
Linear-Time Approximation Scheme for k-Means
Clustering of Axis-Parallel Affine Subspaces
Kyungjin Cho #

POSTECH, Pohang, South Korea

Eunjin Oh #

POSTECH, Poahng, South Korea

Abstract
In this paper, we present a linear-time approximation scheme for k-means clustering of incomplete
data points in d-dimensional Euclidean space. An incomplete data point with ∆ > 0 unspecified
entries is represented as an axis-parallel affine subspace of dimension ∆. The distance between
two incomplete data points is defined as the Euclidean distance between two closest points in the
axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k-means
clustering of axis-parallel affine subspaces of dimension ∆ that yields an (1 + ϵ)-approximate solution
in O(nd) time. The constants hidden behind O(·) depend only on ∆, ϵ and k. This improves the
O(n2d)-time algorithm by Eiben et al. [SODA’21] by a factor of n.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases k-means clustering, affine subspaces

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.46

Related Version Full Version: https://arxiv.org/abs/2106.14176

Funding This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.2020R1C1C1012742).

1 Introduction

Clustering is a fundamental research topic in computer science, which arises in various
applications [13], including pattern recognition and classification, data mining, image analysis,
and machine learning. In clustering, the objective is to group a set of data points into clusters
so that the points from the same cluster are similar to each other. Usually, input points
lie in a high-dimensional space, and the similarity between two points is defined as their
distance. Two of the popular clusterings are k-median and k-means clusterings. In the
k-means clustering problem, we wish to partition a given point set into k clusters to minimize
the sum of squared distances of each point to its cluster center. Similarly, in the k-median
clustering problem, we wish to partition a given point set into k clusters to minimize the
sum of distances of each point to its cluster center.

In this paper, we consider clustering for incomplete data points. The analysis of incomplete
data is a long-standing challenge in practical statistics. There are lots of scenarios where
entries of points of a given data set are incomplete [2]. For instance, a few questions are left
blank on a questionnaire; weather records for a region omit the figures for one weather station
for a short period because of a malfunction; stock exchange data is absent for one stock on
one day because of a trading suspension. Various heuristic, greedy, convex optimization,
statistical, or even ad hoc methods were proposed throughout the years in different practical
domains to handle missing data [2].

Gao et al. [10] introduced a geometric approach to deal with incomplete data points for
clustering problems. An incomplete point has one or more unspecified entries, which can be
represented as an axis-parallel affine subspace. The distance between two incomplete data

© Kyungjin Cho and Eunjin Oh;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyungjincho@postech.ac.kr
mailto:eunjin.oh@postech.ac.kr
https://doi.org/10.4230/LIPIcs.ISAAC.2021.46
https://arxiv.org/abs/2106.14176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

points is defined as the Euclidean distance between two closest points in the axis-parallel
affine subspaces corresponding to the data points. Since the distance between an axis-parallel
affine subspace and a point is well-defined, the classical clustering problems such as k-means,
k-median, and k-center can be defined on a set of axis-parallel affine subspaces.

The k-center problem in this setting was studied by [10, 11, 15]. Gao et al. [10, 11]
focused on the k-center clustering for k ≤ 3, and presented an approximation algorithm
for the k-center clustering of axis-parallel affine subspaces. Later, Lee and Schulman [15]
improved the running time of the algorithm by Gao et al., and then presented an O(nd)-time
approximation algorithm for the k-center clustering problem for a larger k. The constant
hidden behind O(·) depends on ∆, ϵ and k. Moreover, they showed that the running time of
an approximation algorithm with any approximation ratio cannot be polynomial in even one
of k and ∆ unless P = NP, and thus the running time of their algorithm is almost tight.

Very recently, Eiben et al. [7] presented an approximation algorithm for the k-means
clustering of n axis-parallel affine subspaces of dimension ∆. Their algorithm yields an
(1 + ϵ)-approximate solution in O(n2d) time with probability O(1). The constant hidden
behind O(·) depends on ∆, ϵ and k. Since the best-known algorithm for the k-center clustering
in this setting runs in time linear in both n and d (but exponential in both k and ∆), it is a
natural question if a similar time bound can be achieved for the k-means clustering. In this
paper, we resolve this natural question by presenting an (1 + ϵ)-approximation algorithm for
the k-means clustering problem running in time linear in n and d.

Related work. The k-median and k-means clustering problems for points in d-dimensional
Euclidean space have been studied extensively. Since these problems are NP-hard even
for k = 2 or d = 2 [3, 16, 18], the study of k-means and k-median clusterings have been
devoted to obtain (1 + ϵ)-approximation algorithms for these problems [1, 5, 8, 12, 14]. These
algorithms run in time polynomial time in the input size if one of k and d is constant. Indeed,
it is NP-hard to approximate Euclidean k-means clustering within a factor better than a
certain constant larger than one [4]. That is, the k-means clustering problem does not admit
a PTAS for arbitrary k and d unless P=NP.

Also, the clustering problems for lines (which are not necessarily axis-parallel) also
have been studied [17, 19]. More specifically, Ommer and Malik [19] presented a heur-
istic for k-median clustering of lines in three-dimensional space. Later, Marom and Feld-
man [17] presented an algorithm for computing a coreset of size dkO(k) log n/ϵ2, which gives
a polynomial-time (1 + ϵ)-approximation algorithm for the k-means clustering of lines in
d-dimensional Euclidean space.

Our results. We present an algorithm for k-means clustering of axis-parallel affine subspaces
of dimension ∆ that yields an (1 + ϵ)-approximate solution in 2O(∆4k

ϵ (log ∆
ϵ +k))dn time with

a constant probability. This improves the previously best-known algorithm by Eiben et
al [7], which takes 2O(∆7k3

ϵ (log k∆
ϵ))dn2 time. Since it is a generalization of the k-means

clustering problem for points (∆ = 0), it does not admit a PTAS for arbitrary k and d unless
P=NP. Similarly to Lee and Schulman [15], we show in the full version of this paper that an
approximation algorithm with any approximation ratio cannot run in polynomial time in
even one of k and ∆ unless P=NP. The running time of our algorithm is almost tight in the
sense that it is linear in nd and exponential in k and ∆.

▶ Theorem 1 ([4, 15]). No algorithm for computing an (1+α)-approximate k-means clustering
runs in time polynomial of n, d and ∆ (or polynomial of n, d and k) unless P=NP.

K. Cho and E. Oh 46:3

This lower bound does not rule out the possibility that this problem can be solved in
O(nd + f(k, ∆)) time for an exponential function f of k and ∆. However, it seems hard
to achieve this goal using the framework of Kumar et al. [14] and Ackermann et al. [1] as
their algorithms (for the standard clustering problem) also run in O(nd · f(k)) time for an
exponential function f of k.

▶ Remark 2. Although it seems hard to achieve a significantly better running time using
the framework of Ackermann et al., there is a merit of using this framework: we can handle
outliers without additional effort as shown in [9]. Details will be discussed in Conclusion.

2 Preliminaries

We consider points in Rd with missing entries in some coordinates. Let us denote the missing
entry value by ⊗, and let Hd denote the set of elements of Rd where we allow some coordinates
to take the value ⊗. Furthermore, we call a point in Hd a ∆-missing point if at most ∆ of its
coordinates have value ⊗. We use [k] to denote the set {1, . . . , k} for any integer k ≥ 1. For
any point u ∈ Hd and an index i ∈ [d], we use (u)i to denote the entry of the i-th coordinate
of u. If it is clear from the context, we simply use ui to denote (u)i. Throughout this paper,
we use i or j to denote an index of the coordinates of a point, and t to denote an index of a
sequence (of points or sets). We use (ut)t∈[k] to denote a k-tuple consisting of u1, u2, . . . , uk.

Distance between two ∆-missing points. The domain of a point u in Hd, denoted by
dom(u), is defined as the set of coordinate-indices i ∈ [d] with (u)i ̸= ⊗. For a set I of
coordinate-indices in [d], we say that u is fully defined on I if dom(u) ⊆ I. Similarly, we say
that u is partially defined on I if dom(u) ∩ I ̸= ∅. For a set P of points of Hd and a set I of
coordinate-indices in [d], we use FD(P, I) to denote the set of points of P fully defined on
I. Similarly, we use PD(P, I) to denote the set of points of P partially defined on I. The
null point is a point p ∈ Hd such that (p)i = ⊗ for all indices i ∈ [d]. With a slight abuse of
notation, we denote the null point by ⊗ if it is clear from the context. Also, we sometimes
use It to denote dom(ut) if it is clear from the context.

Notice that a ∆-missing point in Hd can be considered as a ∆-dimensional affine subspace
in Rd. The distance between two ∆-missing points in Hd is defined as the Euclidean distance
between their corresponding ∆-dimensional affine subspaces in Rd. More generally, we define
the distance between two points x and y in Hd on a set I ⊆ [d] as

dI(x, y) =
√∑

i∈I

|xi − yi|2,

where |a− b| = 0 for a = ⊗ or b = ⊗ by convention.

The k-Means clustering of ∆-missing points. In this paper, we consider the k-means
clustering of ∆-missing points of Hd. As in the standard setting (for ∆ = 0), we wish to
partition a given point set P into k clusters to minimize the sum of squared distances of each
point to its cluster center. For any partition (Pt)t∈[k] of P into k clusters such that each
cluster Pt is associated with a cluster center ct ∈ Rd, the cost of the partition is defined as
the sum of squared distances of each point in P to its cluster center.

To be more precise, we define the clustering cost as follows. For a set P ⊂ Hd and a
∆-missing point y, we use cost(P, y) to denote the sum of squared distances of each point
in P to y. We also define the cost on a coordinate set I ⊆ [d], denoted by costI(P, y), as

ISAAC 2021

46:4 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

the sum of squared distances on I between the points in P and their cluster centers. That is,∑
x∈P dI(x, y)2. For convention, costi(P, y) = cost{i}(P, y) for i ∈ [d]. The clustering cost

cost((Pt)t∈[k], (ct)t∈[k]) of clustering ((Pt)t∈[k], (ct)t∈[k]) is defined as
∑

t∈[k] cost(Pt, ct).

Now we introduce two properties of an optimal clustering ((P ∗
t)t∈[k], (c∗

t)t∈[k]) that
minimizes the clustering cost, which will be frequently used throughout this paper. For each
cluster P ∗

t , cost(P ∗
t , ct) is minimized when ct is the centroid of P ∗

t [7]. That is, c∗
t is the

centroid of P ∗
t . For a set P of points in Hd, the centroid of P , denoted by c(P), is defined as

(c(P))i =
{
⊗ if PD(P, i) = ∅,∑

u∈PD(P,i)
ui

|PD(P,i)| otherwise.

Also, the clustering cost is minimized when (P ∗
t)t∈[k] forms the Voronoi partition of P

induced by (c∗
t)t∈[k] [7]. That is, (P ∗

t)t∈[k] is the partition of P into k clusters in such a way
that c∗

t is the closest cluster point from any point p in P ∗
t .

Sampling. Our algorithm uses random sampling to compute an approximate k-means
clustering. Lemma 3 is a restatement of [1, Lemma 2.1], and Lemma 4 is used in [7] implicitly.
Since Lemma 4 is not explicitly stated in [7], we give a sketch of the proof in the full version
of this paper [6].

▶ Lemma 3 ([1, Lemma 2.1]). Assume that we are given a set P of points in Hd, an index
i ∈ [d], and an approximation factor α > 0. Let Q be a subset of P with |PD(Q, i)| ≥ c|P |
for some constant c, which is not given explicitly. Then we can compute a point x of R in
O(|P |dmα,δ) time satisfying with probability 1−δ

5 2Ω(−mα,δ log(1
c mα,δ)) that

costi(Q, x) ≤ (1 + α)costi(Q, c(Q)),

where mα,δ ∈ O(1/(αδ)).

▶ Lemma 4 ([7]). Assume that we are given a set P of ∆-missing points in Hd and an
approximation factor α > 0. Let Q be a subset of P with |Q| ≥ c|P | for some constant c with
0 < c < 1, which is not given explicitly. Then we can compute a ∆-missing point u ∈ Hd in
O(|P |dλ) time satisfying with probability c8(∆+1)λ+1

4(4∆)8∆λ that

costI(Q, u) < (1 + α)costI(Q, c(Q)),

where I denotes the domain of u, and λ = max{(3
α)1/(2∆), (128∆3)1/(2∆)}.

3 Overview of the Algorithm

We first briefly describe a (1 + ϵ)-approximation algorithm for k-means clustering for points
in d-dimensional Euclidean space given by Kumar et al. [14]. Let P be a set of n points in
Rd, and ((P ∗

t)t∈[k], (c∗
t)t∈[k]) be an optimal k-means clustering for P .

Sketches of [1] and [14]. The algorithm of Kumar et al. [14] consists of several phases of
two types: sampling phases and pruning phases. Their idealized strategy is as follows. At
the beginning of a phase, it decides the type of the phase by computing the index t that
maximizes |P ∗

t |. If the cluster center of P ∗
t has not been obtained, the algorithm enters

the sampling phase. This algorithm picks a random sample of a constant size from P , and
hopefully this sample would contain enough random samples from P ∗

t . Then one can compute
a good approximation ct to c∗

t using Lemma 3.

K. Cho and E. Oh 46:5

If it is not the case, the algorithm enters a pruning phase, and it assigns each point to its
closest cluster if their distance is at most L, where L denotes the smallest distance between
two cluster centers we have obtained so far. They repeat this until all cluster centers are
obtained, and finally obtain a good approximation to (P ∗

t)t∈[k].
However, obviously, it is hard to implement this idealized strategy. To handle this, they

try all possibilities (for both pruning and sampling phases and for all indices t ∈ [k] to be
updated for sampling phases), and return the best solution found this way. Kumar et al. [14]
showed that their algorithm runs in O(2(k/ϵ)O(1)

dn) time, and returns an (1 + ϵ)-approximate
k-means clustering with probability 1/2. Later, Ackermann et al. [1] gave a tighter bound on
the running time of this algorithm.

Sketch of Eiben et al. [7]. To handle ∆-missing points, Eiben et al. generalized the
algorithm in [14]. Their idealized strategy can be summarized as follows. It maintains k

centers (ut)t∈[k], which are initially set to the null points. In each sampling phase, it obtains
one (or at least [d]−∆) coordinate of one of the centers.

At the beginning of a phase, it decides the type of the phase by computing the index t that
maximizes |PD(P ∗

t , [d]− It)|. A sampling phase happens if |PD(P ∗
t , [d]− It)| > c|R|, where R

denotes the number of points which are not yet assigned to any cluster. In this case, a random
sample of constant size from R would contain enough random samples from |PD(P ∗

t , j)| with
j ∈ [d]− It. Thus, using the random sample, one can obtain a good approximation to (c∗

t)j .
Otherwise, a pruning phase happens. In a pruning phase, the algorithm assigns points

which are not yet assigned to any cluster to clusters. Here, a main difficulty is that even
though the distance between a point p in R and its closest center ut is at most L, where L

denotes the distance between two cluster centers, p is not necessarily in P ∗
t . They resolved

this in a clever way by ignoring ∆ coordinates for comparing the distances from two cluster
centers.

Comparison of our contribution and Eiben et al. [7]. Our contribution is two-fold: the
dependency on n decreases to O(n) from O(n2), and the dependency of ∆ and k decreases
significantly. First, the improvement on the dependency of n comes from introducing a
faster and simpler procedure for a pruning phase. In the previous algorithm, it cannot
be guaranteed that a constant fraction of points of R is removed from R. This yields the
quadratic dependency of n in their running time. We overcome the difficulty they (and we)
face in a pruning phase in a different way. For each subset T of [k], we consider the set ST

of points x ∈ R such that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every t′ /∈ T .
Then ST ’s for all subsets T ⊂ [k] form a partition of R. In a pruning phase, we choose the
set ST that maximizes |ST |. We show that the size of ST is at least a constant fraction of
|R| (unless we enter the sampling phase). Moreover, in this case, if the distance between a
point p in ST and its closest center ut is at most L, where L denotes the distance between
two cluster centers, it holds that p ∈ P ∗

t .
Second, we improved the dependency of ∆ and k using the framework of Ackermann et

al. [1]. To adapt this framework for our problem, we are required to handle several technical
difficulties. This is mainly because the center of each cluster changes during the execution of
the algorithm in our case unlike the standard setting considered in [1].

Due to the lack of space, some proofs are omitted. All missing proofs can be found in the
full version of this paper.

ISAAC 2021

46:6 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

Algorithm 1 Idealized k-Means.
input : A set P of ∆-missing points in the plane
output : A (1 + ϵ)-approximate k-means clustering for P

1 R← P and Pt ← ∅ for all cluster-indices t ∈ [k]
2 Initialize U = ⟨u1, . . . , uk⟩ so that (ut)i = ⊗ for all cluster-indices t ∈ [k] and i ∈ [d]
3 while R ̸= ∅ do
4 Let t be the cluster-index that maximizes |PD(R ∩ P ∗

t , [d]− It)|
5 if |PD(R ∩ P ∗

t , [d]− It)| ≥ c|R| then
/* sampling phase */

6 if It = ∅ then
/* We respresent this sampling phase as (t, dom(ut)) */

7 ut ← The ∆-missing point obtained from Lemma 4
8 else

/* We respresent this sampling phase as (t, {j}) */
9 Let j be the coordinate-index in [d]− It that maximizes PD(R ∩ P ∗

t , j)
10 (ut)j ← The value obtained from Lemma 3
11 Assign the points in FD(R,∩t∈[k]It) to their closest cluster centers in U
12 R← R− FD(R,∩t∈[k]It)
13 else

/* pruning phase */
/* UT is the set of all ut for t ∈ T */

14 T ← The set of cluster-indices that maximizes |ST |
15 B ← The first half of ST sorted in ascending order of distance from UT

16 Assign the points in B to their closest cluster centers in UT

17 R← R−B

18 return U

4 For k-Means Clustering

In this section, we describe and analyze for a k-means clustering algorithm. Let U =
⟨u1, u2, . . . , uk⟩ be a sequence of points in Hd.

4.1 Algorithm Using the Counting Oracle
We first sketch an algorithm for k-clustering assuming that we can access the counting oracle.
Let ⟨P ∗

1 , · · · , P ∗
k ⟩ be an optimal k-clustering for P induced by the centroids ⟨c∗

1, · · · , c∗
k⟩. The

counting oracle takes a subset of P and a cluster-index t ∈ [k], and it returns the number
of points in the subset which are contained in P ∗

t . Then in Section 4.3, we show how to
compute an approximate clustering without the counting oracle.

The algorithm consists of several phases of two types: a sampling phase or a pruning
phase. We initialize U to a k-tuple of null points. In a sampling phase, we obtain values of
(ut)j for indices t ∈ [k] and j ∈ [d] which were set to ⊗. Also, we assign points of P to one of
the k clusters in sampling and pruning phases. The pseudocode of the algorithm is described
in Algorithm 1. At any moment during the execution of the algorithm, we maintain a set R

of remaining points and a k-tuple U = ⟨u1, . . . , uk⟩ of (partial) centers in Hd. We let It be
dom(ut). Initially, R is set to P , and U is set to the k-tuple of null points. The algorithm
terminates if R = ∅, and finally U becomes a set of points in Rd.

K. Cho and E. Oh 46:7

We consider the partition F of R defined as follows. For a subset T of [k], let ST denote
the set of points x ∈ R such that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every
t′ /∈ T . Let F = {ST | T is a proper subset of [k]}. The following lemma shows that F is a
partition of R.

▶ Lemma 5. For any point x ∈ R, there exists a unique set in F containing x.

At the beginning of each phase, we decide the type of the current phase. Let t be the
cluster-index of [k] that maximizes |PD(R ∩ P ∗

t , [d] − It)|, where R is the set of points of
P which are not assinged to any cluster. The one of the following cases always happen:
|PD(R ∩ P ∗

t , [d] − It)| ≥ c|R|, or there exists a set T of cluster-indices in [k] such that
|ST ∩ (∪t∈T P ∗

t)| ≥ c|R| for any constant c < 1/(2k + k), which will be specified later.1

▶ Lemma 6. One of the following always holds for any constant c < 1/(2k + k).
|PD(R ∩ P ∗

t , [d]− It)| ≥ c|R| for a cluster-index t ∈ [k], or
|ST ∩ (∪t∈T P ∗

t)| ≥ c|R| for a proper subset T of [k].

Sampling phase. If the first case happens, we enter a sampling phase. Let α be a constant,
which will be specified later. We use it as an approximation factor used in Lemmas 3 and 4
for sampling. If It is empty, we replace ut with a ∆-missing point in Hd obtained from
Lemma 4. If It is not empty, then it is guaranteed that |It| is at least d−∆. We compute
the coordinate-index j in [d]− It that maximizes |PD(R ∩ P ∗

t , j)| using the counting oracle.
Clearly, (ut)j = ⊗ and |PD(R∩P ∗

t , j)| is at least c|R|/∆. Then we replace (ut)j with a value
obtained from Lemma 3. At the end of the phase, we check if FD(R,∩t∈[k]It) is not empty.
If it is not empty, we assign those points to their closest cluster centers.

Pruning phase. Otherwise, we enter a pruning phase. Instead of obtaining a new coordinate
value of ut, we assign points of R to cluster centers in a pruning phase. To do this, we find a
proper subset T of [k] which maximizes |ST |. Then among the points of ST , we choose the
|ST |/2 points closest to their closest centers in UT , where UT is the set of all ut for t ∈ T .
Then we assign each of them to its closest center in UT . In this way, points in ∪t′ /∈T P ∗

t′ might
be assigned (incorrectly) to ut for a cluster-index t ∈ T . We call such a point a stray point.

4.2 Analysis of the Approximation Factor
In this section, we analyze the approximation factor of the algorithm. We let S be the
sequence of sampling phases happened during the execution of the algorithm. At the end
of the algorithm, U becomes a (1 + ϵ)-approximate clustering as we will see later. In the
following, we use C = ⟨c1, . . . , ck⟩ to denote the output of the algorithm. For a sequence T

of cluster-indices, we use CT to denote a |T |-tuple consisting of ct for t ∈ T . Let optk(P)
denote the clustering cost of an optimal k-means clustering of P .

▶ Lemma 7. The size of S is at most k(∆ + 1).

Preliminaries. Recall that S denotes the sequence of sampling phases. Here, we represent
a sampling phase as the pair (t, I), where t is the cluster-index considered in the sampling
phase, and I is the set of indices i such that (ut)i is obtained during the sampling phase.

1 We set α = ϵ/3, and c = α
8·2kk2(∆+1) .

ISAAC 2021

46:8 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

Note that the size of I is either one or at least d − ∆ for any sampling phase. Also, for
s = (t, I) ∈ S, we let ts = t and Is = I. For each sampling phase s = (t, I), let Rs be the set
of points of P ∗

t which are not assigned at the beginning of the phase. Furthermore, let Is
t′

denote dom(ut′) we have at the end of the sampling phase s for a cluster-index t′ ∈ [k]. For
two sampling phases s and s′ in S, we use s ⪯ s′ if s comes before s′ in S or equals to s′.
We denote P ∗

T = ∪t∈T P ∗
t and P ∗

T̄
= ∪t′ /∈T P ∗

t′ .

Sketch. A point of P is assigned to one of the clusters during a sampling phase or a pruning
phase. That is, at the end of the execution of the algorithm, P is partitioned into k clusters
P1, . . . , Pk. Note that it is not necessarily a Voronoi partition of P with respect to C. Our goal
in this section is that the clustering cost cost((Pt)t∈[k], (ct)t∈[k]) is at most (1 + ϵ)optk(P).
We first show that the clustering cost induced by non-stray points is (1 + α)optk(P), and
then show that the clustering cost induced by stray points is αoptk(P).

For this, we use the two following technical lemmas. Lemma 8 is a consequence of
Lemmas 3 and 4, and Claim 9 follows from construction. Proofs can be found in the
Appendix of the full version [6].

▶ Lemma 8.
∑

s∈S costIs(Rs, cts) ≤ (1 + α)optk(P) with a probability at least pkqk∆,
where q and p are the probabilities in Lemmas 3 and 4.

▷ Claim 9. For a sampling phase s′ in S and a proper subset T of [k], let X be a point
subset of ST which are not assigned at the end of a sampling phase s′. Then

cost(X ∩ P ∗
T , CT) ≤

∑
costIs(PD(X ∩ P ∗

ts , Is), cts),

where the summation is taken over all sampling phases s in S with s ⪯ s′ and ts ∈ T .

4.2.1 Clustering Cost Induced by Non-Stray Points

We first show that the clustering cost induced by non-stray points is at most (1 + α)optk(P).
There are two types of non-stray points: the points assigned during the sampling phases,
and the points assigned during the pruning phases which are not stray. The first term in the
following lemma is the clustering cost induced by points of the first type, and the second
term is the clustering cost induced by points of the second type. For a proper subset T of
[k], let As

T be the set of points in ST assigned to U during the consecutive pruning phases
lying between two adjacent sampling phases s and s′ with s ⪯ s′.

▶ Lemma 10. Let S be the set of points assigned during the sampling phases.

cost(S, C) +
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T , CT) ≤ (1 + α)optk(P),

with a probability at least pkqk∆, where q and p are the probabilities in Lemmas 3 and 4.

Proof. A point p ∈ S is assigned to its closest center in C. This is because we assign a point
during a sampling phase only if it is fully defined on dom(ut) for all cluster-indices t ∈ [k].
Thus the following holds.

cost(S, C) ≤
∑
t∈[k]

cost(S ∩ P ∗
t , ct) =

∑
s∈S

costIs(PD(S ∩Rs, I), cts).

K. Cho and E. Oh 46:9

For the second term of this claim, we have the following:∑
s′∈S

∑
T⊊[k]

cost(As′

T ∩ P ∗
T , CT) ≤

∑
s′∈S

∑
T⊊[k]

∑
s⪯s′

ts∈T

costIs(PD(As′

T ∩ P ∗
ts , Is), cts)

=
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(As′

T ∩ P ∗
ts , Is), cts)

≤
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(As′

T ∩Rs, Is), cts)

≤
∑
s∈S

costIs(PD(A ∩Rs, Is), cts),

where A denotes the set of points of P assigned during all pruning phases. The first inequality
holds by Claim 9. The second and the last inequalities hold since they change only the
ordering of summation. The third inequality holds since As′

T ∩ P ∗
ts ⊂ Rs if s ⪯ s′.

By combining previous properties together with Claim 9, we have:

cost(S, C) +
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T , CT) ≤
∑
s∈S

costIs(PD(S ∩Rs, Is), cts)

+
∑
s∈S

costIs(PD(A ∩Rs, Is), cts)

≤
∑
s∈S

costIs(Rs, cts)

≤ (1 + α)optk(P). ◀

4.2.2 Clustering Cost Induced by Stray Points
Now we show that the clustering cost induced by stray points is αoptk(P). Recall that the
stray points are assigned to clusters during pruning phases. We first analyze the clustering
cost by considering consecutive pruning phases lying between two adjacent sampling phases
of S. Then we show that the overall clustering cost induced by stray points.

4.2.2.1 During consecutive pruning phases

Consider a sequence P of the consecutive pruning phases lying between two adjacent sampling
phases s and s′ in S with s ⪯ s′. Let N denote the number of pruning phases in P. For a
proper subset T of [k], recall that As

T denotes the set of points in ST assigned to U during
the phases in P. During this period, ut remains the same for each cluster-index t ∈ [k]. By
definition, As

T ∩ P ∗
T̄

is the set of stray points assigned during the pruning phases in P. For
each pruning phase of P, we choose a subset T of [k] and assign a half of ST to U . Here,
note that distinct pruning phases of P might choose distinct subsets T . Therefore, there
might be more than one subsets T of [k] with As

T ̸= ∅.
We first analyze the clustering cost induced by stray points assigned during the pruning

phases in P . Recall that Rs denotes the set of points of P which are not yet assigned to any
cluster at the end of the sampling phase s. Let Ss

T denotes the set of points of x ∈ Rs such
that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every t′ /∈ T .

▶ Lemma 11.
∑

T⊊[k] cost(As
T ∩ P ∗

T̄
, CT) ≤ 8 · 2kck ·

∑
T⊊[k] cost(Ss

T ∩ P ∗
T , CT).

ISAAC 2021

46:10 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

Proof (Sketch). Since Ss
T ’s form a partition of Rs, it suffices to fix a proper subset T of [k]

and show that cost(As
T ∩ P ∗

T̄
, CT) ≤ 8 · 2kck · cost(Ss

T ∩ P ∗
T , CT). We partition As

T into N

subsets so that A
(x)
T is the set of points of ST assigned to U at the xth pruning phase of P.

By construction, in the xth pruning phase, there exists a unique index-set T with A
(x)
T ̸= ∅.

Let XT be the increasing sequence of indices x of [N] with A
(x)
T ̸= ∅.

For any consecutive indices x and x′ in XT with x′ < x and any proper subset T of [k], we
show that the clustering cost induced by stray points assigned during the x′th pruning phase
of P is at most 8 · 2kck times the clustering cost induced by non-stray points assigned during
the xth pruning phase of P. Also, we analyze the clustering cost induced by stray points
assigned during the last phase of P similarly. The clustering cost induced by all non-stray
points assigned during the pruning phases of P is at most

∑
T⊊[k] cost(Ss

T ∩ P ∗
T , CT), and

thus the lemma holds. Details can be found in the full version of this paper. ◀

4.2.2.2 During the entire pruning phases

Recall that S denotes the sequence of sampling phases, and each sampling phase is represented
as (t, I), where t is the cluster-index considered in the sampling phase, and I is the set of
indices i such that (ut)i is obtained during the sampling phase.

The following lemma gives an upper bound of the total cost induced by the stray points.

▶ Lemma 12.
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T̄
, CT) ≤ 8 · 2kck2(∆ + 1)(1 + α)optk(P),

with a probability at least pkqk∆, where q and p are the probabilities in Lemmas 3 and 4.

Proof. The lemma holds by the following inequalities. The first and second inequalities hold
by Claims 11 and 9, respectively. The third one holds since it changes only the ordering of
summation. The fourth one holds since for a fixed sampling phase s′ in S, Ss′

T are disjoint
for all proper subsets T of [k]. Also notice that, for two sampling phases s, s′ in S and a
proper subset T of [k], Rs contains Ss′

T ∩ P ∗
ts if s ⪯ s′. The fifth one holds since the size of S

is at most k(∆ + 1). The last two hold by the definition of cost(·).∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T̄
, CT) ≤ 8 · 2kck

∑
s∈S

∑
T⊊[k]

cost(Ss
T ∩ P ∗

T , CT)

≤ 8 · 2kck
∑
s′∈S

∑
T⊊[k]

∑
s⪯s′

ts∈T

costIs(PD(Ss′

T ∩ P ∗
ts , Is), cts)

= 8 · 2kck
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(Ss′

T ∩ P ∗
ts , Is), cts)

≤ 8 · 2kck
∑
s∈S

∑
s⪯s′

costIs(PD(Rs, Is), cts)

≤ 8 · 2kck2(∆ + 1)
∑
s∈S

costIs(PD(Rs, Is), cts)

≤ 8 · 2kck2(∆ + 1)
∑
s∈S

costIs(Rs, cts),

≤ 8 · 2kck2(∆ + 1)(1 + α)optk(P). ◀

We can obtain the following lemma by combining Lemma 10 and Lemma 12.

▶ Lemma 13. For a constant α > 0, the algorithm returns an (1 + 8 · 2kck2(∆ + 1))(1 + α)-
approximate k-means clustering for P with probability at least pkqk∆, where q and p are the
probabilities in Lemmas 3 and 4.

K. Cho and E. Oh 46:11

Algorithm 2 k-Means.

1 R← R− FD(R,∩t∈[k]It)
2 E ← ∅
3 U ′ = ⟨u′

1, . . . , u′
k⟩ ← U = ⟨u1, . . . , uk⟩

4 if R = ∅ then return u[k]
5 for t ∈ [k] do
6 if It = ∅ then
7 u′

t ← the ∆-missing point obtained from Lemma 4
8 Add the clustering returned by k-Means (U ′, R) to E
9 else

10 foreach j ∈ [d]− It do
11 u′

t ← ut

12 (u′
t)j ← The value obtained from Lemma 3

13 Add the clustering returned by k-Means (U ′, R) to E

14 T ← the non-empty proper subset of [k] that maximizes |R ∩ ST |
15 if |R ∩ ST | ≥ |R|/(2k − 1) then

/* UT is the set of all ut for t ∈ T */
16 B ← The first half of |R ∩ ST | sorted in ascending order of distance from UT

17 Add the clustering returned by k-Means (U , R−B) to E
18 return the clustering C in E which minimizes cost(R, C)

4.3 Algorithm without Counting Oracle
The algorithm we have described uses the counting oracle in two places: determining the type
of the phase and selecting a pair of the cluster-index and coordinate-index to be updated in
a sampling phase. In this section, we explain how to avoid using the counting oracle. To
do this, we simply try all possible cases: run both phases and update each possible cluster
for all indices during a sampling phase. The main algorhm, k-Means (U , R), is described
in Algorithm 2. Its input consists of cluster centers U of a partial clustering of P and
a set R of points of P which are not yet assigned. Finally, k-Means (⊗k, P) returns an
(1 + 8 · 2kck2(∆ + 1))(1 + α)-approximate k-means clustering of P , where ⊗k denotes the
k-tuple of Hd of null points.

The clustering cost returned by k-Means (⊗k, P) is at most the cost returned by the
algorithm which uses the counting oracle in Section 4.1. In the following, we analyze the
running time of k-Means (⊗k, P). Let T (n, δ) be the running of k-Means (U , R) when n = |R|
and δ =

∑
t∈[k] min{d− |It|, ∆ + 1}. Here, δ is an upper bound on the number of updates

required to make It = [d] for every cluster-index t in [k]. Then we have the following
recurrence relation for T (n, δ).

▷ Claim 14. T (n, δ) ≤ δ · T (n, δ − 1) + T
((

1− 1
2k+1−2

)
n, δ

)
+ O(kδ∆3dn

α)

Proof. In a sampling phase, k-Means calls itself at most δ times recursively with different
parameters. Each recursive call takes T (n, δ − 1) time. Also, the time for updating cluster
centers takes O(δ∆3dn/α) in total by Lemma 3 and 4. For a pruning phase, we compute
|R ∩ ST | for each T ⊊ [k] in total O(dn) time, and then choose the first half of ST in
increasing order of the distances from uT in total O(kdn) time. The recursive call invoked in
the pruning phase takes T

((
1− 1

2k+1−2

)
n, δ

)
time. We have δ + 1 clusterings returned by

recursive calls in total, and we can choose c[k] in O(δkdn) time. Thus, the claim holds. ◁

ISAAC 2021

46:12 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

By solving the recurrence relation, we can obtain an upper bound of T (n, δ).

▷ Claim 15. T (n, δ) ≤ (2δ(2k − 1))2δ+1(1 + 1
2k+1−3)δ2∆3kdn/α

We obtain the following theorem by setting α = ϵ/3, and c = α
8·2kk2(∆+1) .

▶ Theorem 16. Given a ∆-missing n-point set P in Hd, a (1 + ϵ)-approximate solution
to the k-means clustering problem can be found in 2O(max{∆4k(log ∆+k), ∆k

ϵ (log 1
ϵ +k)})dn time

with a constant probability 1/2.

5 Concluding Remarks

In this paper, we gave a linear-time approximation algorithm for k-means clustering on
axis-parallel affine subspaces. Our algorithm runs in time linear in nd, which is the size of
the input. The bound is almost tight in the sense that no (1 + ϵ)-approximation algorithm
for this problem runs in time polynomial in even one of k and ∆.

Our algorithm is based on the framework of Kumar et al. [14] and Ackerman et al. [1].
One merit of using this framework is that we can handle outliers without additional effort as
shown in [9]. In this case, the goal is to minimize the clustering cost allowing to remove a
small portion of the input data. The problem of computing a k-means clustering of missing
data has not been explicitly considered in the presence of outliers. However, the observation
of [9] allows us to extend our algorithm to handle outliers.

A main idea of [9] for clustering points in Rd is as follows. Let m be the number of outliers
(the number of points which are allowed to be removed). Consider an optimal k-means
clustering (P ∗

1 , . . . , P ∗
k) of the input point set P after removing m outliers. Then the largest

cluster, say P ∗
1 , has size at least (|P |−m)/k. Then by picking a random sample of a constant

size (but the sample size depends on m), one can compute a good approximation to c(P ∗
1)

using Lemma 3. Using this observation, Feng et al. [9] showed that the algorithm by Kumar
et al. [14] (using a parameter slightly larger than the standard one for Lemma 3) computes
the cluster centers of an approximation k-means clustering in the presence of m outliers.
Then the m points farthest from the cluster centers are m outliers.

The observation by Feng et al. also holds for ∆-missing points. In a sampling phase, the
set R of remaining points contains at most m outliers. This means that the largest set ST

contains at least |R|/(2k + k + m) points of P ∗
T . Therefore, we can apply Lemma 6 using

a constant c < 1/(2k + k + m). Thus we can handle m outliers in O(nd) time, where the
constant hidden behind O(·) depends on m.

As mentioned in Introduction, the lower bound in Theorem 1 does not rule out the
possibility that this problem can be solved in O(nd + f(k, ∆)) time for an exponential
function f of k and ∆. Moreover, it seems hard to achieve this goal using the framework of
Kumar et al. [14] and Ackermann et al. [1] as their algorithms also run in O(nd · f(k)) time
for an exponential function of k. It is an interesting open question whether one can improve
the running time to O(nd + f(k, ∆)). Also, obtaining a coreset for this problem is also an
interesting open question.

References
1 Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Transactions on Algorithms, 6(4), September 2010.
2 P.D. Allison. Missing Data. Number no. 136 in Missing Data. SAGE Publications, 2001. URL:

https://books.google.co.kr/books?id=ZtYArHXjpB8C.

https://books.google.co.kr/books?id=ZtYArHXjpB8C

K. Cho and E. Oh 46:13

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

4 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of Euclidean k-means. In Proceedings of the 31st International
Symposium on Computational Geometry (SoCG 2015), 2015.

5 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

6 Kyungjin Cho and Eunjin Oh. Linear-time approximation scheme for k-means clustering of
affine subspaces. CoRR, abs/2106.14176, 2021. arXiv:2106.14176.

7 Eduard Eiben, Fedor V Fomin, Petr A Golovach, Willian Lochet, Fahad Panolan, and Kirill
Simonov. EPTAS for k-means clustering of affine subspaces. In Proceedings of the Thirty-Second
ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 2649–2659, 2021.

8 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43th Annual ACM Symposium on Theory of Computing (STOC
2011), pages 569–578, 2011.

9 Qilong Feng, Zhen Zhang, Ziyun Huang, Jinhui Xu, and Jianxin Wang. Improved algorithms
for clustering with outliers. In Proceedings of the 30th International Symposium on Algorithms
and Computation (ISAAC 2019), pages 61:1–61:12, 2019.

10 Jie Gao, Michael Langberg, and Leonard J Schulman. Analysis of incomplete data and an
intrinsic-dimension helly theorem. Discrete & Computational Geometry, 40(4):537–560, 2008.

11 Jie Gao, Michael Langberg, and Leonard J. Schulman. Clustering lines in high-dimensional
space: Classification of incomplete data. ACM Trans. Algorithms, 7(1), 2010.

12 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, January 2007.

13 Anil Kumar Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, 1999.

14 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. Journal of the ACM, 57(2):1–32, 2010.

15 Euiwoong Lee and Leonard J Schulman. Clustering affine subspaces: hardness and algorithms.
In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms
(SODA 2013), pages 810–827, 2013.

16 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, 2012.

17 Yair Marom and Dan Feldman. k-means clustering of lines for big data. In Advances in Neural
Information Processing Systems, volume 32, 2019.

18 Nimrod Megiddo. On the complexity of some geometric problems in unbounded dimension.
Journal of Symbolic Computation, 10(3):327–334, 1990.

19 Björn Ommer and Jitendra Malik. Multi-scale object detection by clustering lines. In
Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV 2009),
pages 484–491, 2009.

ISAAC 2021

http://arxiv.org/abs/2106.14176

	1 Introduction
	2 Preliminaries
	3 Overview of the Algorithm
	4 For k-Means Clustering
	4.1 Algorithm Using the Counting Oracle
	4.2 Analysis of the Approximation Factor
	4.2.1 Clustering Cost Induced by Non-Stray Points
	4.2.2 Clustering Cost Induced by Stray Points

	4.3 Algorithm without Counting Oracle

	5 Concluding Remarks

