
Impatient PPSZ – A Faster Algorithm for CSP
Shibo Li #

Shanghai Jiao Tong University, China

Dominik Scheder #

Shanghai Jiao Tong University, China

Abstract
PPSZ is the fastest known algorithm for (d, k)-CSP problems, for most values of d and k. It goes
through the variables in random order and sets each variable randomly to one of the d colors,
excluding those colors that can be ruled out by looking at few constraints at a time.

We propose and analyze a modification of PPSZ: whenever all but 2 colors can be ruled out for
some variable, immediately set that variable randomly to one of the remaining colors. We show that
our new “impatient PPSZ” outperforms PPSZ exponentially for all k and all d ≥ 3 on formulas with
a unique satisfying assignment.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Randomized algorithms, Constraint Satisfaction Problems, exponential-time
algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.33

Related Version Full Version: https://arxiv.org/abs/2109.02795

Funding Both authors acknowledge support from the National Natural Science Foundation of China
under grant 61502300 and 11671258.

Acknowledgements Dominik Scheder wants to thank Timon Hertli, Isabelle Hurbain, Sebastian
Millius, Robin A. Moser, and May Szedlák, his co-authors of [4]. The idea of impatient assignment
came up when we were working on [4].

1 Introduction

A Constraint Satisfaction Problem, or CSP for short, consists of a finite set of variables
x1, . . . , xn, a domain [d] := {1, . . . , d} of potential values, called colors, and a set of constraints.
A constraint is of the form (xi1 , . . . , xik

) ∈ S, where S ⊆ [d]k. In analogy to CNF-SAT, we
assume in this paper that |S| = dk − 1, i.e., all but one possible assignments satisfy the
constraint. We speak of a (d, k)-CSP if all constraints are over k variables. In a slight abuse of
notation, we also use (d, k)-CSP to denote the associated decision problem: is there a way to
assign values in [d] to the variables that satisfies all constraints? This is NP-complete except
when d = 1 or k = 1 or k = d = 2, so researchers focus on finding moderately exponential-time
algorithms: algorithms of running time cn for c < d. Examples include Beigel and Eppstein’s
randomized algorithm for (d, 2)-CSP with running time O((0.4518d)n) [1];Schöning’ s random
walk algorithm of running time O∗((d(k−1)

k)n) [11]; Paturi, Pudlák, and Zane encoding-based
randomized algorithm called PPZ [7] for k-SAT (i.e., d = 2), which runs in time O(2(1−1/k)n).
Paturi, Pudlák, Saks and Zane [6] improved PPZ by introducing a pre-processing step using
small-width resolution. Both PPZ and PPSZ can be easily modified to work for (d, k)-CSP
as well, as done by Scheder [8] for PPZ and Hertli et al. [4] for PPSZ. In both cases, several
subtleties and technical difficulties arise, which are not present for k-SAT. Furthermore, [4]
is the currently fastest algorithm for (d, k)-CSP when k ≥ 4.

© Shibo Li and Dominik Scheder;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 33; pp. 33:1–33:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ShiboLi@sjtu.edu.cn
https://orcid.org/0000-0003-0680-3990
mailto:dominik@cs.sjtu.edu.cn
https://orcid.org/0000-0002-9360-7957
https://doi.org/10.4230/LIPIcs.ISAAC.2021.33
https://arxiv.org/abs/2109.02795
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Impatient PPSZ

1.1 The PPSZ Algorithm

Let us give an informal description of PPSZ, first for SAT, and then for CSP. In either case, it
chooses a random ordering π on the variables x1, . . . , xn. Then it goes through the variables
one by one, in the order of π; when processing xi, it fixes xi randomly to true or false,
unless there is a set of up to D clauses that logically implies xi = b for some b ∈ {0, 1}; in
the latter case, we fix xi to b and say that xi has been inferred by D-implication. For CSP,
the only difference is that when processing xi, it checks (with brute force) for which colors
c ∈ [d] the statement [xi ̸= c] can be inferred by a set of up to D constraints; if so, we say
[xi ̸= c] is D-implied, and color c is obviously ruled out. It then fixes xi randomly to one of
the colors not yet ruled out (or declares failure if all colors have been ruled out).

Unique-SAT versus general-SAT. A peculiar feature of PPSZ, as analyzed in the seminal
paper [6], is that it performs better if the input instance F has a unique satisfying assignment.
Certain properties, such as the existence of critical clause trees, break down once F has
multiple solutions. In [6], the authors proposed a clever but technical workaround, which
incurred an exponential overhead for k = 3, 4. In his 2011 breakthrough paper, Hertli [3]
showed that this peculiarity is in fact an artifact of the analysis, and gave a very abstract and
high-level proof that PPSZ on formulas with many solutions is indeed no worse. His proof
was later simplified by Scheder and Steinberger [10]. The proofs in [3] and [10] work only
provided that the internal machinery of the PPSZ algorithm (e.g., checking D-implication)
is “not too good”. Curiously, in [4] it turned out that, for k = 2, 3 and certain values of d,
the PPSZ machinery is indeed “too good”, and consequently their time complexity for the
general case (multiple solutions) is worse than for the unique case (exactly one solution). For
formulas with a unique solution, their analysis gives a running time of O

(
dnSd,k+o(n)), for

Sd,k defined below. This is the best known running time for all d, k except for (d, k) = (3, 2)
and (d, k) = (4, 2).

Improvements to PPSZ for k-SAT. Two recent results improve PPSZ. Hansen, Kaplan,
Zamir, and Zwick [2] define a biased version of PPSZ and show that it achieves an improvement
for all k ≥ 3. Scheder [9] shows that PPSZ itself performs exponentially better than in the
analysis of [6]. We would not be surprised if both improvements carry over to (d, k)-CSP,
although to our knowledge, this has not been analyzed so far. The improvement presented
in this work is of a different quality: it is not a generalization of some idea for k-SAT; in
fact, the main idea only makes sense for d ≥ 3 and thus is particular to (d, k)-CSP problems.

The time complexity of PPSZ for Unique (d, k)-CSP. A main result of [4] is that PPSZ
solves Unique (d, k)-CSP in time O

(
2Sd,k n+o(n)), where Sd,k is defined by the following

random experiment: let T ∞ be the infinite rooted tree in which each node on even depth
(which includes the root at depth 0) has k−1 children and every node on odd depth has d−1
children. Let T1, . . . , Td−1 be disjoint copies of T ∞, sample p ∈ [0, 1] uniformly, and delete
every odd-level node with probability p, independently. Let Jc be the indicator variable that
is 1 if the root of Tc is contained in an infinite component after this deletion step. Then

Sd,k := E[log2(J1 + · · ·+ Jd−1 + 1)] . (1)

S. Li and D. Scheder 33:3

Approximate values of Sd,k for small values of d, k can be found in Hertli et al. [4]1 To
understand Sd,k for large values d, it is most advantageous to write cd,k := log2(d)− Sd,k.
Intuitively, log2(d) is the number of bits required to specified a color and Sd,k is the number
of coin tosses used by PPSZ to determine it, so cd,k is the number of coin tosses per variable
saved by PPSZ. Theorem 1.4 of [4] states that limd→∞ cd,k = −

∫ 1
0 log2(1− rk−1).

Thus, for large d, PPSZ saves a constant number of bits per variable; this is somewhat
unsatisfactory; we would like to save a constant fraction of bits, i.e., an algorithm of running
time d(1−ck)n for some ck > 0 for arbitrary d. The existence of such an algorithm is posed
as an open problem by Koucký, Rödl, and Talebanfard [5]. In the same paper, they give
such an algorithm for CSP formulas where every variable appears in a constant number
of constraints. Formally, their algorithm runs in time d(1−ck,r)n on (d, k)-CSP formulas F

where each of the n variables occurs in at most r constraints.

1.2 Our Contribution
In this work, we focus on the case that F has a unique satisfying assignment α∗, without loss
of generality α∗ := (d, d, . . . , d). The idea behind our improvement is as follows: suppose
x, y, z are variables appearing in the order y, x, z in π. Focus on the point in time when
PPSZ processes x, and assume every assignment prior to x has been correct. For example,
the variable y has already been replaced by the constant d. In other words, when PPSZ
tries to infer statements like [x ̸= c] from small sets of constraints, it can use the information
[y = d]. It cannot use [z = d], however. Or can it? Maybe PPSZ can already infer
[z ̸= 1], . . . , [z ̸= d− 1]; in this case, it can also infer [z = d], and it would be safe to fix z to
d. Let us propose the following rule:

Rule of One. Whenever [z = c] can be inferred by D-implication, fix z to c.

This rule is “uncontroversial” in the sense that it will never make a mistake. Indeed, the
reader who is familiar with the literature about PPSZ, in particular with its original version
using small-width resolution, will notice that resolution implicitly implements the above rule.
We propose the following more aggressive rule:

Rule of Two. Whenever [z = c1 ∨ z = c2] can be inferred by D-implication, i.e.,
if all but 2 colors can be ruled out, pick c ∈ {c1, c2} uniformly at random and fix z

to c.

Obviously, this rule can introduce mistakes. On the plus side, it might be very unlikely
that the range of plausible (i.e., not ruled out) colors for z further decreases from 2 to
1. Better to bite the bullet now, decide on a value for z, hope that it is correct, and use
that information for subsequent D-implications. For example, it might be that using the
information [z = d] lets us rule out additional colors for x, the variable currently being
processed by PPSZ. Unfortunately, this rule does more bad than good: consider the variables
coming towards the very end of π. For each of them, it is very likely that all but one color
can be ruled out; thus, PPSZ would set them correctly with high probability; using our Rule
of Two, this probability would go down from (almost) 1 to (roughly) 1/2 since we decide on
a value once only two values are left. We propose a less impatient rule:

1 In [4] they define Sd,k with logd instead of log2. We prefer the binary logarithm for purely cosmetic
reasons: otherwise some of our expressions would contain the expression “logd(2)”, but “1” is undoubtedly
nicer.

ISAAC 2021

33:4 Impatient PPSZ

Conservative Rule of Two. Apply the Rule of Two only to variables z that are
among the first θn in π; don’t apply it to the last (1− θ)n variables.

We will show that for those early variables, it is extremely unlikely that the set of plausible
colors gets narrowed down to only one color; and that it is somewhat more likely that the
Rule of Two helps us rule out one additional colors for a variable. In particular, we prove
the following theorem:

▶ Theorem 1. For every d ≥ 3 and k ≥ 2, there is some ϵ > 0 and a randomized algorithm
solving (d, k)-CSP in time 2n(Sd,k−ϵ)poly(n), where Sd,k is as defined in (1).

Note that the Rule of Two does not make any sense in the Boolean context. For every
variable z we can trivially 0-imply [z = 0 ∨ z = 1], and thus every variable immediately
qualifies for impatient assignment. We thus lose all control over the ordering π in which we
process the variables. The Rule of One does of course make sense in the Boolean setting and
is implicitly implement if you are running “strong” PPSZ, i.e., with small-width resolution.

1.3 Notation
Let V = {x1, . . . , xn} be a set of variables and [d] = {1, . . . , d} be the set of possible colors.
A literal is an expression (x ̸= c), where x ∈ V, c ∈ [d]. A clause is a disjunction of literals:
(v1 ̸= c1 ∨ v2 ̸= c2 ∨ ... ∨ vk ̸= ck). A (d, k)-CSP is a conjunction of clauses of size k each.
An assignment α is a function V → [d]. It satisfies a literal (x ̸= c) if α(v) ̸= c; it satisfies
a clause if it satisfies at least one literal therein; it satisfies a (d, k)-CSP F if it satisfies all
clauses in F . If V ′ ⊆ V and α : V ′ → [d], we call α a partial assignment; vbl(α) denotes
its domain, i.e., V ′. F [α] is the simplified formula after setting all variables in V ′ according
to α. We will write partial assignments like this: [x 7→ 2, y 7→ 3, ...] and therefore F [x 7→2]

will denote the formula after replacing x with 2. For a set V ′ ⊆ V of variables, we take the
liberty to write F [V ′ 7→d], where [V ′ 7→ d] is the partial assignment [x 7→ d for each x ∈ V ′].
For a clause C and a (d, k)-CSP F , vbl(C) and vbl(F) denote the sets of variables in C and
F , respectively. For a rooted tree T and a node v therein, the subtree of T rooted at v is the
tree containing v (as root) and all its descendants. We use the notation [statement], which
evaluate to 1 if statement holds, and to 0 otherwise.

1.4 PPSZ and impatient PPSZ
▶ Definition 2 (D-implication [4]). Let F be a (d, k)-CSP formula and u be a literal of F .
We say F implies u and write F ⊨ u if all assignment satisfying F also satisfy u. We say F

D-implies u and write F ⊨D u if there is some G ⊆ F with |G| ≤ D and G ⊨ u.

For the rest of the paper, D = D(n) will be some slowly growing function in n, so F |=D u

can be checked in time O(|F |Dpoly(n)), which is subexponential in n.

▶ Definition 3 (Plausible values). Let F be a (d, k)-CSP formula and x a variable. We say
color c ∈ [d] is D-plausible for x in F if F does not D-imply (x ̸= c). Let Plaus(x, F, D)
denote the set of all colors that are D-plausible for x. We will drop the parameter D if it is
understood from the context.

Note that our code specifies π as an explicit input parameter; it is the responsibility of
the “user” to make sure PPSZ(F, π) is called with a random π; furthermore, we implicitly
assume that PPSZ declares failure if the set Plaus(x, F [α]) in Line 4 is empty.

S. Li and D. Scheder 33:5

Algorithm 1 PPSZ algorithm.

1: procedure PPSZ(F, π)
2: α← the empty assignment
3: for x ∈ vbl(F) in the order of π do
4: choose ι ∈ Plaus(x, F [α]) uniformly at random
5: α := α ∪ [x 7→ ι]
6: end for
7: return α if it satisfies F , else failure
8: end procedure

From now on, we view π not as a permutation of the variables but as a placement, i.e.,
a function V → [0, 1]; note that if π : V → [0, 1] is sampled uniformly at random, it will
be an injection with probability 1; sorting V in ascending order by their π-value will give
a permutation of V . Additionally, we fix two parameters θ (to be determined later) and
ζ := 2− log2(3), and mark every variable x as eligible for impatient assignment as follows:

▶ Definition 4 (Eligible for impatient assignment). For each variable x, define Ix ∈ {0, 1} as
follows. (1) If π(x) ≥ θ, set Ix := 0; (2) if π(x) < θ, set Ix := 1 with probability ζ and to 0
with probability 1− ζ, independently of all other choices. If Ix = 1 we say x is eligible for
impatient assignment.

The reasoning behind condition (1) is that a “late” variable x (one with π(x) ≥ θ) is
likely to end up with a unique plausible value when PPSZ reaches it; setting it prematurely
will do more bad than good; our decision to mark “early” variables with π(x) < θ as eligible
only with probability ζ (and not with probability 1) has technical reasons: we want a certain
function to become concave, and our choice of ζ is the largest value for which this happens.

Algorithm 2 Impatient PPSZ.

1: procedure ImpatientPPSZ(F, π)
2: α := the empty assignment
3: for x ∈ vbl(F) in ascending order of π do
4: while ∃y ∈ vbl(F) \ vbl(α) with Iy = 1 and |Plaus(y, F [α])| ≤ 2 do
5: choose ι ∈ Plaus(y, F [α]) uniformly at random
6: α := α ∪ [y 7→ ι]
7: end while
8: if x ̸∈ vbl(α) then
9: choose ι ∈ Plaus(x, F [α]) uniformly at random

10: α := α ∪ [x 7→ ι]
11: end if
12: end for
13: return α if it satisfies F , else failure
14: end procedure

Proof sketch of Theorem 1. As the analysis of PPSZ, our proof relies heavily on the concept
of critical clause trees. Intuitively, those trees are a neat and tidy way to describe all ways
how [x = c] can be ruled out. For PPSZ, this can be described as an extinction event in a
Galton-Watson process; for ImpatientPPSZ however, we need a more complicated notion.
To make matters worse, while [6] and [4] showed that the worst case for their PPSZ analysis

ISAAC 2021

33:6 Impatient PPSZ

happens if all trees are “nice”, this fails for our algorithm. We have to come up with a (short)
list of non-niceties, and for each of them show that [x = c] is a bit more likely to be ruled
out; we can then finally analyze the “nice” case. ◀

2 Conceptual Framework

Notation for sets of variables coming before variable x: Vx and V imp
x . To analyze

PPSZ and our variant ImpatientPPSZ, we need to talk about the point in time where the
algorithm processes a variable x, and in particular, we need to talk about the set of variables
that have already been assigned a value at this point. For PPSZ, this is easy: we define
Vx := {y ∈ vbl(F) | π(y) < π(x)}. For ImpatientPPSZ, it’s a bit more complicated: imagine
we run ImpatientPPSZ but feed it the “correct” values in every assignment; that is, whenever
a color c is chosen, make sure that c = d (we manipulate this random source to always choose
the correct color); pause the algorithm in the iteration when variable x is being processed, just
after line 7, and look at the partial assignment α built so far. We set V imp

x := vbl(α) \ {x}.
We remove x for purely technical reasons; if x happens to be already set at that time, then
line 9 and 10 will be skipped by the algorithm anyway.

▶ Observation 5. If line 9 is executed then c is chosen uniformly at random from the set
Plaus(x, F [V imp

x 7→d]).

We define the following indicator variables:

Ax,c :=
{

1 if c ∈ Plaus(x, F [Vx 7→d], D)
0 else.

Aimp
x,c :=

{
1 if c ∈ Plaus(x, F [V imp

x 7→d], D)
0 else.

and Ax :=
∑

c Ax,c and Aimp
x :=

∑
c Aimp

x,c . These are random variables in our random
placement π. Note that Ax,d = Aimp

x,d = 1 because color d is always plausible; also, Aimp
x,c ≤ Ax,c

simply because Vx ⊆ V imp
x , i.e., ImpatientPPSZ has at least as much information as PPSZ.

▶ Lemma 6 ([4]). For a fixed permutation π, Pr[PPSZ(F, π) finds α∗] =
∏

x
1

Ax(π) . For a

random permutation, Prπ[PPSZ(F, π) finds α∗] ≥ 2−
∑

x
Eπ [log2 Ax(π)].

The second statement follows from the first by Jensen’s inequality. To obtain a similar
formula for ImpatientPPSZ, we need to take into account that a variable x might be assigned
in line 6 or in line 10.

▶ Lemma 7. For a fixed permutation π, we have Pr[ImpatientPPSZ(F, π) finds α∗] ≥∏
x

1
max(1+Ix,Aimp

x (π)) . For a random permutation, the probability that ImpatientPPSZ succeeds
is at least

Pr
π

[ImpatientPPSZ(F, π) finds α∗] ≥ 2−Eπ[
∑

x
log2(max(1+Ix,Aimp

x (π)))].

Proof. If Ix = 0 then x will be assigned in line 10 and thus its value will be correct with
probability 1/Aimp

x (π), conditioned on all prior assignments being correct. If Ix = 1 then
either it is assigned in line 6, and is correct with probability 1/2; or it is still assigned regularly
in line 10, and is correct with probability 1/Aimp

x (π). This proves the first inequality. The
second inequality in the lemma follows from the first by Jensen’s inequality. ◀

S. Li and D. Scheder 33:7

2.1 Independence between colors
The crucial quantity in the analysis of ImpatientPPSZ is the random variable Aimp

x =
∑

c Aimp
x,c .

The next lemma states that we can focus on analyzing the indicator variables Aimp
x,c individually;

that is, if we condition on π(x) = p, then the d indicator variables are independent in the
worst case. More formally:

▶ Lemma 8 (Independence between colors). Let π : V → [0, 1] be uniformly random and set
p := π(x). We sample d random variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c

to 1 with probability Pr[Aimp
x,c = 1 | π(x) = p], independently. Set Ãimp

x :=
∑

c Ãimp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(2)

Proof idea. We would like to prove this along the lines of Lemma 3.5 of [4]. The additional
problem here is that although the function f : t 7→ log(t) is concave, the function g : t 7→
log(max(2, t)) isn’t. This is why, if π(x) < θ, we set Ix to 1 with probability ζ and to 0
with probability 1− ζ. The convex combination (1− ζ) · f + ζ · g is concave2 and the proof
goes through just as for Lemma 3.5 in [4]. See Lemma 24 in the appendix for a complete
proof. ◀

The upshot is that it is sufficient to bound Pr[Aimp
x,c = 1 | π(x) = p] from above, for each

variable x and color c, individually.

2.2 Critical Clause Trees and Brief Analysis of PPSZ
In this section, we define critical clause trees and review some results from [4]. We assume
that d = (d, . . . , d) is our unique satisfying assignment. Note that every unsatisfied literal
is of the form (y = d) and every satisfied literal is of the form (y ̸= c) for some c ̸= d. Let
x ∈ vbl(F) and c ∈ {1, . . . , d − 1}. The critical clause tree T h

x,c of height h has two types
of nodes: a node u on an even level (which includes the root at level 0) is a clause node,
has a clause label clauselabel(u) and an assignment label βu; it has at most k − 1 children
(in fact, one for each unsatisfied literal in clauselabel(u)). A node v on an odd level is a
variable nodes and has a variable label varlabel(v); it has exactly d − 1 children. An edge
(v, w) from a variable node v to a clause node w has an edge color EC(e) ∈ [d− 1]. Thus, if
varlabel(v) = y and (v, w) edge color EC(v, w) = i, then this edge represents the alternative
assignment [y 7→ i]. The critical clause tree T h

x,c is constructed as in algorithm 3.
Let us assume h is always odd, so the lowest layer of T h

x,c consists of variable nodes. T h
x,c

has two types of leaves: those variable nodes at height h; we call them safe leaves; and clause
nodes whose clause label does not contain any literal of the form (y ̸= d); we call them unsafe
leaves.

▶ Proposition 9 ([4]).
1. Suppose v is a clause node in T h

x,c with clause label C and (y ̸= i), i ∈ [d] is a literal in C.
Then if i = d, v has a child whose variable label is y. If i < d and y ̸= x then v has an
ancestor node whose variable label is y.

2. No variable appears more than once as variable label on a path from root to a leaf.

2 The attentive reader might notice: it’s not concave; however, if we change the definition of “log” in the
definition of f and g from the usual log to “log on N and linear between integers, then it is concave,
provided that ζ ≤ 2 − log2 3.

ISAAC 2021

33:8 Impatient PPSZ

Algorithm 3 BuildCCT(F, x, c, h).

1: Create a root node and set βroot := α[x = c]
2: while ∃ clause node u of height less than h− 1 without a clause label do
3: Find a clause C which is not satisfied by βu

4: Set clauselabel(u) := C

5: for each unsatisfied literal (y ̸= d) in C do
6: Create a new child v of u

7: varlabel(v) := y

8: for i ∈ [d− 1] do
9: Create a new child w of v

10: Set βw := βv[y = i]
11: Set EC(v, w) = i

12: end for
13: end for
14: end while
15: remove clause nodes at height h + 1
16: return T h

x,c

▶ Definition 10 (labeled tree). A labeled tree is a possibly infinite tree such that: (1) every node
is either a variable node or a clause node; (2) a variable node u has a label varlabel(u) ∈ L
in some label space L ⊇ V ; (3) they alternate, i.e., if a variable node has children, they are
all clause nodes, and vice versa; (4) its degree is bounded: there is some ∆ ∈ N such that
every node has at most ∆ children. A leaf in a labeled tree is a safe leaf if it is a variable
node; Otherwise, it is an unsafe leaf.

Note that each subtree of a critical clause tree is a labeled tree. A safe path in a labeled tree
is a path that starts at the root and is either infinite or ends at a safe leaf.

▶ Definition 11 (Cutp and Cut). Let T be a labeled tree. The event Cutp(T) is an event
in the probability space of all placements π : L→ [0, 1] that happens if every safe path in T

contains a node v with π(varlabel(v)) < p. Let x be the label of the root of T . We define
Cut(T) := Cutπ(x)(T).

Suppose T is a labeled tree, and let T1, . . . , Tl be the subtrees rooted at the l children
of the root of T . Note that the Ti are themselves labeled trees. If the root of T is a clause
node then Cutp(T) =

∧l
i=1 Cutp(Ti). If it is a variable node, let y := varlabel(root(T)),

and observe that Cutp(T) = [π(y) < p] if root(T) itself is a safe leaf (i.e., if l = 0) and
Cutp(T) = [π(y) < p] ∨

∧l
i=1 Cutp(Ti) else .

Next, we connect the notion of cuts to our notion of being a plausible color. For this, set
L := (d− 1)(k − 1) and observe that T h

x,c has at most Li clause nodes at depth 2i. Choose
h̃ to be the largest integer for which 1 + L + L2 + · · · + Lh̃ ≤ D (recall D, our strength
parameter in the definition of D-implication), and set h := 2 h̃ + 1. Then T h

x,c has at most D

clause nodes and h is also a slowly growing function in n.

▶ Lemma 12 ([4]). Let p = π(x). If Cutp(T h
x,c) happens then Ax,c = 0.

Recall the infinite trees T ∞ and T1, . . . , Td−1 and the indicator variables J1, . . . , Jd−1
defined above, just before (1), and observe that Jc = 1 iff Cutp(Tc) does not happen. Let
T∞ be the subtree of T ∞ rooted at the first child of the root. Define Q(p) := Pr[Cutp(T ∞)]
and R(p) := Pr[Cutp(T∞)]. The next proposition is from [4], adapted for our purposes.

S. Li and D. Scheder 33:9

▶ Proposition 13 ([4]). Set L = (k−1)(d−1). If p ≥ 1− 1
L then Q(p) = R(p) = 1; otherwise,

Q(p) and R(p) are the unique roots in [0, 1] of the equations Q =
(
p + (1− p)Qd−1)k−1 and

R = p + (1− p)RL, respectively. Furthermore, Q(p) = R(p)k−1.

As our height parameter h grows (roughly logarithmic with our strength parameter D),
the critical clause trees T h

x,c will look more and more like T ∞, and thus the cut probability
will converge to Q(p). Formally, let error(d, k, h, p) and error(d, k, h) stand for any functions
that converge to 0 as h→∞.

▶ Proposition 14 (Lemma 3.6 in [4]). Pr[Cutp(T h
x,c)] ≥ Pr[Cutp(Tc)]− error(d, k, p, h).

To summarize: conditioned on π(x) = p, the sum Ax = Ax,1+· · ·+Ax,d has the worst behavior
if all Ax,c are independent (Lemma 8); furthermore, Ax,c ≤ Jc except with probability
error(d, k, p, h), for all c ≤ d− 1, and therefore:

▶ Lemma 15 ([4]). Eπ[log2(Ax)] ≤ E[log2(J1 + · · · + Jd−1 + 1)] + error(d, k, h) = Sd,k +
error(d, k, h).

3 The Probability of Inferring x ̸= c

Just as [4] analyzes PPSZ by studying the random variables Ax,c, we have to study Aimp
x,c .

We can always resort to the “old” analysis via Aimp
x,c ≤ Ax,c. However, the whole point of

this work is to show that this inequality is often strict. To understand how and when this
might happen, we discuss an example for d = 3.

xyz 6= 133

y z

yuv 6= 133 yab 6= 233 zew 6= 133 zrs 6= 233

z 7→
2

y
7→

2y 7→
1

z
7→

1

u v a b e w r s

This is T 3
x,1, the critical clause tree for x and 1 built up to height 3. The formula F in

question contains the constraints shown as clause labels, but of course contains many more
constraints. Suppose that u, v, a, b, z come before x in π, and e, w, r, s, y come later. In the
normal PPSZ, we have already set u, v, a, c, z 7→ 3 when considering x, and thus the clauses
of F will have shrunk:

(yuv ̸= 133) shrinks to (y ̸= 1);
(yab ̸= 233) shrinks to (y ̸= 2);
(zew ̸= 133) and (zrs ̸= 233) don’t shrink but disappear: they are satisfied by z 7→ 3;
(xyz ̸= 133) shrinks to (xy ̸= 13).

Together, the three shrunk clauses (y ̸= 1), (y ̸= 2), and (xy ̸= 13) imply (x ̸= 1); since
D ≥ 3 this means that x = 1 can be ruled out, i.e., Ax,1 = 0. Next, suppose π, viewed as a
placement π : V → [0, 1], looks like this:

θ 10 x z e wr s u v y a b

ISAAC 2021

33:10 Impatient PPSZ

and assume for simplicity that all variables l with π(l) < θ in vbl(F) are eligible for impatient
assignment (i.e., have Il = 1). Note that Cut(T 3

x,1) does not happen. Namely, the path
from root to c contains two variable labels, y and b, and π(y), π(b) ≥ π(x). Analogously, the
alternative assignment α∗[x 7→ 1, y 7→ 2, b 7→ 2] satisfies all clauses in the figure above, and
thus the algorithm cannot infer x ̸= 1 from those clauses alone, and Ax,1 = 1. Observe now
what happens in ImpatientPPSZ:

r, s, u, v 7→ 3 before x is even considered;
(yuv ̸= 133) shrinks to (y ̸= 1), and thus Plaus(y, F [α]) shrinks to {2, 3};
y is assigned a value in line 6;
the analogous thing happens to z;
r, s, u, v ∈ Vx, and r, s, u, v, y, z ∈ V imp

x ;
(xyz ̸= 133) shrinks to (x ̸= 1) and thus Aimp

x,1 = 0.

We can now try to work out a formula for the probability that x = c is ruled out in
this manner; however, our above example and analysis contains two silent assumptions that
cannot be taken for granted in general:
1. All variable labels in T 3

x,c are distinct.
2. All clause labels of T 3

x,c are critical clauses, i.e., k − 1 of its literals are of the form y ̸= d.
The original PPSZ paper [6] addresses Point 1 by using the FKG inequality to show that
having multiple labels can never hurt us. But now we are talking about a more complicated
event; it is not clear whether an FKG-like result applies. Point 2 is more troublesome.
Consider the alternative scenario that T 3

x,c looks like this:

xyz 6= 133

y z

yxu 6= 113 yab 6= 233 zew 6= 133 zxr 6= 213

z 7→
2

y
7→

2y 7→
1

z
7→

1

u a b e w r

and consider the same π as above: r, s, u, v, x, z, y, θ, e, w, a, b. After setting r, s, u, v 7→ 3,
the shrunk clauses are (yx ̸= 11), (yab ̸= 233), (zew ̸= 133), and (zx ̸= 21). Neither for y

nor for z can we rule out any color, and therefore our impatient mechanism will not kick in.
We will have Vx = V imp

x = {r, s, u, v}. In other words, non-critical clauses seem useless for
ImpatientPPSZ. But looking at the above example tree, we see what comes to the rescue:
the right-most clause node is missing a child; it has at most k − 2 children instead of k − 1.
This alone will be enough to improve our success probability by a bit. It is time for some
formal definitions.

▶ Definition 16 (Privileged variables). A variable x is privileged if there is some color
c ∈ {1, . . . , d− 1} such that
1. T h

x,c has fewer than (k − 1)2(d− 1) variable nodes at level 3 or
2. T 3

x,c has two variable nodes u and w with varlabel(u) = varlabel(w).

▶ Proposition 17. There is an ϵprivileged > 0 for variable x which is privileged, depending
only on d and k, such that

E [log2(Ax)] ≤ Sd,k − ϵprivileged + error(d, k, h) ,

for every privileged variable x in F .

S. Li and D. Scheder 33:11

See Proposition 25 in the appendix for a proof.

▶ Corollary 18. For every privileged variable x ∈ vbl(F) it holds that
E [log2(max(1 + Ix, Aimp

x))] ≤ Sd,k − ϵprivileged + cθ + error(d, k, h)

Proof. Since max(a, b) ≤ a · b when a, b ≥ 1, we get

E
[
log2(max(1 + Ix, Aimp

x))
]
≤ E

π
[log2(1 + Ix)] + E

π
[log2(Aimp

x)] .

The first term equals Pr[Ix = 1] = cθ; the second is at most E [log2(Ax)], which by Proposi-
tion 17 is at most Sd,k − ϵprivileged + error(d, k, h). This concludes the proof. ◀

▶ Lemma 19. There is a constant ϵ > 0, depending only on d and k, such that

E
[
log2(max(1 + Ix, Aimp

x))
]
≤ Sd,k − 0.1699

(
c

L + 1θL+1 + O
(
θL+2))+ error(d, k, h) .

for all non-privileged variables x. The constant factor hidden in the O(·) depends only on d

and k.

By choosing θ sufficiently small, we can make sure that the bounds in Lemma 19 and
Corollary 18 are both at most Sd,k − ϵd,k + error(d, k, h), for some ϵd,k depending only on d

and k. Together with Lemma 7, this proves Theorem 1.

Proof of Lemma 19. For a color 1 ≤ c ≤ d − 1, fix the critical clause tree T h
x,c and let us

introduce a bit of notation. The root of T h
x,c has a label

Croot = (x ̸= c ∨ y1 ̸= d · · · ∨ yk−1 ̸= d) .

It has k − 1 children v1, . . . , vk−1, whose respective variable labels are y1, . . . , yk−1. Let Ti

denote the subtree of T h
x,c rooted at vi. Each yi in turn has d− 1 children; each such level-2

node v has a clause label Cv; note that Cv is a critical clause, i.e., k − 1 of its literals are of
the form (z ̸= d), since otherwise it would have fewer than k − 1 children, and T h

x,c would
have fewer than (k − 1)2(d− 1) nodes at level 3; in other words, x would be privileged.

We need to define an event ImpCutp(T h
x,c) which, analogous to Cutp(T h

x,c), describes the
event Aimp

x,c = 0 in terms of T h
x,c only. Going for a full such characterization is possible but

messy, and it is not clear what the worst-case structure of such T h
x,c will be; this is the reason

why we, when considering our impatient assignment mechanism, will look only up to depth
3 in T h

x,c. For each node w of T h
x,c at level 1, 2, or 3, we define event LocalImpCutp(v) as

follows:
1. If v is at level 3 of T h

x,c then LocalImpCutp(v) happens if π(varlabel(v)) < p.
2. If v is at level 2 of T h

x,c then LocalImpCutp(v) happens if LocalImpCutp(w) happens for
the k − 1 children w of v (recall that clauselabel(v) is a critical clause and therefore v

has exactly k − 1 children);
3. If v is at level 1, set y := varlabel(v); LocalImpCutp(v) happens if

a. π(y) < p or
b. Iy = 1 and LocalImpCutp(v) happens for at least d− 2 of the d− 1 children of v.

Finally, we define

ImpCutp(T h
x,c) :=

k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)
(3)

The next lemma is the “impatient analog” of Lemma 12.

ISAAC 2021

33:12 Impatient PPSZ

▶ Lemma 20. Let p = π(x). If ImpCutp(T h
x,c) happens then Aimp

x,c = 0.

The proof is very similar to that of Lemma 12, just taking into account the impatient
assignment mechanism. We restate and prove it as Lemma 26 in the appendix. Next, we
prove a lower bound on Pr[ImpCutp(T h

x,c)]. For q ∈ [0, 1] and l ∈ N, define

abamo(q, l) := ql + l(1− q)ql−1 . (4)

The name abamo is the acronym of “all but at most one” and is indeed the probability that,
among l independent events of probability q each, all or all but one happen. Recall the
definition of Q(p) := Pr[Cutp(T ∞)] just before Proposition 13.

▶ Lemma 21. If p < θ then Pr[ImpCutp(T h
x,c) | π(x) = p] is at least(

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof sketch. For each subtree Ti of T h
x,c, either Cutp(Ti) or LocalImpCutp(vi) must happen.

Now this happens if either (1) π(y) < p, which explains the first term of the sum in the
parentheses; (2) π(y) ≥ p and Iyi

= 1 and LocalImpCutp(vi), which is the second term; or
(3) π(y) ≥ p and Iyi = 0 and Cutp(Ti), which is the third term. See Lemma 27 for a complete
proof. ◀

Let us summarize our reasoning so far. Define an ensemble J imp
1 , . . . , J imp

d−1 of random
variables in {0, 1} as follows: set p := π(x); then independently set each J imp

c to 0 with
probability W k−1 and 1 with probability 1−W k−1, where

W = W (p) :=
{

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 if p < θ

R(p) else.

One checks that W (p) is continuous at p = θ since R(p) = p + (1 − p)R(p)(k−1)(d−1) =
p + (1− p)Q(p)d−1. Set J imp := J imp

1 + · · ·+ J imp
d−1 + 1. We have shown so far that

E
[
log2 max(1 + Ix, Aimp

x,c)
]
≤ E

[
log2 max(1 + Ix, J imp)

]
+ error(d, k, h)

= Pr[J imp = 1 ∧ Ix] + E
[
log2(J imp)

]
+ error(d, h, k) . (5)

▶ Proposition 22. Pr[J imp = 1 ∧ Ix] ≤ c
L+1 θL+1 + O

(
θL+2).

▶ Proposition 23. E [log2(J imp)]− Sd,k ≤ (d− 1) log2(1− 1/d) ·
(

c
L+1 θL+1 + O

(
θL+2)).

We prove the two propositions in Section E in the appendix. Together with (5), they imply
that E

[
log2 max(1 + Ix, Aimp

x,c)
]
− Sd,k is at most(

c

L + 1θL+1 + O
(
θL+2)) (1 + (d− 1) log2(1− 1/d)) + error(d, k, h) .

The expression in the first parenthesis is positive for sufficiently small θ; in fact, we have to
choose θ small enough to beat the hidden constant in the O(·), which in turn depends only
on d and k. The expression in the second parenthesis, 1 + (d− 1) log2(1− 1/d), is negative
for all d ≥ 3. It is maximized for d = 3, where it becomes 2− 2 log2(3) < −0.1699. Thus, we
can choose θ such that the whole expression is at most Sd,k − ϵd,k + error(d, k, h) for some
ϵd,k > 0 depending only on d and k. This concludes the proof of Lemma 19. ◀

S. Li and D. Scheder 33:13

4 Future Work

In the analysis of PPSZ, the worst case happens if all everything looks “nice”: all variable
nodes in Tx,1, . . . , Tx,d−1 have different labels; all clause labels are critical clauses.

In this scenario, our analysis for impatient assignment could go deeper than level 3; we
could define a more powerful event ImpCut and obtain much better bounds on the running
time. Indeed, future work hopefully will identify the worst-case shape of the T h

x,c and allow
us to analyze the full power impatient assignment.

The condition |Plaus(y, F [α])| ≤ 2 in Line 4 in Algorithm 2 is arbitrary. Why “≤ 2”?
Why not “≤ 3”? For large d, what would the optimal cut-off value be?

References
1 Richard Beigel and David Eppstein. 3-coloring in time O (1.3289n). J. Algorithms, 54(2):168–

204, 2005. doi:10.1016/j.jalgor.2004.06.008.
2 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms

using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.

3 Timon Hertli. 3-SAT faster and simpler – unique-SAT bounds for PPSZ hold in general. In
2011 IEEE 52nd Annual Symposium on Foundations of Computer Science – FOCS 2011,
pages 277–284. IEEE Computer Soc., Los Alamitos, CA, 2011. doi:10.1109/FOCS.2011.22.

4 Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A Moser, Dominik Scheder, and May
Szedlák. The PPSZ algorithm for constraint satisfaction problems on more than two colors.
In International Conference on Principles and Practice of Constraint Programming, pages
421–437. Springer, 2016.

5 Michal Koucký, Vojtech Rödl, and Navid Talebanfard. A separator theorem for hypergraphs
and a CSP-SAT algorithm. CoRR, abs/2105.06744, 2021. arXiv:2105.06744.

6 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-
time algorithm for k-SAT. Journal of the ACM (JACM), 52(3):337–364, 2005.

7 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In
Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 566–574.
IEEE, 1997.

8 Dominik Scheder. PPZ for more than two truth values-an algorithm for constraint satisfaction
problems. arXiv preprint, 2010. arXiv:1010.5717.

9 Dominik Scheder. PPSZ is better than you think. Electron. Colloquium Comput. Complex.,
28:69, 2021. URL: https://eccc.weizmann.ac.il/report/2021/069.

10 Dominik Scheder and John P. Steinberger. PPSZ for General k-SAT - making Hertli’s
analysis simpler and 3-SAT faster. In Ryan O’Donnell, editor, 32nd Computational Complexity
Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 9:1–9:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.9.

11 Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages
410–414. IEEE Computer Society, Los Alamitos, CA, 1999. doi:10.1109/SFFCS.1999.814612.

A Independence between colors

▶ Lemma 24 (Lemma 8, restated). Let π : V → [0, 1] be uniformly random and set p := π(x).
We sample d random variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c to 1 with

probability Pr[Aimp
x,c = 1 | π(x) = p], independently. Set Ãimp

x :=
∑

c Ãimp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(6)

ISAAC 2021

https://doi.org/10.1016/j.jalgor.2004.06.008
https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1109/FOCS.2011.22
http://arxiv.org/abs/2105.06744
http://arxiv.org/abs/1010.5717
https://eccc.weizmann.ac.il/report/2021/069
https://doi.org/10.4230/LIPIcs.CCC.2017.9
https://doi.org/10.1109/SFFCS.1999.814612

33:14 Impatient PPSZ

Proof. We prove (6) conditioned on π(x) = p. Let Z ∈ {0, 1}V \{x} be defined by Zy :=
[π(y) ≥ p]. Note that each Zy is 1 with probability 1 − p, independently. Next, observe
that each Aimp

x,c is a monotone increasing Boolean function fc(Z): moving some π(y) above
p can only increase Aimp

x,c . Let Z(1), . . . , Z(d) be d independent copies of Z; that is, each
has the same distribution as Z but they are independent. Conditioned on π(x) = p, we
have (f1(Z), . . . , fd(Z)) ∼ (Aimp

x,1 , . . . , Aimp
x,d) and (f1(Z(1)), . . . , fd(Z(d))) ∼ (Ãimp

x,1 , . . . , Ãimp
x,d),

where A ∼ B means that the random variables A and B have the same distribution.
Now if p > θ and therefore Ix = 0, then the function log2(max(1 + Ix, ·)) in (6) becomes

log2(·) and we can directly apply the Concave Correlation Lemma (Lemma A.1 of the full
version of [4]).

If Ix = 1, the trouble is that the function t 7→ log2(max(2, t)) is not concave anymore.
However, note that if π(x) < θ, we set Ix to 1 with probability ζ and 0 with probability 1− ζ.
Conditioned on π(x) = p, the randomness in (6) comes from two sources: (1) the choice of
Ix; (2) the randomness in Z (or Z(1), . . . , Z(d) for the right-hand side). We can break down
both sides of (6) as follows:

E
Z,Ix

[log2(max(1 + Ix, Aimp
x))] = E

Z

[
ζ log2(max(2, Aimp

x)) + (1− ζ) log2(Aimp
x)

]
, (7)

where ζ = 2− log2(3). Now the function t 7→ ζ log2(max(2, t)) + (1− ζ) log2(t) is still not
concave. However, note that the arguments of log2(t) in (6) and (7) are integers; define g(t)
to be the function that equals log2(t) if t is an integer, and is linear between integers. Now
g is concave and t 7→ ζg(max(2, t)) + (1 − ζ)g(t) is concave, too. In fact, this function is
linear on [1, 3] and agrees with g for t ≥ 3. Now the lemma again follows by the Concave
Correlation Lemma (Lemma A.1 of [4]). ◀

B PPSZ for privileged variables

▶ Proposition 25 (Proposition 17, restated). Suppose x ∈ vbl(F) is a priviledged variable.
Then there is an ϵprivileged > 0, depending only on d and k, such that

E [log2(Ax)] ≤ Sd,k − ϵprivileged + error(d, k, h) ,

for every privileged variable x in F .

Proof. This proof is similar in spirit and also technical details to the proof of Lemma 19
in [9], except that the latter is concerned with SAT (i.e., the case d = 2).

Note that a variable x can be privileged for two reasons: first, there is some color c such
that the critical clause tree T h

x,c has fewer than (k − 1)L leaves at level 3; in other words,
some clause node v at level 2 has fewer than k − 1 children (note that the nodes at level
0 and 1 have the “right” numer of children; the clause label of 0 is a critical clause, and
therefore the root has always k − 1 children; an odd-level node always has d− 1 children).
The second reason would be that, for some color c, level 1 and 3 of the critical clause tree
T h

x,c contain nodes u and v with varlabel(u) = varlabel(v).

It is easy to see that the first kind of privilege is stronger: let v be the level-2 node with
fewer than k − 1 children. We can add “fictitious” subtrees until v has k − 1 children, and
make sure that one of the added children shares its variable label with an already-existing
level-3 node. The result of this operation, T ′

x,c, exhibits a privilege of the second kind, and
Cutp(T h

x,c) ⊇ Cutp(T ′
x,c).

Thus, let us assume that x is privileged because T h
x,c contains two nodes v and w with

varlabel(v) = varlabel(w) = z and the depths of v and w are in {1, 3}. Analogous to the proof
of Proposition 14 (Lemma 3.5 in [4], we start with iteratively assign fresh labels to variable

S. Li and D. Scheder 33:15

nodes; as shown in [4], this never increases Pr[Cutp(T h
x,c)]. We apply this to all variable nodes

except v and w, and obtain a new tree T . We make sure that there are no “missing children”
in T , i.e., that every clause has k − 1 children; this can be achieved by attaching fictitious
subtrees, which does not increase Pr[Cutp(T)]. Also, we will for convenience assume that T

is infinite, i.e., has no safe leaves (and no unsafe leaves, either). This does increase Pr[Cutp],
but by at most error(d, k, h). In T we still have varlabel(v) = varlabel(w) = z, but all other
labels are distinct. Let T ′ be the tree where v and w receive fresh labels zv, zw. We already
know that Pr[Cutp(T ′)] = Q(p). It remains to show that Pr[Cutp(T)] is substantially larger
than Pr[Cutp(T ′)]. For this, let L be the set of variable labels appearing in T and T ′, and
let τ : L \ {z, zv, zw} → [0, 1]. We will analyze the difference

Pr[Cutp(T) | τ]− Pr[Cutp(T ′) | τ] (8)

for fixed τ . Introduce the three Boolean variables a := [π(z) < p], av := [π(zv) < p], and
aw := [π(zw) < p]. Note that under τ , the event Cutp(T ′) reduces to fτ (av, aw) for some
monotone Boolean function and Cutp(T ′) reduces to fτ (a, a), for the same function fτ . There
are only six possible such functions: fτ (av, aw) is either 0, 1, av, aw, av ∧aw, or av ∨aw. If it
is one of the first four, then Pr[fτ (av, aw)] = Pr[fτ (a, a)] and (8) is 0. It cannot be av ∨ aw:
the nodes v and w are not ancestors of each other. Finally, if fτ (av, aw) = av ∧ aw then we
call τ pivotal and observe that (8) becomes p− p2.

From here on, our plan is to lower bound the probability that τ is pivotal. We give a
necessary and sufficient criterion for τ to be pivotal.3 It is best illustrated with a figure.

v w

.

.

.

.

aunts aunts

aunts

uncles uncles

children

grandparent of v grandparent of w

Squares are the clause nodes and circles are the variable nodes. Note that we assume that v

and w are both on level 3, and their lowest common ancestor is the root. In the other cases,
the picture and the subsequent calculation will be slightly different. To ease notation, we
adopt the notation Cutp(u) := Cutp(Tu), where Tu is the subtree of T ′ rooted at u (note
that T ′ and T have the same node set, only some labels differ). In the case depicted in the
figure, τ is pivotal if and only if
1. Cutp(u) happens for all aunts and uncles u;
2. Cutp(u) does not happen for all children u of v; neither for all children u of w.
3. π(grandparent of v), π(grandparent of w) ≥ p.

3 Actually, it is sufficient for our purposes that the criterion be sufficient, and not necessary that it be
necessary.

ISAAC 2021

33:16 Impatient PPSZ

Furthermore, note that Pr[Cutp(u)] equals Q(p) if u is an uncle and R(p) if u is an aunt.
Therefore,

Pr[Cutp(T)]− Pr[Cutp(T ′)] ≥ (p− p2) · Pr[τ is pivotal] =

(p− p2)Q(p)uncles ·R(p)aunts ·
(
1−Q(p)d−1)2 (1− p)2

=: δ(p) .

It is clear that δ(p) > 0 for 0 < p < 1− 1/N and δ(p) = 0 for p ≥ 1− 1/N . Recalling the
definition of Sd,k = E[log(J1 + · · ·+ Jd−1 + 1)] comparing it to E[log2(Ax)] = E[log2(Ax,1 +
· · · + Ax,d−1 + 1)], we can couple the ensembles A := (Ax,c)d−1

c=1 and J := (Jc)d−1
c=1 such

that A ≤ J except with probability error(d, k, p, h), and Ax,c = 0, Jc = 1, conditioned on
π(x) = p, happens with probability at least δ(p)− error(d, k, p, h). In fact, let us ignore the
term error(d, k, h) for now and simply assume that A ≤ J (more rigorously, we would have to
replace every T h

x,c by the appropriate infinite version; we decide to simply ignore error(d, k, h)
in the following, lest we overload the reader with our notation). Set ∆ := J − Ax, and
observe that ∆ ≥ 0 and Pr[∆ ≥ 1 | π(x) = p] ≥ δ(p).

E[log2(J)]− E[log2(Ax)] = −E
[
log2

(
J −∆

J

)]
= −E

[
log2

(
1− ∆

J

)]
≥ −E

[
log2

(
1− ∆

d

)]
≥ log2(e)

d
E [∆]

≥ log2(e)
d

∫ 1

0
δ(p) dp =: ϵprivileged .

This is some positive number, and it depends only on d and k. ◀

C Local reasoning for ImpatientPPSZ

▶ Lemma 26 (Lemma 20, restated). Suppose x ∈ vbl(F) is non-priviledged. Let p = π(x). If
ImpCutp(T h

x,c) happens then Aimp
x,c = 0.

Proof. We will prove the contrapositive: assume that Aimp
x,c = 1 and show that ImpCutp(T h

x,c)
does not happen. Let F (T h

x,c) denote the set of clause labels appearing in T h
x,c. Since Aimp

x,c = 1
by assumption, the formula F [V imp

x 7→d] does not D-imply (x ̸= c). In particular, |F (T h
x,c)| ≤ D

and therefore F (T h
x,c)[V imp 7→d] does not imply (x ̸= c). This means that there is an assignment

γ that (1) satisfies F (T h
x,c), (2) γ(x) = c, (3) γ(y) = d for all y ∈ V imp

x .

As a first step, we will show that Cutp(T h
x,c) does not happen. For this, we will construct

a sequence of clause nodes u0, u1, . . . , with u0 being the root andn ui+1 being a grandchild
of ui, keeping the following invariant:

Invariant. For every clause node u in the sequence, βu(y) ̸= d⇒ γ(y) = βu(y).

Note that the invariant is satisfied for the root: x is the only variable with βroot(x) ̸= d,
and γ(x) = c = βroot(x). To find ui+1 from ui, let Ci be the clause label of ui, and write
Ci as

Ci = (y1 ̸= c1 ∨ · · · ∨ yl ̸= cl ∨ zl+1 ̸= d ∨ · · · ∨ zk−1 ̸= d) ,

S. Li and D. Scheder 33:17

where c1, . . . , cl ̸= d. By construction, βui violates Ci, and therefore βui(yj) = cj for
1 ≤ j ≤ l; by the invariant, γ(yj) = cj , too. But γ satisfies Ci (it satisfies every clause
label in T h

x,c), and therefore γ(zj) = c ̸= d for some l + 1 ≤ j ≤ k − 1. In particular, ui has
children. Let v be the child of ui with variable label zj . If v is a leaf (a safe leaf), terminate
the process and call the path from root to v the witness path. Otherwise, and let ui+1 be the
child of v with EC(v, ui+1) = c. Note that ui+1 satisfies the invariant.

Since T h
x,c is finite, this process terminates with a witness path. Note that γ(y) ̸= d for

all variable labels y appearing on that path. In particular, this means that y ̸∈ V imp
x , thus

y ̸∈ Vx, thus π(y) ≥ π(x). In other words, Cutp(T h
x,c) does not happen.

Without loss of generality, let v1 be the level-1-node on the witness path, and T1 be
the tree rooted at v1, and y1 := varlabel(v1). Observe that Cutp(T1) does not happen. We
will now show that LocalImpCutp(v1) does not happen, either. Assume, for the sake of
contradiction, that LocalImpCutp(v1) happens. Does it happen because of Point 3a in the
definition? Certainly not: γ(y1) ̸= d since v1 is on the witness path, and thus π(y1) ≥ p.
So it happens because of Point 3b, and Iy1 = 1; without loss of generality, this means that
LocalImpCutp(v1) happens for the first d−2 children w1, . . . , wd−2 of v1; let C1, . . . , Cd−2 be
the respective clause labels. All those Ci are critical clauses (x is non-priviledged, remember),
and have k − 1 children each. So LocalImpCutp happens for the first (k − 1)(d− 2) of the
(k − 1)(d− 1) grandchildren of v1. In other words, all their variable labels z have π(z) < p

and thus z ∈ Vx. Under the assignment [Vx 7→ d], each of Ci reduces to a unit clause; this
unit clause is still violated by βwi

and is therefore either (y1 ̸= i) or (x ̸= c). If it was
(x ̸= c) then F (T h

x,c)[Vx 7→d] would imply (x ̸= c) and therefore Ax,c = Aimp
x,c = 0, contradicting

our assumption. So it is (y1 ̸= i). In other words, F (T h
x,c)[Vx 7→d] contains the unit clauses

(y1 ̸= 1), . . . , (y1 ̸= d − 2); thus, when x is being processed by ImpatientPPSZ, the set of
plausible values for y has been reduced to at most two values: d − 1 and d; since Iy1 = 1,
the algorithm will assign y1 a value in Line 6, and y1 ∈ V imp

x . This is again a contradiction:
γ(y1) ̸= d since v1 is on the witness path; γ(y1) = d since y1 ∈ V imp

x . This concludes the
proof. ◀

D ImpCut probability

Suppose x ∈ vbl(F) is non-priviledged and T h
x,c is a critical clause tree for x and c ∈ [d].

▶ Lemma 27 (Lemma 21, restated). If p < θ then Pr[ImpCutp(T h
x,c) | π(x) = p] is at least(

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof. If p ≥ θ then this is obvious since already Cutp(T h
x,c) has probability at least

Q(p)− error(d, k, h), by Proposition 14. Thus we assume p < θ. The root of T h
x,c has k − 1

children v1, . . . , vk−1, whose respective variable labels are y1, . . . , yk−1. Let Ti denote the
subtree of T h

x,c rooted at vi.

Pr
[
ImpCutp(T h

x,c)
]

= Pr
[

k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)]

≥
k−1∏
i=1

(
Pr[Cutp(Ti) ∨ LocalImpCutp(vi)]

)
. (FKG inequality)

ISAAC 2021

33:18 Impatient PPSZ

We can apply the FKG inequality because each event Cutp(Ti) ∨ LocalImpCutp(vi) is a
monotone increasing Boolean function in the variables [π(z) < p] and Iyi

. It remains to
show that, for each 1 ≤ i ≤ k − 1, the event Cutp(Ti) ∨ LocalImpCutp(vi) happens with
probability at least

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 − error(d, k, h) (9)

For this, let us abbreviate T := Ti, v := vi its root, and y := varlabel(v) = yi; also, we define
the events A := LocalImpCutp(v) and B := Cutp(T). We distinguish three cases:

(i) if (1) π(y) < p then the desired event A ∨B happens;
(ii) if π(y) ≥ p and Iy = 1 (which implies π(y) < θ) then we ignore B and focus on A;
(iii) if π(y) ≥ p and Iy = 0, then A does not happen, so focus on B.

Formally,

Pr[A ∨B] ≥ Pr[(i)] + Pr[(ii)] · Pr[A | (ii)] + Pr[(iii)] · Pr[B | (iii)]

Next, let us look at each case.
1. Pr[(i)] = p; this explains the first term in (9).
2. Pr[(ii)] = c(θ − p). Furthermore, if if (ii) happens, then A happens if and only if for

at least d− 2 of the children w1, . . . , wd−1, the event Aj := LocalImpCutp(wj) happens.
Each Aj happens with probability ρ := pk−1; they are independent since all (d− 1)(k− 1)
grandchildren of v have distinct labels. Therefore,

Pr[A | (ii)] = Pr[A1 ∧ · · · ∧Ad−1] +
d−1∑
j∗=1

Pr[¬Aj∗ ∧
∧

j ̸=j∗

Aj]

= ρd−1 + (d− 1)(1− ρ)ρd−2 = abamo(pk−1, d− 1) .

This explains the second term in (9).
3. Pr[(iii)] = 1 − p − c(θ − p). If (iii) happens, then B happens if and only if Cutp(T ′)

happens for each of the d − 1 subtrees of T . By Proposition 14, this happens with
probability (Q(p)− error(d, k, h))d−1. This explains the third and fourth term in (9).

This concludes the proof. ◀

E Bounding losses and gains. Proofs of Propositions 22 and 23

First, we need some good-enough estimates for our probabilities R(p), Q(p), and W (p). Note
that R(p) and Q(p) are the roots of certain polynomials, and we do not have an explicit
formula for them. The bounds in Proposition 28 are somewhat crude but sufficient for our
purposes.

▶ Proposition 28. R(p) ≤ p + 4 pL; Q(p) ≤
(
p + 4 pL

)k−1; and W (p) ≤ p + O(θp(d−2)(k−1)).
The hidden constant in the O depends on d and k only.

Proof. One checks that R(p) is convex on the interval [0, 1− 1/L]. To see this, note that for
p ≤ 1− 1/L, R(p) is the unique solution in [0, 1] of the equation

R = p + (1− p)RL ,

S. Li and D. Scheder 33:19

by Proposition 13. We can solve explicitly for p and check that p(R) is concave, by elementary
calculus. Since R is convex, R(0) = 0, and R(1− 1/L) = 1, the graph of R(p) is below the
line from (0, 0) to (1 − 1/L, 1), and therefore R(p) ≤ L

L−1 p. This is not enough yet, but
applying the equation of R to this estimate gives

R = p + (1− p)RL ≤ p + (1− p)
(

L

L− 1 p

)L

≤ p + 4 pL .

The upper bound for Q follows directly from Q(p) = R(p)k−1. It remains to prove the upper
bound on W (p):

W (p) = p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1

≤ p + θabamo(pk−1, d− 1) + Q(p)d−1

= p + θp(k−1)(d−1) + θ(d− 1)(1− pk−1)p(k−1)(d−2) + Q(p)d−1

≤ p + (d− 1)θp(d−2)(k−1) + RL

≤ p + (d− 1)θp(d−2)(k−1) + (p + 4 pL)L

≤ p + O
(

θp(d−2)(k−1)
)

. ◀

▶ Proposition 29 (Proposition 22, restated). Pr[J imp = 1 ∧ Ix] ≤ c
L+1 θL+1 + O

(
θL+2).

Proof. Recall that if π(x) < θ then Ix is 1 with probability c and 0 with probability 1− c.
If π(x) ≥ θ then Ix = 0. Also, J imp = 1 if and only if J imp

1 = · · · = J imp
d−1 = 0. Therefore,

Pr[J imp = 1 ∧ Ix] = c ·
∫ θ

0
Pr[J imp = 1 | π(x) = p] dp = c ·

∫ θ

0
W (d−1)(k−1) dp

= c ·
∫ θ

0
(p + O(θp(d−2)(k−1)))L dp ≤ c ·

∫ θ

0
pL(1 + O(θ)) dp

(since (d− 2)(k − 1) ≥ 1)

= c

L + 1θL+1 + O
(
θL+2)

This proves the proposition. ◀

▶ Proposition 30 (Proposition 23, restated). E [log2(J imp)]− Sd,k ≤ (d− 1) log2(1− 1/d) ·(
c

L+1 θL+1 + O
(
θL+2)).

Proof. Recall the definition of Sd,k: sample random variables J1, . . . , Jd−1 by setting p :=
π(x) and setting each Jc to 0 with probability Q(p) and to 1 with probability 1 − Q(p),
and J = J1 + · · · + Jd−1 + 1. So the Jc are independent conditioned on π(x) = p. Then
Sd,k = E[log2(J)]. Set ∆c := Jc − J imp

c and ∆ =
∑

c ∆c. Note that all ∆c have the same
distribution.

▶ Proposition 31. E[∆1 | π(x) = p] ≥ c(θ − p)L
(
pL−1 −O(pL)

)
for all 1 ≤ c ≤ d− 1.

In particular, if p < θ and θ is sufficiently small then E[∆1] ≥ 0. Therefore, E[Jc] ≤
E[J imp

c] and we can couple the ensemble (J1, . . . , Jd−1) and (J imp
1 , . . . , J imp

d−1) on a common
probability space on which Jc ≤ J imp

c , always, and thus ∆ ≥ 0. We therefore see that

ISAAC 2021

33:20 Impatient PPSZ

E [log2(J imp)]− Sd,k is

E[
[
log2(J imp)− log2(J)

]
= E

[
log2

(
1− ∆

J

)]
≤ E

[
log2

(
1− ∆

d

)]
≤ E

[
log2

((
1− 1

d

)∆
)]

= E[∆] log2

(
1− 1

d

)
.

Conditioned on π(x) = p and using Proposition 31, this is at most

c(θ − p)L
(
pL−1 −O(pL)

)
(d− 1) log2

(
1− 1

d

)
.

We integrate this over p to get rid of the condition π(x) = p and see that

E
[
log2(J imp)

]
− Sd,k ≤ (d− 1) log2

(
1− 1

d

)
·
(

c

L + 1θL+1 + O
(
θL+2)) .

This concludes the proof of Proposition 30. ◀

It remains to prove Proposition 31.

Proof of Proposition 31.

E[∆1 | π(x) = p] = E[Jc − J imp
c | π(x) = p] = (1−Q)− (1−W k−1) = W k−1 −Rk−1

≥ (k − 1)(W −R)Rk−2 ,

where the last inequality follows because W k−1 = (R + W −R)k−1 = Rk−1 (1 + W −R
R

)k−1 ≥
Rk−1

(
1 + (k−1)(W −R)

R

)
= Rk−1 + (k − 1)(W − R)Rk−2. Now let us bound W − R from

below. If p ≥ θ then W (p) = R(p) and W −R = 0. If p < θ, we expand R(p) as follows:

R = p + (1− p)Q(d−1) = p + c(θ − p)Qd−1 + (1− p− c(θ − p))Qd−1

and therefore

W −R = c(θ − p)
(
abamo(pk−1, d− 1)−Qd−1)

= c(θ − p)
(

p(k−1)(d−1) + (d− 1)
(
1− pk−1) p(k−1)(d−2) −Qd−1

)
≥ c(θ − p)

(
pL + (d− 1)p(k−1)(d−2) − (d− 1)pL − (p + O(p2))L

)
≥ c(θ − p)(d− 1)

(
p(k−1)(d−2) −O(pL)

)
.

Next, combining the previous two calculations, we see that

E[∆1 | π(x) = p] ≥ (k − 1)(W −R)Rk−2 ≥ (k − 1)(W −R)pk−2

≥ (k − 1)c(θ − p)(d− 1)
(

p(k−1)(d−2) −O(pL)
)

pk−2

≥ c(θ − p)L
(
pL−1 −O(pL)

)
. ◀

	1 Introduction
	1.1 The PPSZ Algorithm
	1.2 Our Contribution
	1.3 Notation
	1.4 PPSZ and impatient PPSZ

	2 Conceptual Framework
	2.1 Independence between colors
	2.2 Critical Clause Trees and Brief Analysis of PPSZ

	3 The Probability of Inferring x ne c
	4 Future Work
	A Independence between colors
	B PPSZ for privileged variables
	C Local reasoning for ImpatientPPSZ
	D ImpCut probability
	E Bounding losses and gains. Proofs of Propositions 22 and 23

