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—— Abstract

We study the maximum-weight matching problem in the sliding-window model. In this model, we
are given an adversarially ordered stream of edges of an underlying edge-weighted graph G(V, E),
and a parameter L specifying the window size, and we want to maintain an approximation of the
maximum-weight matching of the current graph G(t); here G(¢) is defined as the subgraph of G
consisting of the edges that arrived during the time interval [max(t — L, 1), t], where ¢ is the current
time. The goal is to do this with O(n) space, where n is the number of vertices of G. We present a
deterministic (3.5 + ¢)-approximation algorithm for this problem, thus significantly improving the
(6 + €)-approximation algorithm due to Crouch and Stubbs [5].

We also present a generic machinery for approximating subadditve functions in the sliding-window
model. A function f is called subadditive if for every disjoint substreams A, B of a stream S it
holds that f(AB) < f(A) + f(B), where AB denotes the concatenation of A and B. We show that
given an a-approximation algorithm for a subadditive function f in the insertion-only model we can
maintain a (2« + ¢)-approximation of f in the sliding-window model. This improves upon recent
result Krauthgamer and Reitblat [14], who obtained a (2a + ¢)-approximation.
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1 Introduction

A matching in a graph G(V, E) is a subset M C FE of pairwise non-adjacent edges. Matchings
play an important role in applications and they form a central concept in combinatorial
and algorithmic graph theory. They have been studied extensively; there is even a book,
by Lovasz and Plummer, dedicated completely to matching theory [16]. One of the most
studied algorithmic problems concerning matchings is the mazimum-matching problem. In
the unweighted version, the goal is to compute a maximum-cardinality matching and in the
weighted version — here every edge in the input graph has a non-negative weight — the goal
is to compute a maximum-weight matching (MWM). In the classical offline setting we are
given the graph G completely in advance and we have enough space to store all vertices and
edges. In this setting, the fastest algorithm to compute a maximum matching is still the
30-years-old algorithm due to Micali and Vazirani [17] with running time O(m+/n), where
n:=|V]| and m := |E|.

© Leyla Biabani, Mark de Berg, and Morteza Monemizadeh;
37 licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 73; pp. 73:1-73:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:l.biabani@tue.nl
mailto:m.t.d.berg@tue.nl
mailto:m.monemizadeh@tue.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2021.73
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2

Maximum-Weight Matching in Sliding Windows and Beyond

In this paper, we study the maximum-weight matching problem in a streaming setting.
Here we are given a stream S of edges of an underlying graph G(V, E) and we only have
O(n) := O(n - polylog(n)) storage available. This means that we cannot store all edges
from G, and it becomes impossible to compute a solution that is guaranteed to be optimal.
The goal thus becomes to maintain a matching on the current graph whose total weight is
as close to optimal as possible. In the insertion-only model, the current graph G(t) is the
graph whose edge set consists of all edges that have arrived up to the current time ¢. We
will be working in the sliding-window model [6], where we are given a window length L and
the current graph G(t) consists of the last L edges from the stream. Thus, at any time ¢ we
are interested in approximating the maximum-weight matching of the edges that are within
the window [max(t — L, 1), ¢].

Our results. We present a (3.5 + ¢)-approximation for the maximum-weight matching
problem in the sliding-window model. The following theorem states our main result more
formally.

» Theorem 1. Let G(V,E) be a graph with n = |V| vertices and let w : E — RT be a
function that assigns a weight w(e) to each edge e € E such that the ratio of the mazimum
edge weight to the minimum edge weight is at most W for some W = n°M) . Then, for any
given € > 0, there exists a deterministic algorithm that maintains a (3.5 + ¢)-approzimate
maximum-weight matching in the sliding-window model using O(n) space.

A comparison of our result with the existing streaming algorithms for maximum-weight
matchings is given in Table 1.

The algorithm in Theorem 1 takes the algorithm by Paz and Schwartzman [18] as a
starting point. Our (3.5 4 ¢)-approximation is then based on two contributions: a mechanism
to convert an algorithm in the insertion-only model into an algorithm in the sliding-window
model, and an intricate analysis of the resulting algorithm in the case of maximum-weight
matchings. The mechanism to obtain a sliding-window algorithm from an insertion-only
algorithm actually works in a much more general setting, namely when we want to compute
subadditive functions, defined as follows. Let f be a function that assigns a value to a data
stream. Then f is called subadditive if for every disjoint substreams A, B of a stream S it
holds that f(AB) < f(A) + f(B), where AB denotes the concatenation of A and B. We
say that f is monotone if for all A C B we have f(A) < f(B). Observe that (the cost of a)
maximum weight matching is a subadditive and monotone function. We prove the following
result in Section 4.

» Theorem 2. Let 0 <e < 1/2 and a > 1 be two parameters. Let f be a function defined
on streams that is subadditive, non-negative, and monotone. Let 0 := fuax/ fmin+, where
Smin+ = min{ f(X) : X is a substream of the input and f(X) > 0} and fimax := max{f(X) :
X is a substream of the input}. Suppose there is an algorithm in the insertion-only streaming
model that a-approrimates f using space s. Then, there is an algorithm in the sliding-window
model that maintains a (2a + €)-approzimation of f using O(e~1s -logo) space.

Previous Work. Given the prominence of the matching problem, it is not surprising that it
has already received considerable attention in the streaming setting.

In the insertion-only model, a maximal matching — a matching M such that adding any
edge from FE to M would violate the condition that the edges are pairwise non-adjacent —
can be computed greedily using O(n) space. This immediately gives a 2-approximation for
maximum-cardinality matching (MCM) [9]. If the stream is in adversarial order, obtaining an
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approximation ratio better than 2 for the MCM problem is one of the most important open
problems in streaming algorithms. Interestingly, Kapralov [12] showed that any streaming
algorithm that achieves an approximation ratio better than e/(1 —e) &~ 1.58 must use
!t ogio) storage. In the random-order model, where the edges from F arrive in random
order, better approximation ratios than 2 have been obtained [13, 10, 7, 8, 1]. In particular,
very recently, Bernstein [1] showed that we can compute a (3 + £)-approximate matching in
random order streams using O(n) space.

Maximum-weighted matchings (MWM) have also been studied in the insertion-only model.
Crouch and Stubbs [5] presented a technique that makes it possible to turn a c-approximation
algorithm for the MCM problem into a 2(1 + ¢)c-approximation algorithm for the MWM
problem. A combination of this reduction and the greedy matching achieves a (4 + ¢)-
approximation algorithm for the maximum-weight matching problem in the insertion-only
model. In a breakthrough result, Paz and Schwartzman [18] developed a (24¢)-approximation
algorithm for the maximum-weight matching problem in the insertion-only model, using
O(nlog®n) bits of space. Later, Ghaffari and Wajc [11] improved the space of Paz and
Schwartzman’s algorithm to O(nlogn) bits of space.

We now turn our attention to the sliding-window model. Braverman and Ostrovsky [2]
introduced smooth histograms, a powerful framework to maintain a class of functions, called
smooth function in the sliding-window model. Crouch, McGregor, and Stubbs [4] showed
that the smooth-histograms technique can be applied to maintain an approximately maximal
matching that achieves a (3 + €)-approximation of the maximum-cardinality matching. They
also presented a 9.027-approximation algorithm for the maximum-weight matching in the
sliding-window model. This can be improved using the already mentioned (more recent)
technique by Crouch and Stubbs [5] to turn a c-approximation algorithm for the MCM
problem into a 2(14-¢)c-approximation algorithm for the MWM problem. Using this reduction
and the algorithm of [4] we can achieve (6 + ¢)-approximation weighted matching in the
sliding-window model. This reduction, which yields the best previously known result for
the MWM problem in the sliding-window model, partitions the edges into weight classes
and maintains a matching on the edges in each weight class. At the end of the stream, it
greedily merges the matchings from largest weight class to smallest weight class. However,
our algorithm is based on the algorithm by Paz and Schwartzman [18] that is explained in
Section 2.

We next explain the previous work on subadditive functions in data streams. Let
f be a function defined on streams, which is subadditive, non-negative, and monotone.
Recently, Krauthgamer and Reitblat [14] showed that given a streaming algorithm ALG that
a-approximates f using space s, we can develop a sliding-window algorithm that (2a? + ¢)-
approximates f using space O(¢~!s-logo), where o is ratio of the maximum value of f to
the minimum value of f. They also showed that if ALG is monotone and subadditive, we
can reduce the approximation factor of the sliding-window algorithm down to (2« + &)-factor.
Unfortunately, it is not always easy to show a streaming algorithm is monotone and/or
subadditive. In some cases, this is not in fact, the case. On the other hand, Theorem 2
shows that we can achieve (2« + €)-approximation factor independent of the monotonicity or
subadditivity of the streaming algorithm ALG. We should mention that there is a similar
result for constrained submodular maximization in the sliding-window model due to Chen,
Nguyen, and Zhang [3].

Notation and terminology. In this paper, we assume we are given a weighted graph G(V, F)
with n = |V| vertices and a weight function w : E — R that assigns a non-negative weight
w(e) to each edge e = (u,v) € E, where the ratio of the maximum edge weight to the
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Table 1 Overview of results on the maximum-weight matching problem.

Model Problem | Approximation | Adversarial Order | Reference
MCM 2 v 9]
. . 15+¢ Random Order (1]
insertion-only 1 % =
MWM re 15
2+¢ v (18]
MCM 3+¢ v 4]
.02 4
sliding-window 9.027 v 4]
MWM 6+e v [5]
35+¢ v [this paper]

minimum edge weight is upper-bounded by W = n®®) . We assume that the graph is simple,
that is, it does not have parallel edges. We denote by Ng(v) = {u € V : I(u,v) € E} the
set of neighbors of a vertex v in G. We drop the subscript G and write N(v) when G is
clear from the context. Similarly, we denote by Ng(e) the set of edges that are neighbors of
an edge e = (u,v), that is, those edges such that one of their endpoints is in the {u,v}. A
matching M of G is a set of pairwise non-adjacent edges, that is, a set where no two edges
share a common vertex. The weight of the matching M is defined as w(M) = > ., w(e).
A mazimum matching of graph G(V, E) is a matching of maximum weight. Throughout the
paper, when we fix a maximum-weight matching of a graph G, we denote it by M, (G), or
simply M,p¢ when G is clear from the context. We say a matching M is an a-approzimate
weighted matching, for some a > 1, when w(M) > (1/a) - w(Mopt). Finally, with a slight
abuse of notation, we will often not distinguish between sets of edges and streams of edges. As
an example, given a stream S of edges of an underlying graph G(V, E), we do not distinguish
between G(V, E) and G(V, 5).

2 Maximum-weight matching in the insertion-only model

As mentioned in the introduction, in a breakthrough paper [18], Paz and Schwartzman
showed that there exists an algorithm in the insertion-only model that computes a (2 + ¢)-
approximate weighted matching of a graph G(V, E'). Their algorithm forms the basis of our
(3.5 + e)-approximation algorithm in the sliding-window model. In this section, we explain
Paz and Schwartzman’s algorithm and we give various properties — some already proved by
Ghaffari and Wajc [11], some new — that we later use.

Overview of algorithm. Before the stream starts, we initialize an empty stack. The
streaming algorithm then processes the edges in the stream one by one. While doing so, it
maintains a potential ¢(v) for every vertex v € V (which is initialized to zero before the
stream starts). For each arriving edge e = (u,v), it is decided whether or not to push e on
the stack based on its weight w(e) and on the potential of its endpoints. In particular, if
w(e) = (1+¢€) - (¢(u) + ¢(v)), then e is added to the stack. When e is added to the stack,
we assign a reduced weight w'(e) to it, defined as w’(e) := w(e) — (¢(u) + ¢(v)); from now on
we refer to w(e) as the original weight of e. If e is added to the stack, we add w’(e) to the
potential of its endpoints. It will be convenient to set w’(e) := 0 when e is not added to the
stack.

After all edges have been handled in this manner, the matching is computed greedily: we
pop edges from the stack and add them to the matching M,i(G) if they have no neighboring
edge in My (G).
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Algorithm 1 MWM-STREAMING [18, 11].

Streaming:

1: while a new edge e = (u,v) of the stream S is revealed do

2: if wle) < (1+¢)-(p(u)+ ¢(v)) then w'(e) « 0
3 else
4: w'(e) < w(e) — (p(u) + d(v)) > w’(e) is the reduced weight of e
5 d(u)  dp(u) +w'(e); ¢(v) + ¢(v) +w'(e) > update potentials
6 Stack.push(e)

Postprocessing:

1: Let Myag(G) < 0 be an empty matching set.

2: while Stack # 0 do

3 e < Stack.pop()

4 if Moe(G) N N(e) =0 then My (G)  Mag(G) U{e}.
5: return M, (G).

Properties of the algorithm. Let t. be the arrival time of the edge e. Let P(e) := {e’ €
E : e € N(e)U{e} and tr < t.} be the set of neighbor edges of e that arrive in the
stream before e plus the edge e itself. Observe that if e is not added to the stack, then
w(e) < (14¢€) - (p(u) + ¢(v)); and if this happens, the reduced weight must be w’(e) = 0.

The first lemma shows that the original weight of every edge in the graph is upper-bounded
by (1 + €)-factor of the sum of the potentials that are assigned to its end-points regardless of
the fact that the edge is pushed onto the stack or not. The following lemma was proved by
Ghaffari and Wajc [11, Observation 3.2].

» Lemma 3 ([11]). After the algorithm has finished we have w(e) < (14 ¢) - (p(v) + P(u))

for each e = (u,v) in E.

The next lemma gives a relation between the original weight w(e) of an edge e and the
reduced weights w’(e’) of the edges ¢’ € P(e). It is a special case of Lemma 3.4 of [11], where
it was stated that w(e) > >, cp(.)w'(€'). As follows from their proof, we can only have
w(e) > > . ep(e) W' (€') when there are parallel edges. As we assume in this paper that G is
a simple graph (i.e., does not contain any parallel edge) we state the result as follows.

» Lemma 4 ([11]). Suppose that the graph G(V, E) is a simple graph. Let e € E be an edge
that is added to the stack. Then w(e) =3, cp) w'(€').

Lemma 4 is about edges that are added to the stack. The next lemma states a similar result
for any edge e, regardless of whether it is added to the stack.

> Lemma 5. For each e € E we have w(e) < (1+¢) 3, cpi) w'(€’).

Proof. If e = (u,v) is added to the stack, the inequality holds according to Lemma 4. Suppose
that e is not added to the stack. We use ¢_ (u) and ¢ (v) for the potential values just before
the arrival of e. As e is not added to the stack, we have w(e) < (1+¢)- (¢, (u) + @2 (v)). Let
e’ be an edge in P(e) \ {e}. As G does not contain parallel edges, e’ increases exactly one
of ¢(u) or ¢(v) by w’(e’). (This also holds when w’(e’) = 0.) Therefore, ¢_ (u) + ¢, (v) =

Derep(enfey @' (€'). Thus,

w(e) < (L+e)-(¢; () + 0, (W) =(1+e)- Y ()< (1+e)- Y w(). <

e’eP(e)\{e} e’eP(e)
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We also need Lemma 3.1 of [11], which states that the weight of the reported matching
M1g(G) is lower-bounded by the sum of reduced weights of all edges of the graph G, which
is in fact, one half of the sum of potentials that we place on vertices. The latter is a
(1 4 ¢)-approximation of the optimal weight w(Mop(G)).

» Lemma 6 ([11]). Let Maio(G) be the matching reported by Algorithm MWNM-STREAMING.
Then,

WOMs(G) 2 Y w(6) = 5 30 00) > 5 - w(Mopa(G)

ecE veV 2(1 +E)

Suppose we have two substreams B and BC, i.e., B is a prefix of BC'. The next lemma
shows that the reduced weight of an edge e € B is the same when the algorithm is run on B
as when it is run on BC. It immediately follows from the fact that w’(e) is set when e is
processed, and it will not be changed afterwards.

» Lemma 7. Let S be a stream of edges of an underlying simple weighted graph G(V, E).
Let B, C be two disjoint segments of the stream S. Let e € B be an arbitrary edge in B. Let
wi(e) and wix(e) be the reduced weights of e when we run Algorithm MWM-STREAMING
on the streams B and BC, respectively. Then, w'z(e) = wzo(€).

Making MWM-Streaming monotone. Later, when we develop our sliding-window algo-
rithm, we need Algorithm MWM-STREAMING to be monotone, that is, we need that the
weight of the reported matching for a stream BC is at least the weight of the reported
matching for B. Unfortunately, this need not be the case, because in the reporting phase the
edges are popped from the stack in reverse order of their arrival and added to the matching
greedily.

However, we can simply make Algorithm MWM-STREAMING monotone by maintaining
the best solution over all prefixes encountered so far. More precisely, while we run the
algorithm on the input stream S as usual, we maintain Mpon(S) := arg max{w(Maz(T)) :
T is a prefix of S}. To this end, we just run the Postprocessing subroutine after each arrival
on a copy of the current stack, and update My,on(S) if the computed solution is better. We
denote by MWM-MONOTONE this monotone version of Algorithm MW M-STREAMING.

Next, we state two useful properties of the monotone matching My,on(S).

» Lemma 8. Let S be a stream of edges of an underlying simple weighted graph G(V, E).

Suppose that we have two disjoint substreams B and C of the stream S. Then,
Momnotonicity Property 1: w(Mag(B)) < w(Mmon(B)) < w(Mops(B)).
Momnotonicity Property 2: w(Muyon(B)) < w(Mpon(BC)).

3 Maximum-weight matching in the sliding-window model

In this section, we develop our 3.5-approximation algorithm for the maximum-weight matching
problem in the sliding-window model. As the first step, we next provide a generic framework
for computing monotone bounded functions in the sliding-window model. Our framework
is based on the smooth-histogram techniques developed by Braverman and Ostrovsky [2]
for the sliding-window model. The smooth histogram technique was later used by Crouch,
McGregor, and Stubbs [4] to develop algorithms for graph problems in the sliding-window
model.

The idea behind this technique is that at any time ¢, we have a logarithmic number
of insertion-only algorithms running in parallel, that each started at different times. As
our answer at time ¢ we then report, roughly speaking, the answer given by the “oldest”
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still running algorithm; the technique ensures that this algorithm started shortly after time
t — L, so that the answer is a good approximation of the actual answer. The next definition
formalizes the properties we need to apply the technique. Suppose we want to approximate a
function f in a sliding-window setting, and we have an algorithm ALG for the insertion-only
setting. The idea is that if A, B are two substreams such that f(ABC) < a- ALG(BC) for
any substream C, then we can a-approximate f(ABC) by ALG(BC).

» Definition 9 ((f, «, 3)-lookahead algorithm). Let 8 € (0,1) and o € RT be two parameters.
Let f be a real-valued monotone function defined on subsets of a ground set X. Let S be
a stream of items of the set X. Let ALG be a streaming algorithm. We say the streaming
algorithm ALG is an (f,«, 5)-lookahead algorithm if for any partitioning of S into three
disjoint sub-streams A, B, and C with ALG(B) > (1 — ) - ALG(AB), we have f(ABC) <
a- ALG(BCO).

The following theorem shows that if we have such a lookahead algorithm, we can develop
a sliding-window algorithm for the function f. The proof of this theorem is based on the
techniques developed in [4] and we give the full proof for the sake of completeness.

» Theorem 10. Let 0 < 8 < 1 and a > 1 be two parameters. Let S be a stream of items from
an underlying ground set X. Let f be a monotone function defined on subsets of a ground set
X. Let 0 := fmax/ fuin+, where fom+ = min{ f(X) : X is a substream of S and f(X) > 0}
and fmax := max{f(X) : X is a substream of the input}. Suppose there exists an (f,a, 3)-
lookahead algorithm that uses space s. Then there exists a sliding-window algorithm that
maintains an a-approzimation of f using O(B~! - slogo) space.

Proof. We first present our algorithm SLIDINGLOOKAHEAD, which is based on the smooth
histograms developed by Braverman and Ostrovsky [2] for the sliding-window model.

Algorithm 2 SLIDINGLOOKAHEAD (Based on Smooth Histogram [2, 14]).

Initialization:
1: Let k£ + 0 be the number of buckets.

Streaming:
1: while a new item e of the stream S is revealed at time ¢ do
2: Create an empty bucket By1.
Let ALG 41 be an instance of ALG for the bucket By1.
fori=1,...,k+1do
Feed e to the bucket B;, and update its associated instance ALG;.
fori=1,...,k—1do
Let j > ¢ be the largest index for which ALG(B;) > (1 — B) - ALG(B;).
Delete buckets B, for i < r < j and their associated instances ALG,..
if W C B, then Delete bucket By and its associated instance ALG.

10: Let k£ be number of remaining buckets.
11: Renumber buckets and their associated instances.

Output:

1. if W = B; then return the solution of the ALG;, which equals ALG(By).
2: else return the solution of the ALGs, which equals ALG(Bs).

73:7
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Let W = [max(t — L,1),t] be the active window. With a slight abuse of notation,
we will use W both for the time interval of the active window as well as for the set of
items that arrive during this time interval. We consider k buckets By, --- , By such that
By 2 W 2 By 2 -+ 2 Bi. We later show that k = O(s~!logo). For each bucket, we
instantiate an instance of (f, a, 8)-lookahead algorithm ALG. Upon arrival of a new item e
at a time ¢, we create a new bucket By41 and add e to all buckets By, -, Biy1. Next, if
there exists a sequence of buckets whose values of ALG are too close, we keep the bucket in
this sequence that has the lowest index and delete the rest of the buckets in this sequence.

Observe that the active window W is always sandwiched between the buckets B; and
Bsy. If at any time ¢, the active window W is covered by the bucket By (i.e., W C By), we
then delete B; and renumber the buckets accordingly. The output of smooth histogram is
reported by the instance ALG of the bucket Bs.

Next, we prove the theorem which is based on the combination of the proofs of Lemma 3
and Theorem 4 in [4]. (We should mention that the proof in [4] is for & = 3 + ¢, but we
prove it for any «.)

Let ALG be a (f, «, 8)-lookahead algorithm using space s. We show that SLIDINGLOOKA-
HEAD maintains an a-approximation of f, using O(8~! - slogo) space. First, we prove the
approximation ratio. Later, we show that k = O(8~!logo) at any time ¢.

Let W = [max(t— L, 1), t] be the active window and let 0 < 5 < 1. Recall that the buckets
By, -+, By satisfy By D W 2 By D -+ D By. If W = By, we return ALG(B;) = ALG(W),
which satisfies f(W) < - ALG(B;). Now, suppose that W # Bj. Since we report ALG(Bs),
we must show that f(W) < a- ALG(Bs). To this end, let t* be the first time that buckets By
and By became adjacent; it is the time when buckets in between B; and Bs were removed
in step 8 of the streaming phase. We denote these buckets at time ¢* by B} and B;. So,
ALG(B3) > (1 - 5)ALG(BY). Moreover, By = BfC, By = B3C for the stream C' consisting
of the items that arrived since time t*. Now, according to the (f, a, 8)-lookahead property
of ALG, we can conclude f(B1) < a- ALG(B3). As f is monotone, we have:

JOW) < f(B1) < a- ALG(Bs) .

Recall that k is the number of buckets. Next, we prove that at any time ¢, we have
k= O(B 'logo). Recall that for each index i € [1..k — 2], we have

ALG(Bit2) < (1 - B) - ALG(By).

Since 1/(1 — ) > 1+ S, we have

ALG(B;) > ﬁ CALG(Bisa) > (14 B) - ACG(Bisa).

Thus,

ALG(By) > (1+ B)F/2) . ALG(By) .

Recall that ;Eg;g < 0. This essentially means that ALG(B;) < oo - ALG(By,). Therefore,

k < O(logy, s(oa)) = O(B~" -log o). <

Our main result in this paper is that there exists a lookahead algorithm for the maximum
weight matching problem. We state this result formally next.
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» Lemma 11. Let G(V, E) be a graph with n = |V| vertices and let w : E — R be a function
that assigns a non-negative weight w(e) to each edge e € E. Let 0 < & < % and 0 < B < § be
two parameters. Let f be defined as the weight of a maximum weight matching of G. Then,
Algorithm MWM-MONOTONE is a (f, (3.5 + €), 8)-lookahead algorithm. That is, for any
partitioning of a stream S of edges of G into three disjoint sub-streams A, B, and C with
W(Mmon(B)) 2 (1= 8) - w(Mmon(AB)), we have w(Myp (ABC)) < (3.5+¢€) - w(Mmon(BC)).

Thus, we can use the machinery developed in Theorem 10 to obtain a (3.5+¢)-approximate
sliding-window algorithm for the maximum-weight matching.
We first define some notation and prove auxiliary tools to later prove Lemma 11.

Notation. Suppose we have a simple weighted graph G(V, E), whose edges are revealed in
a streaming fashion and let that stream be S. Suppose we partition the stream S into three
disjoint consecutive substreams A, B, and C. Let Myp (ABC') be a fixed maximum-weight
matching of G. Let X € {A, B,C, AB, BC'}.
We denote by Moy (ABC)NX those edges of the maximum-weight matching M, (ABC)
that belong to the substream X.
We denote by M,ie(X) the reported matching of Algorithm MWM-STREAMING if we
invoke it on the input substream X.
We let ¢x (v) be the potential that is assigned to a vertex v € V' if we execute Algorithm
MWDM-STREAMING on the input substream X.
We let w'y (e) be the reduced weight that we assign to an edge e € E if we execute
Algorithm MWM-STREAMING on the input substream X.
A key concept in our analysis is the so-called critical subgraph of a graph G. We take advantage
of this concept to show upper bounds for w(Mp(ABC) N AB) and w(Mop(ABC) N C) in
Lemmas 13-16.

» Definition 12 (Critical Subgraph). Consider a graph G specified by a stream S of edges.
Let A, B,C be disjoint substreams of S such that S = ABC. Then, the critical subgraph
of G with respect to the matching Moyp (ABC) and the substreams A, B,C is the subgraph
H = (Vy, Eg) such that

Epy := {e € Ble has two neighbors in My (ABC)NC}.

Vg i ={veV|ZueV: (uv) € Eyx}, ic, Vg is the set of endpoints of the edges in Ey.

Outline of the proof of Lemma 11. We show an upper-bound for w(M,p(ABC')) based
on w(Mug(AB)) and w(Mae(BC)). In particular, we show that

w(Mopt (ABC)) < 2(1 4 e)w(Mag(AB)) + 2(1 4 e)w(Mag(BC)) — Z . (1)

The slack term Z shows that there might be a double counting in the above inequality.
Intuitively, this makes sense as the substream B is repeated in the first and the second terms.

However, for the moment, suppose this is not the case and Z = 0. Assume that
w(Mag(B)) = (1—5) - w(Mag(AB)), that is, the sets A and B (and our algorithm) are such
that Mae(B) gives a good approximation of Mag(AB). Then, we have

w(Mopi(ABC)) < 2 - ((11 j;)) cw(Maig(B)) +2(1+¢) - w(Mag(BC))
<2 ((11 j;)) “w(Myon(B)) +2(1 + €) - w(Mmon (BC))
<4- (1 + 0(6)) . U)(Mmon(BC)) >
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where for the second inequality we switch from Algorithm MWM-STREAMING to its monotone
version which is Algorithm MWM-STREAMING-MONOTONE and the third inequality uses
Monotonicity Property 2 of Lemma 8.

Observe that this result already improves upon the (6 + ¢)-approximation algorithm in
the sliding-window model due to Crouch and Stubbs [5]. To obtain an even better bound,
we show that Z is lower-bounded by a constant factor of the optimal matching of the

substream B. In particular, we show that Inequality (1) holds for Z = ﬁ - w(Mop(B)).
Since w(Mopt(B)) = w(Mmon(B)), we then have
w(Mopt (ABC)) < 2 (1+e) W(Mmon(B)) + 2(1 + €)w(Mpon(BC)) — ! wW(Mmon(B))
opt X (1 — ﬂ) mon mon 2(1 ¥+ 5) mon

< (3.5 + O(€))w(Mmon (BO)) .

The complete proof of Lemma 11. We find the bound on w(Mp (ABC)) that we claimed
in Equation 1 in three steps. First in Lemma 13, we find an upper-bound on the contribution
of the substream AB towards Moy (ABC'). Next, we upper-bound the weight of edges of
the optimal matching M, (ABC) that are in the substream C. This is done in Lemma 14.
Finally, in Lemma 15 we obtain a lower-bound for the slack term Z of Equation 1.

» Lemma 13. w(Mopi(ABC) N AB) < 2(1 + e)w(Mag(AB)) — (1+¢) - Yy, PaB(v) -

Proof. By definition, w(Mopt(ABC) N AB) =} .cyr  (apoynap w(e™). Let us consider
an arbitrary edge e* = (u,v) € Mop(ABC) N AB. Using Lemma 3, we have w(e*) <
(1+¢) - (pap(u) + dap(v)). Observe that the vertices u and v cannot be in V. Thus, we
obtain

w(Mopi(ABC)NAB) < (14¢)- Y ¢ap(v) = (142)-Y_ dap(v)—(14c)- Y ¢an(v)

veV\Vy veV vEVH

Now we use Lemma 6 that shows ) i, ¢ap(v) < 2w(Mag(AB)). Hence,

w(Mopi(ABC) NAB) < 2(1+ ) - w(Mag(AB)) — (L+¢) - Y ¢an(v) . <
veVy

The next lemma shows that the contribution of optimal edges that are in the substream C
is upper-bounded by twice the weight of the reported matching of the substream BC' minus
the reduced weight of edges of B that are not in the critical subgraph H.

> Lemma 14. w(Mop(ABC)NC) < 2(1+¢) - w(Mag(BC)) = (1+€) - Xeep\py Wrle) -

Proof. Recall that for every edge e € E, wi(e) is the reduced weight of e if we run
Algorithm MWDM-STREAMING on the input stream BC, where we define wz(e) = 0 if
e ¢ BC. To prove the lemma, we will show that

W(Mopt(ABC)NC) < 2(142)- Y wheole) = (L+e)- Y whele) (2)
e€BC e€B\Ey

Suppose for now that Inequality (2) is correct. According to Lemma 7, for every e € B,
we have whe(e) = wh(e). Thus, e g gy Whe(€) = Tocpy oy Wh(v).

Next, we use Lemma 6, where we replace the graph G in that lemma with the subgraph
G'(V, BC) to show that ) . powhe(e) < w(Mag(BCO)).
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Putting everything together, we prove the statement of this lemma as follows:

w(Mopy(ABC)NC) < 2(1+¢) - Y whele) = (L+2)- Y whole)

e€eBC e€EB\Egy
<2(1+¢) - w(Mug(BO)) = (1+¢)- Y whele)
e€B\Ey
—2(1+2) - w(Mug(BO) — (1+2) - 3 whe) -
e€B\Egy

It remains to prove Inequality (2). Let e* € M, (ABC) N C. We use Lemma 5, where
we replace the graph G in that lemma with the subgraph G'(V, BC). Then, Lemma 5
shows that w(e*) < (1+¢€) - X oepy(er) Wpel(€'), where Ppc(e) = {e’ € BC : ¢ €
Ngi(e) U{e} and tos < t.}. (Here ter and t. are the arrival time of edges e and €’ in the
substream BC'.)

Hence,

w(Mopt(ABC) N C) = Z w(e*) < (1+¢) Z Z wie(e)

e*EMop (ABC)NC e*EMopt (ABC)NC ¢/ €Ppe (e*)

Consider the double summation Ze*eMopt(ABC)nc > erePye(er) Wpc(€). Every edgee’ € BC
appears in Pgpc(e*) for at most two edges e*, because each endpoint of €’ is incident to
at most one edge from M, (ABC). Hence, the double summation can be bounded by
2.3 .cpcwpo(e). If, however, ¢/ appears twice then ¢’ € Ep, that is, ¢’ is part of the

critical subgraph H. This means that the edges in B\ Ey appear at most once in the sum.

Therefore,

w(Mopt(ABC)NC) < 2(1+¢)- Y whele) = (1+e)- Y whele),
eeBC e€EB\Egy

which proves Inequality (2) and finishes the proof of the lemma. |

» Lemma 15. Suppose we execute Algorithm MWM-STREAMING on the substream AB.
Let pap(v) be the potential assigned to a vertex v € Vi at the end of this algorithm. Then,

(1+e)-2vevy 2aB(V) 2 Xecp, wple) -

Proof. Observe that Ey C B C AB. Let us consider an arbitrary edge e = (u,v) in Ep. By
applying Lemma 3 to the graph G'(V, AB) we obtain w(e) < (1+¢)(¢pap(u) + ¢pap(v)). Fix
a maximum-weight matching M, (H) of the critical subgraph H(Vy, E). Then,

w(Mopt (H)) = > we) < > (1+e)(danw) + dap(v))
e=(u,0)€ Mopt (H) (u,0)EMops (H)

<+ Y dasw) .

ueVy

where the last inequality is due to the fact that the degree of any vertex u € Vy in the
matching Mo,y (H) is at most one. We next find a lower bound for w(Mopt(H)), which in
turns yields a lower bound for (1 +¢) ), cy. ¢ap(v).

Now, suppose we execute Algorithm MWM-STREAMING on the stream B. However,
during the postprocessing phase, once we pop an edge e from the stack, we add it to the
matching M, if both end-points of e are free and e € Ey. Thus, the reported matching
M, of the substream B is influenced by the edge set Egy. We denote by M. (B|Egm) the
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reported matching of B that is influenced by Ep. Observe that M, (B|FEf) is a matching
of the critical subgraph H(Vy, Eg). Therefore, w(Mag(B|En)) < w(Mopt(H)). We next
find a lower bound for w(Mas(B|Eg)).

Consider the graph G’(V, B). Let us fix an arbitrary edge e € B. Recall that Pg(e) =
{¢/ € B:¢ € Ngv(e)U{e} and t. < t.}. (Here tor and t. are the arrival time of edges e and
e/ in the substream B.) Observe that if e € M,4(B|Eg), then e was added to the stack at
some point. Using Lemma 4, we then have w(e) = >, cp, () wp(€'). Therefore,

Y. wl= > D wp(e)

eeﬂfalg(BlEH) eGMalg(B\EH)e/GPB(e)

Now, let us consider an arbitrary edge ¢/ € Ey. For ¢ we have three cases. The first
case is that e’ is not in the stack, which implies wz(e’) = 0. The second case is that
¢’ € Mag(B|EH), so ¢ contributes to the sum 3 .y, 5 g, ) w(e). The third case is that
¢’ has a neighbor e € M,s(B|Ex), so that ¢’ € Pg(e). Considering all the three cases we
conclude

> wle= > > wple)z ) whle)
eeMalg(BlEH) eEMalg(B\EH)e/EPB(e) ecEpy

Putting everything together, we obtain the statement of this lemma as follows:

(14+9) Y danv) > w(Mop(H)) > w(Mag(B|Em) > Y whle) . «

veVy ecEy
We are now finally ready to prove Inequality (1) on page 9, with Z = Tlﬁ)w(Mopt(B)).

» Lemma 16. Let S = ABC be a stream of edges of an underlying weighted graph G(V, E).
Then, there exists the following upper bound for the weight of Moy (ABC):

1
2(1+¢)

w(Mopt (ABC)) < 2(1+e)w(Maig(AB)) +2(1 + e)w(Mag(BC)) — w(Mops(B)) -

Proof. First of all, observe that we can decompose the edges of the optimal matching
M,pt(ABC') into the subset of edges that are in the substreams AB and C. Thus, we have

w(Mopt (ABC)) = w(Mopt (ABC) N AB) + w(Mop(ABC) N C) .
Using Lemma 14 and Lemma 13, we then obtain

w(Mops(ABC)) < 2(1 + €) - w(Marg(AB)) — (1 +) - Y ¢an(v)

veEVEH

+2(1+¢e) w(Mag(BC)) — (L+e)- Y whle) .

e€EB\Eqy

Next, we replace the negative term on the sum of the potentials for vertices in Vg with its
lower-bound as in Lemma 15 .

w(Mopt(ABC))
<2(1+¢) w(Mag(AB)) — Z wi(e) +2(1+¢) - w(Mug(BC)) — (14¢) Z w'z(e)

e€Ey e€B\Ey

= 21+ ) - (Mg (AB)) +2(1 + £)o( Mg (BO)) — 3 wis(e)
ecB
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Applying Lemma 6 to the subgraph G'(V, B) gives ) .5 wiz(e) > 2(171%) cw(Mopt (G'(V, B))).
Hence,

1
wW(Mopt (ABC)) < 2(1+¢€)-w(Mag(AB))+2(1+¢)-w(Mag(BC))— 0+ e) w(Mopt (B)) .«

With the help of Lemma 16 we can now prove Lemma 11.

Proof of Lemma 11. First of all using Lemma 16, we have the following upper-bound for
the weight of Mopi(ABC):

1

w(Mopt(ABO)) < 2(1+ €)w(Masg(AB)) +2(1 + eJuw(Marg(BC)) = 57—

w(Mop(B))
Now, we switch from Algorithm MWM-STREAMING to its monotone version, which is
Algorithm MWM-MONOTONE. Monotonicity Property 1 of Lemma 8 states that for the
substream B we have w(Mag(B)) < w(Mmon(B)) < w(Mopt(B)). The same bounds also
hold for the substream AB and BC. Therefore,

W(Mops (ABC)) € 21+ Ju(Mon (AB) + 21 + ) Mon (BC)) = 5 L S 0(Mion(B)
< 2LE D) (Mpon(B)) + 21 + ) Munon(BO)) — 5 (Mpnon(B))

1-p5 2(1+¢)
< 1.5(1 4+ 3e) - w(Mmon(B)) + 2(1 + &)w(Mmon(BC))

where for the second inequality we use the assumption of this lemma, which is
W(Mmon(B)) 2 (1 — B) - w(Mmon(AB)) .

From Monotonicity Property 2 of Lemma 8, which is w(Mpon(B)) < w(Mpon(BC)), we now

for e < % conclude

W(Mopt (ABC)) < 1.5(1 + 3¢)w(Mpon(B)) + 2(1 + &)w(Mpon (BC))

<
< (3.5 + &)w(Mpon (BC)) . <

4 Subadditive functions in the sliding-window model

In this section, we prove Theorem 2 and then we show that using this theorem, we can
improve the approximation factor of quite a few submodular matching problems in the
sliding-window model. We first explain the notations that we use in this section.

Let f be a function defined on streams, which is subadditive, non-negative, and monotone.

Let 0 := fmax/fminJra where
fmin+ = min{f(X) : X is a substream of the input and f(X) > 0} ,
and

Smax := max{f(X) : X is a substream of the input}

Suppose we are given a streaming algorithm ALG that a-approximates f using space s.

Very recently Krauthgamer and Reitblat [14] showed that we can use the streaming algorithm
ALG to develop a sliding-window algorithm that (2a? + €)-approximates f using space
O(e7!s-logo). They also showed that if the streaming algorithm ALG is monotone and
subadditive, we can reduce the approximation factor of the sliding-window algorithm down
to (2a + €)-factor. Unfortunately, in some cases, although f is subadditive, ALG is not
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subadditive, or it is not easy to show that ALG is also subadditive. So, the (2« + ¢)-factor
cannot always be a result of [14]. Nevertheless, Theorem 2 shows that we can obtain a (2a+¢)-
approximation algorithm in the sliding-window model, independent of the monotonicity or
subadditivity of the streaming algorithm ALG. Our main result in this paper is that there
exists a lookahead algorithm for the maximum weight matching problem. We state this
result formally next.

Next, we prove Theorem 2. To this end, in Lemma 17, we show how to transform a
non-monotone algorithm ALG into a monotone algorithm ALG,,,. Later, in Lemma 18
we show that a monotone algorithm ALG o, that a-approximates a subadditive monotone
function f is in fact, a (f, 2a+¢(8), §)-lookahead algorithm. Thus, we can use the machinery
of Theorem 10 to develop (2« + €)-approximation sliding-window algorithms for f using the
streaming algorithm ALG on-

» Lemma 17. Let f be a non-negative and monotone function defined on streams. Let ALG
be a streaming algorithm that a-approzimates f using space s, where o > 1. Then, there is a
monotone algorithm ALGmon that a-approximates | using O(s) space.

Proof. Let S be a stream of items of the domain X of the subadditive f. In order to make
the algorithm ALG monotone, we store the maximum f of all prefixes of the stream S.
Formally, we define ALGmon as follow: ALGmon(S) := maz{ALG(T) : T is a prefix of S} .
To prove the approximation factor, we show that < - f(S) < ALGmon(S) < f(S). Observe
that ALG returns a a-approximation of f(S). Thus, 1 - f(S) < ALG(S) < ALGmon(S).
Now, it is enough to show that ALG0n(S) < f(S). Let T* be the prefix of S for which
ALG returns the maximum value among all prefixes of S. That is, ALGnon(S) = ALG(T™).

Since f is monotone f(T*) < f(59), we then have

ALGmon(5) = ALG(T™) < f(T7) < f(S) - <

» Lemma 18. Let 0 <e<1/2, a 21 and 0 < B < €/2a be three parameters. Let f be a
subadditive, non-negative, and monotone function defined on streams. Suppose we have a
monotone streaming algorithm ALGon that a-approximates f. Then, Algorithm ALGmon
is a (f,(2a + ¢€), B)-lookahead algorithm. That is, for any partitioning of a stream S of
items of the domain X of f into three disjoint sub-streams A, B, and C with ALGmon(B) =
(1—=0) - ALGmon(AB), we have

f(ABO) < (20[ + 5) . Aﬁgmon(BC) .

Proof. First of all since f is subadditive, we have f(ABC) < f(A)+f(BC). Also, the function
f is monotone, which means that f(A) < f(AB). Therefore, f(ABC) < f(AB) + f(BC).
Since ALG 1on is an a-approximate algorithm for f, we then have

f(ABC) < a- ALGmon(AB) + o - ALG on (BC) .
We assume that ALGon(B) = (1 — ) - ALGmon(AB). Using which, we have

f(ABC) < - ALGwmon(B) + a - ALGwmon(BC)

e
(1-5)
Since ALGmon is @ monotone algorithm, we have ALGnmon(B) < ALGmon(BC). Thus,
FIABC) < ﬁ + ALGumon(BC) + 0 - ALG mon(BC)

a(l+28) - ALGmon(BC) + o+ ALG mon(BCO)

<
< 2a+¢) - ALGmon(BC)

by setting 0 < 8 < 5= and using the Maclaurin series ﬁ =l4e+e2 434+ <142

for e <1/2. <
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Having Theorem 2 in hand, we can improve quite a few sliding-window algorithms that
have (2o + ¢)-approximation factor. As an example, if we have a-approximation streaming
algorithms for the maximum submodular matching, maximum submodular b-matching, and
in general, maximum submodular rank p hypergraph b-matching, we can then use Theorem 2
to develop sliding-window algorithms for all these problems with the approximation factor of
(2 + €) which significantly improves upon the best known approximation factor of (2o + ¢)
of these problems due to Krauthgamer and Reitblat [14].

As an example, we consider next the maximum submodular matching, which is defined
as follows. We are given a simple graph G(V, E). A non-negative submodular function
w : 2F — R0 is defined on subsets of edges. The goal is to find a matching Mo, whose
submodular function w(Mopt) is maximum. We next show that the maximum submodular
matching is indeed a subadditive function.

» Lemma 19. Let w be a non-negative submodular function defined on subsets of edges of a
simple graph G(V, E). Then, the mazimum submodular matching of G(V, E) is subadditive.

Proof. Let us consider an arbitrary stream S of edges of the underlying graph G(V, E).
Suppose we partition S into two disjoint consecutive substreams A and B. Since w is
non-negative, we then have w(Mopt(AB)) < w(Mopt(AB)) + w(0).

Next, we use the property of submodular functions that for every two sets X,Y we have
wXUY)+wXNY) <w(X)+wl). Let X = Mo (AB)NAand Y = My, (AB) N B.
Since A and B are disjoint substreams, we then have X UY = My (AB) and w(X NY) = 0.
Therefore, we have

W(Mopt(AB)) < w(Mopt(AB) N A) + w(Mope (AB) N B) .

Finally, since Mo, (AB) N A and M, (AB) N B are valid matchings for A and B,
respectively, then w(Mop,(AB) N A) < w(Mopt(A4)) and w(Mops(AB) N B) < w(Mopi(B)).
Thus, we have

w(Mopt(AB)) < w(Mopt(A)) + w(Mopt(B))
as we need. <

For the maximum monotone submodular matching problem, Levin and Wajc [15] develop
a 5.828-approximation streaming algorithm. If we plug this streaming algorithm into the
generic machinery of Theorem 2, we obtain 11.656-approximation sliding-window algorithm
for this problem. This significantly improves upon the 67.93-approximation factor that the
result of [14] achieves.

On the other hand, for the maximum non-monotone submodular matching problem,
there exists a 7.464-approximation streaming algorithm due to Levin and Wajc [15]. We
use this streaming algorithm for the the generic machinery of Theorem 2 and obtain 14.9-
approximation sliding-window algorithm for this problem improving the 111.4-approximation
factor that the result of [14] achieves.
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