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Abstract
We give an O(k3∆n log n min(k, log2 n) log2(nC))-time algorithm for computing maximum integer
flows in planar graphs with integer arc and vertex capacities bounded by C, and k sources and sinks.
This improves by a factor of max(k2, k log2 n) over the fastest algorithm previously known for this
problem [Wang, SODA 2019].

The speedup is obtained by two independent ideas. First we replace an iterative procedure of
Wang that uses O(k) invocations of an O(k3n log3 n)-time algorithm for maximum flow algorithm
in a planar graph with k apices [Borradaile et al., FOCS 2012, SICOMP 2017], by an alternative
procedure that only makes one invocation of the algorithm of Borradaile et al. Second, we show
two alternatives for computing flows in the k-apex graphs that arise in our modification of Wang’s
procedure faster than the algorithm of Borradaile et al. In doing so, we introduce and analyze a
sequential implementation of the parallel highest-distance push-relabel algorithm of Goldberg and
Tarjan [JACM 1988].
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1 Introduction

The maximum flow problem has been extensively studied in many different settings and
variations. This work concerns two related variants of the maximum flow problem in planar
graphs. The first variant is the problem of computing a maximum flow in a directed planar
network with integer arc and vertex capacities, and k sources and sinks. The second variant,
which is used in algorithms for the first variant, is the problem of computing a maximum
flow in a directed network that is nearly planar; there is a set of k vertices, called apices,
whose removal turns the graph planar.

The problem of maximum flow in a planar graph with vertex capacities has been studied
in several works since the 1990s [9, 14, 7, 2, 13]. For a more detailed survey of the history of
this problem and other relevant results see [13] and references therein. Vertex capacities pose
a challenge in planar graphs because the standard reduction from a flow network with vertex
capacities to a flow network with only arc capacities does not preserve planarity. The problem
can be solved by algorithms for maximum flow in sparse graphs (i.e., graphs with n vertices
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and O(n) edges that are not necessarily planar). The fastest such algorithms currently known
are an O(n2/ log n)-time algorithm [11] for sparse graphs, and an O(n4/3+o(1)C1/3)-time
algorithm for sparse graphs with integer capacities bounded by C [8]. Until recently, there
was no planarity exploiting algorithm for the case of more than a single source and a single
sink. Significant progress on this problem was recently made by Wang [13]. Wang developed
an O(k5∆n log3 n log2(nC))-time algorithm, where k is the number of sources and sinks,
∆ is the maximum vertex degree, and C is the largest capacity of a single vertex.1 This
is faster than using the two algorithms for general sparse graphs mentioned above when
k = Õ(n1/5/(∆ log2 C) + (nC)1/15/∆).

Wang’s algorithm uses multiple calls to an algorithm of Borradaile et al. [2] for computing
a maximum flow in a k-apex graph with only arc capacities. The algorithm of Borradaile
et al. [2] is based on an approach originally suggested by Hochstein and Weihe [6] for a
slightly more restricted problem. In Borradaile et al.’s approach, a maximum flow in a k-apex
graph with n vertices is computed by simulating the Push-Relabel algorithm of Goldberg and
Tarjan [4] on a complete graph with k vertices, corresponding to the k apices of the input
graph. Whenever the Push-Relabel algorithm pushes flow on an arc of the complete graph,
the push operation is simulated by sending flow between the two corresponding apices in the
input k-apex graph. This can be done efficiently using an O(n log3 n) time multiple-source
multiple-sink (MSMS) maximum flow algorithm in planar graphs, which is the main result of
the paper of Borradaile et al. [2]. Overall, their algorithm for maximum flow in k-apex graphs
takes O(k3n log3 n) time. Flow in k-apex graphs can also be computed using the algorithms
for sparse graphs mentioned above. The O(k3n log3 n)-time algorithm of Borradaile et al. is
faster than these algorithms when k = Õ(n1/3/ log2 C + (nC)1/9).

1.1 Our results and techniques
We improve the running time of Wang’s algorithm to O(k3∆n log n min(k, log2 n) log2(nC)).
This is faster than Wang’s result by a factor of max(k2, k log2 n), extending the range of
values of k for which the planarity exploiting algorithm is the fastest known algorithm for
the problem to k = Õ(n1/3/(∆ log2 C) + (nC)1/9/∆). The improvement is achieved by two
main ideas. At the heart of Wang’s algorithm is an iterative procedure for eliminating excess
flow from vertices violating the capacity constraints. Each iteration consists of computing a
circulation with some desired properties. Wang computes this circulation using O(k) calls
to the algorithm of Borradaile et al. for maximum flow in k-apex graphs. We show how to
compute this circulation using a constant number of invocations of the algorithm for k-apex
graphs. This idea alone improves on Wang’s algorithm by a factor of k.

To further improve the running time, we modify the algorithm of Borradaile et al. for
maximum flow in k-apex graphs [2]. The algorithm of Borradaile et al. uses the Push-Relabel
algorithm of Goldberg and Tarjan [4]. We introduce a sequential implementation of the
parallel highest-distance Push-Relabel algorithm. In this algorithm, which we call batch-
highest-distance, a single operation, Bulk-Push, pushes flow on multiple arcs simultaneously,
instead of just on a single arc as in Goldberg and Tarjan’s Push operation. More specifically,
we simultaneously push flow on all admissible arcs whose tails have maximum height (see
Section 3). This is reminiscent of parallel and distributed Push-Relabel algorithms [4, 3],

1 In a very recent personal communication, Wang informed the authors of a subtle bug in the published
version [13] of his result that led to the ∆ factor not appearing in the claimed running time. The full
version of Wang’s paper (which has not been published yet) fixes the bug, and we refer to his corrected
claims throughout the current work.
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but our algorithm is sequential, not parallel. We prove that the total number of Bulk-Push
operations performed by the batch-highest-distance algorithm is O(k2) (this should be
compared to O(k3) Push operations for the FIFO or highest-distance Push-Relabel algorithms).
We then show that, in the case of the k-apex graphs that show up in Wang’s algorithm,
we can implement each Bulk-Push operation using a constant number of invocations of the
O(n log3 n)-time MSMS maximum flow algorithm for planar graphs [2]. Hence, we can find
a maximum flow in such k-apex graphs in O(k2n log3 n) time, which is faster by a factor of
k than the time required by the algorithm of Borradaile et al.

We also give another way to modify the algorithm of Borradaile et al. for maximum
flow in k-apex graphs; the second way is better when k = o(log2 n). We observe that the
structure of the k-apex graphs that arise in Wang’s algorithm allows us to implement each
of the O(k3) Push operations of the FIFO Push-Relabel algorithm used by Borradaile et al.
in just O(n log n) time. This is done using a procedure due to Miller and Naor [10] for the
case when all sources and sinks lie on a single face.

Roadmap. In Section 2 we provide preliminary background and notations. Section 3 de-
scribes the sequential implementation of the parallel highest-distance Push-Relabel algorithm,
and its use in an algorithm for finding maximum flow in k-apex graphs. In Section 4 we
describe how to use this Push-Relabel variant to obtain an improved algorithm for computing
maximum flow in planar graphs with vertex capacities.

2 Preliminaries

All the graphs we consider in this paper are directed. For a graph G we use V (G) and E(G)
to denote the vertex set and arc set of G, respectively. For any vertex v ∈ V (G), let deg(v)
denote the degree of v in G.

For a path P we denote by P [u, v] the subpath of P that starts at u and ends at v. We
denote by P ◦Q the concatenation of two paths P, Q such that the first vertex of Q is the
last vertex of P .

A flow network is a directed graph G with a capacity function c : V (G) ∪E(G)→ [0,∞)
on the vertices and arcs of G, along with two disjoint sets S, T ⊂ V (G) called sources and
sinks, respectively. We assume without loss of generality that sources and sinks have infinite
capacities, and that, for any arc e = (u, v) ∈ E(G), the reverse arc (v, u), denoted rev(e) is
also in E(G), and has capacity c(rev(e)) = 0.

Let ρ : E(G) → [0,∞). To avoid clutter we write ρ(u, v) instead on ρ((u, v)). For
each vertex v let ρin(v) =

∑
(u,v)∈E(G) ρ(u, v), and ρout(v) =

∑
(v,u)∈E(G) ρ(v, u). The

function ρ is called a preflow if it satisfies the following conservation constraint: for all
v ∈ V (G) \ (S), ρin(v) ≥ ρout(v). The excess of a vertex v with respect to a preflow ρ is
defined by ex(ρ, v) = ρin(v)−ρout(v). A preflow is feasible on an arc e ∈ E(G) if ρ(e) ≤ c(e).
It is feasible on a vertex v ∈ V (G) if ρin(v) ≤ c(v). A preflow is said to be feasible if, in
addition to the conservation constraint, it is feasible on all arcs and vertices. The value of a
preflow ρ is defined as |ρ| =

∑
s∈S ρout(s)− ρin(s). A preflow f satisfying ex(f, v) = 0 for

all v ∈ V (G) \ (S ∪ T ), is called a flow. A flow whose value is 0 is called a circulation. A
maximum flow is a feasible flow whose value is maximum.

▶ Remark 1. The problem of finding a maximum flow in a flow network with multiple sources
and sinks can be reduced to the single-source, single-sink case by adding a super source s and
super sink t, and infinite-capacity arcs (s, si) and (ti, t) for every si ∈ S and ti ∈ T . If the
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original network is planar then this transformation adds two apices to the graph. Throughout
the paper, whenever we refer to the graph G, we mean the graph G after this transformation,
i.e., with a single source, the apex s, and a single sink, the apex t.

The violation of a flow f at a vertex v is defined by vio(f, v) = max{0, f in(v) − c(v)}.
Thus, if f is a feasible flow then vio(f, v) = 0 for all vertices v. The violation of the flow f is
defined to be vio(f) = maxv∈V (G) vio(f, v).2

A preflow ρ is acyclic if there is no cycle C such that ρ(e) > 0 for every arc e ∈ C. A
preflow saturates an arc e if ρ(e) = c(e).

The sum of two preflows ρ and η is defined as follows. For every arc e ∈ E(G), (ρ+η)(e) =
max{0, ρ(e) + η(e)− ρ(rev(e))− η(rev(e))}. Multiplying the preflow ρ by some constant c to
get the flow cρ is defined as (cρ)(e) = c · ρ(e) for all e ∈ E(G).

The residual capacity cρ(e) of an arc e with respect to a preflow ρ is c(e)−ρ(e)+ρ(rev(e)).
The residual graph of a flow network G with respect to a preflow ρ is the graph G where the
capacity of every arc e ∈ E(G) is set to cρ(e). It is denoted by Gρ. A path of G is called
augmenting or residual (with respect to a preflow ρ) if it is also a path of Gρ.

Suppose G and H are flow networks such that every arc in G is also an arc in H. If f ′ is a
(pre)flow in H then the restriction of f ′ to G is the (pre)flow f in G defined by f(e) = f ′(e)
for all e ∈ E(G).

3 An algorithm for maximum flow in k-apex graphs

In this section we introduce a sequential implementation of the parallel highest-distance
Push-Relabel algorithm of Goldberg and Tarjan [4], and use it in the algorithm of Borradaile
et al. [2] for maximum flow in k-apex graphs. We first give a high-level description of the
Push-Relabel algorithm.

3.1 The Push-Relabel algorithm [4]
Let H be a flow network (not necessarily planar) with source s and sink t, arc capacities
c : E(H) → R, and no finite vertex capacities. The Push-Relabel algorithm maintains a
feasible preflow function, ρ, on the arcs of H. A vertex u is called active if ex(ρ, u) > 0. The
algorithm starts with a preflow that is zero on all arcs, except for the arcs leaving the source
s, which are saturated. Thus, all the neighbors of s are initially active. When the algorithm
terminates, no vertex is active and the preflow function is guaranteed to be a maximum flow.
The algorithm also maintains a label function h (also known as distance or height function)
over the vertices of H. The label function h : V (H)→ N is valid if h(s) = |V (H)|, h(t) = 0
and h(u) ≤ h(v) + 1 for every residual arc (u, v) ∈ E(Hρ).

The algorithm progresses by performing two basic operations, Push and Relabel. A
Push operation applies to an arc (u, v) if (u, v) is residual, ex(ρ, u) > 0, and h(u) =
h(v) + 1. The operation moves excess flow from u to v by increasing the flow on e by
min{ex(ρ, u), c(e)− ρ(e)}.

The other basic operation, Relabel(u), assigns u the label h(u) = min{h(v) : (u, v) ∈
E(Hρ)} + 1 and applies to u only if u is active and h(u) is not greater than the label of
any neighbor of u in Hρ. In other words, Relabel applies to an active vertex u only if the
excess flow in u cannot be pushed out of u (because h(u) is not high enough). The algorithm
performs applicable Push and Relabel operations until no vertex is active.

2 We define violations only with respect to flows (rather than preflows) because we will only discuss
preflows in the context of flow networks without finite vertex capacities.
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To fit our purposes, we think of the algorithm as one that only maintains explicitly
the excess ex(ρ, v) and residual capacity cρ(e) of each vertex v and arc e of H. The
preflow ρ is implicit. In this view, a Push(u, v) operation decreases ex(ρ, u) and cρ(u, v) by
min{ex(ρ, u), cρ(u, v)} and increases ex(ρ, v) and cρ(v, u) by the same amount.

We reformulate Goldberg and Tarjan’s correctness proof of the generic Push-Relabel
algorithm to fit this view.

▶ Lemma 2 ([4]). Any algorithm that performs applicable Push and Relabel operations in
any order satisfies the following properties and invariants:
(1) ex(ρ, ·) and cρ(·) are non-negative.3
(2) The function h is a valid labeling function.
(3) For all v ∈ V , the value of h(v) never decreases, and strictly increases when Relabel(v)

is called.
(4) h(v) ≤ 2|V (H)| − 1 for all v ∈ V (H).
(5) Immediately after Push(u, v) is performed, either (u, v) is saturated or u is inactive.

Proof. Properties (1) and (5) are immediate from the definition of Push and the fact that
excess and residual capacities only change during Push operations. Property (2) corresponds
to Lemma 3.1 in [4], Property (3) is proved in Lemma 3.6 in [4], and Property (4) in
Lemma 3.7 in [4]. ◀

▶ Lemma 3 ([4, Lemma 3.3]). Properties (1), (2) imply that there is no augmenting path
from s to t at any point of the algorithm.

▶ Lemma 4 ([4, Lemma 3.8]). Properties (3), (4) imply that the number of Relabel operations
is at most 2|V (H)| − 1 per vertex and at most 2|V (H)|2 overall.

▶ Lemma 5 ([4, Lemmas 3.9, 3.10]). Properties (1)-(5) imply that the number of Push
operations is O(|V (H)|2|E(H)|).

By Lemmas 4 and 5, the algorithm terminates. Upon termination no vertex is active, so
the implicit preflow ρ is in fact a feasible flow. By Lemma 3 ρ is a maximum flow from s to t.

Variants of the Push-Relabel algorithm differ in the order in which applicable Push and
Relabel operations are applied. Some variants, such as FIFO, highest-distance, maximal-
excess, etc., guarantee faster termination than the O(|V (H)|2|E(H)|) guarantee given above.

3.2 A sequential implementation of the parallel highest-distance
Push-Relabel algorithm

We present a sequential implementation of the parallel highest-distance Push-Relabel al-
gorithm, which we call Batch-Highest-Distance. This algorithm attempts to push flow on
multiple edges simultaneously in an operation called Bulk-Push. In that sense, it resembles
the parallel version of the highest-distance Push-Relabel algorithm. It is important to note,
however, that Bulk-Push is a sequential operation and not a parallel/distributed one.

We define Bulk-Push, a batched version of the Push operation. Bulk-Push(U, W ) operates
on two sets of vertices, U and W . It is applicable under the following requirements:

(i) ex(u) > 0 for all u ∈ U .
(ii) There exists an integer h such that h(u) = h and h(w) = h − 1 for all u ∈ U and

w ∈W .
(iii) There is a residual arc (u, w) for some u ∈ U and w ∈W .

3 This corresponds to the function ρ being a feasible preflow.
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Note that in a regular Push-Relabel algorithm, conditions (i) and (ii) imply that Push(u, w)
is applicable to any residual arc (u, w) with u ∈ U and w ∈W . Condition (iii) guarantees
there is at least one such arc. Bulk-Push pushes as much excess flow as possible from vertices
in U to vertices in W so that after Bulk-Push the following property holds:

(5*) Immediately after Bulk-Push(U, W ) is called, for all u ∈ U and w ∈W , either (u, w) is
saturated or u is inactive.

We replace property (5) with the more general property (5*) in Lemma 2 and Lemma 5.
With this modification, Lemmas 2, 3, 4 and 5 apply to our sequential implementation. The
proofs from [4] need no change except replacing Push with Bulk-Push. Hence, our variant
terminates correctly with a maximum flow from s to t.
▶ Remark. One may think of Bulk-Push(U, W ) as performing in parallel all Push operations
on arcs whose tail is in U and whose head is in W . However, not every maximum flow
with sources U and sinks W can be achieved as the sum of flows pushed by multiple Push
operations. For example, consider the case where U consists of a single vertex u, with
ex(u) = 2, W = {w1, w2}, and the residual capacities of (u, w1) and (u, w2) are both 2.
Bulk-Push(U, W ) may push one unit of excess flow from u on each of (u, w1) and (u, w2), but
Push(u, wi) would push 2 units of flow on (u, wi), and no flow on the other arc. Therefore, the
correctness of this variant cannot be argued just by simulating Bulk-Push by multiple Push
operations. Instead we chose to argue correctness by stating the generalized property (5*).

We now discuss a concrete policy for choosing which Bulk-Push and Relabel operations
to perform in the above algorithm. This policy is similar, but not identical, to the highest-
distance Push-Relabel algorithm [4, 3]. As long as there is an active vertex, the algorithm
repeatedly executes the following two steps, which together are called a pulse. Let hmax

be the maximum label of an active vertex. That is, hmax = max{h(v) : ex(ρ, v) > 0}. Let
Hmax be the set of all the active vertices whose height is hmax. In the first step of the pulse,
the algorithm invokes Bulk-Push(Hmax, W ) where W is the set of all vertices w ∈ V such
that h(w) = hmax − 1.4 In the second step of the pulse, the algorithm applies the Relabel
operation to all remaining active vertices in Hmax in arbitrary order.

Algorithm 1 Batch-Highest-Distance(G, c).

1: Initialize h(·), cρ(·) and ex(·)
2: while there exists an active vertex do
3: hmax ← max{h(v) : ex(ρ, v) > 0}
4: Hmax ← {v ∈ V (H) : ex(ρ, v) > 0, h(v) = hmax}
5: W ← {w ∈ V (H) : h(w) = hmax − 1}
6: Bulk-Push(Hmax, W )
7: Relabel all active vertices in Hmax in arbitrary order
8: end while

▶ Remark. The crucial difference between this policy and the highest-distance Push-Relabel
algorithm [4, 3] is that in the highest-distance algorithm a vertex u with height hmax is
relabeled as soon as no more Push operations can be applied to u. In contrast, our variant
first pushes flow from all vertices with height hmax and only then relabels all of them.

4 Formally it may be that Bulk-Push(Hmax, W ) is not applicable because condition (iii) is not satisfied,
e.g., when W = ∅. In such cases Bulk-Push does not push any flow. Condition (iii) is essential for
the termination of the generic generalized algorithm, which may repeat such empty calls to Bulk-Push
indefinitely. However, we prove in Lemma 6 that in our specific policy there are O(|V (H)|2) pulses,
regardless of the flow pushed (or not pushed) by Bulk-Push in each pulse.
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We partition the pulses into two types according to whether any vertices are relabeled
in the relabel step of the pulse. A pulse in which at least one vertex is relabeled is called
saturating. All other pulses are called non-saturating.5

By Lemma 4, the total number of Relabel operations executed by the batch-highest-
distance algorithm is O(|V (H)|2). We now prove the same bound for Bulk-Push operations.

▶ Lemma 6. The number of pulses (and hence also the number of calls to Bulk-Push) executed
by the batch-highest-distance algorithm is O(|V (H)|2).

Proof. Note that the Relabel step of a saturating pulse consists of at least one call to Relabel
which strictly increases the height of an active vertex v whose height (before the increase)
was hmax. Hence, a saturating pulse strictly increases the value of hmax. The fact that
the height of each vertex never decreases and is bound by 2|V (H)| implies that (i) there
are O(|V (H)|2) saturating pulses, and (ii) the total increase in hmax over all saturating
Bulk-Push operations is O(|V (H)|2).

As for non-saturating pulses, note that since excess flow is always pushed to a vertex with
lower height, the push step of a pulse does not create excess in any vertex with height greater
than or equal to hmax, so all vertices with height greater than hmax remain inactive during
the pulse. By property (5*), for every u ∈ Hmax and w ∈W , either (u, w) is saturated, or u

is inactive. Since the pulse is non-saturating, it follows that all the vertices in Hmax become
inactive during the pulse. Hence, the value of hmax strictly decreases during a non-saturating
pulse. Since hmax ≥ 0, the total decrease in hmax is also O(|V (H)|2), so there are O(|V (H)|2)
non-saturating pulses. ◀

Note that we do not claim that implementing the Bulk-Push operation by applying
applicable Push(u, w) operations for u ∈ U , w ∈ W until no more such operations can be
applied would result in fewer Push operations than the O(|V (H)|2|E(H)|) bound of Lemma 5
for the generic Push-Relabel algorithm. However, in Section 4 we will show a situation
where each call to Bulk-Push can be efficiently implemented using a single invocation of a
multiple-source multiple-sink algorithm in a planar graph.

3.3 The algorithm of Borradaile et al. for k-apex graphs [2]
The algorithm of Borradaile et al. [2, Section 5] uses the framework of Hochstein and Weihe [6].
Let H be a graph with a set V × of k apices. Denote V0 = V (H) \ V ×. The goal is to
compute a maximum flow in H from a source s ∈ V (H) to a sink t ∈ V (H). We assume
that s and t are apices. This is without loss of generality since treating s and t as apices
leaves the number of apices in O(k). Let K× be a complete graph over V ×. The algorithm
computes a maximum flow ρ from s to t in H by simulating a maximum flow computation
from s to t in K× using the Push-Relabel algorithm. Whenever a Push operation is performed
on an arc (u, v) of K× it is implemented by pushing flow from u to v in the graph Huv,
induced by V0 ∪ {u, v} on the residual graph of H with respect to the flow computed so far.
Note that, because no vertex of V0 is an apex of H, Huv is a 2-apex graph with apices u, v.
Borradaile et al. use this fact to compute a maximum flow from u to v in Huv as follows.
They split u into multiple copies, each incident to a different vertex w for which (u, w) is
an arc of Huv. A similar process is then applied to v. Note that the resulting graph is
planar. A maximum flow from u to v in Huv is equivalent to a maximum flow with sources

5 This is a generalization of the notions of saturating and non-saturating Push operations in [4].
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the copies of u and sinks the copies of v in the resulting graph. This flow can be computed
by the multiple-source multiple-sink maximum flow algorithm (the main result in [2]) in
O(|V (H)| log3 |V (H)|) time.

The correctness of implementing the Push-Relabel algorithm on K× in this way was
proved by Hochstein and Weihe [6] by proving essentially that the algorithm satisfies the
properties in Lemma 2. Borradaile et al. used the FIFO policy of Push-Relabel, which
guarantees that the number of Push operations is O(k3), so the overall running time of their
algorithm is O(k3|V (H)| log3 |V (H)|).

3.4 An algorithm for maximum flow in k-apex graphs
We use the algorithm of Borradaile et al. for maximum flow in k-apex graphs from the
previous section, but use our new batch-highest-distance Push-Relabel algorithm instead
of the FIFO Push-Relabel algorithm to compute the maximum flow in K×. In order to
implement the batch-highest-distance algorithm on K× we only need to maintain the excess
ex(ρ, v) and labels h(v) of each vertex v ∈ K×, and to be able to implement Bulk-Push so
that after the execution, property (5*) is fulfilled. We do not define a flow function in K× nor
do we explicitly maintain residual capacities of arcs of K×. Instead, we maintain a preflow ρ

in H, and say an arc (u, v) of K× is residual if and only if there exists a residual path from
u to v in Hρ that is internally disjoint from the vertices of V ×. Under this definition, there
is no path of residual arcs in K× starting at s and ending at t if and only if there is no such
path in H. Since K× has O(k) vertices, by Lemma 6, the algorithm performs O(k2) pulses.

We next describe how a Bulk-Push(U, W ) operation in K× is implemented. Let A = U∪W .
Let HA be the graph obtained from Hρ by deleting the vertices V × \ A. Bulk-Push(U, W )
in K× is implemented by pushing a maximum flow in HA with sources the vertices U and
sinks the vertices W , with the additional restriction that the amount of flow leaving each
vertex u ∈ U is at most the excess of u. The efficiency of the procedure depends on how
fast we can compute the maximum flow in HA. We denote the time to execute a single
Bulk-Push operation in the graph HA by TBP . Note that TBP = Ω(k), as it takes Ω(k) time
to construct HA from Hρ.

The proof of correctness is an easy adaptation of the proof of Hochstein and Weihe [6].
We cannot use their proof without change because Hochstein and Weihe considered only Push
operations along a single arc of K× rather than the Bulk-Push operations which involves
more than a single pair of vertices of K×.

▶ Lemma 7. Maximum flow in k-apex graphs can be computed in O(k2 · TBP ) time.

Proof. We first show that the properties (1)-(4) in the statement of Lemma 2, and the
generalized property (5*) from Section 3.2 hold. Property (1) holds since Bulk-Push(U, W )
limits the amount of flow pushed from each vertex u ∈ U by the excess of u. Properties (3)
and (4) hold without change since Relabel is not changed.

To show property (5*) holds, recall that an arc (u, w) of K× is residual if there exists,
in the residual graph Hρ with respect to the current preflow ρ, a residual path from u to
w that is internally disjoint from any vertex of V ×. With this definition it is immediate
that property (5*) holds, since our implementation of Bulk-Push(U, W ) pushes a maximum
flow in HA from U that is limited by the excess flow in each vertex of U . Hence, after
Bulk-Push(U, W ) is executed, for every u ∈ U and w ∈ W , either there is no residual path
from u to w in Hρ that is internally disjoint from V ×, or u is inactive.

As for property (2), since we did not change Relabel, h remains valid after calls to Relabel.
It remains to show that h remains a valid labeling after Bulk-Push(U, W ). Consider two
vertices a, b ∈ V ×. We will show that after Bulk-Push(U, W ), either the arc (a, b) of K× is
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ba

w

u

c
d

Q

P P ′

Figure 1 Illustration of property (2) in the proof of Lemma 7. A Bulk-Push(U, W ) operation
pushes flow along paths P and P ′ (dashed red paths). If Q (blue solid path) is residual after the
Bulk-Push operation then the dotted black paths were residual before.

saturated (i.e., is no residual path from a to b in Hρ), or h(a) ≤ h(b) + 1. The flow pushed
(in HA) by the call Bulk-Push(U, W ) can be decomposed into a set P of flow paths, each of
which starts at a vertex of U and ends at a vertex of W .

Assume that after performing Bulk-Push(U, W ) there is an augmenting a-to-b path, Q

in Hρ. If Q does not intersect any path P ∈ P then Q was residual before Bulk-Push(U, W )
was called, so h(a) ≤ h(b) + 1 because h was a valid labeling before the call. Otherwise, Q

intersects some path in P . Let c, d be the first and last vertices of Q that also belong to paths
in P. Let P, P ′ ∈ P be paths such that c ∈ P and d ∈ P ′. Let w ∈W be the last vertex of
P and let u ∈ U be the first vertex of P ′. See Figure 1. Then, before Bulk-Push(U, W ) was
called, Q[a, c] ◦ P [c, w] was a residual path from a to w, and P ′[u, d] ◦Q[d, b] was a residual
path from u to b. Since h was a valid labeling before the call, we have

h(u) ≤ h(b) + 1 and h(a) ≤ h(w) + 1.

Since h(u) = h(w) + 1 it follows that

h(a) ≤ h(w) + 1 = h(u) ≤ h(b) + 1,

showing property (2).
We have shown that properties (1)-(4) and (5*) hold. Hence, by Lemmas 6 and 4, the

algorithm terminates after performing O(|V ×|2) = O(k2) Bulk-Push and Relabel operations.
Since each Relabel takes O(k) time, and each Bulk-Push takes Ω(k) time, the total running
time of the algorithm is O(k2 · TBP ). By Lemma 3, when the algorithm terminates there is
no residual path from s to t in K×. By our definition of residual arcs of K× this implies that
there is no residual path from s to t in Hρ, so ρ is a maximum flow from s to t in H. ◀

4 A faster algorithm for maximum flow with vertex capacities

In this section, we give a faster algorithm for computing a maximum flow in a directed planar
graph with integer arc and vertex capacities bounded by C, parameterized by the number
k of terminal vertices (sources and sinks). The fastest algorithm currently known for this
problem is by Wang [13] and runs in O(k5∆n polylog(nC)) time. We first sketch Wang’s
algorithm, only detailing the parts that will be modified in our algorithm in Section 4.2.
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4.1 Wang’s algorithm
Wang’s algorithm uses some auxiliary graphs, in which only the arcs are capacitated.

▶ Definition 8 (The graph G◦). For a flow network G, the network G◦ is obtained by the
following procedure. For each vertex v ∈ V (G), replace v with an undirected cycle Cv with
d = deg(v) vertices v1, ..., vd.6 Each arc in Cv has capacity c(v)/2. Connect each arc incident
to v with a different vertex vi, preserving the clockwise order of the arcs so that the graph
remains planar.

Recall that if H and G are two graphs such that every arc of G is also an arc of H, then
the restriction of a flow f ′ in H to G is a flow f in G such that f(e) = f ′(e) for all e ∈ E(G).
Thus we can speak of the restriction of a flow f◦ in G◦, to a flow f in G.

Kaplan and Nussbaum [7] used the reduction from G to G◦ to compute a maximum flow
in directed planar graphs with vertex capacities and a single source and a single sink. Their
algorithm computes a maximum flow f◦ in the graph G◦. Let f be the restriction of f◦ to
G. Kaplan and Nussbaum then proved that, provided there is only a single source and a
single sink, the values of the maximum flow in G◦ and in G are the same and that if f is
acyclic then it is a feasible maximum flow in G.

However, when dealing with multiple source and sinks this approach fails because the
resulting flow f may violate vertex capacities in G. In fact, the value of the maximum flow
in G◦ may be greater than the value of the maximum flow in G. Wang proves that the set
X of vertices whose capacities are violated by f (after canceling flow cycles) has size at most
k − 2, and that the sum of the violations of the vertices in X is at most (k − 2)C. In order
to overcome this obstacle, Wang’s algorithm uses binary search to find the value λ⋆ of the
maximum flow in G.

Let λ be the current candidate value for λ∗. The algorithm computes a flow f◦ with value
λ in the graph G◦ (recall, G◦ has a super source s connected to all sources, and a super sink
t, connected to all sinks. Thus G◦ has an apex set of size 2). Let f be the restriction of f◦ to
G. As long as vio(f) > 2k∆, the algorithm improves f . This improvement phase, which will
be described shortly, is the crux of the algorithm. If vio(f) ≤ 2k∆, then O(k2∆) iterations
of the classical Ford-Fulkerson algorithm suffice to get rid of all the remaining violations.

The improvement phase of the algorithm is based on finding a circulation g that cancels the
violations on the infeasible vertices and does not create too much violations on other vertices.
It can then be shown that adding 1/(k∆) ·g to the flow f decreases vio(f) by a multiplicative
factor of roughly 1−1/(k∆). After O(k∆ log(kC)) iterations of the improvement step, vio(f)
is at most 2k∆.

In order to find the circulation g Wang defines the following auxiliary graph.

▶ Definition 9 (The graph G×). Let f be a flow in G. Let X be the set of infeasible vertices.
I.e., vertices x ∈ V (G) s.t. f in(x) > c(x). The graph G× is defined as follows. Starting with
G◦, for each vertex x ∈ X, replace the cycle representing x with two vertices xin, xout and
an arc (xin, xout) of capacity c(x).

Every arc of capacity c going from a vertex u /∈ Cx to a vertex in Cx becomes an arc
(u, xin) of capacity c. Similarly, every arc of capacity c going from a vertex of Cx to a vertex
u /∈ Cx becomes an arc (xout, u) with capacity c.

6 By undirected cycle we mean that there are directed arcs in both directions between every pair of
consecutive vertices of the cycle Cv.
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Since arcs of G◦ can be identified with arcs of G×, the flow f◦ can be viewed as a flow f×

in G×, setting f×(xin, xout) =
∑

(u,xi)∈E(G◦) f◦(u, xi). The flow f× can then be restricted
to a flow in G.

Wang proves that in order to find the circulation g described above, it suffices to compute
a circulation g× in G× that satisfies the following properties:
1. f× + g× is feasible in G×.
2. The restriction of f× + g× to G has no violations on vertices of X.
3. The restriction of f× + g× to G has at most (k − 2)∆ · vio(f) violation on any vertex in

V (G) \X.
The desired circulation g is the restriction of g× to G. If no such g× exists then g does
not exist, which implies that λ > λ∗. Otherwise, λ ≤ λ∗. The binary search for λ∗ then
continues with a different value of λ.

Wang essentially shows that any algorithm for finding g× in O(T ) time, where T = Ω(n),
yields an algorithm for maximum flow with vertex capacities in O(k∆T log(kC) log(nC))
time. The additional terms stem from the O(k∆ log(kC)) iterations of the improvement
step, and the log(nC) steps of the binary search. Wang shows how to compute g× in
T = O(k4n log3 n) time, by eliminating the violation at each vertex of X one after the other
in some auxiliary graph obtained from G×. Thus, the overall running time of his algorithm
is O(k5∆n log3 n log(kC) log(nC)).

4.2 A faster algorithm for computing g×

We propose a faster way of computing the circulation g× by eliminating the violations in
all the vertices of X in a single shot. Doing so correctly requires some care in defining
the appropriate capacities in the auxiliary graph, since we only know that for each x ∈ X,
g× should eliminate at least vio(f, x) units of flow from x, but the actual amount of flow
eliminated from x may have to be larger. This issue does not come up when resolving the
violations one vertex at a time as was done by Wang.

Define an auxiliary graph H as follows. Starting with G×
f× , the residual graph of G×

with respect to f×,
For each x ∈ X, set the capacity of the arc (xin, xout) to be 0 and the capacity of
(xout, xin) to be c(x).
Add a super source s′ and arcs (s′, xin) with capacity vio(f, x) for every x ∈ X.
Add a super sink t′ and arcs (xout, t′) with capacity vio(f, x) for every x ∈ X.

Note that {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} is an apex set of size O(k) in H (recall from
Remark 1 that s and t are the super source and super sink of the original graph G).

The circulation g× can be found using the following algorithm. Find a maximum flow h′

from s′ to t′ in H using Lemma 7. Convert h′ to an acyclic flow h of the same value using the
algorithm of Sleator and Tarjan [12] (cf. [13, Lemma 2.5]). If h does not saturate every arc
incident to s′ and t′, return that the desired circulation g does not exist. Otherwise, h can
be extended to the desired circulation g× by setting g×(xout, xin) = h(xout, xin) + vio(f, x)
for every x ∈ X and g×(e) = h(e) for all other arcs.

The following lemma shows that any single Bulk-Push operation in the algorithm of
Lemma 7 on H can be implemented by a constant number of calls to the O(n log3 n)-time
multiple-source multiple-sink maximum flow algorithm in planar graphs of Borradaile et
al. [2]. There are two challenges that need to be overcome. First, the graph H is O(k)-apex
graph rather than planar. Second, the algorithm of Borradaile et al. computes a maximum
flow from multiple sources to multiple sinks, not a maximum flow under the restriction that
each source sends at most some given limit. This is not a problem in the case of a single
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source, or a limit on just the total value of the flow, since then some of the flow pushed can
be “undone”. When each of the multiple sources has a different limit, undoing the flow from
one source can create residual paths from another source that did not yet reach its limit.

▶ Lemma 10. Any single Bulk-Push operation in the execution of the algorithm of Lemma 7
on the graph H defined above can be implemented in O(n log3 n) time.

Proof. Let V × = {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} be the set of apices of H. Recall that
the algorithm of Lemma 7 invokes the batch-highest-distance Push-Relabel algorithm on
a complete graph K× over V ×, and maintains a corresponding preflow in H. Consider a
single Bulk-Push(U, W ) operation from a set of apices U to a set of apices W . Let ρ denote
the preflow pushed in H up to this Bulk-Push operation. Let A = U ∪W . To correctly
implement Bulk-Push(U, W ), we find a flow ρ′ with sources U and sinks W in the graph H,
which satisfies the following properties:

(i) For every u ∈ U , ex(ρ + ρ′, u) ≥ 0, and
(ii) For every u ∈ U and w ∈ W , either ex(ρ + ρ′, u) = 0 or there is no residual path in

Hρ+ρ′ from u to w that is internally disjoint from V ×.
Condition (i) guarantees that ρ′ does not push more flow from a vertex u ∈ U than the
current excess of u. Condition (ii) is condition (5*) from Section 3.2.

Let H ′′ be the graph obtained from Hρ by deleting the vertices V × \A. Note that the
absence of residual paths that are internally disjoint from V × in H ′′ is equivalent to the
absence of such paths in H. We will compute ρ′ using a constant number of invocations of
the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm in planar graphs
of Borradaile et al. [2]. Instead of invoking this algorithm on H ′′, which is not planar, we
shall invoke it on modified versions of H ′′ which are planar.

Starting with H ′′, we split each vertex w ∈W into deg(w) copies. Each arc e that was
incident to w before the split is now incident to a distinct copy of w, and is embedded so
that it does not cross any other arc in the graph. Let H ′ denote the resulting graph, and let
W ′ denote the set of vertices created as a result of splitting all the vertices of W .

The set W ′ replaces W as the set of sinks of the flow ρ′ we need to compute. Note that
U is an apex set in H ′. We then build the flow ρ′ gradually, by computing the following
steps, each using a single invocation of the multiple-source multiple-sink maximum flow
algorithm of Borradaile et al. in O(n log3 n) time. In what follows, when we say that the
flow ρ′ satisfies condition (ii) for a subset U ′ of U we mean that for every u ∈ U ′ and w ∈W ,
either ex(ρ + ρ′, u) = 0 or there is no residual path in Hρ+ρ′ from u to w that is internally
disjoint from V ×.
(1) If s ∈ U , starting with H ′, we split s into deg(s) copies. Each arc e that was incident

to s before the split is now incident to a distinct copy of s, and is embedded so that it
does not cross any other arc in the graph. We also delete all other vertices of U . We
compute in the resulting graph, which is planar, a maximum flow with sources the copies
of s and the sinks W ′. Let ρ′

s be the flow computed. If |ρ′
s| > ex(ρ, s), we decrease |ρ′

s|
by pushing |ρ′

s| − ex(ρ, s) units of flow back from W ′ to the copies of s. This can be
done in O(n) time in reverse topological order w.r.t. ρ′

s (cf. [2, Section 1.4]). We view ρ′
s

as a flow in H, and set ρ′ = ρ′
s. By construction ρ′ satisfies condition (i), and satisfies

condition (ii) for the subset {s}.
(2) If t ∈ U , starting with H ′

ρ′ , we repeat step (1) with t taking the role of s to compute a
flow ρ′

t. Set ρ′ ← ρ′ + ρ′
t By construction of ρ′

t, ρ′ now satisfies satisfies condition (i),
and satisfies condition (ii) for the subset U ∩ {s, t}.

(3) Let U in be the set U ∩ {xin : x ∈ X}. If U in ̸= ∅, starting with H ′
ρ′ , we delete all the

vertices of U that are not in U in. Note that, since the resulting graph does not contain
s, t, s′, t′, nor any xout for any x ∈ X, and since arcs incident to xin only cross those



J. Enoch, K. Fox, D. Mesica, and S. Mozes 72:13

(b)

xin xout

(c)

xin

xout1

xout2

xout3

xout4
Cx

(a)

Figure 2 Illustration of the auxiliary graphs used in the algorithm of Lemma 10. Only a portion
of the graphs around some vertex x ∈ X is shown. (a) the graph G◦. (b) the graph H. Note that
the only crossings are between arcs incident to xin and arcs incident to xout. (c) the graph H ′ in
the case that xout belongs to W . xout is split into multiple copies, eliminating all arc crossings.

incident to xout, the resulting graph is planar. For every xin ∈ U in we add a vertex x′

and an arc (x′, xin) with capacity ex(ρ, xin). The resulting graph is still planar. We
compute a maximum flow ρ′

in with sources {x′ : xin ∈ U in} and sinks W ′. We view ρ′
in

as a flow in H, and set ρ′ ← ρ′ + ρ′
in. By construction of ρ′

in, ρ′ now satisfies condition
(i), and satisfies condition (ii) for the subset U ∩ ({s, t} ∪ U in).

(4) We repeat step (3) with out taking the role of in to compute a flow ρ′
out. By construction

of ρ′
in, ρ′ now satisfies condition (i), and satisfies condition (ii) for U∩({s, t}∪U in∪Uout).

Since s′ and t′ are the source and sink of the flow computed by the Push-Relabel algorithm,
they are never active vertices, so they never belong to U . Hence {s, t} ∪ U in ∪ Uout ⊇ U ,
and conditions (i) and (ii) are fully satisfied by ρ′. ◀

Using Lemma 10 and Lemma 7, we get the following lemma.

▶ Lemma 11. The algorithm described above finds a circulation g× such that
1. f× + g× is feasible in G×.
2. The restriction of f× + g× to G has no violations at vertices of X.
3. The restriction of f× + g× to G has violation at most (k − 2)∆ · vio(f) at any vertex in

V (G) \X.
in O(k2n log3 n) time if such a circulation exists.

Proof. We first analyze the running time. Computing the graph H can be done in O(n)
time. Computing the flow h′ in H using the algorithm of Lemma 7 takes O(k2 · TBP ) time.
By Lemma 10, TBP = O(n log3 n) for the graph H. Transforming h′ to an acyclic flow h

using the algorithm of Sleator and Tarjan [12] takes O(n log n) time. Finally, computing g×

from h takes O(n) time. Hence, the total time to compute g× is O(k2n log3 n).
In order to prove the correctness of the algorithm, we will first prove that there exists a

feasible flow h in H that saturates every arc incident to s′ and t′ if and only if there exists a
circulation g× in G× that satisfies conditions (1) and (2) in the statement of the lemma.

(⇐) Assume the circulation g× exists in G×. Define a flow h in H as follows. For
every arc e ∈ E(H) not of the form (xout, xin) set h(e) = g×(e). For every x ∈ X, set
h(xout, xin) = g×(xout, xin)− vio(f, x), h(s, xin) = vio(f, x) and h(xout, t) = vio(f, x). Since
the restriction of f× +g× to G has no violations on the vertices of x, g×(xout, xin) ≥ vio(f, x),
so h(xout, xin) ≥ 0 and h is a well defined flow. By definition, the flow h saturates every arc
incident to s′ and t′.
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To show that h is feasible in H it is enough to show that h(xout, xin) ≤ c(x) for every
x ∈ X (on all other arcs h is feasible because g× is feasible in G×

f×). Let x ∈ X. Since f× +g×

is feasible in G×, g×(xout, xin) ≤ f×(xin, xout). Since h(xout, xin) = g×(xout, xin)−vio(f, x),
h(xout, xin) ≤ f×(xin, xout)− vio(f, x) = c(x).

(⇒) Assume there exist a feasible flow h in H that saturates every arc incident to s′

and t′, and let g× be the circulation obtained from h as described above. We show that
f× + g× is feasible in G×. On all arcs e not of the form (xout, xin), g×(e) = h(e) and the
capacity of e in G×

f× equals the capacity of e in H. Therefore, since h is a feasible flow in
H, g× is feasible on e in G×

f× , so f× + g× is feasible on e in G×. We now focus on the
arcs (xout, xin) for each x ∈ X. Let e = (xout, xin). Observe that 0 ≤ h(e) ≤ c(x). Since
g×(e) = h(e) + vio(f, x) we have that vio(f, x) ≤ g×(e) ≤ c(x) + vio(f, x) = f×(e). Since
(f× +g×)(xin, xout) = f×(xin, xout)−g×(xout, xin), we have 0 ≤ (f× +g×)(xin, xout) ≤ c(x),
so f× + g× is feasible in G×.

To finish proving the (⇒) direction, we show that the restriction of f× + g× to G has
no violations on the vertices of X. By definition of G× and of residual graph, the only arcs
in G×

f× that can carry flow out of xin are the reverses of the arcs that carry flow into x in
f , and the only arcs that can carry flow into xout are the reverses of the arcs that carry
flow out of x in f . We will show that (f + g)in(x) ≤ c(x) by considering separately the
contribution of the flow on arcs of G that in G× are incident to xout, and arcs of G that in
G× are incident to xin.

The only arc of f× that carries flow into xout is (xin, xout). Thus, there is no arc e of G

such that f×(e) carries flow into xout. Since g× only carries flow into xout along the reverses
of arcs that carry flow out of xout in f× and since for every such arc e′, g×(e′) ≤ f×(rev(e′)),
there is also no arc e of G such that (f× + g×)(e) carries flow into xout.

The total flow that f× carries into xin is c(x) + vio(f, x). Let z denote the total amount
of flow that g× carries into xin. Since the only arc incident to xin that carries flow in g×

and does not belong to G is (xout, xin), the total amount of flow that g× carries into xin on
arcs that belong to G is z − g×(xout, xin). On the other hand, g× carries z units of flow out
of xin, and all of this flow is pushed along the reverses of arcs that carry flow into xin in f×

(and also belong to G). Hence, the total amount of flow that f× + g× carries into xin on
arcs that belong to G is c(x) + vio(f, x) + (z − g×(xout, xin))− z. Therefore,

(f + g)in(x) = c(x) + vio(f, x)− g×(xout, xin))
= c(x) + vio(f, x)− (h(xout, xin) + vio(f, x))
= c(x)− h(xout, xin)
≤ c(x).

We have thus shown that the algorithm computes a flow g× satisfying conditions (1) and
(2) in the statement of the lemma. To see that condition (3) is also satisfied, note that the value
of the flow h is

∑
x∈X vio(f, x) ≤ (k − 2) · vio(f). Since h is acyclic, hin(v) ≤ (k − 2) · vio(f)

for all v ∈ H. Since for all v ∈ V (G) \X, f in(v) ≤ c(v), and hin(v) ≤ ∆(g×)in(v), it follows
that the violation of f× + g× at v is at most (k − 2)∆ · vio(f). ◀

Using the O(k2n log3 n)-time algorithm of Lemma 11 in the improvement phase of Wang’s
algorithm instead of using Wang’s O(k4n log3 n)-time procedure for this phase results in a
running time of O(k3∆n polylog(nC)) for finding a maximum flow in G.
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4.3 The case k = o(log2 n)
We now provide an algorithm that is faster for small k = o(log2 n). Specifically, we describe
an algorithm for computing the circulation g× that runs in O(k3n log n) time instead of
the O(k2n log3 n) time required by the algorithm of Lemma 11.

We use the same auxiliary graph H as defined above and again compute a maximum
flow h′ from s′ to t′ in H. Let V × = {s, t} ∪

⋃
x∈X{xin, xout} ∪ {s′, t′} ∪ S ∪ T be the

set of apices of H along with the original sources S and sinks T of G, and let K× be the
complete graph on V ×. Instead of using the batch-highest-distance Push-Relabel algorithm
as in Lemma 7, we more directly follow the strategy of Borradaile et al. [2] by simulating a
maximum flow computation from s to t in K× using the FIFO Push-Relabel algorithm. We
do not wish to directly use the multiple-source multiple-sink flow algorithm of Borradaile et
al. [2], because then each of the O(k3) Push operations would take O(n log3 n) time.
▶ Lemma 12. Any single (individual arc) Push operation in the graph H defined above can
be implemented in O(n log n) time.
Proof. Consider a single Push(u, v) operation where u, v ∈ V ×. Let ρ denote the preflow
pushed in H by the FIFO Push-Relabel algorithm up to this Push operation. We find a flow ρ′

with source u and sink v in the graph H such that either ex(ρ + ρ′, u) = 0 or ex(ρ + ρ′, u) > 0
and there is no residual path in Hρ+ρ′ from u to v that is internally disjoint from V ×.

Let H ′ be the graph obtained from Hρ by deleting vertices V ×\{u, v}. Instead of invoking
the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm of Borradaile et
al. [2], we will compute ρ′ as follows. As before, we must consider a few different cases.

If u = s or v = s, then v ∈ S or u ∈ S, respectively. We push up to ex(ρ, u) units of flow
directly along the arc (u, v) in constant time, either saturating the arc or reducing the
excess flow in u to 0. We may similarly push directly along the arc (u, v) in constant
time if one of u or v is one of t, s′, or t′ instead.
If u ∈ {xin

1 , xout
1 } and v ∈ {xin

2 , xout
2 } for two distinct vertices x1, x2 ∈ X, then the graph

H ′ is planar. We add a vertex u′ and an arc (u′, u) with capacity ex(ρ, u) and compute the
maximum flow ρ′ with source u′ and sink v using the single-source single-sink maximum
flow algorithm in planar graphs of Borradaile and Klein [1].
If neither of the above cases apply, then u, v ∈ {xin, xout} for some x ∈ X. If arc (u, v)
has positive residual capacity, we push up to ex(ρ, u) units of flow directly along it in
constant time. Similar to Step 1 in the proof of Lemma 10, starting with H ′, we split u

into deg(u) copies so that each arc that was incident to u is now incident to a distinct
copy of u. Similarly, we split v into deg(v) copies so each arc that was incident to v is
now incident to a distinct copy of v. The resulting graph is planar, and all copies of u

and v lie on a common face. As mentioned by Borradaile et al. [2, p. 1280], we can then
plug the linear time shortest paths in planar graphs algorithm of Henzinger et al. [5]
into a divide-and-conquer procedure of Miller and Naor [10] to compute a maximum
flow ρ′

u with sources the copies of u and sinks the copies of v in O(n log n) time. Again,
if the value of this flow is greater than the excess of u, we push the appropriate amount
of flow back to the copies of u in O(n) time. Finally, we view ρ′

u as a flow in H to set
ρ′ = ρ′

u. ◀

We immediately get a variation of Lemma 11 with a running time of O(k3n log n). By
using the better of the two procedures for computing g×, we get our main theorem.
▶ Theorem 13. A maximum flow in an n-vertex planar flow network G

with integer arc and vertex capacities bounded by C can be computed in
O(k3∆n log n min(k, log2 n) log(kC) log(nC)) time.
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