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Abstract
We present a truly subquadratic size distance oracle for reporting, in constant time, the exact
shortest-path distance between any pair of vertices of an undirected, unweighted planar graph G. For
any ε > 0, our distance oracle requires O(n5/3+ε) space and is capable of answering shortest-path
distance queries exactly for any pair of vertices of G in worst-case time O(log(1/ε)). Previously
no truly sub-quadratic size distance oracles with constant query time for answering exact shortest
paths distance queries existed.
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is a
fundamental algorithmic problem. Given an n-vertex graph G = (V, E) a distance oracle
is a compact data-structure capable of efficiently answering shortest path distance queries
between pairs of vertices u, v ∈ V . Ideally one would like the data structure to be of linear
size and the query time to be constant. However, it is well known that there are graphs
for which no distance oracle with o(n2) bits of space and O(1) query time exists. In fact,
even resorting to approximation, Pǎtraşcu and Roditty [21] showed that there are sparse
graphs on O(n polylog n) edges for which constant query-time distance oracles with stretch
less than 2 must be of size Ω(n2 polylog n), assuming the set intersection conjecture. These
impossibility results make it natural to consider the problem in restricted classes of graphs.

In this paper we consider exact distance oracles for planar graphs. Distance oracles for
planar graphs are well motivated by important real-world applications, notably in routing,
navigation of road and sea maps as well as in the context of computational geometry. To
the best of our knowledge there are no non-trivial lower bounds for (static) distance oracles
for planar graphs, and thus achieving the “holy grail” of a linear-size distance oracle with
constant query time may be possible. Indeed, there has been numerous works over at least
three decades developing exact distance oracles for planar graph [10, 2, 3, 8, 11, 19, 20].
However, only in 2017, Cohen-Addad et al. [9] gave the first oracle with truly subquadratic
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space and polylogarithmic query time. Their result was inspired by Cabello’s [4] breakthrough
result, who gave the first truly sub-quadratic time algorithm for computing the diameter of
planar graphs by a novel use of Voronoi diagrams. The approach of [9] was subsequently
improved by [12, 7, 18], who gave an elegant point-location mechanism for Voronoi diagrams
in planar graphs, and combined it with a clever recursive scheme to obtain exact distance
oracles for directed weighted planar graphs with O(n1+o(1)) space and O(log2+o(1) n) query
time. We note that even though the oracles of [7, 18] get quite close to optimal, it remains
wide open to support exact queries in constant time using truly subquadratic space, even in
the most basic case of unweighted undirected planar graphs [26, 5, 25].

Allowing approximate answers does help in planar graphs. Many results reporting
(1 + ε)-approximate distances with various tradeoffs exist, all with (nearly) linear size and
polylogarithmic, or even O(1/ε) query-time [24, 15, 14, 27]. Gu and Xu [13] presented a size
O(n polylog n) distance oracle capable of reporting (1 + ε)-approximate distances in time
O(1). While their query time is a constant independent of ε, the preprocessing time and
space are nearly linear, but with an exponential dependency on (1/ε). This exponential
dependency can be made polynomial, but then the query time increases to O(log(1/ε)) [6].

Thus, despite the large body of work on distance oracles for planar graphs, it has remained
an open question to determine whether an exact distance oracle with of size O(n2−ε) with
constant query-time can be constructed for some constant ε > 0.

1.1 Our contributions
We answer this question in the affirmative, and discuss our techniques in the following section.
Our result is summarized in the following theorem:

▶ Theorem 1. Let G = (V, E) be an undirected unweighted n-vertex planar graph. For any
ε > 0 there exists a data-structure requiring O(n5/3+ε) space that, for any s, t ∈ V , reports
the shortest path distance between s and t in G in time O(log(1/ε)).

We also present another denser subquadratic distance oracle in Section 4, and remark
that it can be distributed into a distance labeling scheme with size O(n3/4) per label, such
that the distance between any two vertices s, t can be computed in O(1) time given just the
labels of s and t.

1.2 Technical overview
The main concept we use to obtain our result is that of a pattern capturing distances between
a vertex and a cycle. This concept was used by [26] and by [17] (where it was called a
“distance tuple”). Consider a vector storing the distances from a vertex u to the vertices of
a cycle β in their cyclic order. The pattern of u w.r.t. β is simply the discrete derivative
of this vector. That is, the vector obtained by taking the difference between every pair of
consecutive values. Li and Parter [17] showed that when the input graph is planar, the
number of different patterns w.r.t. a face with r vertices is O(r3), regardless of the size of
the graph. We next outline how this observation can be used to break the quadratic space
barrier.

Roughly speaking, any planar graph can be decomposed into O(n/r) subgraphs, called
regions, of size r each, where the boundary of each region (i.e., the vertices that have
neighbors outside the region) is a single cycle h.1 Applying Li and Parter’s observation in

1 In fact, a constant number of cycles. To readers familiar with the concept, this is just an r-division
with a few holes, but without the important feature that each region has just O(

√
r) boundary vertices.

This is because one cannot triangulate unweighted graphs without changing the distances.
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this setting, the number of different patterns for the hole of each region R is O(r3). Hence,
we can represent the distances from any vertex s /∈ R to h by just storing the distance from
s to an arbitrarily chosen canonical vertex vh of h, and a pointer to the pattern of s with
respect to h. This requires just a total of O(n) space for all vertices not in R plus O(r3 · r)
for storing all the patterns for h. Summing over all O(n/r) regions, the space required is
O(n2/r + nr3).

We then define the notion of distance from a pattern to a vertex (see Definition 6). While
this definition is simple, it is somewhat unnatural because the distance from a pattern to
a vertex does not necessarily correspond to the length of any specific path in the graph!
However, the distance between s and any vertex t ∈ R is just the sum of the distance between
s and the canonical vertex vh and the distance from the pattern of s with respect to h to t.

We therefore store the distances from each of the O(r3) possible patterns of R to each
vertex of R. This requires O(r3 · r) space per region, so O(nr3) space overall. This way we
can report the distance between s and t in constant time by (i) retrieving the pattern p of s

w.r.t. h, and (ii) adding the distance from s to the canonical vertex vh of h and the distance
from the pattern p to t. These ideas alone already imply an oracle with space Õ(n7/4) and
constant query time. Combining these ideas with recursion yields the improved space bound
of Theorem 1.

1.3 Technical differences from previous oracles
As we previously mentioned, breaking the quadratic space barrier for constant query time
has remained a long standing open question and can therefore be considered an important
and significant result in its own right. We highlight the following difference between the
approach taken in our recursive oracle and the approaches used in all existing distance oracles
we are aware of. To the best of our knowledge, all existing distance oracles, both exact and
approximate, and both for general graphs and planar graphs, recover the distance from s to
t by identifying a vertex or vertices on some (possibly approximate) shortest path between s

and t, for which distances have been stored in the preprocessing stage. These vertices are
usually referred to as landmarks, portals, hubs, beacons, seeds, or transit nodes (cf. [23]).
Our oracle, on the other hand, reports the exact shortest path without identifying vertices
on the shortest path from s to t. Instead, it “zooms in” on t by recovering distances to the
canonical vertices of a sequence of subgraphs of decreasing size that terminates at a constant
size graph containing t. We emphasize that none of these canonical vertices necessarily lies
on a shortest path from s to t. This property may be viewed as a disadvantage if we also want
to report the shortest path, but when reporting multiple edges on long paths, constant query
time is no longer relevant. On the other hand, it may be that just reporting the distance
is easier than also reporting an internal vertex on a shortest path. Hence, it may be that
developing oracles based on this new approach may lead to further advances on the way to
linear size distance oracles for planar graphs with constant query time, and in other related
problems.

2 Preliminaries

Let G be a graph. We denote by V (G) and E(G) the vertex and edge-set of G, and denote
by n = |V (G)| the number of vertices of G.

For a subset S of edges or vertices we denote by G[S] the subgraph of G induced on S.
We denote by u⇝H v a shortest path from u to v in the subgraph H, by dH(u, v) the length
of u⇝H v, and define u⇝ v ≡ u⇝G v.

ISAAC 2021
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The following definitions will be useful when talking about decompositions of G. A region
R of G is an edge-induced subgraph of G, and its boundary ∂R is the set of vertices of R

that are adjacent to some vertex of V (G) \ V (R) in G. Vertices of V (R) \ ∂R are called
interior vertices of R. Observe that for a region R and for u ∈ R and v ∈ V \ V (R), any
path from u to v in G must intersect ∂R.

It will be useful to assume some global strict order on a vertex set V s.t. for any U ⊆ V

there is a minimum vertex min U ∈ U w.r.t this order. We refer to this as the canonical
vertex of U .

We assume the reader is familiar with the the basic definitions of planarity and of planar
embeddings.

2.1 Faces and holes
The edges of a plane graph induce maximal open portion of the plane that do not intersect
any edges. A face of the graph is the closure of one such portion of the plane. We refer
to the edges bounding a face as the boundary of that face. Given a face f , V (f) is the
set of vertices on the boundary of f . We denote by w(f) the facial walk of f which is the
sequence of vertices encountered when walking along f starting at min V (f) and going in the
clockwise direction. Note that f may be non-simple, so some vertices may appear multiple
times in w(f). A hole h in a region R of a graph G is a face of R which is not a face in G.
We say that a vertex u ∈ V (G) \ V (R) is inside hole h if u lies in the region of the plane
corresponding to the face h of R. We denote by V +(h) = {u ∈ V (G) | u is inside h} all the
vertices that are inside h.

2.2 Decompositions of unweighted planar graphs
An r-division is a widely used decomposition of planar graphs into regions with small
boundary. We use the r-divisions with a few holes as studied in [16], which works for
triangulated biconnected graphs:

▶ Lemma 2 (r-division with few holes for triangulated graphs [16]). Let G be a biconnected,
triangulated n-vertex planar embedded graph, and let 0 < r ≤ n. G can be decomposed into
Θ(n/r) connected regions, each of which with O(r) vertices and O(

√
r) boundary vertices.

Each region has a constant number of holes. Every boundary vertex lies on some hole, and
each hole has O(

√
r) vertices.

The fact that the boundaries of regions are small (only O(
√

r) boundary vertices for
a region with r vertices) is the basis for many efficient algorithms and data structures for
planar graphs. Unweighted planar graphs posses additional structure (in comparison to
weighted planar graphs), which may also be useful algorithmically. See for example the
unit-Monge property in [1], or the limited number of patterns [26, 17], which we use in this
work. However, exploiting such additional structure in conjunction with a decomposition into
regions with small boundaries has been elusive because of the seemingly technical requirement
in Lemma 2 that the graph be triangulated and biconnected.

Any graph can be triangulated and biconnected by adding to each face f an artificial
vertex and infinitely weighted artificial edges from the artificial vertex to each vertex of V (f).
This transformation preserves planarity and shortest paths, and ensures that the graph
consists only of simple faces of size 3. However, the graph is no longer unweighted. We refer
to an artificial vertex (edge) of G as a vertex (edge) which was added in the triangulation
step, and a natural vertex (edge) of G as a vertex (edge) which is not artificial. In order to
exploit the structure of the unweighted input graph we will remove the artificial edges and
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vertices after computing the decomposition using Lemma 2. On the one hand the graph is
again unweighted. On the other hand, while the number of boundary vertices in each region
remains O(

√
r), the holes may now contain new non-boundary vertices, and the total size of

the holes in each region may be Θ(r). We note, however, that the deletion of artificial edges
and vertices does not disconnect regions [16]. We therefore restate the decomposition lemma
for unweighted graphs that are not necessarily triangulated or biconnected.

▶ Lemma 3 (r-division with few holes for non-triangulated graphs). Let G be a n-vertex planar
embedded graph G, and let 0 < r ≤ n. G can be decomposed into Θ(n/r) connected regions,
each with O(r) vertices and O(

√
r) boundary vertices. Each region has a constant number of

holes, and each boundary vertex lies on some hole.

2.3 Recursive r-divisions
Our second construction relies on a recursive r-division which is a recursive decomposition of
G into r-divisions for varying values of r. Specifically, for a decreasing sequence r = r1, r2, . . .,
where n ≥ r1 > r2 > . . . ≥ 1, we want ri-divisions for all i = 1, 2, . . ., such that each region
in the ri division is the union of regions in the ri+1-division on the next level. We associate
with the recursive r-division a decomposition tree, Tr, which is a rooted tree whose nodes
correspond to the regions of the recursive decomposition of G. We will refer to nodes and
their corresponding regions interchangeably. The root node corresponds to all of G. A node
x of Tr at depth i corresponds to a region of the ri-division, and its children are the regions
of the ri+1-division whose union is the region corresponding to x. We denote by T i

r all the
nodes at level i. It was shown in [16] that recursive r-divisions can be computed efficiently:

▶ Lemma 4 (Recursive r-division). Given a biconnected, triangulated n-vertex planar graph
G and an exponentially decreasing sequence r = n ≥ r1, r2, . . . ≥ 1, a decomposition tree, Tr
can be computed in linear time s.t. T i

r corresponds to an ri-division of G with few holes for
each i.

3 Patterns

Both [26] and [17] introduce a notion of a “distance tuple” which can be thought of as a
vector of shortest-path distances from a vertex to consecutive vertices of some hole. We
introduce the following similar notion of a pattern (See Figure 1 for an illustration):

▶ Definition 5 (Pattern). Let G be a graph. Let H be a subgraph of G. Let u be a vertex in
H, and let β = b0, b1, . . . , bk be a path in H. The pattern of u (w.r.t. β in H) is a vector
pβ,H(u) ∈ {−1, 0, 1}k satisfying pβ,H(u)[i] = dH(u, bi) − dH(u, bi−1) for 1 ≤ i ≤ k. When
the path β is the boundary walk w(h) of a hole h of a region R, we write ph,H(u) instead of
pw(h),H(u).

▶ Definition 6 (pattern to vertex distance). Let R be a region in a graph G. Let h be a hole
of R. Let b0, b1, . . . , bk be the vertices of w(h) in their cyclic order. Let p be some pattern
w.r.t. h (i.e., p = ph,G(u) for some u ∈ V +(h)). For a vertex v ∈ R we define dG(p, v) the
distance between p and v to be mink

i=0

{
dG(bi, v) +

∑i
j=0 p[j]

}
.

▶ Lemma 7. Let R be a region of a graph G. Let h be a hole of R. For every u ∈ V +(h)
and every v ∈ R, dG(u, v) = dG(u, b0) + dG(ph,G(u), v)).

ISAAC 2021
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s

10
10

11

12

11

11

b1
b2

b3
b4

b5

b6

pf∗ (s) = [0, 0, 1, 1,−1, 0, ...]

G

SP tree from S in G

10

f∗

Figure 1 Illustration of the pattern of the vertex s w.r.t. f∗ in an undirected graph. In this case
f∗ is the external face of the embedding. The numeric labels indicate the shortest path distances
from s to each bi where bi ∈ V (f∗) for 1 ≤ i ≤ 6.

Proof. By definition of pattern and by a telescoping sum, for every 0 ≤ i ≤
k, dG(u, bi) = dG(u, b0) +

∑i
j=0 p[j]. Let bℓ be any vertex of w(h) on a

shortest u-to-v path (bℓ exists since u ∈ V +(h) and v ∈ R). By choice
of bℓ, dG(u, v) = dG(u, bℓ) + dG(bℓ, v) = min0≤i≤k {dG(u, bi) + dG(bi, v)} =
min0≤i≤k

{
dG(u, b0) +

∑i
j=0 p[j] + dG(bi, v)

}
= dG(u, b0) + dG(p, v). ◀

3.1 Bounding the number of patterns

As mentioned, in a recent paper Li and Parter [17] achieve improved bounds for diameter
computation for planar graphs by showing that in unweighted undirected planar graphs the
number of patterns is quite small. More specifically, they show that the VC-dimension of a
set corresponding to all patterns is at most 3. By the Sauer-Shelah lemma [22], this implies
that the number of distinct patterns w.r.t. a sequence S of consecutive vertices on a face is
in O(|S|3). Their result is stated in the following lemma:

▶ Lemma 8 (Pattern compression [17]). Let G′ = (V, E) be an n-vertex unweighted undirected
planar graph, let f be a face in G′, and let S be a sequence of consecutive vertices on f .
Then the number of distinct patterns w.r.t. S, |

⋃
u∈V {pS,G′(u)} |, is bounded by O(|S|3).

We observe that the bound of Lemma 8 also holds for patterns w.r.t. the entire set of
vertices on a hole h of a region R even when distances are defined in the entire graph G.

▶ Corollary 9. Let R be a region in an n-vertex unweighted undirected planar graph G, and
let h be a hole of R. Then the number of distinct patterns w.r.t. h, | ∪u∈V +(h) {ph,G(u)} |, is
bounded by O(|h|3).

Proof. For any u ∈ V +(h) and v ∈ h, a shortest u-to-v path in G can be decomposed into
the concatenation of a shortest u-to-v′ path in G \ (R \ h), for some v′ ∈ h, and a shortest
v′-to-v path in G. Note that the former depends on u, but the latter does not. Hence, for
every two vertices u, u′ ∈ V +(h), ph,G\(R\h)(u) = ph,G\(R\h)(u′) implies ph,G(u) = ph,G(u′).
Hence | ∪u∈V +(h) {ph,G(u)} | = | ∪v∈V +[h]

{
ph,G\(R\h)(v)

}
|.

The corollary now follows since h is a hole of R implies that h is a face of G− (R− h),
so by Lemma 8, | ∪v∈V +[h]

{
ph,G−(R−h)(v)

}
| = O(|h|3). ◀

For the remainder of the paper we only deal with distances in G and with patterns in G,
so we will omit the subscript G, and write d(·, ·) and ph(·) instead of dG(·, ·) and ph,G(·).
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4 O(n7/4) space distance oracle

Before presenting our main result, we describe a simpler construction which yields a distance
oracle with a larger space requirement of O(n7/4) and O(1) query time.

4.1 Preprocessing

The preprocessing consists of computing an r-division R of G with a parameter r to be
determined later. For every vertex v of G and every region R of R, we store the hole h of R

s.t. v is in V +(h). This requires O(n · n/r) = O(n2/r) space.
For every region R ∈ R, for every hole h of R, we maintain the O(r3) patterns of the

vertices in V +(h) w.r.t. h as follows. Let k denote the size of the boundary walk w(h) of h.
let vh be the canonical (i.e., first) vertex of w(h). We maintain the patterns seen so far in
a ternary tree A whose edges are labeled by {−1, 0, 1}. The depth of A is k − 1, and the
labels along each root-to-leaf path correspond to a unique pattern, which we associate with
that leaf. For every vertex v ∈ V +(h), we compute the pattern ph(v) and we make sure that
ph(v) is represented in the tree A by adding the corresponding labeled edges that are not
yet present in A. After all the vertices in V +(h) are handled, the tree A has O(r3) leaves.
For each leaf of A with an associated pattern p, we compute and store (i) the distance from
p to each vertex of R. Storing (i) requires O(r4) time and space for all leaves of A, so a total
of O(n/r · r4) = O(nr3) space for storing all this information over all regions.

For each vertex v ∈ V +(h) we store (ii) a pointer to (the leaf of A that is associated with)
the pattern ph,G(v), as well as (iii) the distance d(v, vh) between v and the canonical vertex of
h. The total space required to store all these pointers and distances is O(n · n/r) = O(n2/r).

To complete the preprocessing we also store (iv) for each region R ∈ R, the distance
d(u, v) for all pairs of vertices u, v ∈ R. This takes O(n/r · r2) = O(nr) additional space,
which is dominated by the above terms.

The total space required by the oracle is thus O(n2/r) + O(nr3). This is minimized for
r = n1/4, resulting in an O(n7/4)-space data structure.

We note that once this information has been computed we no longer need to store the
entire tree A. Rather, it suffices to store just the list of leaves of A and the distances stored
with each of them. In particular, we no longer need to remember what is the actual pattern
associated with each leaf, we only need to have some identifier for each pattern, and the
distances from this pattern to the vertices of the region R. In the current scheme this has no
asymptotic effect on the size of the data structure, since each pattern is of size O(r), and
we anyway store the O(r) distances from each pattern to all vertices of R. However, in the
recursive scheme in the next section this observation will become useful.

4.2 Handling a query

To answer a query for the distance between vertices s and t we proceed as follows. If s and t

are in the same region, we simply return the distance d(s, t) stored in item (iv). Otherwise,
let R be the region containing t, and let h be the hole of R such that s ∈ V +(h). Let vh be
the canonical vertex of h. We return d(s, vh) + d(ph,G(s), t). The correctness is immediate
from Lemma 7. We note that d(s, vh) is stored in item (iii), a pointer to ph,G(s) is stored in
item (ii), and d(ph,G(s), t) is stored in item (i). The query is illustrated in Figure 2.

ISAAC 2021
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s

bℓ

t
s →G bℓ

bℓ →R t

R

v0

s →G v0

Figure 2 Illustration of the query in Section 4. By Lemma 7 the query returns d(s, b0)+dR(p, t) =
d(s, bℓ) + dR(bℓ, t) = d(s, t) where bℓ is some boundary vertex of R on s⇝ t.

4.3 Distributed Labels
This oracle can be distributed into a distance labeling scheme of size O(n3/4) per label. Each
vertex v in a region R stores its distance from each of the patterns of R (item (i)) using
O(r3) = O(n3/4) space, as well as its part of items (ii) and (iii) in O(n/r) = O(n3/4) space.
Finally, v stores its distance to each other vertex in R in O(r) = O(n1/4) space. Using the
same query algorithm, the distance between any two vertices s, t can be computed in O(1)
time given just the labels of s and t.

5 O(n5/3+ε) space distance oracle

A bottleneck in the above approach comes from having to store, for each pattern p of a
hole h of a region R, the distances from p to all vertices of R. Instead, we use a recursive
r-division, in which we store for p, only the distances to the canonical vertex of a hole h′ of
each child region R′ of R instead of all the vertices in the region. For this information to be
useful we also store the pattern induced by p on the hole h′, which is defined as follows.

▶ Definition 10 (Pattern induced by a pattern). Let R be a region in a graph G. Let h be a
hole of R and ph be a pattern of h (w.r.t. a vertex or another pattern). Let R′ be a child
region of R. Let b0, b1, . . . , bk be the vertices of the boundary walk of a hole of h′ of R′. The
pattern induced by ph on h′ is the vector ph′ satisfying ph′ [i] = d(ph, bi) − d(ph, bi−1) for
1 ≤ i ≤ k.

▶ Lemma 11. Consider the settings of Definition 10. If ph = ph(u) for some u ∈ V +(h),
then ph′ = ph′(u).

Proof. By Lemma 7, for every 0 ≤ i ≤ k, d(u, bi) − d(u, vh) = d(ph, bi). Hence for all
1 ≤ i ≤ k, ph′ [i] = d(ph, bi) − d(ph, bi−1) = d(u, bi) − d(u, vh) − (d(u, bi−1) − d(u, vh)) =
d(u, bi)− d(u, bi−1), which is, by definition, ph′(u)[i]. ◀

5.1 Preprocessing
We first compute an r = (r0, r1, . . . , rk, rk+1)-division of G for r to be determined later, and
denote by Tr the associated decomposition tree. For convenience, we let r0 = n, rk+1 = 1
and define C(R) = {R′ | R′ is a child of R in Tr}. In the following we let Ph denote the set
{ph(u) : u ∈ V (G)}. We store the following:

1. For each u ∈ V (G) we store a list of regions R0 ⊃ R1 ⊃ · · · ⊃ Rk containing u, where
Ri ∈ T i

r . (Recall that T i
r is the set of all nodes of Tr at level i).
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2. For each u ∈ V (G), for each 0 ≤ i ≤ k − 1, for each region R ∈ T i
r containing u, for each

child region R′ ⊂ R at level-(i + 1), let h be the hole of R′ such that u ∈ V +(h). We
associate with the pair (u, R′) (i) a pointer to ph(u), (ii) the canonical vertex vh, and (iii)
the distance d(u, vh)).

3. For each 1 ≤ i ≤ k, for each R ∈ T i
r , for each hole h in R, for each p ∈ Ph and for each

R′ ∈ C(R), let h′ be the hole of R′ such that vh ∈ V +(h′). We associate with the pair
(p, R′) (i) a pointer to the pattern ph′(p) induced by p on h′, (ii) the canonical vertex vh′ ,
and (iii) the distance d(p, vh′)).

5.2 Space analysis
Storing 1 requires space O(kn). To bound the space for item 2, we note that the number
of regions at level i to which a vertes u belongs is bounded by the degree of u. Since the
average vertex degree in a planar graph is at most 6, the average number of regions at level i

to which u belongs is at most 6. Each such region has ri/ri+1 subregions at level-(i + 1),
so storing 2 requires space O(n

∑k−1
i=0 ri/ri+1) = O(n2/r1) + O(n

∑k−1
i=1 ri/ri+1). Storing 3

requires space O(
∑k

i=1(n/ri) · r3
i · ri/ri+1) = O(n

∑k
i=1 r3

i /ri+1). The total space is thus,
O(nk + n2/r1 + n

∑k
i=1 r3

i /ri+1).

5.3 Handling a query
Algorithm 1 shows pseudocode describing the query procedure.

Algorithm 1 Query procedure for the O(n5/3+ε) construction.

1: procedure Query(s, t)
2: i← the largest i s.t. the region Ri stored in item 1 for t contains both s and t

3: Rt ← level (i + 1) region stored in item 1 for t

4: (p, d)← the tuple associated with (s, Rt)
5: i← i + 1
6: while i ≤ k do
7: R′

t ← level (i + 1) subregion of Rt stored in item 1 for t

8: (p′, d′)← the tuple associated with (p, R′
t)

9: d← d + d′ ; p← p′ ; Rt ← R′
t ; i← i + 1

10: return d

To process a query d(s, t) the query procedure first determines the largest value i for which
s and t belong to the same region in T i

r . Note that such a region must always exists as the
root of Tr is all of G. This level can be found in O(k) time by traversing Tr, starting from a
leaf region containing s and a leaf region containing t.

Let Rt be the level-(i + 1) region stored for t in item 1. Note that, t ∈ Rt, and, by
choice of i, s /∈ Rt. Hence, s is in some hole h of Rt. We retrieve the pattern ph(s) and the
distance d(s, vh) associated with (s, Rt) in item 2. We then proceed iteratively, “zooming”
into increasingly smaller regions containing t.

We show that the algorithm maintains the invariant that, at the beginning of each
iteration, we have a level-i region Rt containing t, the variable d stores d(s, vh), where h

is the hole of Rt such that s ∈ V +(h), and the variable p stores (a pointer) to the pattern
ph(t). Thus, when we reach the singleton region containing t, the variable d stores d(s, t).

ISAAC 2021
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We have already established that the invariant is maintained just before the loop is entered
for the first time. In each iteration of the loop we retrieve R′

t, a level-(i + 1) subregion or Rt

containing t (available in item 1), and retrieve d′ ← d(p, vh′) and p′ ← ph′(p) (associated
with the pair (p, R′

t) in item 3). By Lemma 7, d + d′ = d(s, vh) + d(ph(u), vh′) = d(s, vh′).
By Lemma 11, p′ = ph′(t). Hence, after the assignements in Line 9, the invariant is restored.

The time complexity of the query is clearly O(k).

5.4 Choosing parameters
Recall that the space requirement is O(nk + n2/r + n

∑k
i=1 r3

i /ri+1). Picking each ri s.t.
ri/ri+1 = rε

1 results in rk = Θ(1) when k = Θ(1/ε), and in a query time of O(1/ε). Choosing
r1 = n1/3+ε, the total space used becomes

O

(
n

k∑
i=1

r3
i /ri+1

)
= O(nr2

1rε
1) = O(n1+2/3+2ε+ε/3+ε2

) = O(n5/3+ε′
)

for a suitable choice of ε′.
One can decrease the sizes of regions more aggressively to get the query time of k =

O(log(1/ε)) of Theorem 1. To this end we choose r such that r3
i /ri+1 = n2/3+ε, and r1 = n1/3.

Then the space requirement is O(n5/3 + nkn2/3+ε) = O(kn5/3+ε). It is not hard to verify
that one gets ri = O(n1/3−ε 3i−2−1

2 ), so rk = O(1) with k = O(log(1/ε)).
As a last remark we note that the smallest interesting choice of ε in Theorem 1 is

Θ(1/ log n), giving O(n5/3) space and O(log log n) query-time, which is a faster query-time
than was previously known for this amount of space [9, 7].
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21 Mihai Pǎtraşcu and Liam Roditty. Distance Oracles beyond the Thorup–Zwick Bound. SIAM
Journal on Computing, 43(1):300–311, January 2014. doi:10.1137/11084128X.

22 N Sauer. On the Density of Families of Sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, July 1972. doi:10.1016/0097-3165(72)90019-2.

23 Christian Sommer. Shortest-Path Queries in Static Networks. ACM Computing Surveys,
46(4):1–31, April 2014. doi:10.1145/2530531.

24 Mikkel Thorup. Compact Oracles for Reachability and Approximate Distances in Planar
Digraphs. Journal of the ACM (JACM), 51(6):993–1024, November 2004. doi:10.1145/
1039488.1039493.

ISAAC 2021

https://doi.org/10.1109/FOCS.2017.93
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.tcs.2018.08.024
https://doi.org/10.1007/978-3-642-22006-7_12
https://doi.org/10.1007/978-3-642-22006-7_12
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1145/3313276.3316358
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.149
https://doi.org/10.1137/11084128X
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.1145/2530531
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1145/1039488.1039493


25:12 Subquadratic Distance Oracles for Planar Graphs

25 Christian Wulff-Nilsen. Algorithms for Planar Graphs and Graphs in Metric Spaces. PhD thesis,
Department of Computer Science, University of Copenhagen, Denmark, 2010. URL: https:
//di.ku.dk/english/research/phd/phd-theses/2010/thesischristianwulff.pdf_kopi.

26 Christian Wulff-Nilsen. Constant Time Distance Queries in Planar Unweighted Graphs with
Subquadratic Preprocessing Time. Computational Geometry, 46(7):831–838, October 2013.
doi:10.1016/j.comgeo.2012.01.016.

27 Christian Wulff-Nilsen. Approximate Distance Oracles for Planar Graphs with Improved Query
Time-Space Tradeoff. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’16, pages 351–362, USA, 2016. Society for Industrial and
Applied Mathematics.

https://di.ku.dk/english/research/phd/phd-theses/2010/thesischristianwulff.pdf_kopi
https://di.ku.dk/english/research/phd/phd-theses/2010/thesischristianwulff.pdf_kopi
https://doi.org/10.1016/j.comgeo.2012.01.016

	1 Introduction
	1.1 Our contributions
	1.2 Technical overview
	1.3 Technical differences from previous oracles

	2 Preliminaries
	2.1 Faces and holes
	2.2 Decompositions of unweighted planar graphs
	2.3 Recursive r-divisions

	3 Patterns
	3.1 Bounding the number of patterns

	4 O(n^{7/4}) space distance oracle
	4.1 Preprocessing
	4.2 Handling a query
	4.3 Distributed Labels

	5 O(n^{5/3+epsilon}) space distance oracle
	5.1 Preprocessing
	5.2 Space analysis
	5.3 Handling a query
	5.4 Choosing parameters


