈ [l]. (3)

Thus, the length of x is
∑l

i=1
n
6 + 5 + 10(l + 1) = n

2 + 5 and it contains exactly n
3 b’s.

Let S be the set of all x ∈ {a, b} n
2 +5 of form 1 that satisfying equations 2, 3. For

each string x ∈ S, we can define a string f(x) ∈ {a, b} n
2 −5 as following. Assume x =

b10as1b10as2b10 · · · b10aslb10, we set f(x) = as1b10as2b10 · · · b10aslb10. That is, f(x) simply
removed the first 10 b’s of x. We denote S̄ = {f(x)|x ∈ S} .

▷ Claim 21. |S| = |S̄| = 2Ω(n).

Proof. Notice that for x1, x2 ∈ S, if x1 ̸= x2, then f(x1) ̸= f(x2). We have |S| = |S̄|.
The size of S equals to the number of choices of l integers s1, s2, . . . , sl that satisfies

2 and 3. For an lower bound of |S|, we can pick n
60 of the integers to be 9, and set the

remaining to be 1 or 2. Thus the number of such choices is at least
(

l
n
60

)
=

( n
30 −1

n
60

)
= 2Ω(n).

◁

Given the construction of set S, we have the following lemma. We defer the proof to the
full version.

▶ Lemma 22. Let y = an/3bn/3an/3. For every x ∈ S,

LCS(x ◦ f(x), y) = n

2 + 5.

For any two distinct x1, x2 ∈ S,

max{LCS(x1 ◦ f(x2), y), LCS(x2 ◦ f(x1), y)} >
n

2 + 5.
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The above lemma implies the following lower bound.

▶ Lemma 23. In the asymmetric streaming model, any deterministic protocol that computes
LCS(x, y) for any x, y ∈ {0, 1}n, in R passes of x needs Ω(n/R) space.

Proof. Consider a two party game where player 1 holds a string x1 ∈ S and player 2
holds a string x2 ∈ S. The goal is to verify whether x1 = x2. It is known that the total
communication complexity of testing the equality of two elements from set S is Ω(log |S|),
see [21] for example. We can reduce this to computing the length of LCS. To see this, we first
compute LCS(x1 ◦ f(x2), y) and LCS(x2 ◦ f(x1), y) with y = an/3bn/3an/3. By lemma 22, if
both LCS(x1 ◦ f(x2), y) = LCS(x2 ◦ f(x), y) = n

2 + 5, we know x1 = x2, otherwise, x1 ̸= x2.
Here, y is known to both parties.

The above reduction shows the total communication complexity of this game is Ω(n) since
|S| = 2Ω(n). If we only allow R rounds of communication, the size of the longest message
sent by the players is Ω(n/R). Thus, in the asymmetric model, any protocol that computes
LCS(x, y) in R passes of x needs Ω(n/R) space. ◀

5.1.2 Ω(n) size alphabet, randomized algorithm
If the alphabet set Σ has size Ω(n), then we show there is a space lower bound of Ω(n)
for asymmetric streaming algorithms that computes LCS(x, y) for x, y ∈ Σn. We have the
following theorem.

▶ Theorem 24 (Restatement of Theorem 3). There is a constant c > 1 such that for
any k, n ∈ N with n > ck, given an alphabet Σ, any R-pass randomized algorithm in the
asymmetric streaming model that decides if LCS(x, y) ≥ k between two strings x, y ∈ Σn with
success probability at least 2/3 must use at least Ω

(
min(k, |Σ|)/R

)
space.

The proof relies on a reduction from set-disjointness problem. We defer the proof of
Theorem 3 to the full version.

5.2 Approximation
For deterministic approximation of LCS in the asymmetric streaming model, we have the
following lower bound.

▶ Theorem 25 (Restatement of Theorem 5). Assume ε > 0, and |Σ|2

ε ≤ n . In the asymmetric
streaming model, any deterministic protocol that computes an 1+ε approximation of LCS(x, y)
for any x, y ∈ Σn, with constant number of passes of x needs Ω( |Σ|

ε ) space.

This lower bound is achieved by combining our construction in Section 5.1.1 with the
techniques from [14]. We defer the proof to the full version.
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A Lower Bounds for LIS and LNS

In this section, we introduce our space lower bound for LIS and LNS. We first introduce
some definition and related results regarding the multi-party communication model.

We will consider the one-way t-party communication model where t players P1, P2, . . . , Pt

each holds input x1, x2, . . . , xt respectively. The goal is to compute the function
f(x1, x2, . . . , xt). In the one-way communication model, each player speaks in turn and
player Pi can only send message to player Pi+1. We sometimes consider multiple round of
communication. In an R round protocol, during round r ≤ R, each player speaks in turn Pi

sends message to Pi+1. At the end of round r < R, player Pt sends a message to P1. At the
end of round R, player Pt must output the answer of the protocol.

We define the total communication complexity of f in the t-party one-way communication
model, denoted by CCtot

t (f), as the minimum number of bits required to be sent by the
players in every deterministic communication protocol that always outputs a correct answer.
We define CCmax

t (f), the maximum communication complexity of f , as the maximum
number of bits required to be sent by some player in protocol P , where P ranges over all
deterministic protocol that outputs a correct answer. We have CCmax

t (f) ≥ 1
tR CCtot

t (f)
where R is the number of rounds.

Let X be a subset of U t where U is some finite universe and t is an integer. Define the
span of X by Span(X) = {y ∈ U t|∀ i ∈ [t], ∃ x ∈ X s. t. yi = xi}. The notion k-fooling set
introduced in [14] is defined as following.

▶ Definition 26 (k-fooling set). Let f : U t → {0, 1} where U is some finite universe. Let
S ⊆ U t. For some integer k, we say S is a k-fooling set for f iff f(x) = 0 for each x ∈ S

and for each subset S′ of S with cardinality k, the span of S′ contains a member y such that
f(y) = 1.

We have the following.

▶ Lemma 27 (Fact 4.1 from [14]). Let S be a k-fooling set for f , we have CCtot
t (f) ≥ log( |S|

k−1 ).
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We now present our lower bounds. Consider the following problem. Let s ∈ {0, 1}t be a
binary string of length t. For each integer l ≥ 1, we can define a function h(l) whose domain
is a subset of {0, 1}t. Let α ∈ (1/2, 1) be some constant. We have following definition

h(l)(a) =
{

1, if there are at least l zeros between any two nonzero positions in s.
0, if s contains at least αt nonzeros.

(4)

We leave h(l) undefined otherwise. Let B ∈ {0, 1}s×t be a matrix and denote the i-th
row of B by Ri(B). We can define g(l) as the direct sum of s copies of h(l). Let

g(l)(B) = h(l)(R1(B)) ∨ h(l)(R2(B)) ∨ · · · ∨ h(l)(Rs(B)). (5)

That is, g(l)(B) = 1 if and only if there is some i ∈ [s] such that h(l)(Ri(B)) = 1 .
In the following, we consider computing h(l) and g(l) in the t-party one-way communication

model. When computing h(l)(a), player Pi holds the i-th element of a ∈ {0, 1}t for i ∈ [t].In
this setting, when computing g(l)(B), player Pi holds the i-th column of matrix B for i ∈ [t].
In the following, we use CCtot

t (h(l)) to denote the total communication complexity of h(l)

and respectively use CCtot
t (g(l)) to denote the total communication complexity of g(l). We

also consider multiple rounds of communication and we denote the number of rounds by R.
For a more detailed discussion of the multiparty communication model, we refer readers to
the full version of this paper.

We can show the following lemma using Lovás Local Lemma.

▶ Lemma 28. For any constant l ≥ 1, there exists a constant k (depending on l), such that
there is a k-fooling set for function h(l) of size ct for some constant c > 1.

We note that Lemma 4.2 of [14] proved a same result for the case l = 1. We defer the
proof to the full version.

The following lemma is essentially the same as Lemma 4.3 in [14].

▶ Lemma 29. Let F ⊆ {0, 1}t be a k-fooling set for h(l). Then the set of all matrix
B ∈ {0, 1}s×t such that Ri(B) ∈ F is a ks-fooling set for g(l).

Combining Lemma 28 and Lemma 29, we have the following.

▶ Lemma 30. CCmax
t (g(l)) = Ω(s/R).

Proof. By Lemma 28 and Lemma 29, there is a ks-fooling set for function g(l) of size
cts for some large enough constant k and some constant c > 1. By Lemma 27, in the
t-party one-way communication model, CCtot

t (g(l)) = Ω(log cts

ks−1 ) = Ω(ts). Thus, we have
CCmax

t (g(l)) ≥ 1
tR CCtot

t (g(l)) = Ω(s/R). ◀

A.1 Lower bound for streaming LIS over small alphabet
With Lemma 30, we can show the following lower bound.

▶ Lemma 31. For x ∈ Σn with |Σ| = O(
√

n) and any constant ε > 0, any deterministic
algorithm that makes R passes of x and outputs a (1 + ε)-approximation of LIS(x) requires
Ω(|Σ|/R) space.

Proof sketch of Lemma 31. We assume the alphabet set Σ = {0, 1, . . . , 2r} which has size
|Σ| = 2r + 1. Let c be a large constant and assume r can be divided by c for similicity. We
set s = r

c and t = r. Consider a matrix B of size s × t. We denote the element on i-th row
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and j-th column by Bi,j . ALso, we require that Bi,j is either (i − 1) r
c + j or 0. For each row

of B, say Ri(B), either there are at least l 0’s between any two nonzeros or it has more than
αr nonzeros. We let B̃ ∈ {0, 1}s×r be a binary matrix such that B̃i,j = 1 if Bi,j ̸= 0 and
B̃i,j = 0 if Bi,j = 0 for (i, j) ∈ [s] × [r].

Without loss of generality, we can view any row or any column in B as a string. More
specifically, let Ri(B) = Bi,1Bi,2 . . . Bi,r for i ∈ [s], and Ci(B) = B1,iB2,i . . . Bs,i for i ∈ [r].
We let σ(B) = C1(B) ◦ C2(B) ◦ · · · ◦ Cr(B). Thus, σ(B) is a string of length sr. For
convenience, we denote σ = σ(B). Here, we required the length of σ = r2/c ≤ n. If |σ| < n,
we can pad σ with 0 symbols to make it has length n. This will not affect the length of the
longest increasing subsequence of σ.

We can show that if there is some row of B containing more than αt nonzeros, then
LIS(σ) ≥ αr. If not, then LIS(σ(B)) ≤ ( 1

r + 1
c )r.

Thus, if g(l)(B̃) = 0, we have LIS(σ(B)) ≥ αr. And if g(l)(B̃) = 1, LIS(σ(B)) ≤ ( 1
c + 1

l )r.
Here, c and l can be any large constant up to our choice and α ∈ (1/2, 1) is fixed. For any
ε > 0, we can choose c and l such that (1 + ε)( 1

c + 1
l ) ≤ α. This gives us a reduction from

computing g(l)(B̃) to compute a (1 + ε)-approximation of LIS(σ(B)).
In the t-party game for computing g(l)(B̃), each player holds one column of B̃. Thus,

player Pi also holds Ci(B) since Ci(B) is determined by Ci(B̃). If the t players can compute
a (1 + ε) approximation of σ(B) in the one-way communication model, we can distinguish the
case of g(l)(B̃) = 0 and g(l)(B̃) = 1. Thus, any R passes deterministic streaming algorihtm
that approximate LIS within a 1 + ε factor requires at least CCmax

t (g(l)). By Lemma 30,
CCmax

t (g(l)) = Ω(s/R) = Ω(|Σ|/R). ◀

A.2 Longest Non-decreasing Subsequence

We can proof a similar space lower bound for approximating the length of longest non-
decreasing subsequence in the streaming model. We have the following two lemmas. The
proof is deferred to the full version.

▶ Lemma 32. For x ∈ Σn with |Σ| = O(
√

n) and any constant ε > 0, any deterministic
algorithm that makes R passes of x and outputs a (1 + ε)-approximation of LNS(x) requires
Ω(|Σ|/R) space.

▶ Lemma 33. Let x ∈ Σn and ε > 0 such that |Σ|2/ε = O(n). Then any deterministic
algorithm that makes constant pass of x and outputs a (1 + ε) approximation of LNS(x) takes
Ω(r log 1

ε ) space.

A.3 Longest Non-decreasing Subsequence with Threshold

We also consider a variant of LNS problem we call longest non-decreasing subsequence
with threshold (LNST). In this problem, we are given a sequence x ∈ Σn and a threshold
t ∈ [n], the longest non-decreasing subsequence with threshold t is the longest non-decreasing
subsequence of x such that each symbol appeared in it is repeated at most t times. We
denote the length of such a subsequence by LNST(x, t).

By combining the techniques from the previous sections, we can show Theorem 6. We
also presented upper bound for LNST in Theorem 9 by giving a simple algorithm. We omit
the algorithm and the formal proofs here.
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B Algorithms for Edit Distance and LCS

In this section, we give an informal description of our improved algorithms for edit distance
and LCS in the asymmetric streaming model. The formal proofs are deferred to the full
version.

Algorithm for edit distance. Our algorithm for edit distance builds on and improves the
algorithm in [15, 13]. The key idea of that algorithm is to use triangle inequality. Given a
constant δ, the algorithm first divides x evenly into b = nδ blocks. Then for each block xi

of x, the algorithm recursively finds an α-approximation of the closest substring to xi in y.
That is, the algorithm finds a substring y[li : ri] and a value di such that for any substring
y[l : r] of y, ED(xi, y[li : ri]) ≤ di ≤ αED(xi, y[l : r]). Let ỹ be the concatenation of y[li : ri]
from i = 1 to b. Then using triangle inequality, [15] showed that ED(y, ỹ) +

∑b
i=1 di is a

2α + 1 approximation of ED(x, y). The Õ(nδ) space is achieved by recursively applying this
idea, which results in a O(21/δ) approximation.

To further reduce the space complexity, our key observation is that, instead of dividing
x into blocks of equal length, we can divide it according to the positions of the edit
operations that transform x to y. More specifically, assume we are given a value k with
ED(x, y) ≤ k ≤ cED(x, y) for some constant c, we show how to design an approximation
algorithm using space Õ(

√
k). Towards this, we can divide x and y each into

√
k blocks

x = x1 ◦ · · · ◦ x
√

k and y = y1 ◦ · · · ◦ y
√

k such that ED(xi, yi) ≤ ED(x,y)√
k

≤
√

k for any i ∈ [
√

k].
However, such a partition of x and y is not known to us. Instead, we start from the first
position of x and find the largest index l1 such that ED(x[1 : l1], y[p1, q1]) ≤

√
k for some

substring y[p1 : q1] of y. To do this, we start with l =
√

k and try all substrings of y with
length in [l −

√
k, l +

√
k]. If there is some substring of y within edit distance

√
k to x[1 : l],

we set l1 = l and store all the edit operations that transform y[p1 : q1] to x[1 : l1] where
y[p1 : q1] is the substring closest to x[1 : l1] in edit distance. We continue doing this with
l = l + 1 until we can not find a substring of y within edit distance

√
k to x[1 : l].

One problem here is that l can be much larger than
√

k and we cannot store x[1 : l]
with Õ(

√
k) space. However, since we have stored some substring y[p1 : q1] (we only need to

store the two indices p1, q1) and the at most
√

k edit operations that transform y[p1 : q1] to
x[1 : l − 1], we can still query every bit of x[1 : l] using Õ(

√
k) space.

After we find the largest possible index l1, we store l1, (p1, q1) and d1 = ED(x[1 : l1], y[p1 :
q1]). We then start from the (l1 + 1)-th position of x and do the same thing again to find
the largest l2 such that there is a substring of y within edit distance

√
k to x[l1 + 1 : l1 + l2].

We continue doing this until we have processed the entire string x. Assume this gives us
T pairs of indices (pi, qi) and integers li, di from i = 1 to T , we can use O(T log n) space
to store them. We show by induction that x1 ◦ · · · ◦ xi is a substring of x[1 :

∑i
j=1 lj ] for

i ∈ [T − 1]. Recall that x = x1 ◦ · · · ◦ x
√

k and each li > 0, i ∈ [T − 1]. Thus, the process must
end within

√
k steps and we have T ≤

√
k. Then, let ỹ be the concatenation of y[pi : qi]

from i = 1 to T . Using techniques developed in [15], we can show ED(y, ỹ) +
∑T

i=1 di is
a 3 approximation of ED(x, y). For any small constant ε > 0, we can compute a 1 + ε

approximation of ED(y, ỹ) with polylog(n) space using the algorithm in [13]. This gives us a
3 + ε approximation algorithm with O(

√
ED(x, y) polylog(n)) space.

Similar to [15], we can use recursion to further reduce the space. Let δ be a small constant
and a value k = Θ(ED(x, y)) be given as before. There is a way to partition x and y each into
kδ blocks such that ED(xi, yi) ≤ ED(x,y)

kδ ≤ k1−δ. Now similarly, we want to find the largest
index l0 such that there is a substring of y within edit distance k1−δ to x[1 : l0]. However
naively this would require Θ(k1−δ) space to compute the edit distance. Thus again we turn
to approximation.
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We introduce a recursive algorithm called FindLongestSubstring. It takes two additional
parameters as inputs: an integer u and a parameter s for the amount of space we can use.
It outputs a three tuple: an index l, a pair of indices (p, q) and an integer d. Let l0 be the
largest index such that there is a substring of y within edit distance u to x[1 : l0].

We show the following two properties of FindLongestSubstring: (1) l ≥ l0, and (2) for any
substring y[p∗ : q∗], ED(x[1 : l], y[p : q]) ≤ d ≤ c(u, s)ED(x[1 : l], y[p∗ : q∗]). Here, c(u, s) is
a function of (u, s) that measures the approximation factor. If u ≤ s, FindLongestSubstring
outputs l = l0 and the substring of y that is closest to x[1 : l] using O(s log n) space by doing
exact computation. In this case we set c(u, s) = 1. Otherwise, it calls FindLongestSubstring
itself up to s times with parameters u/s and s. This gives us T ≤ s outputs {li, (pi, qi), di}
for i ∈ [T ]. Let ỹ be the concatenation of y[pi : qi] for i = 1 to T . We find the pair of indices
(p, q) such that y[p : q] is the substring that minimizes ED(ỹ, y[p : q]). We output l =

∑T
j=1 lj ,

(p, q), and d = ED(ỹ, y[p : q]) +
∑T

i=1 di. We then use induction to show property (1) and
(2) hold for these outputs, where c(u, s) = 2(c(u/s, s) + 1) if u > s and c(u, s) = 1 if u ≤ s.
Thus we have c(u, s) = 2O(logs u).

This gives an O(kδ/δ polylog(n)) space algorithm as follows. We run algorithm
FindLongestSubstring with u = k1−δ and s = kδ to find T tuples: {li, (pi, qi), di}. Again,
let ỹ be the concatenation of y[pi : qi] from i = 1 to T . Similar to the O(

√
k polylog(n))

space algorithm, we can show T ≤ kδ and ED(y, ỹ) +
∑T

i=1 di is a 2c(k1−δ, kδ) + 1 = 2O(1/δ)

approximation of ED(x, y). Since the depth of recursion is at most 1/δ and each level of
recursion needs O(kδ polylog(n)) space, FindLongestSubstring uses O(kδ/δ polylog(n)) space.

The two algorithms above both require a given value k. To remove this constraint, our
observation is that the two previous algorithms actually only need the number k to satisfy
the following relaxed condition: there is a partition of x into kδ blocks such that for each
block xi, there is a substring of y within edit distance k1−δ to xi. Thus, when such a k

is not given, we can do the following. We first set k to be a large constant k0. While
the algorithm reads x from left to right, let T ′ be the number of {li, (pi, qi), di} we have
stored so far. Each time we run FindLongestSubstring at this level, we increase T ′ by 1.
If the current k satisfies the relaxed condition, then by a similar argument as before T ′

should never exceed kδ. Thus whenever T ′ = kδ, we increase k by a 21/δ factor. Assume
that k is updated m times in total and after the i-th update, k becomes ki. We show
that km = O(ED(x, y)) (but km may be much smaller than ED(x, y)). To see this, suppose
kj > 21/δED(x, y) for some j ≤ m. Let tj be the position of x where kj−1 is updated
to kj . We know it is possible to divide x[tj : n] into ED(x, y)δ blocks such that for each
part, there is a substring of y within edit distance ED(x, y)1−δ ≤ k1−δ

j to it. By property
(1) and a similar argument as before, we will run FindLongestSubstring at most ED(x, y)δ

times until we reach the end of x. Since kδ
j − kδ

j−1 > ED(x, y)δ, T ′ must be always smaller
than kδ

j and hence kj will not be updated. Therefore we must have j = m. This shows
km−1 ≤ 21/δED(x, y) and km ≤ 22/δED(x, y). Running FindLongestSubstring with k ≤ km

takes O(kδ
m/δ polylog(n)) = O(ED(x, y)δ/δ polylog(n)) space and the number of intermediate

results ((pi, qi) and di’s) is O(kδ
m) = O(ED(x, y)δ). This gives us a 2O(1/δ) approximation

algorithm with space complexity O(ED(x, y)δ/δ polylog(n)).

Algorithm for LCS. We show that the reduction from LCS to ED discovered in [24] can work
in the asymmetric streaming model with a slight modification. Combined with our algorithm
for ED, this gives a nδ space algorithm for LCS that achieves a 1/2 + ε approximation for
binary strings. We defer the detailed analysis and proof to the full version.
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C Lower Bound for ED in the Standard Streaming Model

▶ Theorem 34. There exists a constant ε > 0 such that for strings x, y ∈ {0, 1}n, any
deterministic R pass streaming algorithm achieving an εn additive approximation of ED(x, y)
needs Ω(n/R) space.

Proof. Consider an asymptotically good insertion-deletion code C ⊆ {0, 1}n over a binary
alphabet (See [27] for example). Assume C has rate α and distance β. Both α and β are
some constants larger than 0, and we have |C| = 2αn. Also, for any x, y ∈ C with x ̸= y, we
have ED(x, y) ≥ βn. Let ε = β/2 and consider the two party communication problem where
player 1 holds x ∈ C and player 2 holds y ∈ C. The goal is to decide whether x = y. Any
deterministic protocol has communication complexity at least log |C| = Ω(n). Note that any
algorithm that approximates ED(x, y) within an εn additive error can decide whether x = y.
Thus the theorem follows. ◀

We note that the same bound holds for Hamming distance by the same argument.
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