Inverse Suffix Array Queries for 2-Dimensional
Pattern Matching in Near-Compact Space
Dhrumil Patel &

Division of Computer Science, Louisiana State University, Baton Rouge, LA, USA

Rahul Shah &

Division of Computer Science, Louisiana State University, Baton Rouge, LA, USA

—— Abstract

In a 2-dimensional (2D) pattern matching problem, the text is arranged as a matrix M[1..n, 1..n]
and consists of N = n X n symbols drawn from alphabet set ¥ of size 0. The query consists of a
m X m square matrix P[1..m, 1..m] drawn from the same alphabet set ¥ and the task is to find all
the locations in M where P appears as a (contiguous) submatrix. The patterns can be of any size,
but as long as they are square in shape data structures like suffix trees and suffix array exist [5, 8]
for the task of efficient pattern matching. These are essentially 2D counterparts of classic suffix
trees and arrays known for traditional 1-dimensional (1D) pattern matching. They work based
on linearization of 2D suffixes which would preserve the prefix match property (i.e., every pattern
match is a prefix of some suffix).

The main limitation of the suffix trees and the suffix arrays (in 1D) was their space utilization
of O(Nlog N) bits, where N is the size of the text. This was suboptimal compared to N logo
bits of space, which is information theoretic optimal for the text. With the advent of the field of
succinet /compressed data structures, it was possible to develop compressed variants of suffix trees
and array based on Burrows-Wheeler Tansform and LF-mapping (or ® function) [7, 4, 15]. These
data structures indeed achieve O(N log o) bits of space or better. This gives rise to the question:
analogous to 1D case, can we design a succinct or compressed index for 2D pattern matching?
Can there be a 2D compressed suffix tree? Are there analogues of Burrows—Wheeler Transform or
LF-mapping? The problem has been acknowledged for over a decade now and there have been a
few attempts at applying ® function [1] and achieving entropy based compression [10]. However,
achieving the complexity breakthrough akin to 1D case has yet to be found.

In this paper, we still do not know how to answer suffix array queries in O(N logo) bits of
space - which would have led to efficient pattern matching. However, for the first time, we show
an interesting result that it is indeed possible to compute inverse suffix array (ISA) queries in
near compact space in O(polylogn) time. Our 2D succinct text index design is based on two 1D
compressed suffix trees and it takes O(N loglog N + N log o) bits of space which is much smaller
than its naive design that takes O(N log N) bits.

Although the main problem is still evasive, this index gives a hope on the existence of a full 2D
succinct index with all functionalities similar to that of 1D case.

2012 ACM Subject Classification Theory of computation — Pattern matching
Keywords and phrases Pattern Matching, Succinct Data Structures

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.60

1 Introduction

In the classical pattern matching problem we are given a text T[l..n] over an alphabet 3,
which is a finite totally ordered set of size o and a pattern P[1..m] drawn from the same
alphabet set. The task is to find locations of all occurrences of pattern P in T. This has been
a classic field of research since last 50 years and many algorithms were developed to achieve
this task in optimal time complexity of O(n + m) [9]. In data structural sense, the problem
becomes to index the text so that patterns can be taken as queries. Data structures like suffix
trees were proposed for this task which took optimal O(n) (words of) space and optimal
© Dhrumil Patel and Rahul Shah;

37 licensed under Creative Commons License CC-BY 4.0
32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 60; pp. 60:1-60:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dpate42@lsu.edu
mailto:rahul@csc.lsu.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2021.60
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2

Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

O(m) time for the query. It was seen that even though taking theoretically optimal space,
the space utilization of suffix trees often times could be 50 times the size of original text
data. Space saving structures like suffix arrays were introduced which showed substantial
space savings at the cost of slightly worse query times. However, when measured in bits,
these still take O(nlogn) bits as against the information theoretic optimal of O(nlog o)
bits. FM-Index [4] and compressed suffix array (CSA) [7] were the first to achieve this
goal. Introduction of the compressed suffix tree (CST) ensured full-functionalities of suffix
trees simulated in compressed space of O(nlogo) bits (or even lower in entropy compressed
sense) [15]. This led to the field of compressed text indexing which has seen a myriad of
results in last two decades with many positive developments [13].

There are other variants of text-indexing problems where suffix trees and suffix arrays
exist but their compressed counterparts have yet to be found. One of the problems which
has proven to be hard in this context is the problem of 2D pattern matching.

In the 2D pattern matching problem, the text is arranged as a matrix M[1..n,1..n] and
consists of N = n x n symbols drawn from the alphabet ¥ of size 0. The query consists of
m x m square matrix P[1..m, 1..m] drawn from the same alphabet set ¥ and the task is to find
all the locations in M where P appears as a (contiguous) submatrix. The patterns can be of
any size, but as long as they are square in shape the data structures like suffix trees and suffix
array exist [5, 8]. The suffix starting from any location M[i, j] is the largest square matrix
which fits within M and whose top-left corner is M[i, j]. The suffixes can be linearized [5]
and indexed using a trie akin to the 1D suffix tree. The problem of designing an index for
2D pattern matching in compact O(N log o) space (based on suffix trees/arrays BWT or
otherwise) has been long open. There were some attempts and partial results [1, 10] but
they mainly focused on entropy compression, without first addressing the more fundamental
problem of achieving the optimal space complexity (compact space). This gives rise to some
fundamental questions: analogous to 1D case, can we design a succinct or compressed index
for 2D pattern matching? Can there be a compressed suffix tree?

However, achieving the complexity breakthrough similar to 1D case has yet to be found,
in this paper, we present a text index that can answer inverse suffix array (ISA) queries in
near compact space in O(polylog(n)) time. We show this by introducing a novel technique
named LFISA-mapping that is an analogue of LF-mapping operation typically associated
with Burrows—Wheeler Transform. This technique works with linearization scheme of
Reference [5]. Our 2D succinct text index design is based on two 1D compressed suffix trees,
and it takes O(N loglog N 4+ N log o) bits of space as compared to previous non-compact
space of O(N log N) bits.

2 Preliminaries

First, we show an overview of the classical pattern matching problem and its associated
terminology. Next, we extend the same for the 2D pattern matching problem, where we
provide additional definitions associated with the problem.

2.1 Classical Pattern Matching Problem

Let S = {T[i..n]|1 <i < n} be the set of all the suffixes of T. The suffiz tree (denoted by ST)
of T is an edge-labeled compact trie constructed from all the suffixes in S [12, 16, 3, 17]. In
the suffix tree, concatenating all the edge labels on a particular root-to-leaf path, we get one
of the suffixes in S. In other words, each leaf of ST corresponds to a suffix of T. Additionally,
as each suffix T[i..n] in S is uniquely identified with its starting position ¢ in T, we can map

D. Patel and R. Shah

text positions to leaves of ST. Upon traversal of the leaves from left-to-right, we get suffixes
sorted lexicographically, and storing the corresponding text positions in an array gives an
indexing data structure called suffiz array (SA) [11]. Here by ¢ = SA[r], we mean that the
leaf with its corresponding text position 4 is the 7 leftmost leaf (¢,) in ST. In other words,
r is the lexicographical order or rank of the suffix T[i..n]. Similarly, the inverse suffix array
(ISA) is defined as ISA[i] = SA™'[i] = r. In other words, the inverse suffix array maps each
text position i to the leaf position r in ST.

The LF-mapping is the relation between the leaves £, and £, (LF(r) = r') such that their
corresponding text positions are ¢ and 7 — 1 respectively. Formally, LF-mapping is defined in
terms of the suffix array as LF(r) = SA™![SA[r] — 1]. But the index such as the FM-index
efficiently computes the LF-mapping using the Burrows Wheeler Transform (BWT) [2] of the
original text along with some auxiliary counting data structures. This computation lies at
the heart of BWT based text indexes that enables them to answer pattern matching queries
without actually storing the costly suffix array and instead replacing it with a sampled suffiz
array.

On the contrary, just storing a CSA in itself does not provide all the required functionalities
that a full CST provide. Therefore, a CST with full functionalities is needed and is realised
using three components: 1) its underlying CSA 2) the compressed tree topology that provides
navigational operations where each operation takes O(1) time and 3) some auxiliary data
structures providing the longest common prefiz (LCP) information. Moreover, the full list
of operations supported by CST is given in the Appendix. Out of which one of the most
important operations is to answer inverse suffix array queries i.e. given CSA, an ISA entry
can be decoded in O(log® N) time for some constant € > 0. Now in the ensuing subsection,
we formally go over the 2D pattern matching problem and associated terminology.

2.2 2D Pattern Matching Problem

Let M be a square matrix of dimension N = n x n where every element M[i, j] is taken from
an alphabet 3 which is a finite totally ordered set of size 0. The query consists of a square

pattern P[1..m, 1..m] also drawn from ¥ and the goal is to find all the occurrences of P in M.

In a 1D text, an ¢** suffix is the largest substring of the text starting from the i** position

i.e. T[i..n]. Similarly, this way of defining a suffiz can be extended to 2D suffixes of a matrix.

A 2D suffix SZ%'JD» defined for a position (z,j) is the largest square submatrix of M starting
at (i,7) position i.e. M[i..i +1,j..7 + 1], where | = n—max(,7). Giancarlo [6] proposed a
way of linearization of 2D suffixes such that they follow the constraints of completeness and
common prefix property similar to 1D suffixes. The completeness constraint is that every
square submatrix of M in the linear form must correspond to some prefiz (whatever the
definition of prefiz is) of some suffix of M each represented linearly. The common prefix

constraint is that a square submatrix of M should be a prefiz of some suffixes of M after

linearizing them. Giancarlo proposed Lsuffiz which is a linear representation of a 2D suffix.

Here L stands for linear. An Lsuffix Si", ; of a 2D suffix S?'JD is the concatenation of strings
ag, ai, ag, ...,a; where ag = M[i, j] and ap, = M[i + k,j..j + k — 1] - M[i..i + k, j 4+ k] which is
of length 2k + 1 and | = n—max(i, j) for k # 0 (see Figure 1 for example). Here « - 3 refers
to the concatenation of the strings a and S.

Let St be the set of all such Lsuffixes of M. Here |St| = NV as there are total N suffixes.

Let ST* be the compact trie (suffix tree) constructed from Lsuffixes in St (also known as
Lsuffix tree). The uncompressed version of ST" [5] takes ©(N log N) bits of space which

is very large compared to the optimal space required to store the original matrix M i.e.

NTlogo]. Similarly, the uncompressed version of suffix array (SA") [8] for such suffixes also

60:3

ISAAC 2021

60:4 Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

M(i-1,j-1) ///7?\%\\\ 7?{? \\
T@® E 0 ® N @\
M(ij) _ / Lé \ 7 7\ \
| J Seffocrree /// Horizontal
|I| m! | n Suffix Tree " Suffix Tree

o)

.

w
< ~+ O

<
3
x

SRR

2 Mapping

(a) Splitting of an Lsuffix. 5
il (-1i-1)

(b) LF-mapping.

Figure 1 Lsuffixes and LF-mapping. a) Splitting of an Lsuffiz: The characters inside the circle
are a part of the horizontal suffix SZH,Lj,l = abcde... and it resides on the horizontal suffix tree.
Similarly, The characters inside the triangle are a part of the vertical suffix SY j—1 = fkpu... and this
suffix resides on the vertical suffix tree. Additionally, the linear form of the 2D suffix starting from
the position (i,j) is formed by the characters inside the rectangle i.e. Sl:j =g-l-hm-qr-ins-vwx- joty
and it resides on the Lsuffix tree (the biggest tree on the right). Here o - 8 denotes concatenation of
strings @ and 8. Now the Lsuffix starting at the position (i —1,j — 1) is formed by characters of these
three sequences i.e. S:-‘_l’j_Q =a-f-bg-kl-chm-pgr-dins-uvwz - ejoty b) LF-mapping: LF-mapping
takes from the leaf corresponding to the Lsuffix starting at position (3, j) to that of Lsuffix starting at
position (i — 1,7 —1). A lot of new characters are introduced in doing so. Therefore, the LF-mapping
operation in case of 2D pattern matching problem is not trivial to evaluate.

requires ©(N log N) bits of space. The suffix array and inverse suffix array is defined in a
similar fashion as defined in the linear case. For suffix array, given the rank r, it outputs
the position in the matrix of the corresponding Lsuffix SiL,j i.e. SAY[r] = (i, 7). Furthermore,
inverse suffix array is defined as ISA"[i7 j] = r. Additionally, we introduce the LF-mapping
with respect to the 2D case (LFL—mapping) and we define it as follows,

LF(r) = ISA[i = 1,j — 1], where SA"[r] = (i,)

Here, ISA%[0, 5] = ISA[i/,0] = @. In other words, LF--mapping operation outputs the
rank of the Lsuffix Sl;l,jfl given the rank of Lsuffix Sz!-,j (i.e. it goes diagonally above).
Figure 1 shows an example of a particular LF-mapping operation and how new characters
get introduced when going from Lsuffix Si': ; to S;;l)jfl in contrast to the addition of only
one character (in front) in the case of 1D suffixes i.e. going from T[i..n] to T[i — 1..n]. This
is the reason why it is not trivial to evaluate LF-mapping for the 2D case.

As the LF -mapping is related to the SA", we introduce a similar mapping for ISA which
we call LF-mapping for ISA (LFIS/—\L). We define it as,

LFISAL (i, j) = ISAY[i — 1,5 — 1]

Here, for computational purposes, we provide ISAL[i, j] as an additional parameter. The
psuedocode for computing LFISAL(i,j, ISAL[i,j}) is given in Section 7. In other words, given
the position and the rank of the Lsuffix Sz‘L, s LFISAL—mapping outputs the rank of the Lsuffix
Sl—‘_L -1 (diagonally above). Now, in order to compute the value of any ISAL entry, as storing

the entire ISA" takes much space, we sample it and store only those ISAL[i7 j] values such
that ¢ = 1+ (k — 1)A where k = {1,2, ..., (@]} This reduces the problem of computing an
ISAL value to computing at most A LFISAL—mapping operations. Now, in the latter sections,

D. Patel and R. Shah

we show how to compute LFISA'-mapping in ¢ pisa = O((log N/ loglog N)3) time using our
O(Nlogo + N loglog N)-bit index. Therefore, ISAL value for any position in the matrix can
be calculated in tisn = A -t psa = O(log N -t pisa) time as we take A = O(log N) for our
case.

Till now, succinct versions of 2D text indexes have been evasive because the intuition
behind the pattern matching in 1D case does not extend directly to the 2D case due to
the non trivial nature of 2D LF-mapping. However, this does not restrict us from asking
the fundamental question as to whether it is possible to design a compact text index for
matrices. In this paper, we propose the design of a text index that can atleast answer inverse
suffix array queries in near compact space using LFISAL—mapping. Although, a solution to
the main question evades us, this is a ray of hope. Now, the following theorem states the
objective of the paper more formally as,

» Theorem 1. The text index for matriz M of size N = n x n can be encoded in O(N logo +
Nloglog N)-bit space and any entry in the inverse suffix array ISA can be decoded in time
O(log N - tLrisa) where tipisa = O((log N/loglog N)?)

Proof. See Sections 8.1 and 8.2 for the proof. <

Our approach. The intuition here is that we split the Lsuffix for which we need the ISA value
into three subsequences, and thereby solve the problem for each subsequence to eventually
solve for the main Lsuffix. We discuss this splitting in detail in the later section. But in
order to understand this dividing strategy, first we define what we call horizontal and vertical
suffizes (or in short Hsuffix and Vsuffix respectively) and also how they relate to Lsuffixes.

3 Horizontal and Vertical Suffixes

Firstly, given a matrix M, we linearize it horizontally by concatenating all the rows of M
one after another to get a single 1D text TH of length N. The set of all the suffixes of TH is
defined as SH = {TH[i..N]|1 <i < N}. We denote such suffixes as horizontal or Hsuffixes.
Let ST be the compressed suffix tree obtained from all the Hsuffixes of text TH. Secondly, by
concatenating all the columns into a single text TV we linearize M vertically. The set of all the
suffixes of TV is defined as SY = {TV[i..N]|1 < i < N}. Such suffixes are denoted as vertical
or Vsuffixes. Here, let ST be the compressed suffix tree constructed from such Vsuffixes of
TV. From the context of M, Hsuffix and Vsuffix starting from M[i, j] are written as

H
S =M[i,j.n]-M[i +1,1.n] - M[i + 2, 1..n] - ... - M[n, 1..n]
ij = M[i.n,j] - M[l.n,j + 1] - M[1.n,j + 2] - ... - M[1..n, n]

Finally, as ST™ and STV are the compact versions of the original suffix trees, they only
occupy O(N log o) bits of space which is very close to the space required by the original
matrix [15]. Their full functionalities are provided in the Appendix. Next, we relate all these
defined suffixes.

4 Splitting of an Lsuffix

In this section, we show how to split an Lsuffix into three different subsequences. Given
an Lsuffix SZ-L’ ; in the 2D form, we can split it into three subsequences: 1) The horizontal
subsequence (i.e. the first row M[i, j..n]), 2) The vertical subsequence (i.e. the first column
M[i + 1..n,7]) and 3) The subsequence (linear form) of the remaining square submatrix

60:5

ISAAC 2021

60:6

Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

ie. S}H,j—&-l' An example of such a splitting is provided in Figure 1. Here, M[i, j..n] and
M[i + 1..n, j] subsequences come from the Hsuffix S;'j and Vsuffix S t1,; respectively. Let us
denote hy, and vy, as the (k + 1)** characters of M[i, j..n] and M[i + 1..n, j] respectively. Now,
as mentioned before an Lsuffix SZ':j is the concatenation of strings ag, a1, as, ..., a; where ag =
M[é, j] and a, = M[i+k, j..j+k—1]-M[i..i+k, j+k] which is of length 2k+1 and I = n—max(i, j)
for k # 0. Similarly, let S;_+1,j+1 be the concatenation of strings by, b1, bs, ...,b;_1 where
bo = M[i+1,j+1] and by, = M[(i+1)+k, (G+1)..(G+1)+k—1M[(G+1)..(i+1)+k, (j+1)+k]
when k # 0. For simplicity we break each aj and by into two parts as follows,

ay =Mli+k,j.j+k—1]

ap =Mli.i+k,j+ k|

by =M[(i+1)+k G+1).G+1)+k—1]
by =M[(i+1)..(i + 1)+ k, (j + 1) + K]

We can write a; in terms of hy and vy by as follows,

ay =Mli+k,j.j+k—1] = vi_1b,_,
ap = M[i.i+k,j+ k] = hyb,,_,

Therefore, we can say that aj is the concatenation of strings vk,l,b;_l,hk,b;_l where
by = @ and by = by and ag = hg as ho = M[i, j]. We want to redirect the reader’s attention
to Figure 1 where we showcase an example that helps in better understanding of the above
concept.

Now, given aj, we can get vg_1,by,_,, hi, b, as vx_1 and hy are characters and b, | and
b;_l are the strings of length k — 2 and k — 1 respectively. Here vi_1 and hj can be thought
of as delimiters of the string a; and these two uniquely breaks down a into its constituents.
Now since we know that given aj we can get vi_1, b;_l, hi, b;;_l and vice versa, we denote
the horizontal component of the entire Lsuffix Si"’j by hc(Si':j) = hohihs...h;. Similarly, we
denote the vertical component by vc(Skj) = vov1v2...v;—1 and the square component by
sc(Si'jj) = bgb1bs...bj_1. Likewise, we can define the same for any prefix pf of the Lsuffix
Sl", ;- We can state the following fact about the relation between the length of the three
components of the prefix pf of Sl':j and its length. Here, by length, we mean the length of
the string.

» Fact 2. length(pf) = length(hc(pf)) + length(ve(pf)) + length(sc(pf))

Now, intuitively we use such a splitting to evaluate a single LFISA-mapping operation.
Next, we go over some of the basic terminologies of a suffix tree that will be needed in
understanding the construction stage of our text index.

5 Terminology of a Suffix Tree (ST)

A suffix tree is an edge-labelled compact trie. We call any character on the edge of the
suffix tree be represented as a point. Given any point ¢ on the ST, string(c) represents the
concatenation of all the characters from root to that point (including ¢) along the root to ¢
path of ST. The string depth of a point ¢ on a path of ST is given by the length of string(c)
i.e. depth(c) = length(string(c)). A node of the ST is also a point as that node is represented
by the character just above it. The locus u of a point ¢ is the highest node of ST such that
string(c) is the prefix of string(u) (lets denote it as u = locus(c)). Now, we define whether

D. Patel and R. Shah

a point ¢ is marked or not as marked(c) = 1 or 0 respectively. The leftmost and rightmost

leaves in the subtree of a particular point ¢ are given as lleaf(c) and rleaf(c) respectively.

Here lleaf(c) and rleaf(c) give the leaf rank from left in ST. In general, we denote r** leftmost
leaf of ST as £,.. Let Ica(cy,ca) be the lowest common ancestor of points ¢; and cy. The
lowest common ancestor as the name suggests is the common ancestor node of two points
and is the farthest from the root.

6 Computing LFISA-mapping in time O((log N/ loglog N)3) using
Compact Space

Just to recall, we have three suffix trees based on three different types of suffix definitions
as shown before, i.e. ST, STH and STV. Here, we store ST and STV as compressed suffix
trees (CST) [15] with full functionalities (See Theorem 10 and 11 in Appendix) and they
together occupy only O(N logo) + O(Nlogo) = O(N log o) bits of space. On the contrary,
we won’t be storing the entire ST but only the compressed topology of the tree that has
navigational functionalities each supported in constant time and occupies 4N + o(N) bits of
space (See Theorem 10 in Appendix). In the ensuing subsection, firstly we show a scheme of
marking some relevant points on these trees (construction stage) and then explain how this
will help in computing LFISA-mapping.

6.1 Marking Scheme and Mapping

Firstly, we mark some nodes on Lsuffix tree ST". We mark a node v+ of ST- such that
vh = lca(€(i—1)g+1,lig), where i = {1,2, ..., (%1} and g is the grouping factor. Furthermore,
we define G; = [(i—1)g+1,14g] as the grouping interval. For our case, we shall use g = [log® N|.

Hence, the total number of marked nodes on ST* is bounded by O(. Now, we define

N
log3 N)
marked ancestor, lowest marked ancestor, cover of a leaf and coveredby(v') set of a marked

node as follows:

» Definition 3 (Marked Ancestor). A marked node v" is the marked ancestor of a leaf £ if v*
lies on the path from root to leaf £ in the suffix tree.

» Definition 4 (Lowest Marked Ancestor). A node v" is the lowest marked ancestor of the
leaf ¢ if it is the lowest (one with the mazimum string depth) among all the marked ancestors

of L.

» Definition 5 (Cover). A node v* is the cover of the leaf £ if it is the lowest marked ancestor
of £.

» Definition 6 (coveredby(vl) set). A coveredby(vl) set is the set of the leaves for which v*
is the cover.

As mentioned before in Section 4 showcasing the splitting of an Lsuffix, given a marked
node v\, its associated string i.e. string(v') can be split into its horizontal, vertical and square
components i.e. hc(string(vl)) ; ve(string(vh)) and sc(string(vl)) respectively. For a marked
node v* in STL, we mark a point pH in ST corresponding to its horizontal component such
that string(pH) = hc(string(v")). Similarly, we mark points p¥ and p' corresponding to its
vertical and square components in STV and ST* respectively. We call them the shadow
points. Just to recall, a point is any character on the edge of the suffix tree. Note that v* is
not the same marked node as p‘ even though they are marked on the same tree (see Figure
2). We repeat the above process for every marked node on v“ in ST

60:7

ISAAC 2021

60:8

Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

At the end of the marking process, let MPH, MPY and MP" be the sets of all the shadow
points on STH, STV and ST" respectively. Hence, a marked node v“ in ST" can be viewed
as a unique triplet of shadow points in STH, STV and ST' i.e. ot = (pH,pY,pb). Therefore,
the total number of shadow points in each tree is bounded. Formally, we have [MP"|, [MPV|
and |MP"| as bounded by O(@Nw), where |X| is the cardinality of the set X. Due to this
one-to-one correspondence between a marked node and the triplet of shadow points, we
define a set U C MP" x MPY x MP" which consists of only those triplets of shadow points
which come from the marked nodes.

Now, we state our central task as follows,

Given ISAL[i,j], compute ISAL[i —-1,57-1].

We shall preprocess the text and contruct data structures that will take near compact
space and achieve this task in O(polylogN) time. The main step in this is computing
LFISA"(i, j,1ISA"[i, j]). In the following subsection, we show the details on how to achieve
this, and thereafter we outline the pseudocode for the same as LFISA™(1, j, ISA"(1, j)) in the
subsection 6.2.3.

6.2 Computing LFISA'(.)

In the section, we show the details for the evaluation of LFISA-(i, 7, ISA[i,]) given the
matrix position (i,7) and ISA[4, j]. Firstly, using the inverse(-) function of ST" and STV (See
Theorem 10 in Appendix), we evaluate the inverse suffix array values ISAH [i—1,7—1] and
ISAY[4, j—1] respectively. For simplicity, let ISA"[i, j] = 7, ISAH[i—1,j—1] = h,ISAV[i, j—1] =
v, ISA i — 1,5 — 1] = LFISA"(i, 5, 1SA"[i, §]) = s.

As inverse suffix array values are related to the leaves of the suffix tree, let £, ¢, and ¢,
be A", vt and r** leftmost leaves in their respective suffix trees. The aim here is to find the
leaf ¢, in ST: using the information provided by the shadow points of our index along the
root-to-leaf paths of ¢, £, and ¢, in t fisa time. We shall use some auxiliary data structures
that we introduce in the latter subsections.

Given (h, v,), we define a set as A = {(p™, pV,p*) € U| £y, £, and ¢, lie in the respective
subtrees of pH, p¥ and p'}. To put it another way, A is a set of valid triplets of shadow points
that lie on the root-to-leaf paths of ¢, £, and £, in their respective trees. Out of all the
valid triplets that are in A, let a specific triplet or its corresponding marked node vt be

defined as follows,

vb = argmax (depth(string(v"))).
vt=(p",p¥,pt)€A

Recall that there is a one-to-one correspondence between the marked nodes in ST: and
triplets in U.

Lemma 7 proves that the marked node vk, is the lowest marked ancestor (or cover)
of the leaf ¢,. Therefore, the marked node vk . along with some augmenting information

shown in later subsection, will lead us to the leaf ¢, which is what we are interested in as.
Hence, we call the above query as lowest marked ancestor query.

» Lemma 7. The marked node vt in ST" is the lowest marked ancestor (or cover) of the

leaf 4.

D. Patel and R. Shah

Proof. Firstly, we prove that any valid triplet v~ = (pH,p¥,p') € A is the marked ancestor
of the leaf £,. As p" is the shadow point on the root-to-leaf path of ¢, string(p") is the
prefix of the horizontal suffix Sj', ;| as we have ISAH[i —1,j — 1] = h. Similarly, string(p¥)
and string(pt) are the prefixes of the vertical suffix Sij—l and Lsuffix SiL, ; respectively.
Furthermore, as the string(p"), string(p¥) and string(p') are the horizontal, vertical and
square components of the string(v') respectively (as per the marking scheme), one of the
occurrences of string(v') in its 2D form is at matrix position (i — 1,7 — 1). Therefore, it
is a prefix of the suffix starting at the position (i — 1,5 — 1) which in its linear form is
represented as SZ!‘_L j—1- Therefore, the triplet node vt lies on the root-to-leaf path of the
leaf representing the Lsuffix S:»‘_l, j—1 and that leaf is £;. Hence, vt is a marked ancestor of

¢,. The same is true for Vol € A.
L

max

€ A and is the output of the lowest marked ancestor query that
maximizes over string depth over all triplets v- € A, it is the lowest marked ancestor or cover
of ;. <

Moreover, as v

we reduce the above lowest marked
ancestor query to a stabbing-max query. This reduction is interesting and useful in our

Now as we are interested in obtaining cover vt .,
context due to the result mentioned in Theorem 8. The details concerning this reduction

is discussed in the next subsection. Furthermore, after finding the cover vk ., in order to

max?
uniquely go to the correct leaf {5 we store additional augmenting information [discussed in
latter subsection]. This shows the computation of an LFISAL operation. The time or query

complexity of such an operation is discussed in the Section 7.

6.2.1 Reduction to 3-dimensional (3D) Stabbing-Max Query

In this section, we show how to reduce that the aforementioned lowest marked ancestor query
to a 3D stabbing-maz query. In [14], the authors proves the following theorem,

» Theorem 8 ([14]). Given a set I of n 3D rectangles in R3, where each rectangle rec has
a weight w(rec) associated to it, finding a rectangle with mazximum weight containing (or

stabbed by) the 3D query point q can be done in O((log’ign)3) time using a data structure
. 1
occupying O(n(logoign)2) space.

We define the sides of the 3D rectangle rec for each marked node v = (pM, pV, pt) in U
as follows:

(Tieft, Tright) = (Ileaf(p"')7 rIeaf(pH))
(Yups Yaown) = (lleaf(p"), rleaf (p"))
(Zfronts Zback) = (IIeaf(pL), rIeaf(pL))
w(rec) = depth(string(v"))

This shows that each triplet in U or its corresponding marked node v* in ST is uniquely
represented as a weighted rectangle.

Next, we define the 3D query point as ¢ = (h,v,r). Therefore, the output of this 3D
stabbing-max query is the rectangle with maximum weight i.e. the rectangle corresponding
to the cover of the leaf £, (vt ,.). Furthermore, after obtaining the cover of the leaf, we
shall provide details on what augmenting information to store in order to get the desired leaf
uniquely, i.e. £s in the next subsection.

60:9

ISAAC 2021

60:10

Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

() shadow Points
X Marked Node

Associated Arrays
VLINLEFT = 1, 12,24
VLINLEN = 6,4, 3

VL.PSLEN = 6, 10, 13

No of leaves in
each section

Three intervals forming 3D rectangle

Intervals of v*

Figure 2 For a particular marked node v* in ST' (shown in red color), the array INLEFT
corresponding to v- stores the start of its associated intervals. Likewise, the array INLEN stores
the length of such intervals and the array PSLEN is the prefix-sum array of INLEN. The points
(p*, p™,pY) are the shadow points of v" (shown as X in the figure shown on the right side).

6.2.2 Augmenting Information for getting £, from its Cover

In this section, we explain the procedure of obtaining the correct leaf £, from its cover v- by
storing the leaf’s rank ¢ (say). Here, we define the task for this section as: Given ¢ and v*,
find the ¢*" leftmost leaf in coveredby(v') (See Definition 6 of coveredby(vb)).

Now the challenge lies due to the fact that v* may have multiple marked nodes in its
subtree and due to that there may be leaves in its subtree whose lowest marked ancestor
or cover is not v-. Therefore, the set of leaves for which v' is the cover i.e. coveredby(v')
can be represented as a set of contiguous intervals. Let us denote it as CI = {I, I, ..., I} }.
Here, I; = [a;,b;] where ¢ € {1,2,...,k} and all the leaves between ¢,, and ¢}, belongs to
coveredby(vt). Here C'I denotes covered intervals.

Lemma 9 proves that the total number of such intervals is bounded by O(0), i.e. k = O(0).
Additionally, it establishes that the total number of leaves for which v is the cover is
bounded by Zzzl |I,| = O(klog® N) = O(clog® N) where |I| is the length of the interval
I. Furthermore, as there is a one-to-one correspondence between each marked node and a
rectangle as shown before, we store the augmenting information for each rectangle rather
than storing it explicitly for the marked node. Let the rectangle associated with vt be
denoted as rec. Therefore, let Cl,.. = CI.

» Lemma 9. The total number of intervals in Cl,ec is bounded by O(c) and the total number
of leaves for which any marked node (here v\) is the cover is bounded by O(c log® N).

Proof. Let ¢t be one of the child nodes of v-. Assume that lleaf(ct) and rleaf(c) lie inside
the intervals I; and I; respectively. First, we prove that I; and I; are consecutive intervals.

Suppose there is an interval I, between I; and I;. This means that I}, is entirely contained
inside the subtree of c. In other words, there is an interval of leaves Ij, completely inside the
subtree of c* for which v* is the cover. This implies that there is at least one grouping interval
of leaves completely contained inside the subtree of ¢~ for which v' is the lowest common
ancestor (Ica) of its leftmost and rightmost leaves (See marking scheme for details). But this
is not possible as for v- to be the lca, the leftmost and rightmost leaves of that grouping
interval should exist on two separate downward branches of v*. This is the contradiction.
Therefore, this means that there is no grouping interval completely contained inside the
subtree of the child node c. Hence, there is no I}, that is entirely contained inside the subtree
of ct.

D. Patel and R. Shah

This means I; and I; are consecutive intervals. Therefore, the subtree of a child node of
ot overlaps with at most 2 consecutive intervals in Cl,... Furthermore, there are at most o
child nodes of v‘. Hence, the total number of intervals in CI,.. is bounded by O(o).

Secondly, there are at most O(c) grouping intervals under the subtree of v* for which v*
is the lca of its leftmost and rightmost leaves, as each grouping interval need to span over two
separate downward branches of v- for v- to be that lca. Additionally, the total number of
leaves in all such grouping intervals combined is bounded by O(o - g) = O(o - log® N) where
g is the grouping factor. This implies that the total number of leaves for which o' is the

lowest marked ancestor or the cover is bounded by the same factor i.e. O(colog® N). <

As the set of leaves for which v' is the cover, is divided into contiguous intervals of

leaves (as shown above), to go from the cover v! to the output leaf £, first we store some
information to retrieve which interval that leaf belongs to and then where exactly that leaf is
inside that interval.
For each marked node (here v or its associated rec) firstly we store the start of each
interval in an array INLEFT[]. Additionally, we store the size of such intervals in an-
other array INLEN,.[-]. Moreover, we store the prefix-sum array of INLEN e[| in an array
PSLEN,ec[-] (See Figure 2 for example). Now as we are not storing the entire ISA[-, -] because
it requires O(log N) bits for each leaf instead we store what we call a minilSA"[-, -], where
we store just a O(logo + loglog® N)-bit number for each matrix position (i, 7). This is
because each entry in the miniISA"[i7 j] is the lexicographical rank of the leaf associated
with ISAL[Z', j] under its lowest marked ancestor and the total number of leaves for which a
marked node is the lowest marked ancestor is bounded by O(o log® N) (Lemma 9). Now let
minilSA"[4, j] = ¢. First we do binary search of ¢ in PSLENec[-] and get the index e such that
the value of PSLEN [e] is the largest number smaller than q. Now return the final output
s = INLEFT,¢.[e] + (¢ — PSLEN,...[e]).

6.2.3 Pseudocode of LFISA'-mapping Operation

Now, we outline the pseudocode for LFISAL—mapping operation.

Algorithm 1 LFISA" (3, 5, ISA"(i, j)).

1: h = ST inverse(i, §)

2: v = ST".inverse(i, j)

3: s = ISA[4,]

4: rec = 3d__stabbing__max(h, v, s)

5: ¢ = minilSA"[i,]

6: e = binary__search(PSLEN, ., q)

7: 5 = INLEFT ecle] + (g — PSLEN . [e])
8: return s

7 Space and Time Complexity Analysis

7.1 Space Complexity

After the end of the construction phase, we have three suffix trees in our index based
on three different types of suffix definitions, along with some auxiliary structures that
are actually stored. The horizontal and vertical suffix trees i.e. ST and STV are stored
as compact suffix trees (See Theorem 10 and 11 in Appendix) which together occupy

60:11

ISAAC 2021

60:12

Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

O(Nlogo) + O(Nlogo) = O(Nlogo) bits of space. On the contrary, we only store the
compressed topology for the Lsuffix tree ST" rather than storing the entire suffix tree (See
Theorem 10 in Appendix). This compressed topology provides navigational functionalities,
and overall it occupies 4N + o(NN) bits of space.

As previously mentioned in the marking scheme section, the number of marked nodes on
ST" is bounded by O(N/log® N). Thus, the number of their corresponding shadow points
on ST, ST™ and STV are also bounded by O(N/log® N). Additionally, due to one-to-one
correspondence between marked nodes and 3D rectangles, the number of such rectangles is
also bounded by the same factor.

Each rectangle has a set of arrays associated with it. The length of each of these arrays
(INLEF T ec[], INLENec[-],PSLENec[-]) is the number of intervals under the marked node of
that rectangle. As per the marking scheme, the number of grouping intervals is bounded
by O(N/log® N). Therefore, the total number of intervals across all the rectangles is also
bounded by O(N/log® N) [Implication from Lemma 9]. Each number in these auxiliary data
structures take O(log N) bits to store. Identifiers for each marked node or shadow points
also take at most O(log N) bits. Thus, the storage space for all the auxiliary structures is
bounded by O(N/log? N) = o(N) bits.

If there are t rectangles, the data structure for stabbing-max query takes
O(t(logt/loglogt)?) [14] which is O(tlog® t) space. By taking t = O(N/log® N), we get that
stabbing-max data structure takes O(N/log N') words of space which is bounded by O(N)
bits of space.

Finally, for our minilSA" structure, we simply store a matrix of dimensions n x n, with each
entry miniISAL[i,j] taking O(log o + loglog N) bits. This is because any entry in minilSA"
writes a position of the desired leaf among at most o log® N leaves which have the same lowest
marked node. Thus, in total we get O(N logo + N loglog N) bits for this part. Additionally,
we store the sampled inverse suffix array which has O(N/log N) elements where each element
takes O(log N) bits. Therefore, in total it takes O(IN)-bits of space.

After summing up all five parts that are considered, we get O(Nlogo) + o(N) + O(N) +
O(Nlogo + Nloglog N) + O(N) bits. This simplifies to O(N logo + N loglog N) bits as
claimed in Theorem 1.

7.2 Time Complexity

For the time complexity of query evaluation, as a key component, we first focus on computing
LFISA"-mapping operation. We follow the pseudocode step by step for this. The first two
steps take tinyerse as given by CST which is O(log®n) (See Theorem 11 in Appendix). The
third step is constant time since the value is provided as a part of the function. The main
time consuming part is the stabbing-max data structure which takes O((log N/loglog N)?)
time. Finding corresponding marked node can be done in O(1) time using succinct tree
data structure and searching for prefix sum in the array associated with the rectangle can
be done via binary search in O(log N) time. Thus, our dominating and main query bound
for LFISA -mapping operation is O((log N/loglog N)3). Finally, considering that our query
algorithm for ISAL can have at most log N applications of LFISAL, we get our query-time
bound as O(log* N/(loglog N)3) (as claimed in Theorem 1).

D. Patel and R. Shah

8

Conclusion

To conclude, we provide an O(N logo + N loglog N)-bit index that supports inverse suffix
array queries in O(log* N/(loglog N)3) time. Even though the main goal of developing 2D
text index which can allow pattern matching i.e. to compute suffix array (SA) value or LF

values efficiently is not achieved, we think this is a significant step forward in understanding

the structure of the problem. Exploring the inter-relations here may lead us to better tools
to compute LF operation efficiently in compact space.

—— References

1

10

11

12

13

14

Jeffrey Scott Vitter Ankur Gupta, Roberto Grossi. Entropy-compressed indexes for multi-
dimensional pattern matching. In DIMACS working group on Burrows- Wheeler Transform,
2004.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Digital Equipment Corporation (now part of Hewlett-Packard, Palo Alto, CA), 1994.
Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987-1011, 2000. doi:10.1145/355541.355547.
Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
2005. An extended abstract appeared in FOCS 2000 under the title “Opportunistic Data
Structures with Applications”. doi:10.1145/1082036.1082039.

Raffaele Giancarlo. A generalization of the suffix tree to square matrices, with applications.
SIAM J. Comput., 24(3):520—5627 1995. doi:10.1137/80097539792231982.

Raffaele Giancarlo and Roberto Grossi. Suffix tree data structures for matrices. In Alberto
Apostolico and Zvi Galil, editors, Pattern Matching Algorithms, pages 293-340. Oxford
University Press, 1997.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378-407, 2005.
An extended abstract appeared in STOC 2000. doi:10.1137/S0097539702402354.

Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Constructing suffix arrays for multi-
dimensional matrices. In Martin Farach-Colton, editor, Combinatorial Pattern Matching, 9th
Annual Symposium, CPM 98, Piscataway, New Jersey, USA, July 20-22, 1998, Proceedings,
volume 1448 of Lecture Notes in Computer Science, pages 126-139. Springer, 1998. doi:
10.1007/BFb0030786.

Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323-350, 1977. doi:10.1137/0206024.

Veli Méakinen and Gonzalo Navarro. On self-indexing images — image compression with added
value. In 2008 Data Compression Conference (DCC 2008), 25-27 March 2008, Snowbird, UT,
USA, pages 422-431. IEEE Computer Society, 2008. doi:10.1109/DCC.2008.47.

Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993. doi:10.1137/0222058.

Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262-272, 1976. doi:10.1145/321941.321946.

Gonzalo Navarro. Compact Data Structures — A Practical Approach. Cambridge
University Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

Yakov Nekrich. A dynamic stabbing-max data structure with sub-logarithmic query time. In
Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, Algorithms
and Computation — 22nd International Symposium, ISAAC 2011, Yokohama, Japan, December
5-8, 2011. Proceedings, volume 7074 of Lecture Notes in Computer Science, pages 170-179.
Springer, 2011. doi:10.1007/978-3-642-25591-5_19.

60:13

ISAAC 2021

https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/S0097539792231982
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1007/BFb0030786
https://doi.org/10.1007/BFb0030786
https://doi.org/10.1137/0206024
https://doi.org/10.1109/DCC.2008.47
https://doi.org/10.1137/0222058
https://doi.org/10.1145/321941.321946
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1007/978-3-642-25591-5_19

60:14 Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

15 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):58976077 2007. doi:10.1007/s00224-006-1198-x.

16 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
doi:10.1007/BF01206331.

17 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, lowa City, lowa, USA, October 15-17, 1973, pages 1-11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

A Appendix

A fully functional compact/compressed suffix tree is realized using three components, 1) its
compressed tree topology that supports navigational functionalities [See Theorem 10] 2) the
compressed suffiz array [See Theorem 11] and 3) auxiliary data structures that supports
longest common prefiz (LCP) information.

» Theorem 10 (Fully-Functional Succinct Suffix Tree [15]). The topology of a suffix tree can
be encoded in 4N + o(N) bits to support the following operations in O(1) time.

pre-order(u)/post-order(u): pre-order/post-order rank of node u

parent(u): parent of node u

nodeDepth(u): number of edges on the path from the root to u

child(u, q): qth leftmost child of node u

sibRank(u): number of children of parent(u) to the left of u

Ica(u, v): lowest common ancestor (LCA) of two nodes u and v

lleaf (u) /rleaf (u): leftmost/rightmost leaf in the subtree of u

levelAncestor(u, d): ancestor of u such that nodeDepth(u) = d

» Theorem 11 (Compressed Suffix Array [15]). The compressed suffix array part of the above
compressed suffiz tree can be encoded in O(N log o) bits to support the following operations.
lookup(r): returns SA[r] in time O(log® N)
inverse(i): returns r = SA™'[i] in time O(log® N).

https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1007/BF01206331
https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	2 Preliminaries
	2.1 Classical Pattern Matching Problem
	2.2 2D Pattern Matching Problem

	3 Horizontal and Vertical Suffixes
	4 Splitting of an Lsuffix
	5 Terminology of a Suffix Tree (ST)
	6 Computing LFISA-mapping in time O((log N/log log N)^3) using Compact Space
	6.1 Marking Scheme and Mapping
	6.2 Computing LFISA^{L}(*)
	6.2.1 Reduction to 3-dimensional (3D) Stabbing-Max Query
	6.2.2 Augmenting Information for getting l_s from its Cover
	6.2.3 Pseudocode of LFISA^{L}-mapping Operation

	7 Space and Time Complexity Analysis
	7.1 Space Complexity
	7.2 Time Complexity

	8 Conclusion
	A Appendix

