
On (Simple) Decision Tree Rank
Yogesh Dahiya #

The Institute of Mathematical Sciences (HBNI), Chennai, India

Meena Mahajan #

The Institute of Mathematical Sciences (HBNI), Chennai, India

Abstract
In the decision tree computation model for Boolean functions, the depth corresponds to query
complexity, and size corresponds to storage space. The depth measure is the most well-studied
one, and is known to be polynomially related to several non-computational complexity measures
of functions such as certificate complexity. The size measure is also studied, but to a lesser extent.
Another decision tree measure that has received very little attention is the minimal rank of the
decision tree, first introduced by Ehrenfeucht and Haussler in 1989. This measure is not polynomially
related to depth, and hence it can reveal additional information about the complexity of a function.
It is characterised by the value of a Prover-Delayer game first proposed by Pudlák and Impagliazzo
in the context of tree-like resolution proofs. In this paper we study this measure further. We obtain
upper and lower bounds on rank in terms of (variants of) certificate complexity. We also obtain upper
and lower bounds on the rank for composed functions in terms of the depth of the outer function
and the rank of the inner function. We compute the rank exactly for several natural functions and
use them to show that all the bounds we have obtained are tight. We also observe that the size-rank
relationship for decision trees, obtained by Ehrenfeucht and Haussler, is tight upto constant factors.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Boolean functions, Decision trees, certificate complexity, rank

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.15

1 Introduction

The central problem in Boolean function complexity is to understand exactly how hard it is
to compute explicit functions. The hardness naturally depends on the computation model to
be used, and depending on the model, several complexity measures for functions have been
studied extensively in the literature. To name a few – size and depth for circuits and formulas,
size and width for branching programs, query complexity, communication complexity, length
for span programs, and so on. All of these are measures of the computational hardness of
a function. There are also several ways to understand hardness of a function intrinsically,
independent of a computational model. For instance, the sensitivity of a function, its
certificate complexity, the sparsity of its Fourier spectrum, its degree and approximate degree,
stability, and so on. Many bounds on computational measures are obtained by directly
relating them to appropriate intrinsic complexity measures. See [10] for a wonderful overview
of this area. Formal definitions of relevant measures appear in Section 2.

Every Boolean function f can be computed by a simple decision tree (simple in the sense
that each node queries a single variable), which is one of the simplest computation models
for Boolean functions. The most interesting and well-studied complexity measure in the
decision tree model is the minimal depth Depth(f), measuring the query complexity of the
function. This measure is known to be polynomially related to several intrinsic measures:
sensitivity, block sensitivity, certificate complexity. But there are also other measures which
reveal information about the function. The minimal size of a decision tree, DTSize(f), is
one such measure, which measures the storage space required to store the function as a tree,
and has received some attention in the past.

© Yogesh Dahiya and Meena Mahajan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yogeshdahiya@imsc.res.in
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On (Simple) Decision Tree Rank

A measure which has received relatively less attention is the minimal rank of a decision
tree computing the function, first defined and studied in [6]; see also [1]. In general, the
rank of a rooted tree (also known as its Strahler number, or Horton-Strahler number, or tree
dimension) measures its branching complexity, and is a tree measure that arises naturally in
a wide array of applications; see for instance [7]. The rank of a Boolean function f , denoted
Rank(f), is the minimal rank of a decision tree computing it. The original motivation for
considering rank of decision trees was from learning theory – an algorithm, proposed in [6],
and later simplified in [4], shows that constant-rank decision trees are efficiently learnable
in Valiant’s PAC learning framework [18]. Subsequently, the rank measure has played an
important role in understanding the decision tree complexity of search problems over relations
[14, 8, 11] – see more in the Related Work part below. The special case when the relation
corresponds to a Boolean function is exactly the rank of the function. However, there is very
little work focussing on the context of, and exploiting the additional information from, this
special case. This is precisely the topic of this paper.

In this paper, we study how the rank of boolean functions relates to other measures. In
contrast with Depth(f), Rank(f) is not polynomially related with sensitivity or to certificate
complexity C(f), although it is bounded above by Depth(f). Hence it can reveal additional
information about the complexity of a function over and above that provided by Depth.
For instance, from several viewpoints, the Parityn function is significantly harder than the
Andn function. But both of them have the same Depth, n. However, Rank does reflect this
difference in hardness, with Rank(Andn) = 1 and Rank(Parityn) = n. On the other hand,
rank is also already known to characterise the logarithm of decision tree size (DTSize), upto
a log n multiplicative factor. Thus lower bounds on rank give lower bounds on the space
required to store a decision tree explicitly. (However, the log n factor is crucial; there is no
dimension-free characterisation. Consider e.g. log DTSize(Andn) = Θ(log n).)

Our main findings can be summarised as follows:
1. Rank(f) is equal to the value of the Prover-Delayer game of Pudlák and Impagliazzo [14]

played on the corresponding relation Rf . (This is implicit in earlier literature [11, 8].)
2. Rank(f) is bounded between the minimum certificate complexity of f at any point, and

(C(f) − 1)2 + 1; Theorem 5.6. The upper bound (Lemma 5.2) is an improvement on the
bound inherited from Depth(f), and is obtained by adapting that construction.

3. For a composed function f ◦ g, Rank(f ◦ g) is bounded above and below by functions of
Depth(f) and Rank(g); Theorem 6.6. The main technique in both bounds (Theorems 6.3
and 6.5) is to use weighted decision trees, as was used in the context of depth [13].

4. The relation between Rank(f) and DTSize(f) from [6] is tight, Section 7. In particular,
for the Tribes function, the log n multiplicative factor is necessary.

By calculating the exact rank for specific functions, we show that all the bounds we obtain
on rank are tight.

Related work

In [1], a model called k+-decision trees is considered, and the complexity is related to both
simple decision tree rank and to communication complexity. In particular, Theorems 7 and 8
from [1] imply that communication complexity lower bounds with respect to any variable
partition (see [12]) translate to decision tree rank lower bounds, and hence by [6] to decision
tree size lower bounds.

In [16], the model of linear decision trees is considered (here each node queries not a single
variable but a linear threshold function of the variables), and for such trees of bounded rank
computing the inner product function, a lower bound on depth is obtained. Thus for this
function, in this model, there is a trade-off between rank and depth. In [17], rank of linear
decision trees is used in obtaining non-trivial upper bounds on depth-2 threshold circuit size.

Y. Dahiya and M. Mahajan 15:3

In [14], a 2-player game is described, on an unsatisfiable formula F in conjunctive normal
form, that constructs a partial assignment falsifying some clause. The players are referred to
in subsequent literature as the Prover and the Delayer. The value of the game, Value(F), is
the maximum r such that the Delayer can score at least r points no matter how the Prover
plays. It was shown in [14] that the size of any tree-like resolution refutation of F is at least
2Value(F). Subsequently, the results of [11, 8] yield the equivalence Value(F) = Rank(F),
where Rank(F) is defined to be the minimal rank of the tree underlying a tree-like resolution
refutation of F . (Establishing this equivalence uses refutation-space and tree pebbling
as intermediaries.) The relevance here is because there is an immediate, and well-known,
connection to decision trees for search problems over relations: tree-like resolution refutations
are decision trees for the corresponding search CNF problem. (See Lemma 7 in [2]). Note
that the size lower bound from [14], and the rank-value equivalence from [11, 8], hold for the
search problem over arbitrary relations, not just searchCNF. (See e.g. Exercise 14.16 in Jukna
for the size bound.) In particular, for Boolean function f , it holds for the corresponding
canonical relation Rf defined in Section 2. Similarly, the value of an asymmetric variant of
this game is known to characterise the size of a decision tree for the search CNF problem [3],
and this too holds for general relations and Boolean functions.

Organisation of the paper

After presenting basic definitions and known results in Section 2, we describe the Prover-
Delayer game from [14] in Section 3, and observe that its value equals the rank of the function.
We also describe the asymmetric game from [3]. We compute the rank of some simple functions
in Section 4. In Section 5, we describe the relation between rank and certificate complexity.
In Section 6, we present results concerning composed functions. Section 7 examines the
size-rank relationship for the Tribes function. The bounds in Sections 4–7 are all obtained
by direct inductive arguments/decision tree constructions. They can also be stated using the
equivalence of the game value and rank – while this does not particularly simplify the proofs,
it changes the language of the proofs and may be more accessible to the reader already
familiar with that setting. Hence we illustrate such game-based arguments for some of our
results in Section 8.

2 Preliminaries

Decision trees

For a Boolean function f : {0, 1}n −→ {0, 1}, a decision tree computing f is a binary tree
with internal nodes labeled by the variables and the leaves labelled by {0, 1}. To evaluate a
function on an unknown input, the process starts at the root of the decision tree and works
down the tree, querying the variables at the internal nodes. If the value of the query is 0,
the process continues in the the left subtree, otherwise it proceeds in the right subtree. The
label of the leaf so reached is the value of the function on that particular input. A decision
tree is said to be reduced if no variable is queried more than once on any root-to-leaf path.
Without loss of generality, any decision tree can be reduced, so in our discussion, we will only
consider reduced decision trees. The depth Depth(T) of a decision tree T is the length of the
longest root-to-leaf path, and its size DTSize(T) is the number of leaves. The decision tree
complexity or the depth of f , denoted by Depth(f), is defined to be the minimum depth of a
decision tree computing f . Equivalently, Depth(f) can also be seen as the minimum number
of worst-case queries required to evaluate f . The size of a function f , denoted by DTSize(f),

FSTTCS 2021

15:4 On (Simple) Decision Tree Rank

is defined similarly i.e. the minimum size of a decision tree computing f . Since decision
trees can be reduced, Depth(f) ≤ n and DTSize(f) ≤ 2n for every n-variate function f . A
function is said to be evasive if its depth is maximal, Depth(f) = n.

Weighted decision trees

Weighted decision trees describe query complexity in settings where querying different input
bits can have differing cost, and arises naturally in the recursive construction. Formally,
these are defined as follows: Let wi be the cost of querying variable xi. For a decision
tree T , its weighted depth with respect to the weight vector [w1, . . . , wn], denoted by
Depthw(T, [w1, w2, ..., wn]), is the maximal sum of weights of the variables specified by the
labels of nodes of T on any root-to-leaf path. The weighted decision tree complexity of f ,
denoted by Depthw(f, [w1, w2, ..., wn]), is the minimum weighted depth of a decision tree
computing f . Note that Depth(f) is exactly Depthw(f, [1, 1, . . . , 1]). The following fact is
immediate from the definitions.

▶ Fact 2.1. For any reduced decision tree T computing an n-variate function, weights
w1, . . . , wn, and i ∈ [n],

Depthw(T, [w1, . . . , wi−1, wi + 1, wi+1, . . . , wn]) ≤ Depthw(T, [w1, w2, ..., wn]) + 1.

Certificate Complexity

The certificate complexity of a function f , denoted C(f), measures the number of variables
that need to be assigned in the worst case to fix the value of f . More precisely, for a Boolean
function f : {0, 1}n −→ {0, 1} and an input a ∈ {0, 1}n, an f -certificate of a is a subset
S ⊆ {1, ..., n} such that the value of f(a) can be determined by just looking at the bits of a

in set S. Such a certificate need not be unique. Let C(f, a) denote the minimum size of an
f -certificate for the input a. That is,

C(f, a) = min
{

|S| | S ⊆ [n]; ∀a′ ∈ {0, 1}n,
[(

a′
j = aj∀j ∈ S

)
=⇒ f(a′) = f(a)

]}
.

Using this definition, we can define several measures.

For b ∈ {0, 1}, Cb(f) = max{C(f, a) | a ∈ f−1(b)}
C(f) = max{C(f, a) | a ∈ {0, 1}n} = max{C0(f), C1(f)}

Cavg(f) = 2−n
∑

a∈{0,1}n

C(f, a)

Cmin(f) = min{C(f, a) | a ∈ {0, 1}n}

Composed functions

For boolean functions f, g1, g2, . . . , gn of arity n, m1, m2, . . . , mn respectively, the composed
function f ◦ (g1, g2, ..., gn) is a function of arity

∑
i mi, and is defined as follows: for ai ∈

{0, 1}mi for each i ∈ n, f ◦ (g1, g2, ..., gn)(a1, a2, ..., an) = f(g1(a1), g2(a2), . . . , gn(an)). We
call f the outer function and g1, . . . , gn the inner functions. For functions f : {0, 1}n −→ {0, 1}
and g : {0, 1}m −→ {0, 1}, the composed function f ◦ g is the function f ◦ (g, g, . . . , g) :
{0, 1}mn −→ {0, 1}. The composed function Orn ◦ Andm has a special name, Tribesn,m,
and when n = m, we simply write Tribesn. Its dual is the function Andn ◦ Orm that we
denote Tribesd

n,m. (The dual of f(x1, . . . , xn) is the function ¬f(¬x1, . . . , ¬xn).)

Y. Dahiya and M. Mahajan 15:5

Symmetric functions

A Boolean function is symmetric if its value depends only on the number of ones in the input,
and not on the positions of the ones.

▶ Proposition 2.2. For every non-constant symmetric boolean function f : {0, 1}n −→ {0, 1},
1. f is evasive (has Depth(f) = n). (See eg. Lemma 14.19 [10].)
2. Hence, for any weights wi, Depthw(f, [w1, w2, ..., wn])) =

∑
i wi.

For a symmetric Boolean function f : {0, 1}n −→ {0, 1}, let f0, f1, ..., fn ∈ {0, 1} denote
the values of the function f on inputs of Hamming weight 0, 1, ..., n respectively. The Gap of
f is defined as the length of the longest interval (minus one) where fi is constant. That is,

Gap(f) = max
0≤a≤b≤n

{b − a : fa = fa+1 = ... = fb}.

Analogously, Gapmin(f) is the length of the shortest constant interval (minus one); that is,
setting f−1 ̸= f0 and fn+1 ̸= fn for boundary conditions,

Gapmin(f) = min
0≤a≤b≤n

{b − a : fa−1 ̸= fa = fa+1 = ... = fb ̸= fb+1}.

Decision Tree Rank

For a rooted binary tree T , the rank of the tree is the rank of the root node, where the rank
of each node of the tree is defined recursively as follows: For a leaf node u, Rank(u) = 0.
For an internal node u with children v, w,

Rank(u) =
{

Rank(v) + 1 if Rank(v) = Rank(w)
max{Rank(v), Rank(w)} if Rank(v) ̸= Rank(w)

The following proposition lists some known properties of the rank function for binary trees.

▶ Proposition 2.3. For any binary tree T ,
1. (Rank and Size relationship): Rank(T) ≤ log(DTSize(T)) ≤ Depth(T).
2. (Monotonicity of the Rank): Let T ′ be any subtree of T , and let T ′′ be an arbitrary binary

tree of higher rank than T ′. If T ′ is replaced by T ′′ in T , then the rank of the resulting
tree is not less than the rank of T .

3. (Leaf Depth and Rank): If all leaves in T have depth at least r, then Rank(T) ≥ r.

For a Boolean function f , the rank of f , denoted Rank(f), is the minimum rank of a
decision tree computing f .

From Proposition 2.3(2), we see that the rank of a subfunction of f (a function obtained
by assigning values to some variables of f) cannot exceed the rank of the function itself.

▶ Proposition 2.4. (Rank of a subfunction): Let fS be a subfunction obtained by fixing the
values of variables in some set S ⊆ [n] of f . Then Rank(fS) ≤ Rank(f).

The following rank and size relationship is known for boolean functions.

▶ Proposition 2.5 (Lemma 1 [6]). For a non-constant Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ log DTSize(f) ≤ Rank(f) log
(

en

Rank(f)

)
.

For symmetric functions, Rank is completely characterized in terms of Gap.

FSTTCS 2021

15:6 On (Simple) Decision Tree Rank

▶ Proposition 2.6 (Lemma C.6 [1]). For symmetric Boolean function f : {0, 1}n −→ {0, 1},
Rank(f) = n − Gap(f).
▶ Remark 2.7. For (simple) deterministic possibly weighted decision trees, each of the
measures DTSize, Depth, and Rank, is the same for a Boolean function f , its complement
¬f , and its dual fd.

Relations and Search problems

A relation R ⊆ X × W is said to be X-complete, or just complete, if its projection ot X

equals X. That is, for every x ∈ X, there is a w ∈ W with (x, w) ∈ R. For an X-complete
relation R, where X is of the form {0, 1}n for some n, the search problem SearchR is as
follows: given an x ∈ X, find a w ∈ W with (x, w) ∈ R. A decision tree for SearchR is
defined exactly as for Boolean functions; the only diference is that leaves are labeled with
elements of W , and we require that for each input x, if the unique leaf reached on x is labeled
w, then (x, w) ∈ R. The rank of the relation, Rank(R), is the minimum rank of a decision
tree solving the SearchR problem.

A Boolean function f : {0, 1}n −→ {0, 1} naturally defines a complete relation Rf over
X = {0, 1}n and W = {0, 1}, with Rf = {(x, f(x)) | x ∈ X}, and Rank(f) = Rank(Rf).

3 Game Characterisation for Rank

In this section we observe that the rank of a Boolean function is characterised by the value
of a Prover-Delayer game introduced by Pudlák and Impagliazzo in [14]. As mentioned
in Section 1, the game was originally described for searchCNF problems on unsatsifiable
clause sets. The appropriate analog for a Boolean function f , or its relation Rf , and even
for arbitrary X-complete relations R ⊆ X × W , is as follows:

The game is played by two players, the Prover and the Delayer, who construct a (partial)
assignment ρ in rounds. Initially, ρ is empty. In each round, the Prover queries a variable
xi not set by ρ. The Delayer responds with a bit value 0 or 1 for xi, or defers the choice
to the Prover. In the later case, Prover can choose the value for the queried variable, and
the Delayer scores one point. The game ends when there is a w ∈ W such that for all x

consistent with ρ, (x, w) ∈ R. (Thus, for a Boolean function f , the game ends when f |ρ is
a constant function.) The value of the game, Value(R), is the maximum k such that the
Delayer can always score at least k points, no matter how the Prover plays.
▶ Theorem 3.1 (implied from [14, 11, 8]). For any X-complete relation R ⊆ X × W , where
X = {0, 1}n, Rank(R) = Value(R). In particular, for a boolean function f : {0, 1}n −→
{0, 1}, Rank(f) = Value(Rf).

In [3], an aysmmmetric version of this game is defined. In each round, the Prover queries a
variable x, the Delayer specifies values p0, p1 ∈ [0, 1] adding up to 1, the Prover picks a value b,
the Delayer adds log 1

pb
to his score. Let ASym-Value denote the maximum score the Delayer

can always achieve, independent of the Prover moves. Note that ASym-Value(R) ≥ Value(R);
an asymmetric-game Delayer can mimic a symmetric-game Delayer by using pb = 1 for choice
b and p0 = p1 = 1/2 for deferring. As shown in [3], for the search CNF problem, the value of
this asymmetric game is exactly the optimal leaf-size of a decision tree. We note below that
this holds for the SearchR problem more generally.
▶ Proposition 3.2 (implicit in [3]). For any X-complete relation R ⊆ X × W , where
X = {0, 1}n, log DTSize(R) = ASym-Value(R). In particular, for a boolean function f :
{0, 1}n −→ {0, 1}, log DTSize(f) = ASym-Value(Rf).

Y. Dahiya and M. Mahajan 15:7

(In [3], the bounds have log⌈S/2⌉; this is because S there counts all nodes in the decision
tree, while here we count only leaves.)

Thus we have the relationship

Rank(f) = Value(Rf) ≤ ASym-Value(Rf) = log DTSize(f).

4 The Rank of some natural functions

For symmetric functions, rank can be easily calculated using Proposition 2.6. In Table 1
we tabulate various measures for some standard symmetric functions. As can be seen from
the Orn and Andn functions, the Rank(f) measure is not polynomially related with the
measures Depth(f) or certificate complexity C(f).

Table 1 Some simple symmetric functions and their associated complexity measures.

f Depth C0 C1 C Gap Rank
0 or 1 0 0 0 0 n 0
Andn n 1 n n n − 1 1
Orn n n 1 n n − 1 1

Parityn n n n n 0 n

Maj2k 2k k k + 1 k + 1 k k

Maj2k+1 2k + 1 k + 1 k + 1 k + 1 k k + 1
Thrk

n

(k ≥ 1) n n − k + 1 k max
{

n − k + 1,

k

}
max

{
k − 1,

n − k

}
n − Gap

For two composed functions that will be crucial in our later discussions, we can directly
calculate the rank as described below.

▶ Theorem 4.1. For every n ≥ 1,
1. Rank(Tribesn,m) = Rank(Tribesd

n,m) = n for m ≥ 2.
2. Rank(Andn ◦ Paritym) = n(m − 1) + 1 for m ≥ 1.

We prove each of the lower and upper bounds separately in a series of lemmas below. The
lemmas use the following properties about the rank function which can be easily verified.

▶ Proposition 4.2 (Composition of Rank). Let T be a rooted binary tree with depth ≥ 1,
rank r, and with leaves labelled by 0 and 1. Let T0, T1 be arbitrary rooted binary trees of
ranks r0, r1 respectively. For b ∈ {0, 1}, attach Tb to each leaf of T labeled b, to obtain rooted
binary tree T ′ of rank r′.
1. r′ ≤ r + max{r0, r1}. Furthermore, if T is a complete binary tree, and if r0 = r1, then

this is an equality; r′ = r + r0.
2. If every non-trivial subtree (more than one leaf) of T has both a 0 leaf and a 1 leaf, then

r′ ≥ r + max{r0, r1} − 1. If, furthermore, T is a complete binary tree, then this is an
equality when r0 ̸= r1,
We first establish the bounds for Tribesd

n,m =
∧

i∈[n]
∨

j∈[m] xi,j .

▶ Lemma 4.3. For every n, m ≥ 1, Rank(Tribesd
n,m) ≤ n.

FSTTCS 2021

15:8 On (Simple) Decision Tree Rank

Proof. We show the bound by giving a recursive construction and bounding the rank by
induction on n. In the base case, n = 1. Tribesd

1,m = Orm, which has rank 1. For the
inductive step, n ≥ 1. For j < n, let Tj,m denote the recursively constructed trees for
Tribesd

j,m. Take the tree T which is T1,m on variables xn,j , j ∈ [m]. Attach the tree
Tn−1,m on variables xi,j for i ∈ [n − 1], j ∈ [m], to all the 1-leaves of T , to obtain Tn,m.
It is straightforward to see that this tree computes Tribesd

n,m. Using Proposition 4.2 and
induction, we obtain Rank(Tn,m) ≤ Rank(T1,m) + Rank(Tn−1,m) ≤ 1 + (n − 1) = n. ◀

▶ Remark 4.4. More generally, this construction shows that Rank(Andn ◦ f) ≤ nRank(f).

▶ Lemma 4.5. For every n ≥ 1 and m ≥ 2, Rank(Tribesd
n,m) ≥ n.

Proof. We prove this by induction on n. The base case, n = 1, is straightforward: Tribesd
1,m

is the function Orm, whose rank is 1.
For the inductive step, let n > 1, and consider any decision tree Q for Tribesd

n,m. Without
loss of generality (by renaming variables if necessary), let x1,1 be the variable queried at the
root node. Let Q0 and Q1 be the left and the right subtrees of Q. Then Q0 computes the
function Andn ◦ (Orm−1, Orm, ..., Orm), and Q1 computes Tribesd

n−1,m, on appropriate
variables. For m ≥ 2, Tribesd

n−1,m is a sub-function of Andn ◦ (Orm−1, Orm, ..., Orm),
and so Proposition 2.4 implies that Rank(Q0) ≥ Rank(Andn ◦ (Orm−1, Orm, ..., Orm)) ≥
Rank(Tribesd

n−1,m). By induction, Rank(Q1) ≥ Rank(Tribesd
n−1.m) ≥ n − 1. Hence, by

definition of rank, Rank(Q) ≥ 1 + min{Rank(Q0), Rank(Q1} ≥ n. Since this holds for every
decision tree Q for Tribesd

n,m, we conclude that Rank(Tribesd
n,m) ≥ n, as claimed. ◀

Next, we establish the bounds for Andn ◦ Paritym =
∧

i∈[n]
⊕

j∈[m] xi,j . The upper
bound below is slightly better than what is implied by Remark 4.4.

▶ Lemma 4.6. For every n, m ≥ 1, Rank(Andn ◦ Paritym) ≤ n(m − 1) + 1.

Proof. Recursing on n, we construct decision trees Tn,m for Andn ◦ Paritym, as in
Lemma 4.3. By induction on n, we bound the rank, also additionally using the fact that the
rank-optimal decision tree for Paritym is a complete binary tree.

Base Case: n = 1. And1 ◦ Paritym = Paritym. From Table 1, Rank(Paritym) = m;
let T1,m be the optimal decision tree computing Paritym.

Inductive Step: n ≥ 1. For j < n, let Tj,m denote the recursively constructed trees for
Andj ◦ Paritym. Take the tree T which is T1,m on variables xn,j , j ∈ [m]. Attach the tree
Tn−1,m on variables xi,j for i ∈ [n − 1], j ∈ [m], to all the 1-leaves of T , to obtain Tn,m. It is
straightforward to see that this tree computes Andn ◦ Paritym.

By induction, Rank(Tn−1,m) ≤ (n − 1)(m − 1) + 1 ≥ 1. Since we do not attach anything
to the 0-leaves of T1,m (or equivalently, we attach a rank-0 tree to these leaves), and since
T1,m is a complete binary tree, the second statement in Proposition 4.2 yields Rank(Tn,m) =
Rank(T1,m) + Rank(Tn−1,m) − 1. Hence Rank(Tn,m) ≤ n(m − 1) + 1, as claimed. ◀

▶ Lemma 4.7. For every n, m1, m2, . . . , mn ≥ 1, and functions g1, g2, . . . , gn each in
{Paritym, ¬Paritym}, Rank(Andn ◦ (g1, g2, ..., gn)) ≥ (

∑n
i=1(mi − 1)) + 1.

In particular, Rank(Andn ◦ Paritym) ≥ n(m − 1) + 1.

Proofs of this lemma and Lemma 4.6, based on the Prover-Delayer game characterisation
Theorem 3.1, appear in Section 8. This lemma is also an immediate consequence of the more
general Theorem 6.6 that we prove later.

Y. Dahiya and M. Mahajan 15:9

5 Relation between Rank and Certificate Complexity

The certificate complexity and decision tree complexity are known to be related as follows.

▶ Proposition 5.1 ([5, 9, 15], see also Theorem 14.3 in [10]). For every boolean function
f : {0, 1}n −→ {0, 1},

C(f) ≤ Depth(f) ≤ C0(f)C1(f)

Both these inequalities are tight; the first for the Or and And functions, and the second
for the Tribesn,m and Tribesd

n,m functions. (For Tribesd
n,m, C0(Tribesd

n,m) = m,
C1(Tribesd

n,m) = n and Depth(Tribesd
n,m) = nm, see e.g. Exercise 14.1 in [10].)

Since Rank ≤ Depth, the same upper bound also holds for Rank as well. But it is far
from tight for the Tribesn,m function. In fact, the upper bound can be improved in general.
Adapting the construction given in the proof of Proposition 5.1 slightly, we show the following.

▶ Lemma 5.2. For every Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1

Moreover, the inequality is tight as witnessed by And and Or functions.

Proof (Sketch). The proof of Proposition 5.1 proceeds by constructing a decision tree in
stages. In each stage, all variables from some 0-certificate are queried. Each stage contributes
at most C0 to depth, and reduces C1 by at least one, giving the bound. We note that since
at least one leaf in each stage is a leaf of the final tree, each stage contributes at most C0 − 1
to rank. Further, in the last stage, the contribution to rank can be reduced to just 1. ◀

From Theorem 4.1, we see that the lower bound on Depth in Proposition 5.1 does
not hold for Rank; for m > n, Rank(Tribesd

n,m) = n < m = C(Tribesd
n,m). However,

min{C0(Tribesd
n,m), C1(Tribesd

n,m)} = n = Rank(Tribesd
n,m). Further, for all the func-

tions listed in Table 1, Rank(f) is at least as large as min{C0(f), C1(f)}. However, even
this is not a lower bound in general.

▶ Lemma 5.3. min{C0(f), C1(f)} is not a lower bound on Rank(f); for the symmetric
function f = Majn ∨ Parityn, when n > 4, Rank(f) < min{C0(f), C1(f)}.

Proof. Let f be the function Majn ∨Parityn, for n > 4. Then f(0n) = 0 and C0(f, 0n) = n,
and f(10n−1) = 1 and C1(f, 10n−1) = n. Also, f is symmetric, with Gap(f) = n/2, so by
Proposition 2.6, Rank(f) = n/2. ◀

The average certificate complexity is also not directly related to rank.

▶ Lemma 5.4. Average certificate complexity is neither a upper bound nor a lower bound on
the rank of a function; for functions f = Andn and g = Tribesd

n,2, Rank(f) < Cavg(f) and
Cavg(g) < Rank(g).

What can be shown in terms of certificate complexity and rank is the following:

▶ Lemma 5.5. For every Boolean function f , Cmin(f) ≤ Rank(f). This is tight for Orn.

Lemma 5.2 and Lemma 5.5 give these bounds sandwiching Rank(f):

▶ Theorem 5.6. Cmin(f) ≤ Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1 ≤ (C(f) − 1)2 + 1.

FSTTCS 2021

15:10 On (Simple) Decision Tree Rank

As mentioned in Proposition 2.6, for symmetric functions the rank is completely character-
ised in terms of Gap of f . How does Gap relate to certificate complexity for such functions?
It turns out that certificate complexity is characterized not by Gap but by Gapmin. Using
this relation, the upper bound on Rank(f) from Lemma 5.2 can be improved for symmetric
functions to C(f).

▶ Lemma 5.7. For every symmetric Boolean function f on n variables, C(f) = n−Gapmin(f)
and n − C(f) + 1 ≤ Rank(f) ≤ C(f). Both the inequalities on rank are tight for Maj2k+1.

Proof. We first show C(f) = n − Gapmin(f). Consider any interval [a, b] such that fa−1 ̸=
fa = fa+1 = ... = fb ̸= fb+1. Let x be any input with Hamming weight in the interval [a, b].
We show that C(f, x) = n − (b − a).
1. Pick any S ⊆ [n] containing exactly a bit positions where x is 1, and exactly n − b bit

positions where x is 0. Any y agreeing with x on S has Hamming weight in [a, b], and
hence f(y) = f(x). Thus S is a certificate for x. Hence C(f, x) ≤ n − (b − a).

2. Let S ⊆ [n] be any certificate for x. Suppose S contains fewer than a bit positions where
x is 1. Then there is an input y that agrees with x on S and has Hamming weight
exactly a − 1. (Flip some of the 1s from x that are not indexed in S.) So f(y) ̸= f(x),
contradicting the fact that S is a certificate for x. Similarly, if S contains fewer that
n − b bit positions where x is 0, then there is an input z that agrees with x on S and
has Hamming weight exactly b + 1. So f(z) ̸= f(x), contradicting the fact that S is a
certificate for x.
Thus any certificate for x must have at least a+(n−b) positions; hence C(f, x) ≥ n−(b−a).

Since the argument above works for any interval [a, b] where f is constant, we conclude that
C(f) = n − Gapmin(f).

Next, observe that Gap(f) + Gapmin(f) ≤ n − 1. Hence,

n − C(f) + 1 = Gapmin(f) + 1 ≤ n − Gap(f) = Rank(f) ≤ n − Gapmin(f) = C(f).

As seen from Table 1, these bounds on Rank are tight for Maj2k+1. ◀

Even for the (non-symmetric) functions in Theorem 4.1, Rank(f) ≤ C(f). However, this
is not true in general.

▶ Lemma 5.8. Certificate Complexity does not always bound Rank from above; for the
function f = Maj2k+1 ◦ Maj2k+1, C(f) < Rank(f).

The proof is deferred to Section 6, where we develop techniques to bound the rank of
composed functions. We also give, in Section 8, a proof based on the Prover-Delayer game
characterisation Theorem 3.1.

6 Rank of Composed functions

In this section we study the rank for composed functions. For composed functions, f ◦ g,
decision tree complexity Depth is known to behave very nicely.

▶ Proposition 6.1 ([13]). For Boolean functions f, g, Depth(f ◦ g) = Depth(f)Depth(g).

We want to explore how far something similar can be deduced about Rank(f ◦ g). The first
thing to note is that a direct analogue in terms of Rank alone is ruled out.

▶ Lemma 6.2. For general Boolean functions f and g, Rank(f ◦ g) cannot be bounded by
any function of Rank(f) and Rank(g) alone.

Y. Dahiya and M. Mahajan 15:11

Proof. Let f = Andn and g = Orn. Then Rank(f) = Rank(g) = 1. But Rank(f ◦ g) =
Rank(Tribesd

n) = n, as seen in Theorem 4.1. ◀

For f ◦g, let Tf , Tg be decision trees for f , g respectively. One way to construct a decision
tree for f ◦ g is to start with Tf , inflate each internal node u of Tf into a copy of Tg on
the appropriate inputs, and attach the left and the right subtree of u as appropriate at the
leaves of this copy of Tg. By Proposition 6.1, the decision tree thus obtained for f ◦ g is
optimal for Depth if one start with depth-optimal trees Tf and Tg for f and g respectively. In
terms of rank, we can also show that the rank of the decision tree so constructed is bounded
above by Depth(Tf)Rank(Tg) = Depthw(f, [r, r, . . . , r]), where r = Rank(Tg). (This is
the construction used in the proofs of Lemmas 4.3 and 4.6, where further properties of
the Parity function are used to show that the resulting tree’s rank is even smaller than
Depth(f)Rank(g).) In fact, we show below (Theorem 6.3) that this holds more generally,
when different functions are used in the composition. While this is a relatively straightforward
generalisation here, it is necessary to consider such compositions for the lower bound we
establish further on in this section.

▶ Theorem 6.3. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate non-constant booolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≤ Depthw(f, [r1, r2, ..., rn]).

The really interesting question, however, is whether we can show a good lower bound for
the rank of a composed function. This will help us understand how good is the upper bound
in Theorem 6.3. To begin with, note that for non-constant Boolean functions f, g, both f

and g are sub-functions of f ◦ g. Hence Proposition 2.4 implies the following.

▶ Proposition 6.4. For non-constant boolean functions f, g,

Rank(f ◦ g) ≥ max{Rank(f), Rank(g)}.

A better lower bound in terms of weighted depth complexity of f is given below. This
generalises the lower bounds from Lemmas 4.5 and 4.7. The proofs of those lemmas crucially
used nice symmetry properties of the inner function, whereas the bound below applies for
any non-constant inner function. It is significantly weaker than the bound from Lemma 4.5
but matches that from Lemma 4.7.

▶ Theorem 6.5. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate non-constant boolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≥ Depthw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1
≥ Depthw(f, [r1, r2, ..., rn]) − (n − 1).

Proof. The second inequality above is straightforward: let T be a decision tree for f

that is optimal with respect to weights r1 − 1, . . . , rn − 1. Since T can be assumed to be
reduced, repeated application of Fact 2.1 shows that the depth of T with respect to weights
r1, . . . , rn increases by at most n. Thus Depthw(f, [r1, . . . , rn]) ≤ Depthw(T, [r1, . . . , rn]) ≤
Depthw(T, [r1 − 1, . . . , rn − 1]) + n = Depthw(f, [r1 − 1, . . . , rn − 1]) + n, giving the claimed
inequality.

The first inequality is not so straightforward. We prove it by induction on n. Let h denote
the function f ◦(g1, g2, ..., gn). For i ∈ [n], let mi be the arity of gi. We call xi,1, xi,2, . . . , xi,mi

the ith block of variables of h; gi is evaluated on this block.

FSTTCS 2021

15:12 On (Simple) Decision Tree Rank

In the base case, n = 1. Since f is non-constant, f ∈ {x, ¬x}; accordingly, h is either g1
or ¬g1. So Dw(f, [r1 − 1]) = r1 − 1 and Rank(h) = Rank(g1) = r1, and the inequality holds.

For the inductive step, when n > 1, we proceed by induction on M =
∑n

i=1 mi.
In the base case, M = n, and each mi is equal to 1. Since all gi’s are non-constant, ri = 1

for all i. So Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 = Dw(f, [0, 0, ..., 0]) + 1 = 1. Since all ri’s
are 1, each gi’s is either xi,1 or ¬xi,1, Thus h is the same as f upto renaming of the literals.
Hence Rank(h) = Rank(f) ≥ 1.

For the inductive step, M > n > 1. Take a rank-optimal decision tree Th for h. We want
to show that Depthw(f, [r1 − 1, . . . , rn − 1]) ≤ Rank(Th) − 1. Without loss of generality, let
x1,1 be the variable queried at the root. Let T0 and T1 be the left and the right subtree of Th.
For b ∈ {0, 1}, let gb

1 be the subfunction of g1 when x1,1 is set to b. Note that Tb computes
hb ≜ f ◦ (gb

1, g2, ..., gn), a function on M − 1 variables. We would like to use induction to
deduce information about Rank(Tb). However, gb

1 may be a constant function, and then
induction does not apply. So we do a case analysis on whether or not g0

1 and g1
1 are constant

functions; this case analysis is lengthy and tedious but most cases are straightforward.
Case 1: Both g0

1 and g1
1 are constant functions. Since g1 is non-constant, g0

1 ̸= g1
1 , and

r1 = Rank(g1) = 1. Assume that g0
1 = 0 and g1

1 = 1; the argument for the other case is
identical. For b ∈ {0, 1}, let fb be the function f(b, x2, . . . , xn); then hb = fb ◦ (g2, . . . , gn).
View fb as functions on n − 1 variables.

Case 1a: Both f0 and f1 are constant functions. Then f is either x1 or ¬x1, so
Depthw(f, [r1 − 1, r2 − 1, ..., rn − 1]) = Depthw(f, [0, r2 − 1, ..., rn − 1]) = 0. Also, in
this case, h is either x1,1 or ¬x1,1, so Rank(h) = 1. Hence the inequality holds.
Case 1b: Exactly one of f0 and f1 is a constant function; without loss of general-
ity, let f0 be a constant function. First, observe that for any weights w2, . . . , wn,
Dw(f, [0, w2, ..., wn]) ≤ Dw(f1, [w2, ..., wn]): we can obtain a decision tree for f wit-
nessing this by first querying x1, making the x1 = 0 child a leaf labeled f0, and
attaching the optimal tree for f1 on the x1 = 1 branch. Second, note that since f1 and
all gi are non-constant, so is h1. Now

Rank(h) = Rank(h1) since Rank(h0) = 0
≥ Dw(f1, [r2 − 1, ..., rn − 1]) + 1 by induction hypothesis on n

≥ Dw(f, [0, r2 − 1, ..., rn − 1]) + 1 by first observation above
= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

Case 1c: Both f0 and f1 are non-constant functions.

Rank(h) ≥ max(Rank(h0), Rank(h1))
≥ max

b∈{0,1}
{Dw(fb, [r2 − 1, ..., rn − 1])} + 1 by induction hypothesis on n

≥ Dw(f, [0, r2 − 1, ..., rn − 1]) + 1 by def. of weighted depth
of a tree querying x1 first

= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

Case 2: One of g0
1 and g1

1 is a constant function; assume without loss of generality that g0
1 be

constant. In this case, we can conclude that Rank(g1) = Rank(g1
1): Rank(g1

1) ≤ Rank(g1)
by Proposition 2.4, and Rank(g1) ≤ Rank(g1

1) as witnessed by a decision tree for g1 that
queries x1,1 first, sets the x1,1 = 0 branch to a leaf labeled g0

1 , and attaches an optimal

Y. Dahiya and M. Mahajan 15:13

tree for g1
1 on the other branch. Now

Rank(h) ≥ Rank(h1)
≥ Dw(f, [Rank(g1

1) − 1, r2 − 1, ..., rn − 1]) + 1 by induction on M

= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since Rank(g1
1) = Rank(g1)

Case 3: Both g0
1 and g1

1 are non-constant functions. Let rb
1 = Rank(gb

1) ≥ 1. A decision
tree for g1 that queries x1,1 first and then uses optimal trees for g0

1 and g1
1 has rank

R ≥ r1 and witnesses that 1 + max{r0
1, r1

1} ≥ R ≥ r1. (Note that R may be more than
r1, since a rank-optimal tree for g1 may not query x1,1 first.)

Case 3a: maxb{rb
1} = r1 − 1. Then R = 1 + max{r0

1, r1
1}, which can only happen if

r0
1 = r1

1, and hence r0
1 = r1

1 = r1 − 1. We can further conclude that r1 ≥ 2. Indeed, if
r1 = 1, then r1 − 1 = r0

1 = r1
1 = 0, contradicting the fact that we are in Case 3.

For b ∈ {0, 1},

Rank(hb) = Rank(f ◦ (gb
1, g2, . . . , gn))

≥ Depthw(f, [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

= Depthw(f, [r1 − 2, r2 − 1, . . . , rn − 1]) + 1 since r1 − 1 = rb
1.

Hence Rank(h) ≥ 1 + min
b

Rank(hb)

≥ Depthw(f, [r1 − 2, r2 − 1, . . . , rn − 1]) + 2 derivation above
≥ Depthw(f, [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 by Fact 2.1

Case 3b: maxb{rb
1} > r1 − 1. So maxb{rb

1} ≥ r1.

Rank(h) ≥ max
b

Rank(hb)

≥ max
b

Depthw(f, [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

≥ Depthw(f, [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 since max
b

{rb
1} ≥ r1

This completes the inductive step for M > n > 1 and completes the entire proof. ◀

From Theorems 4.1, 6.3, and 6.5, we obtain the following:
▶ Theorem 6.6. For non-constant boolean functions f, g,

Depth(f)(Rank(g) − 1) + 1 ≤ Rank(f ◦ g) ≤ Depth(f)Rank(g).

Both inequalities are tight; the first for Andn ◦ Paritym and the second for Tribesn and
Tribesd

n.
Since any non-constant symmetric function is evasive (Proposition 2.2), from Theorems 6.3

and 6.5, we obtain the following:
▶ Corollary 6.7. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate symmetric non-constant booolean function f ,∑

i

ri − (n − 1) ≤ Rank(f ◦ (g1, g2, ..., gn)) ≤
∑

i

ri.

Using Theorem 6.6, we can now complete the proof of Lemma 5.8.

Proof. (of Lemma 5.8) Consider the composed function f = Maj2k+1 ◦ Maj2k+1. Note that
from the lower bound in Theorem 6.6, and the entries in Table 1, Rank(Maj2k+1◦Maj2k+1) ≥
(2k + 1)k + 1. On the other hand, it is straightforward to verify that C(f) = (k + 1)2. Thus
for k > 1, Rank(f) > C(f). ◀

FSTTCS 2021

15:14 On (Simple) Decision Tree Rank

7 Tightness of Rank and Size relation

In Proposition 2.5, we saw a relation between rank and size. The relationship is essentially
tight. The function f = Parityn witnesses the tightness of both the inequalities. Since
Rank(Parity) = n, Proposition 2.5 tells us that log DTSize(Parity) lies in the range
[n, n log e], and we know that log DTSize(Parity) = n.

For the Tribesn function, which has N = n2 variables, we know from Theorem 4.1
that Rank(Tribesn) = n. Thus Proposition 2.5 tells us that log DTSize(Tribesn) lies
in the range [n, n log(en)]. (See also Exercise 14.9 [10] for a direct argument showing
n ≤ log DTSize(Tribesn)). But that still leaves a (log(en))-factor gap between the two
quantities. We show that the true value is closer to the upper end. To do this, we establish
a stronger size lower bound for decision trees computing Tribesd

n.

▶ Lemma 7.1. For every n, m ≥ 1, every decision tree for Tribesd
n,m has at least mn

1-leaves and n 0-leaves.

Proof. Recall that Tribesd
n,m =

∧
i∈[n]

∨
j∈[m] xi,j . We call xi,1, xi,2, . . . , xi,m the ith block

of variables. We consider two special kinds of input assignments: 1-inputs of minimum
Hamming weight, call this set S1, and 0-inputs of maximum Hamming weight, call this set
S0. Each a ∈ S1 has exactly one 1 in each block; hence |S1| = mn. Each b ∈ S0 has exactly
m zeroes, all in a single block; hence |S0| = n. We show that in any decision tree T for
Tribesd

n,m, all the inputs in S = S1 ∪ S0 go to pairwise distinct leaves. Since all inputs in S1
must go to 1-leaves of T , and all inputs of S0 must go to 0-leaves, this will prove the claimed
statement.

Let a, b be distinct inputs in S1. Then there is some block i ∈ [n], where they differ.
In particular there is a unique j ∈ [m] where ai,j = 1, and at this position, bi,j = 0. The
decision tree T must query variable xi,j on the path followed by a, since otherwise it will
reach the same 1-leaf on input a′ that differs from a at only this position, contradicting the
fact that Tribesd

n,m(a′) = 0. Since bi,j = 0, the path followed in T along b will diverge from
a at this query, if it has not already diverged before that. So a, b reach different 1-leaves.

Let a, b be distinct inputs in S0. Let i be the unique block where a has all zeroes; b has all
1s in this block. On the path followed by a, T must query all variables from this block, since
otherwise it will reach the same 0-leaf on input a′′ that differs from a only at an unqueried
position in block i, contradicting Tribesd

n,m(a′′) = 1. Since a and b differ everywhere on
this block, b does not follow the same path as a, so they go to different leaves of T . ◀

We thus conclude that the second inequality in Proposition 2.5 is also essentially tight
for the Tribesd

n function.
The size lower bound from Lemma 7.1 can also be obtained by specifying a good Delayer

strategy in the asymmetric Prover-Delayer game and invoking Proposition 3.2.

8 Proofs using Prover-Delayer Games

In this section we illustrate proving rank upper and lower bounds by giving Prover-Delayer
Game based proofs for Lemma 4.6, Lemma 4.7 and Lemma 5.8. Theorem 3.1 gives us a way
to prove rank upper and lower bounds for boolean functions. In a Prover-Delayer game for
Rf , exhibiting a Prover strategy which restricts the Delayer to at most r points gives an
upper bound of r on Rank(f). Similarly, exhibiting a Delayer strategy which scores at least
r points irrespective of the Prover strategy shows a lower bound of r on Rank(f).

Y. Dahiya and M. Mahajan 15:15

Prover strategy for Andn ◦ Paritym, proving Lemma 4.6

We give a Prover strategy which restricts Delayer to n(m − 1) + 1 points. The Prover queries
variables in row-major order. If on query xi,j the Delayer defers a decision to the Prover, the
Prover chooses arbitrarily unless j = m. If j = m, then the Prover chooses a value which
makes the parity of the variables in row i evaluate to 0.

Let j be the first row such that the Delayer defers the decision on xj,m to the Prover. (If
there is no such row, set j = n.) With the strategy above, the Prover will set xj,m in such a
way that the parity of the variables in j-th row evaluates to 0, making f evaluate to 0 and
ending the game. The Delayer scores at most m − 1 points per row for rows before this row
j, and at most m points in row j. Hence the Delayer’s score is at most (j − 1)(m − 1) + m

points. Since j ≤ n, the Delayer is restricted to n(m − 1) + 1 points at the end of the game.

Delayer strategy for Andn ◦ Paritym, proving Lemma 4.7

We give a Delayer strategy which always scores at least n(m − 1) + 1 points.
On query xi,j , if this is the last un-queried variable, or if there is some un-queried variable

in the same i-th row, the Delayer defers the decision to the Prover. Otherwise the Delayer
responds with a value that makes the parity of the variables in row i evaluate to 1.

This strategy forces the Prover to query all variables to decide the function. The Delayer
picks up m − 1 points per row, and an additional point on the last query, giving a total score
of n(m − 1) + 1 points.

Delayer strategy for f = Maj2k+1 ◦ Maj2k+1, proving Lemma 5.8

The following Delayer strategy always scores (k+1)2 +k2 points, greater than C(f) = (k+1)2.
At an intermediate stage of the game, say that a row is b-determined if the variables

that are already set in this row already fix the value of Maj2k+1 on this row to be b, and is
determined if it is b-determined for some b. Let Mb be the number of b-determined rows. If
the game has not yet ended, then M0 ≤ k and M1 ≤ k.

On query xi,j , let n0, n1 be the number of variables in row i already set to 0 and to 1
respectively. The Delayer defers the decision if

row i is already determined, or
n0 = n1 < k, or
n0 = n1 = k and M0 = M1.

Otherwise, if n0 ̸= n1, then the Delayer chooses the value b where nb < n1−b. If n0 = n1 = k,
then the Delayer chooses the value b where Mb < M1−b.

This strategy ensures that at all stages until the game ends, |M0 − M1| ≤ 1, and
furthermore, in all rows that are not yet determined, |n0 − n1| ≤ 1. Thus a row becomes
determined only after all variables in it are queried, and the Delayer gets a point for every
other query, making a total of k points per determined row. Further, for k + 1 rows, the
Delayer also gets an additional point on the last queried variable. The game cannot conclude
before all 2k + 1 rows are determined, so the Delayer scores at least (k + 1)2 + k2 points.

9 Conclusion

The main thesis of this paper is that the minimal rank of a decision tree computing a Boolean
function is an interesting measure for the complexity of the function, since it is not related
to other well-studied measures in a dimensionless way. Whether bounds on this measure can
be further exploited in algorithmic settings like learning or sampling remains to be seen.

FSTTCS 2021

15:16 On (Simple) Decision Tree Rank

References
1 James Aspnes, Eric Blais, Murat Demirbas, Ryan O’Donnell, Atri Rudra, and Steve Uurtamo.

k + decision trees - (extended abstract). In 6th International Workshop on Algorithms
for Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile Entities, ALGO-
SENSORS, volume 6451 of Lecture Notes in Computer Science, pages 74–88. Springer, 2010.
full version on author’s webpage, http://www.cs.cmu.edu/ odonnell/papers/k-plus-dts.pdf.
doi:10.1007/978-3-642-16988-5_7.

2 Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combinatorica, 24(4):585–603, 2004. doi:10.1007/
s00493-004-0036-5.

3 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution
size. Information Processing Letters, 113(18):666–671, 2013. doi:10.1016/j.ipl.2013.06.
002.

4 Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183–185, 1992. doi:10.1016/0020-0190(92)90237-P.

5 Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes. In 28th Annual
Symposium on Foundations of Computer Science (FOCS), pages 118–126. IEEE, 1987.

6 Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231–246, 1989. doi:10.1016/0890-5401(89)90001-1.

7 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler
numbers. In Language and Automata Theory and Applications - 8th International Conference
LATA, volume 8370 of Lecture Notes in Computer Science, pages 1–13. Springer, 2014.
doi:10.1007/978-3-319-04921-2_1.

8 Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space. Information Processing Letters, 87(6):295–300, 2003.

9 Juris Hartmanis and Lane A Hemachandra. One-way functions and the nonisomorphism of
NP-complete sets. Theoretical Computer Science, 81(1):155–163, 1991.

10 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

11 Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes of CNF’s
based on short tree-like resolution proofs. Electron. Colloquium Comput. Complex., 41, 1999.
URL: http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html.

12 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

13 Ashley Montanaro. A composition theorem for decision tree complexity. Chicago Journal of
Theoretical Computer Science, 2014(6), July 2014.

14 Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT (pre-
liminary version). In Proceedings of the eleventh annual ACM-SIAM Symposium on Discrete
Algorithms SODA, pages 128–136, 2000.

15 Gábor Tardos. Query complexity, or why is it difficult to separate NPA ∩ coNPA from PA by
random oracles A? Combinatorica, 9(4):385–392, 1989.

16 György Turán and Farrokh Vatan. Linear decision lists and partitioning algorithms for the
construction of neural networks. In Foundations of Computational Mathematics, pages 414–423,
Berlin, Heidelberg, 1997. Springer.

17 Kei Uchizawa and Eiji Takimoto. Lower bounds for linear decision trees with bounded weights.
In 41st International Conference on Current Trends in Theory and Practice of Computer
Science SOFSEM, volume 8939 of Lecture Notes in Computer Science, pages 412–422. Springer,
2015. doi:10.1007/978-3-662-46078-8_34.

18 Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. doi:10.1145/1968.1972.

https://doi.org/10.1007/978-3-642-16988-5_7
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1016/j.ipl.2013.06.002
https://doi.org/10.1016/j.ipl.2013.06.002
https://doi.org/10.1016/0020-0190(92)90237-P
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1007/978-3-642-24508-4
http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html
https://doi.org/10.1007/978-3-662-46078-8_34
https://doi.org/10.1145/1968.1972

	1 Introduction
	2 Preliminaries
	3 Game Characterisation for Rank
	4 The Rank of some natural functions
	5 Relation between Rank and Certificate Complexity
	6 Rank of Composed functions
	7 Tightness of Rank and Size relation
	8 Proofs using Prover-Delayer Games
	9 Conclusion

