
Identity Testing Under Label Mismatch
Clément L. Canonne #

The University of Sydney, Australia

Karl Wimmer #

Duquesne University, Pittsburgh, PA, USA

Abstract
Testing whether the observed data conforms to a purported model (probability distribution) is
a basic and fundamental statistical task, and one that is by now well understood. However, the
standard formulation, identity testing, fails to capture many settings of interest; in this work, we
focus on one such natural setting, identity testing under promise of permutation. In this setting, the
unknown distribution is assumed to be equal to the purported one, up to a relabeling (permutation)
of the model: however, due to a systematic error in the reporting of the data, this relabeling may
not be the identity. The goal is then to test identity under this assumption: equivalently, whether
this systematic labeling error led to a data distribution statistically far from the reference model.
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1 Introduction

Imagine you painstakingly gathered observations, data point after data point, and managed
to form an accurate estimate of the data distribution; unfortunately, you did not record the
labels correctly, and due to a systematic error the data labels have been permuted in an
unknown and arbitrary way. You did make your best educated guess to fix this though, and
are confident the data, once carefully relabeled, should reflect the reality. Can you check
this, without having to go through the whole process of obtaining an entirely new dataset?

In this paper, we are concerned with a variant of identity testing which captures the
above scenario, where one is promised that the unknown distribution is equal to the reference
distribution q up to a permutation of the domain. Formally, the algorithm has access to i.i.d.
samples from a probability distribution p over a finite domain [n] := {1, 2, . . . , n} such that
p ◦ π = q for some (unknown) π ∈ Sn, and, on input 0 ≤ ε′ < ε ≤ 1, must output yes or no
such that

if dTV(p, q) ≤ ε′, then the algorithm outputs yes with probability at least 2/3;
if dTV(p, q) > ε, then the algorithm outputs no with probability at least 2/3.

When ε′ = 0, the task is termed identity testing (under promise of permutation); otherwise,
it is tolerant identity testing. It is worth noting that this permutation promise fundamentally
changes the problem, and makes it incomparable to the standard identity testing problem. As
an illustrative example, it is known that uniformity testing, where the reference distribution
q is uniform over [n], is the “hardest” case of identity testing, with sample complexity Θ(

√
n)

and Θ(n/ log n) for the testing and tolerant testing versions, respectively [18, 22, 23, 13].
However, it is easy to see that under the permutation promise, uniformity testing is a trivial
problem which can be solved with zero samples: any permutation of the uniform distribution
is itself the uniform distribution.
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Our results further demonstrate this stark difference, showing how the difficulty of testing
and tolerant testing differ under this promise. In particular, we show an exponential gap
between the sample complexities of non-tolerant and tolerant identity testing under this
promise: to the best of our knowledge, this constitutes the first example of such a gap
between the tolerant and non-tolerant version of a problem in distribution testing.

1.1 Our results
Our results show that, quite surprinsingly, the promise of equality up to permutation of the
domain fundamentally changes the sample complexity landscape, and is both qualitatively
and quantitatively different from what one could expect from the known bounds on identity
and tolerant identity testing without this promise.

Our first set of results indeed establishes that, in contrast to the Θ(
√

n) sample complexity
of “regular” identity testing, identity testing under promise of permutation has sample
complexity merely polylogarithmic in the domain size:

▶ Theorem 1 (Theorems 5 and 8, (Informal)). Identity testing under promise of permutation
has sample complexity Θ

(
log2 n

)
, where n is the domain size.

Given the fact that (regular) tolerant identity testing has sample complexity nearly quadrat-
ically higher than (regular) identity testing, one could conjecture that the sample complexity
tolerant testing under our promise remains polylogarithmic. Our next set of results shows
that this is far from being the case: instead, allowing for some noise tolerance makes the
promise of equality up to permutation essentially useless, as the sample complexity blows up
exponentially, growing from poylogarithmic to nearly linear in the domain size:

▶ Theorem 2 (Theorems 8 and 9, (Informal)). Tolerant identity testing under promise of
permutation has sample complexity Θ

(
n1−o(1)), where n is the domain size.

We also show that relaxing the tolerance allowed from additive (as in the usual tolerant
testing setting) to multiplicative in the distance parameter does not really help, as the sample
complexity still remains polynomial:

▶ Theorem 3 (Theorem 17, (Informal)). Multiplicative-factor tolerant identity testing under
promise of permutation, where one needs to distinguish between ε-close and Cε-far, has
sample complexity Ω(

√
n) for any constant factor C > 1, where n is the domain size.

We emphasize once more that those results, and in particular the lower bounds, do not
follow from the known results on standard identity testing, as the promise of equality up to
permutation, by strenghtening the premise, drastically changes the problem. In particular,
the case where the reference q is uniform, while known to be the hardest case for identity
and tolerant identity testing, is actually a trivially easy case under our promise (as any
distribution promised to be a permutation of the uniform distribution is, of course, the
uniform distribution itself.)

1.2 Previous work
Distribution testing has a long history in Statistics, that one can trace back to the work of
Pearson [12]. More recently, from the computer science perspective, Goldreich, Goldwasser,
and Ron initiated the field of property testing [14]; of which distribution testing emerged
through the seminal work of Batu, Fortnow, Rubinfeld, Smith, and White [2]. We refer the
read to the survey [5] for a review of the area of distribution testing.
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Among the problems tackled in this field, identity testing (also known as goodness-of-fit
or one-sample testing), in which the goal is to decide whether an unknown probability
distribution p is equal to a purported model q, has received significant attention. It is
known that for identity testing with any reference distribution q over a domain of size n,
Θ(
√

n) samples are necessary and sufficient [18, 7, 1, 23]; moreover, the exact asymptotic
dependence on the distance parameter and the probability of error of the test [15, 9], as well
as some good understanding of the dependence on the reference distribution q itself [23, 4],
are now understood. Further, we also have tight bounds for the harder problem where
one seeks to allow for some noise in the data (i.e., perform tolerant identity testing, where
the algorithm has to accept distributions sufficient close to the reference q): Θ(n/ log n)
samples, a nearly linear dependence on the domain size, are known to be necessary and
sufficient [20, 21, 22, 16].

However, how the identity testing problem changes under natural constraints on the input
data, or under some variations of the formulation, remains largely unexplored. Among the
works concerned with such problems, [3, 8] consider identity testing under monotonicity or
k-modality constraints; and [10] focuses on a broad class of shape constraints on the density.
Finally, [6] focuses on a variant of identity testing, “identity up to binning,” where two
distributions are considered equal if some binning of the domain can make them coincide. To
the best of our knowledge, the question considered in the present work, albeit arguably quite
natural, has not been previously considered in the Statistics or distribution testing literature.

Organization. We provide in Section 3.1 our algorithm for testing identity under promise of
permutation, before complementing it in Section 3.2 by our matching lower bound. Section 4
is then concerned with the upper and lower bounds for the tolerant version of the problem;
the bulk of which lies in proving the two lower bounds.

2 Preliminaries

Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. We identify a probability
distribution p over [n] with its probability mass function (pmf), that is, a function p : [n]→
[0, 1] such that

∑n
i=1 p(i) = 1. For a subset S ⊆ [n], we then write p(S) =

∑
i∈S p(i) for the

probability mass assigned to S by p. Given two probability distributions p, q over [n], their
total variation distance is

dTV(p, q) = sup
S⊆[n]

(p(S)− q(S)) = 1
2∥p− q∥1 (1)

where ∥p− q∥1 =
∑n

i=1 |p(i)− q(i)| is the ℓ1 distance between the two pmfs. In what
follows, given a probability distribution q over [n], we define

Πn(q) := { q ◦ π : π ∈ Sn } , (2)

the set of distributions equal to q up to permutation of the domain.
Finally, we will rely on the so-called DKW inequality, which roughly states that O(1/ε2)

samples from any univariate distribution suffice to learn it to Kolmogorov distance ε with
high probability: this is a result due to Dvoretzky, Kiefer, and Wolfowitz from 1956 [11]
(with the optimal constant due to Massart, in 1990 [17]).

▶ Theorem 4 (DKW Inequality). Let p̂ denote the empirical distribution on m i.i.d. samples
from an arbitrary distribution p on R. Then, for every ε > 0,

Pr[ dK(p̂, p) > ε ] ≤ 2e−2mε2
,

where, for two univariate distributions p, q, dK(p, q) = supx∈R |p((−∞, x])− q((−∞, x])|
denotes the Kolmogorov distance between p and q.

ISAAC 2021
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3 Testing

In this section, we establish our matching upper and lower bounds for testing under promise
of permutation, Theorems 8 and 9.

3.1 Upper bound
We begin by proving our O(log2 n) upper bound for identity testing under promise of
permutation.

▶ Theorem 5. There exists an algorithm (Algorithm 1) which, for any reference distribution q
over [n] and any 0 < ε ≤ 1, given O

(
log2 n

ε4

)
samples from an unknown distribution p ∈ Πn(q),

distinguishes with probability at least 2/3 between (i) p = q and (ii) dTV(p, q) > ε.

Proof. We first partition the domain into L := O(log(n/ε)/ε) buckets B1, . . . , BL, where

Bℓ :=
{

i ∈ [n] : 1
(1 + ε/4)ℓ

< q(i) ≤ 1
(1 + ε/4)ℓ−1

}
, 1 ≤ ℓ ≤ L− 1 (3)

and BL :=
{

i ∈ [n] : q(i) ≤ 1
(1+ε/4)L−1

}
. Note that since q is known, we can exactly

compute the partition B1, . . . , BL, and in particular those L sets can be efficiently obtained.

Algorithm 1 Algorithm for identity testing under promise of permutation.

Require: Reference distribution q, distance parameter ε ∈ (0, 1], sample access to p ∈ Πn(q)
1: Set L← 1 +

⌈
log(4n/ε)

log(1+ε/4)

⌉
= O

(
log(n/ε)

ε

)
, δ ← ε

4(L−1)
2: Compute the bucketing B1, . . . , BL, as in (3)
3: Using O

(
1/δ2)

samples from p, use the empirical estimator to learn the distribution

p̄ := (p(B1), . . . , p(BL))

over [L] to Kolmogorov distance δ
3 , with probability of error 1/10. Let p̂ be the output.

4: if p̂(BL) > 3ε
8 or there exists ℓ∗ such that |p̂({ℓ∗, . . . , L− 1})−q(

⋃L−1
ℓ=ℓ∗ Bℓ)| > δ

3 then
5: return no
6: else
7: return yes
8: end if

For our choice of L, 1
(1+ε/4)L−1 ≤ ε

4n , so the last bucket BL has small probability mass
under the reference distribution: q(BL) ≤ ε

4 . Now, distinguishing with high constant
probability between p(BL) ≤ ε

4 and p(BL) ≥ ε
2 can be done with O(1/ε) samples, so we

can detect a discrepancy in BL with high probability if there is one (we will argue this part
formally at the end of the proof). Consequently, we hereafter assume that p(BL) < ε

2 .
If p = q, clearly p(BL) ≤ ε

4 (so the first check above passes) and q(Bℓ) = p(Bℓ) for all
1 ≤ ℓ ≤ L − 1. However, if dTV(p, q) > ε, then

∑L−1
ℓ=1

∑
i∈Bℓ
|p(i)− q(i)| > 2ε − 3ε

4 = 5
4 ε.

Moreover, letting π ∈ Sn be the permutation such that p = q ◦ π, consider the set S ⊆ [n] of
elements which π maps to an element from the same bucket:

S := { i ∈ [n] \BL : ∃ℓ ∈ [L− 1], i ∈ Bℓ, π(i) ∈ Bℓ } .
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For each such element i, by definition of the bucketing, |p(i)− q(i)| = |q(i)− q(π(i))| ≤
ε
4q(i). It follows that the elements from S amount for a total ℓ1 distance of at most ε

4 ,
and therefore a constant fraction of the distance between p and q comes from the set
T := [n] \ (BL ∪ S) of elements that π “moves to a different bucket:”

5
4ε <

∑
i∈S

|p(i)− q(i)|+
∑
i∈T

|p(i)− q(i)| ≤ ε

4q(S)+
∑
i∈T

|p(i)− q(i)| ≤ ε

4 +
∑
i∈T

|p(i)− q(i)|

that is,
∑

i∈T |p(i)− q(i)| > ε.
Partition the set T by setting Tℓ := T ∩Bℓ, for ℓ ∈ [L−1]. Rewriting the above inequality,

we obtained that

∑
i∈T

|p(i)− q(i)| =
L−1∑
ℓ=1

∑
i∈Tℓ

|p(i)− q(i)| > ε . (4)

We will use this to prove the following result.

▷ Claim 6. Suppose that dTV(p, q) > ε. Then there exists some ℓ∗ ∈ [L − 1] such that∣∣∣p(
⋃L−1

ℓ=ℓ∗ Bℓ)− q(
⋃L−1

ℓ=ℓ∗ Bℓ)
∣∣∣ > δ, where δ = ε

4(L−1) .

Proof. We note that since p(Bℓ) = p(Sℓ) + p(Tℓ) and that p(Sℓ) = q(Sℓ) (by definition of
Sℓ ⊆ S)1 for every ℓ, it suffices to prove the statement for Tℓ, that is, that there exists ℓ∗

such that∣∣∣∣∣p(
L−1⋃
ℓ=ℓ∗

Tℓ)− q(
L−1⋃
ℓ=ℓ∗

Tℓ)

∣∣∣∣∣ > δ .

The key property we will use is that, for every ℓ < ℓ′, we have q(i) ≥ q(j) for every
i ∈ Bℓ, j ∈ Bℓ′ . This property, which follows from the definition of bucketings, guarantees
that if π maps an element i ∈ Tℓ′ to element π(i) ∈ Tℓ, then p(i) ≥ q(i).

Let U, V ⊆ [L − 1] be the buckets whose probability mass under p is greater than or
equal to (resp., less than or equal to) the probability mass under q, i.e.,

U := { ℓ ∈ [L− 1] : p(Tℓ) ≥ q(Tℓ) } , V := { ℓ ∈ [L− 1] : p(Tℓ) ≤ q(Tℓ) }

This lets us rewrite (4) as

ε <
∑
ℓ∈U

∑
i∈Tℓ

|p(i)− q(i)|+
∑
ℓ∈V

∑
i∈Tℓ

|p(i)− q(i)|

and so at least one of the two terms in the RHS must exceed ε
2 . Without loss of gener-

ality, suppose
∑

ℓ∈U

∑
i∈Tℓ
|p(i)− q(i)| > ε

2 . This implies there exists ℓ∗ ∈ U such that∑
i∈Tℓ∗ |p(i)− q(i)| > ε

2(L−1) ; we will focus on this ℓ∗.

Partition Tℓ∗ further into T +
ℓ∗ and T −

ℓ∗ , where T +
ℓ∗ (resp. T −

ℓ∗ ) is the set of elements i ∈ Tℓ∗

such that π(i) belongs to a bucket Bℓ with ℓ < ℓ∗ (resp., ℓ > ℓ∗). Note that, for any i ∈ T +
ℓ∗ ,

we then have p(i) = q(π(i)) ≥ q(i), and conversely for i ∈ T −
ℓ∗ : so that we can rewrite the

above as
ε

2(L− 1) < (p(T +
ℓ∗)− q(T +

ℓ∗)) + (q(T −
ℓ∗ )− p(T −

ℓ∗ ))

1 Indeed, we have p(Sℓ) =
∑

i∈Sℓ
p(i) =

∑
i∈Sℓ

q(π(i)) = q(π−1(Sℓ)), and π(Sℓ) = Sℓ by definition.

ISAAC 2021
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Now, since p(Tℓ∗) ≥ q(Tℓ∗) (as ℓ∗ ∈ U), we have p(T +
ℓ∗) − q(T +

ℓ∗) ≥ q(T −
ℓ∗ ) − p(T −

ℓ∗ ) and
therefore p(T +

ℓ∗)− q(T +
ℓ∗) > ε

4(L−1) . This implies the claim: indeed, we then have

p(∪L−1
ℓ=ℓ∗Tℓ) > q(∪L−1

ℓ=ℓ∗Tℓ) + ε

4(L− 1)

since Tℓ∗ “receives” a difference of at least ε
4(L−1) probability mass from lower-index buckets,

and besides this the total probability mass of the suffix of buckets ∪L−1
ℓ=ℓ∗Tℓ cannot decrease

by any internal swap of elements. ◀

With the above claim in hand, we can conclude the analysis. Indeed, as the sets B1, . . . , BL

are known, one can estimate the induced probability distribution p̄ := (p(B1), . . . , p(BL))
to Kolmogorov distance δ

3 (with probability at least 9/10) using O(1/δ2) = O(L2/ε2) =
O(log2(n/ε)/ε4) samples (this follows from Theorem 4). Let p̂ be the resulting distribution
over [L]. Whenever this step is successful (i.e., with probability at least 9/10, the following
holds.

If p = q, then |p̂(L)− q(BL)| ≤ δ
3 , so p̂(BL) ≤ ε

4 + δ
3 ≤

3
8 ε; and |p̂({ℓ∗, . . . , L− 1})−

q(
⋃L−1

ℓ=ℓ∗ Bℓ)| ≤ δ
3 for all ℓ. Thus, the test accepts.

If dTV(p, q) > ε, then either
p(BL) > ε

2 , in which case p̂(L) ≥ ε
2 −

δ
3 > 3

8 ε and the test rejects; or
p(BL) ≤ ε

2 , in which case by Claim 6 there exists some ℓ∗ ∈ [L − 1] such that∣∣∣p(
⋃L−1

ℓ=ℓ∗ Bℓ)− q(
⋃L−1

ℓ=ℓ∗ Bℓ)
∣∣∣ > δ. Then,∣∣∣∣∣p̂({ℓ∗, . . . , L})− q(

L−1⋃
ℓ=ℓ∗

Bℓ)

∣∣∣∣∣ ≥
∣∣∣∣∣p(

L−1⋃
ℓ=ℓ∗

Bℓ)− q(
L−1⋃
ℓ=ℓ∗

Bℓ)

∣∣∣∣∣− δ

3 >
2
3δ

and the test rejects.
This concludes the proof of correctness of the algorithm. The claimed sample complexity
readily follows from our choice of δ = Θ(L/ε) and the O(1/δ2) sample complexity of learning
an arbitrary real-valued distribution to Kolmogorov distance δ. ◀

▶ Remark 7 (On the tolerance of the tester). We note that the above analysis establishes
a slightly stronger statement; namely, that the testing algorithm allows for some small
tolerance, accepting distributions that are O(ε/ log n)-close to q, and rejecting those that
are ε-far. As we will see later, this Ω(log n) factor in the amount of tolerance is essentially
optimal, as by Theorem 17 reducing it to o(log n) would require sample complexity n1/2−o(1).

3.2 Lower bound
In this section, we show that the O(log2 n) upper bound from the previous section is tight, by
proving a matching lower bound on the sample complexity of identity testing under promise
of permutation.

▶ Theorem 8. Any algorithm which, given a reference distribution q over [n], 0 < ε ≤ 1 such
that ε = Ω̃

(
1/n1/4)

, and sample access to an unknown distribution p ∈ Πn(q), distinguishes
with probability at least 2/3 between (i) p = q and (ii) dTV(p, q) > ε, must have sample
complexity Ω

(
log2 n

ε2

)
.

Proof. We first describe a construction with constant distance ε = 1/9, leading to an
Ω

(
log2 n

)
lower bound; before explaining how to obtain the claimed Ω

( 1
ε2 log2 n

)
lower

bound from it. Our lower bound will rely on a reference distribution q piecewise-constant
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on L = Θ(log n) buckets, where bucket ℓ has a number of elements proportional to 2ℓ. The
first and last buckets (that is, the smallest and largest) will each have total probability mass
1/3 under q, and be uniform. The remaining “middle” L− 2 buckets all have 1/(3(L− 2))
total probability mass, and are uniform as well. We then build a family of perturbations
{pπ = q ◦ π}π ⊆ Πn(q), such that under each perturbation pπ the middle buckets keep the
exact same total probability mass 1/(3(L− 2)), by “cascading” mass from one bucket to the
next. Details follow.

Set L := Θ(log n) to be the largest integer such that L2L ≤
√

n, and assume for
convenience that ⌈

√
n⌉ is a multiple of 3. The ℓth bucket Bℓ, for 0 ≤ ℓ ≤ L− 2, has size

|Bℓ| =
⌈√

n
⌉
· 2ℓ

and |BL−1| = 2(L − 2)|BL−2|, so that n
8 ≤

∑L−1
ℓ=0 |Bℓ| = ⌈

√
n⌉ · 2L−1(L− 1) ≤ n . (We

hereafter focus on the first part of the domain, and will ignore the last n −
∑L−1

ℓ=0 |Bℓ|
elements.) Note that each bucket contains at least

√
n elements by construction, and has a

size which is a multiple of 3. The reference distribution q is then uniform inside each bucket,
where

q(B0) = q(BL−1) = 1
3 , and

q(Bℓ) = 1
3(L−2) for all 0 < ℓ < L− 1.

In particular, our choice of |BL−1| ensures that each element of the last bucket, under q, will
have probability mass

1
3|BL−1|

= 1
2 ·

1
3(L− 2)|BL−2|

that is, half the probability mass of elements of the (L− 2)th bucket.
Each perturbation will then have the same distribution over buckets:
each of the L− 2 middle buckets Bℓ is (independently) partitioned uniformly at random
into 3 sets Sℓ,1, Sℓ,2, Sℓ,3 of equal size. The permutation then swaps Sℓ,2 ∪ Sℓ,3 and
Sℓ+1,1, for 1 ≤ ℓ ≤ L− 3 (note that indeed |Sℓ,2 ∪ Sℓ,3| = |Sℓ+1,1|, but q(Sℓ,2 ∪ Sℓ,3) =
2q(Sℓ+1,1) = 2

9(L−2) ).
a uniformly random subset S0 ⊆ B0 of size |B1|

3(2L−5) = O(|S1,1|/L) is selected, and
the permutation swaps it with a uniformly random subset T1 ⊆ S1,1 of equal size.
By choice of the size, we had q(S0) = 2

9(2L−5) and q(T1) = 1
9(2L−5)(L−2) , so that

q(S0)− q(T1) = 1
9(L−2) .

similarly, the subset SL−2,2∪SL−2,3 of size 2
3 |BL−2| = |BL−1|

3(L−2) is swapped with a uniformly
random subset TL−1 ⊆ BL−1 of equal size. By choice of the size, we had q(SL−2,2 ∪
SL−2,3) = 2

9(L−2) and q(TL−1) = 1
9(L−2) , so that again q(SL−2,2 ∪ SL−2,3)− q(TL−1) =

1
9(L−2) .

As a result, we get that for each such perturbation p = q◦π, dTV(p, q) ≥ 1
9 . The construction

is illustrated in Figure 1.
By a birthday paradox-type argument, no element will be sampled twice unless the

number of samples is at least Ω(1/
√∑n

i=1 p(i)2) = Ω(1/
√

n maxi∈[n] p(i)) = Ω(n1/4), which
is far beyond the polylogarithmic regime we are working in. By construction, under each
p, all L − 2 middle buckets have exactly the same probability mass 1

3(L−2) , and elements
inside are perturbed randomly, either having probability (compared to q) multiplied by 2
with probability 1/3 or divided by 2 with probability 1/3. Because of the uniformly random
choice of the 3-way partition inside each bucket and the fact that each of all those inner

ISAAC 2021
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Reference distribution q

0
Example of perturbation p of q

0

Figure 1 Reference distribution q and example of perturbation p, for L = 5. Note that the total
probability mass of each bucket of q is preserved under p, except for the first and last one whose
mass decreases and increases by Θ(1/L), respectively.

partitions are chosen independently across buckets, the information from those L− 2 buckets
does not provide any advantage in distinguishing them from p unless the same element is hit
twice.2

This addresses the case of the middle L− 2 buckets. Turning to the remaining two, the
probability mass of both end buckets, under any perturbation p, deviates from what it is
under q by an additive δ := 1

9(L−2) . Since those buckets each have total probability mass
1/3 under p and 1/3± δ under each q and we do not see any collisions with high probability,
detecting this requires Ω(1/δ2) = Ω(log2 n) samples, giving the lower bound for constant
ε = 1/9.

To obtain the inverse quadratic dependence on the distance parameter, one can then
simply repeat the above argument for any 0 < ε < 1/9 by replacing our reference distribution
q and all the perturbations pπ = q ◦ π by the mixtures

qε := (1− 9ε)u + 9εq, pε,π := (1− 9ε)u + 9εpπ = qε ◦ π

the last equality crucially using the fact that the uniform distribution u (over the domain) is
invariant by permutation. Note that every such pε,π then does belong to Πn(qε), and is at
total variation distance exactly ε from qε. Moreover, we can repeat the previous argument
mutatis mutandis: (i) the middle buckets provide no information whatsoever unless an
element is seen twice, which requires Ω

(
n1/4/ε

)
samples (the extra 1/ε due to our mixture

with weight 9ε); while the two outer buckets have a discrepancy only δ := ε
L−2 , which to be

detected requires at least Ω(1/δ2) = Ω((log2 n)/ε2) samples overall. The minimum of these
two quantities gives the claimed lower bound, as long as n1/4/ε = Ω((log2 n)/ε2) , that is,
ε = Ω

(
(log2 n)/n1/4)

. ◀

2 That is, conditioned on seeing each element of those L − 2 buckets at most once, the conditional
distribution over those L − 2 buckets under (i) q and (ii) the uniform mixture of all perturbations p are
indistinguishable.
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4 Tolerant testing

We now turn to the task of tolerant testing. As mentioned in the introduction, tolerant testing
is well known to be harder than standard (non-tolerant) testing, with a nearly quadratic gap
for the standard identity testing problem (

√
n vs. n

log n sample complexity). Surprisingly, we
are able to show that under the promise of permutation, the task does not suffer a merely
polynomial blowup – the sample complexity of tolerant identity testing becomes exponentially
harder than that of standard testing, jumping from log2 n to n1−o(1).

The first component, an O(n/log n) upper bound for tolerant testing under promise of
permutation (Theorem 9), is straightforward, and simply follows from the corresponding
upper bound absent this promise. A much more challenging task is in establishing the
lower bound. We actually provide two lower bounds: the first, an Ω(n1−o(1)) lower bound
(Theorem 10), applies for the usual setting of tolerant testing with an additive gap δ between
ε′ and ε). The second (Theorem 17) is an Ω

(√
n/2O(C)

)
sample complexity lower bound

for any C-factor approximation of the distance, that is to distinguish between ε-close and
Cε-far.

4.1 Upper bound

The claimed upper bound readily follows from the analogous upper bound on tolerant
testing without the promise of permutation, due to Valiant and Valiant [22, Theorem 4] (see,
also, [16]). Indeed, any such estimator can be used for our problem, ignoring the additional
promise of identity up to permutation.

▶ Theorem 9. There exists an algorithm which, for any reference distribution q over [n] and
any 0 ≤ ε, δ ≤ 1 such that δ = Ω

(
1/
√

log n
)
, and given O

(
n

δ2 log n

)
samples from an unknown

distribution p ∈ Πn(q), distinguishes with probability at least 2/3 between (i) dTV(p, q) ≤ ε

and (ii) dTV(p, q) > ε + δ.

We note that the requirement δ = Ω
(
1/
√

log n
)

has been relaxed in [16].

4.2 Lower bound

In this section, we prove the theorem below, our lower bound on the sample complexity
of tolerant testing under promise of permutation. Before doing so, we emphasize that the
known Ω

(
n

δ2 log n

)
sample complexity lower bound for tolerant testing absent this promise

does not apply to our setting, as the promise of permutation makes the testing problem
easier. In particular, the hard instances used to prove the aforementioned Ω

(
n

δ2 log n

)
lower

bound do not satisfy this promise.3

▶ Theorem 10. Any algorithm which, given a reference distribution q over [n], 0 < ε, δ ≤ 1,
and sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at
least 2/3 between (i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + δ, must have sample complexity
Ω

(
δ2n1−O(1/ log(1/δ))).

3 One can also note that the lower bound for “standard” tolerant testing is obtained by choosing the
reference distribution to be uniform over [n]. Under promise of permutation, this particular instance of
the problem is trivial, as any permutation of the uniform distribution is still the uniform distribution.
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Proof. In what follows, we assume that δ = Ω(1/
√

n), as otherwise there is nothing to
prove. Let k ≥ 1 be an integer to be chosen during the course of the analysis (we will set
k = Θ(1/δ)), and write n = 2mk2 for some integer m ≥ 1 (this can be done without loss of
generality, as our assumption on δ ensures that n ≥ 2mk2). For 1 ≤ ℓ ≤ 2k, we define the
integer interval Ik,ℓ := [k] + (ℓ− 1)k, so that [2k2] =

⋃2k
ℓ=1 Ik,ℓ.

Given two distributions p, q over [k], we define families of distributions Cp,q and Fp,q
over [n] as follows: first, we consider the distributions c, f , each over [2k2], obtained by
“repeating and alternating” p and q as follows:

For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, c(j) = 1
2k p(j).

For 1 ≤ ℓ ≤ k and j ∈ Ik,k+ℓ, c(j) = 1
2k q(j).

Distribution c

0 5 10 15 20 25 30 35 40 45 500

Distribution f

0 5 10 15 20 25 30 35 40 45 500

Distribution r

0 5 10 15 20 25 30 35 40 45 500

Figure 2 An example of c (top), f (middle), and r (bottom) over [2k2], for k = 5; here, we took
p = 1

16 (3, 2, 6, 4, 1) and q = 1
18 (2, 5, 4, 4, 3).

We obtain f over [2k2] in a similar fashion, but swapping Ik,ℓ and Ik,k+ℓ:
For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, f(j) = 1

2k q(j).
For 1 ≤ ℓ ≤ k and j ∈ Ik,k+ℓ, f(j) = 1

2k p(j).
Further, we define our “reference” distribution r over [2k2] as

For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, r(j) = 1
2k p(ℓ).

For k + 1 ≤ ℓ ≤ 2k and j ∈ Ik,ℓ, r(j) = 1
2k q(ℓ).
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We also define the reference distribution r∗
p,q over [n] = [2k2m] by concatenating m copies of

r and normalizing the result; that is,

r∗
p,q := 1

2m
(r ⊔ r ⊔ · · · ⊔ r),

where ⊔ denotes the vector concatenation. Note that both c and f are permutations of r,
and that ∥r∥1 = ∥c∥1 = ∥f∥1 = 1. Next, we bound the gap between dTV(f , r) and dTV(c, r),
relating it to the distance between p and q.

▷ Claim 11. dTV(f , r) ≥ dTV(c, r) + 1
k dTV(p, q)

Proof. We will analyze the contributions to dTV(c, r) and dTV(c, f) on Ik,ℓ and Ik,k+ℓ for
1 ≤ ℓ ≤ k. Without loss of generality, we can assume that p, q are non-decreasing. Then,
from our definition of c, r, and f , we have

dTV(f , r) = 1
4k

k∑
i=1

k∑
j=1

(|p(i)− q(j)|+ |q(i)− p(j)|) = 1
2k

 k∑
i=1

k∑
j=1
|p(i)− q(j)|


= 1

2k

 k∑
i=1
|p(i)− q(i)|+

k∑
i=1

i−1∑
j=1

(|p(i)− q(j)|+ |p(j)− q(i)|)


dTV(c, r) = 1

4k

k∑
i=1

k∑
j=1

(|p(i)− p(j)|+ |q(i)− q(j)|)

= 1
2k

k∑
i=1

i−1∑
j=1

((p(i)− p(j)) + (q(i)− q(j)))

where for the last equality we used the assumption that p, q were non-decreasing to write
k∑

i=1

k∑
j=1
|p(i)−p(j)| =

k∑
i=1

i−1∑
j=1

(p(i)−p(j))+
k∑

i=1

k∑
j=i+1

(p(j)−p(i)) = 2
k∑

i=1

i−1∑
j=1

(p(i)−p(j)) ,

The conclusion then follows from recalling that dTV(p, q) = 1
2

∑k
i=1 |p(i) − q(i)|, and

observing that (p(i)− p(j)) + (q(i)− q(j)) = (p(i)− q(j)) + (q(i)− p(j)) ≤ |p(i)− q(j)|+
|p(j)− q(i)|. ◁

To define Cp,q and Fp,q, we will need one further piece of notation. We denote by Bk ⊆ S2k2

the set of all permutations of [2k2] “respecting the buckets,” that is,

Bk := { π ∈ S2k2 : π(Ik,ℓ) = Ik,ℓ∀ℓ ∈ [2k] }

We then let

Cp,q =
{

1
2mk

(c ◦ π1 ⊔ c ◦ π2 ⊔ · · · ⊔ c ◦ πm) : π1, . . . , πm ∈ Bk

}
and

Fp,q =
{

1
2mk

(f ◦ π1 ⊔ f ◦ π2 ⊔ · · · ⊔ f ◦ πm) : π1, . . . , πm ∈ Bk

}
where as before ⊔ denotes the vector concatenation; that is, we stitch together m blocks,
each consisting on a permuted version of either c or f . Note that since n = m · 2k2 and each
c (resp. f) is a (2k2)-dimensional vector, Cp,q and Fp,q are indeed families of probability
distributions over [n], and Cp,q,Fp,q ⊆ Πn(r∗

p,q).

The construction above allows us to convert any two distributions p, q with sufficiently
many matching moments to families of distributions (whose elements are all permutations of
a single reference one) hard to distinguish:
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▷ Claim 12. There exists some absolute constant c > 0 such that, if p, q have matching
first r-way moments, it is impossible to distinguish a uniformly random element of Cp,q from
a uniformly random element of Fp,q given fewer than cm1− 1

r+1 samples.

Proof. By assumption on p, q and out construction of c, f from them, for every of the m

contiguous blocks of 2k2 elements, the r-way moments of the corresponding conditional
distributions exactly match. Given that a uniformly element drawn of p′ from Cp,q and q′

from Fp,q corresponds to independent permutations inside each block, any block in which
fewer than r + 1 samples falls brings exactly zero information about whether it comes from
p′ or q′ (specifically, one could simulate the distribution of those s < r + 1 samples without
getting any sample from the real distribution). Since each of these m blocks has total
probability 1/m under both p′ and q′, by a generalized birthday paradox (see, e.g., [19]),
with probability at least 9/10 no block will receive more than r samples unless the total
number of samples is at least cm1− 1

r+1 , for some absolute constant c > 0. ◁

It remains to specify which pair of distributions with “sufficiently many matching mo-
ments” we will use. While we could argue directly about the existence of such a pair of
distributions with desirable properties, it is simpler to leverage a construction due to Valiant
and Valiant [22], which exhibits the desired properties.

▷ Claim 13. There exists some ε0 > 0 such that the following holds. For every
sufficiently large r, there exists a pair of distributions (without loss of generality, non-
decreasing) pVV, qVV over k = O(r2r) elements with matching first r-way moments, but
dTV(pVV, qVV) ≥ ε0.

Proof. This follows from the lower bound construction of [22]. ◁

We will rely on this pair of distributions pVV, qVV, and hereafter write C,F , and r∗ for
CpVV,qVV ,FpVV,qVV , and r∗

pVV,qVV
, respectively.

▷ Claim 14. For every p′ ∈ C and q′ ∈ F , we have dTV(q′, r∗) > dTV(p′, r∗) + ε0
k .

Proof. Due to the definition of C, F , and r∗ as m-fold concatenations, and since r is invariant
by permutations from Bk, it is sufficient to prove the claim for pVV, qVV, and r (over [2k2]).
The claimed bound then immediately follows from Claim 11. ◁

To finish the argument, it only remains to combine the various claims. We choose k ≥ ε0
δ

and m = n/(2k2) ≥ 1 (since δ = Ω(1/
√

n). By Claim 13, we can then set r := Ω(log k) and
obtain, from Claim 12, a sample complexity lower bound of

Ω
(

m1− 1
r+1

)
= Ω

(
δ2n

1−O
(

1
log(1/δ)

))
as desired. ◀

The theorem immediately implies the following two corollaries.

▶ Corollary 15. For every c > 0, there exists some δ > 0 such that the following holds.
Any algorithm which, given a reference distribution q over [n], ε ∈ (0, 1), and sample access
to an unknown distribution p ∈ Πn(q), distinguishes with probability at least 2/3 between
(i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + δ, must have sample complexity Ω

(
n1−c

)
.

▶ Corollary 16. Any algorithm which, given a reference distribution q over [n], ε ∈ (0, 1),
and sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at
least 2/3 between (i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + 1/2

√
log n, must have sample

complexity n

2O(
√

log n)
.
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Tolerant testing C-approximation
We now turn to our second tolerant testing lower bound, which applies to algorithms providing
a C-factor approximation of the distance to the reference distribution.

▶ Theorem 17. Any algorithm which, given a reference distribution q over [n], C ≥ 2, and
sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at least
2/3 between (i) dTV(p, q) ≤ 1

4C−1 and (ii) dTV(p, q) ≥ C
4C−1 , must have sample complexity

Ω
(√

n
4C

)
.

▶ Remark 18. As discussed in Remark 7, Theorem 17 is essentially optimal, as it matches
(up to polylogarithmic factors in the sample complexity) the upper bound from Theorem 5
when C = Θ(log n).

Proof of Theorem 17. We will prove the theorem via a sequence of lemmas. We will assume
that C ≥ 2 is an integer, and we define m = 2C − 1. Our proof will proceed similarly to the
proof of Theorem 10. We will begin by working over [m(2C+1 + 2C−1 − 3)]. Throughout
this section, we partition [m(2C+1 + 2C−1 − 3)] into C + 1 buckets, which we will denote
B0, B1, . . . , BC , such that each Bi is a set of consecutive integers, |BC | = m2C−1, |B0| = m,
and |Bi| = m2i+1 for 1 ≤ i ≤ C − 1. For convenience, we define s := m(4C − 1)2C−1.
We define a distribution r in the following way:

For each j ∈ B0, r(j) = 2C

s .
For each 1 ≤ i ≤ C − 1 and j ∈ Bi, r(j) = 2C−i

s .
For each j ∈ BC , r(j) = 1

s .

We define two distributions p and q such that p and q are hard to distinguish with few
samples, such that dTV(r, p) and dTV(r, q) are far apart. We define q in the following way:

For each j ∈ B0, q(j) = 2C−1

s .
For each 1 ≤ i ≤ C − 1,

For j in the first m2i elements of Bi, q(j) = 2C−i−1

s .
For j in the next m2i−1 elements of Bi, q(j) = 2C−i

s .
For j in the last m2i−1 elements of Bi, q(j) = 2C−i+1

s .
For each j ∈ BC , q(j) = 2

s .

We define p as follows:
For each j ∈ B0,

If j is in the first 2C−1 elements of B0, then p(j) = 1
s .

If j is in the last m− 2C−1 = 2C−1 − 1 elements of B0, then p(j) = 2C

s .
For each 1 ≤ i ≤ C − 1 and j ∈ Bi, p(j) = r(j) = 2C−i

s .
For each j ∈ BC ,

If j is in the first (m− 1)2C−1 elements of BC , then p(j) = 1
s .

If j is in the last 2C−1 elements of Bj , then p(j) = 2C

s .

▶ Lemma 19. For 0 ≤ i ≤ C,
∑

j∈Bi
p(j) =

∑
j∈Bi

q(j).

Proof. The proof is simply direct calculation. Observe that in bucket C,

s
∑

j∈BC

q(j) = m2C−1 · 2 = (m− 1)2C−1 + (m + 1)2C−1

= (m− 1)2C−1 · 1 + 2C · 2C−1 = s
∑

j∈BC

p(j).
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In bucket 0, we have

s
∑

j∈B0

q(j) = m · 2C−1 = (m− 1)2C−1 + 2C−1 = (2C − 2)2C−1 + 2C−1

= (2C−1 − 1) · 2C + 2C−1 · 1 = s
∑

j∈B0

p(j).

For 1 ≤ i ≤ C − 1, we have

s
∑
j∈Bi

p(j) = m2i+1 · 2C−i

= m(2i + 2(2i−1) + 2i+1)2C−1−i

= m2i · 2C−i−1 + m2i−1 · 2C−i + m2i−1 · 2C−i+1

= s
∑
j∈Bi

q(j).

The claim follows by dividing the equalities by s. ◀

▶ Lemma 20. dTV(r, q) = C
4C−1

Proof. By direct calculation,

2sdTV(r, q) = s

s∑
j=1
|r(j)− q(j)|

= m2C−1(2− 1) + m(2C − 2C−1)

+ 1
2

C−1∑
i=1

(
m2i(2C−i − 2C−i−1) + m2i−1(2C−i+1 − 2C−i)

)
= m2C +

C−1∑
i=1

(2i−1m2C−i + m2C−1−i2i)

= m2C +
C−1∑
i=1

(m2C−1 + m2C−1)

= Cm2C .

Dividing both sides by 2s yields the lemma. ◀

▶ Lemma 21. For every 0 ≤ i ≤ C, p(Bi) ≤ 2
C+1 (and similarly for q(Bi)).

Proof. We apply Lemma 19 and directly calculate. For bucket C, we get

p(BC) = q(BC) = 2
s
·m2C − 1 = 2

4C − 1 .

For bucket 0, we get

p(B0) = q(B0) = 2C−1

s
·m = 1

4C − 1 .

For 1 ≤ i ≤ C − 1, we get

q(Bi) = p(Bi) = 2i

s
·m(2C+1−i) = 4

4C − 1 .

The claim follows by observing that 4
4C−1 ≤

2
C+1 when C ≥ 3

2 . ◀



C. L. Canonne and K. Wimmer 55:15

▶ Lemma 22. dTV(r, p) = 1
4C−1

Proof. By direct calculation,

2sdTV(r, p) = 2C−1 · (2C − 1) + 2C−1 · (2C − 1) = 2C(2C−1) = m2C .

Dividing both sides by 2s yields the lemma. ◀

Let w = m(2C+1 + 2C−1 − 3). We assume that n is a multiple of w, and define t := n
w . To

define C and F over [n], we will need one further piece of notation. We denote by B′
w ⊆ Sw

the set of all permutations of [w] “respecting the buckets,” that is, for every 0 ≤ i ≤ C,

B′
w = {π ∈ Sw : π(Bi) = Bi∀i ∈ {0, 1, . . . , C}}

We then let r∗ := 1
t (r ⊔ r ⊔ · · · ⊔ r) as well as

C =
{

1
t
(c ◦ π1 ⊔ c ◦ π2 ⊔ · · · ⊔ c ◦ πt) : π1, . . . , πt ∈ B′

w

}
F =

{
1
t
(f ◦ π1 ⊔ f ◦ π2 ⊔ · · · ⊔ f ◦ πt) : π1, . . . , πt ∈ B′

w

}
where as before ⊔ denotes vector concatenation. Since dTV(r, c ◦ π) = dTV(r, c) and
dTV(r, f ◦ π) = dTV(r, f) for all π ∈ B′

s, we have that dTV(r∗, p) = 1
4C−1 for every dis-

tribution p ∈ C, and dTV(r∗, q) = C
4C−1 for every distribution q ∈ F . Further, repeating

the same partitioning of each interval of s elements of [n] into buckets B0, B1, . . . , BC , we
have t(C + 1) buckets, such that distinguishing a distribution in C from a distribution in F
requires seeing at 2 samples in at least one of these buckets. Since the probability mass on
each of the buckets at most 2

t(C+1) by Lemma 21, at least Ω(
√

t(C + 1)) = Ω(
√

n(C + 1)/w)
queries to distinguish in C from a distribution in F , completing the proof of Theorem 17. ◀

References
1 Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for

properties of distributions. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 3591–3599, 2015. URL: https://proceedings.neurips.cc/
paper/2015/hash/1f36c15d6a3d18d52e8d493bc8187cb9-Abstract.html.

2 Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing
that distributions are close. In 41st Annual Symposium on Foundations of Computer Science
(Redondo Beach, CA, 2000), pages 259–269. IEEE Comput. Soc. Press, Los Alamitos, CA,
2000. doi:10.1109/SFCS.2000.892113.

3 Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone
and unimodal distributions. In Symposium on Theory of Computing Conference, STOC’04,
pages 381–390, New York, NY, USA, 2004. ACM. doi:10.1145/1007352.1007414.

4 Eric Blais, Clément L. Canonne, and Tom Gur. Distribution testing lower bounds via
reductions from communication complexity. ACM Trans. Comput. Theory, 11(2):Art. 6, 37,
2019. doi:10.1145/3305270.

5 Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big. But is it Blue?
Number 9 in Graduate Surveys. Theory of Computing Library, 2020. doi:10.4086/toc.gs.
2020.009.

ISAAC 2021

https://proceedings.neurips.cc/paper/2015/hash/1f36c15d6a3d18d52e8d493bc8187cb9-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/1f36c15d6a3d18d52e8d493bc8187cb9-Abstract.html
https://doi.org/10.1109/SFCS.2000.892113
https://doi.org/10.1145/1007352.1007414
https://doi.org/10.1145/3305270
https://doi.org/10.4086/toc.gs.2020.009
https://doi.org/10.4086/toc.gs.2020.009


55:16 Identity Testing Under Label Mismatch

6 Clément L. Canonne and Karl Wimmer. Testing data binnings. In Jaroslaw Byrka and Raghu
Meka, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume
176 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.APPROX/RANDOM.2020.24.

7 Siu-on Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for test-
ing closeness of discrete distributions. In Chandra Chekuri, editor, Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1193–1203. SIAM, 2014. doi:10.1137/1.9781611973402.88.

8 Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, and Paul
Valiant. Testing k-modal distributions: Optimal algorithms via reductions. In Proceedings of
SODA, pages 1833–1852. Society for Industrial and Applied Mathematics (SIAM), 2013. URL:
http://dl.acm.org/citation.cfm?id=2627817.2627948.

9 Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Sample-optimal identity
testing with high probability. In 45th International Colloquium on Automata, Languages, and
Programming, volume 107 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 41, 14. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

10 Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Testing identity of structured
distributions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1841–1854. SIAM, Philadelphia, PA, 2015. doi:10.1137/1.9781611973730.
123.

11 Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. Ann. Math. Statist.,
27:642–669, 1956. doi:10.1214/aoms/1177728174.

12 Karl Pearson F.R.S. X. on the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to have
arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 50(302):157–175, 1900. doi:10.1080/14786440009463897.

13 Oded Goldreich. The uniform distribution is complete with respect to testing identity to
a fixed distribution. In Computational Complexity and Property Testing, volume 12050 of
Lecture Notes in Computer Science, pages 152–172. Springer, 2020.

14 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, July 1998.

15 Dayu Huang and Sean Meyn. Generalized error exponents for small sample universal hypothesis
testing. IEEE Trans. Inform. Theory, 59(12):8157–8181, 2013. doi:10.1109/TIT.2013.
2283266.

16 Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance.
IEEE Trans. Inf. Theory, 64(10):6672–6706, 2018.

17 Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab.,
18(3):1269–1283, 1990.

18 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Trans. Inform. Theory, 54(10):4750–4755, 2008. doi:10.1109/TIT.2008.928987.

19 Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for
multi-collisions. In Information security and cryptology – ICISC 2006, volume 4296 of Lecture
Notes in Comput. Sci., pages 29–40. Springer, Berlin, 2006. doi:10.1007/11927587_5.

20 Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electronic Colloquium on Computational Complexity (ECCC), 17:179, 2010. URL: http:
//eccc.hpi-web.de/report/2010/179.

21 Gregory Valiant and Paul Valiant. Estimating the unseen: A sublinear-sample canonical
estimator of distributions. Electronic Colloquium on Computational Complexity (ECCC),
17:180, 2010. URL: http://eccc.hpi-web.de/report/2010/180.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.24
https://doi.org/10.1137/1.9781611973402.88
http://dl.acm.org/citation.cfm?id=2627817.2627948
https://doi.org/10.1137/1.9781611973730.123
https://doi.org/10.1137/1.9781611973730.123
https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/TIT.2013.2283266
https://doi.org/10.1109/TIT.2013.2283266
https://doi.org/10.1109/TIT.2008.928987
https://doi.org/10.1007/11927587_5
http://eccc.hpi-web.de/report/2010/179
http://eccc.hpi-web.de/report/2010/179
http://eccc.hpi-web.de/report/2010/180


C. L. Canonne and K. Wimmer 55:17

22 Gregory Valiant and Paul Valiant. The power of linear estimators. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science – FOCS 2011, pages 403–412. IEEE
Computer Soc., Los Alamitos, CA, 2011. doi:10.1109/FOCS.2011.81.

23 Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. SIAM J. Comput., 46(1):429–455, 2017. doi:10.1137/151002526.

ISAAC 2021

https://doi.org/10.1109/FOCS.2011.81
https://doi.org/10.1137/151002526

	1 Introduction
	1.1 Our results
	1.2 Previous work

	2 Preliminaries
	3 Testing
	3.1 Upper bound
	3.2 Lower bound

	4 Tolerant testing
	4.1 Upper bound
	4.2 Lower bound


