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Abstract
We propose a self-improving algorithm for computing Voronoi diagrams under a given convex distance
function with constant description complexity. The n input points are drawn from a hidden mixture
of product distributions; we are only given an upper bound m = o(

√
n) on the number of distributions

in the mixture, and the property that for each distribution, an input instance is drawn from it with a
probability of Ω(1/n). For any ε ∈ (0, 1), after spending O

(
mn logO(1)(mn)+mεn1+ε log(mn)

)
time

in a training phase, our algorithm achieves an O
(

1
ε
n log m + 1

ε
n2O(log∗ n) + 1

ε
H

)
expected running

time with probability at least 1 − O(1/n), where H is the entropy of the distribution of the Voronoi
diagram output. The expectation is taken over the input distribution and the randomized decisions of
the algorithm. For the Euclidean metric, the expected running time improves to O

(
1
ε
n log m + 1

ε
H

)
.
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1 Introduction

Self-improving algorithms, proposed by Ailon et al. [1], is a framework for studying algorithmic
complexity beyond the worst case. There is a training phase that allows some auxiliary
structures about the input distribution to be constructed. In the operation phase, these
auxiliary structures help to achieve an expected running time, called the limiting complexity,
that may surpass the worst-case optimal time complexity.

Self-improving algorithms have been designed for product distributions [1, 11]. Let n be
the input size. A product distribution D = (D1, . . . , Dn) consists of n distributions Di such
that the ith input item is drawn independently from Di. It is possible that Di = Dj for some
i ̸= j, but the draws of the ith and jth input items are independent. No further information
about D is given. Sorting, Delaunay triangulation, 2D maxima, and 2D convex hull have
been studied for product distributions. For all four problems, the training phase uses O(nε)
input instances, and the space complexity is O(n1+ε). The limiting complexities of sorting
and Delaunay triangulation are O

( 1
ε n + 1

ε Hout
)

for any ε ∈ (0, 1), where Hout is the entropy
of the output distribution [1]. The limiting complexities for 2D maxima and 2D convex hull
are O(OptM + n) and O(OptC + n log log n) respectively, where OptM and OptC are the
expected depths of the optimal linear decision trees for the two problems [11].

Extensions that allow dependence among input items have been developed. One extension
is that there is a hidden partition of [n] into groups. The input items with indices in the kth
group follow some hidden functions of a common parameter uk. The parameters u1, u2, · · ·
follow a product distribution. The partition of [n] is not given though. If the hidden functions

© Siu-Wing Cheng and Man Ting Wong;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scheng@cse.ust.hk
mailto:mtwongaf@connect.ust.hk
https://doi.org/10.4230/LIPIcs.ISAAC.2021.8
https://arxiv.org/abs/2109.13460
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Self-Improving Voronoi Construction

are known to be linear, sorting can be solved in a limiting complexity of O
( 1

ε n + 1
ε Hout

)
after a training phase that takes O(n2 log3 n) time [8]. If it is only known that each hidden
function has O(1) extrema and the graphs of two functions intersect in O(1) places (without
knowing any of the functions, or any of these extrema and intersections), sorting can be
solved in a limiting complexity of O(n + Hout) after an Õ(n3)-time training phase [7]. For
the Delaunay triangulation problem, if it is known that the hidden functions are bivariate
polynomials of O(1) degree (without knowing the polynomials), a limiting complexity of
O(nα(n) + Hout) can be achieved after a polynomial-time training phase [7].

Another extension is that the input instance I is drawn from a hidden mixture of
at most m product distributions. That is, there are at most m product distributions
D1, D2, . . . such that Pr[I ∼ Da] = λa for some fixed positive value λa. The upper bound
m is given, but no information about the λa’s and the Da’s is provided. Sorting can be
solved in a limiting complexity of O

( 1
ε n log m + 1

ε Hout
)

after a training phase that takes
O(mn log2(mn) + mεn1+ε log(mn)) time [8].

In this paper, we present a self-improving algorithm for constructing Voronoi diagrams
under a convex distance function dQ in R2, assuming that the input distribution is a hidden
mixture of at most m product distributions. The convex distance function dQ is induced
by a given convex polygon Q of O(1) size. The upper bound m is given, and we assume
that m = o(

√
n). We also assume that for each product distribution Da in the mixture,

λa = Ω(1/n). Let ε ∈ (0, 1) be a parameter fixed beforehand. The training phase uses
O(mn log(mn)) input instances and takes O

(
mn logO(1)(mn) + mεn1+ε log(mn)

)
time. In

the operation phase, given an input instance I, we can construct its Voronoi diagram VorQ(I)
under dQ in a limiting complexity of O

( 1
ε n log m + 1

ε n2O(log∗ n) + 1
ε H

)
, where H denotes the

entropy of the distribution of the Voronoi diagram output. Note that Ω(H) is a lower bound
of the expected running time of any comparison-based algorithm. Our algorithm also works
for the Euclidean case, and the limiting complexity improves to O

( 1
ε n log m + 1

ε H
)
.

For simplicity, we will assume throughout the rest of this paper that the hidden mixture
has exactly m product distributions. We give an overview of our method in the following.

We follow the strategy in [1] for computing a Euclidean Delaunay triangulation. The
idea is to form a set S of sample points and build Del(S) and some auxiliary structures in
the training phase so that any future input instance I can be merged quickly into Del(S)
to form Del(S ∪ I), and then Del(I) can be split off in O(n) expected time. Merging I into
Del(S) requires locating the input points in Del(S). The location distribution is gathered
in the training phase so that distribution-sensitive point location can be used to avoid the
logarithmic query time as much as possible. Modifying Del(S) efficiently into Del(S ∪ I)
requires that only O(1) points in I fall into the same neighborhood in Del(S) in expectation.

In our case, since there are m product distributions, we will need a larger set S of mn

sample points in order to ensure that only O(1) points in I fall into the same neighborhood
in VorQ(S) in expectation. But then merging I into VorQ(S) in the operation phase would
be too slow because scanning VorQ(S) already requires Θ(mn) time. We need to extract a
subset R ⊆ S such that R has O(n) size and R contains all points in S whose Voronoi cells
conflict with the input points.

Still, we cannot afford to construct VorQ(R) in O(n log n) time. In the training phase, we
form a metric d related to dQ and construct a net-tree TS for S under d [15]. In the operation
phase, after finding the appropriate R ⊆ S, we use nearest common ancestor queries [20] to
compress TS in O(n log log m) time to a subtree TR for R that has O(n) size. Next, we use
TR to construct a well-separated pair decomposition of R under d in O(n) time [15], use the
decomposition to compute the nearest neighbor graph of R under d in O(n) time, and then
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construct VorQ(R) from the nearest neighbor graph in O(n) expected time. The merging
of I into VorQ(R) to form VorQ(R ∪ I), and the splitting of VorQ(R ∪ I) into VorQ(I) and
VorQ(R) are obtained by transferring their analogous results in the Euclidean case [1, 6].

We have left out the expected time to locate the input points in VorQ(S). It is bounded by
O(1/ε) times the sum of the entropies of the point location outcomes. We show that VorQ(I)
allows us to locate the input points in VorQ(S) in O(n log m + n2O(log∗ n)) time. Then, a
result in [1] implies that the sum of the entropies of the point location outcomes is O(n log m+
n2O(log∗ n) + H). The expected running time is thus O( 1

ε n log m + 1
ε n2O(log∗ n) + 1

ε H), which
dominates the limiting complexity. In the Euclidean case, Vor(I) allows us to locate the
input points in O(n log m) time, so the limiting complexity improves to O( 1

ε n log m + 1
ε H).

Details and proofs that are omitted due to space constraint can be found in the full
version of this paper [9].

2 Preliminaries

Let Q be a convex polygon that has O(1) complexity and contains the origin in its interior.
Let ∂ and int(·) be the boundary and interior operators, respectively. So Q’s boundary is
∂Q and its interior is int(Q). Let dQ be the distance function induced by Q: ∀ x, y ∈ R2,
dQ(x, y) = min{λ ∈ [0, ∞) : y ∈ λQ + x}. As Q may not be centrally symmetric (i.e.,
x ∈ Q ⇐⇒ −x ∈ Q), dQ may not be a metric.

The bisector of two points p and q is {x ∈ R2 : dQ(p, x) = dQ(q, x)}, which is an open
polygonal curve of O(1) size. The Voronoi diagram of a set Σ of n points, VorQ(Σ), is a
partition of R2 into interior-disjoint cells Vp(Σ) = {x ∈ R2 : ∀q ∈ Σ, dQ(p, x) ≤ dQ(q, x)} for
all p ∈ Σ. There are algorithms for constructing VorQ(Σ) in O(n log n) time [10, 18].

Vp(Σ) is simply connected and star-shaped with respect to p [10]. We use Np(Σ) to
denote the set of Voronoi neighbors of p in VorQ(Σ). The Voronoi edges of VorQ(Σ) form a
planar graph of O(|Σ|) size. Each Voronoi edge is a polygonal line, and we call its internal
vertices Voronoi edge bends. We use VΣ to denote the set of Voronoi edge bends and Voronoi
vertices in VorQ(Σ). For the infinite Voronoi edges, their endpoints at infinity are included
in VΣ.

Define Q∗ = {−x : x ∈ Q}. For any points x, y ∈ R2, dQ∗(x, y) = dQ(y, x). At any
point x on a Voronoi edge of VorQ(Σ) defined by p, q ∈ Σ, there exists λ ∈ (0, ∞) such that
dQ∗(x, p) = dQ(p, x) = dQ(q, x) = dQ∗(x, q) = λ and dQ∗(x, s) = dQ(s, x) ≥ λ for all s ∈ Σ.
Hence, {p, q} ⊂ ∂(λQ∗ + x) and int(λQ∗ + x) ∩ Σ = ∅, i.e., an “empty circle property”.

Take a point x. Consider the largest homothetic1 copy Q∗
x of Q∗ centered at x such that

int(Q∗
x) ∩ Σ = ∅. If we insert a new point q to Σ, we say that q conflicts with x if q ∈ Q∗

x.
We say that q conflicts with a cell Vp(Σ) if q conflicts with some point in Vp(Σ). Clearly,
Vp(Σ) must be updated by the insertion of q. We use VΣ|q to denote the subset of VΣ that
conflict with q. The Voronoi edge bends and Voronoi vertices in VΣ|q will be destroyed by
the insertion of q.

We make three general position assumptions. First, no two sides of Q are parallel. Second,
for every pair of input points, their support line is not parallel to any side of Q. Third, no
four input points lie on the boundary of any homothetic copy of Q∗, which implies that every
Voronoi vertex has degree three.

It is much more convenient if all Voronoi cells of the input points are bounded. We
assume that all possible input points appear in some fixed bounding square B centered at
the origin. We place O(1) dummy points outside B so that all Voronoi cells of the input

1 A homothetic copy of a shape is a scaled and translated copy of it.
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Figure 1 The left image shows the bounding square B and the large enclosing λQ∗. In the right
image, we slide a copy of λQ∗ around B to generate the outer convex polygon. The dashed polygon
demonstrates the sliding of λQ∗ around B. The bold edges on this convex polygon are translates of
the boundary edges of B. Every edge of λQ∗ has two translational copies too as labelled.

points are bounded, and their portions inside B remain the same as before. Refer to Figure 1.
Take λQ∗ for some large enough λ ∈ R such that for every point x ∈ B, λQ∗ + x contains B.
Refer to the left image in Figure 1. We slide a copy of λQ∗ around B to generate the outer
convex polygon. The dashed polygon demonstrates the sliding of λQ∗ around B. This outer
polygon contains a translational copy of every edge of B and two translational copies of every
edge of λQ∗. We add the vertices of this outer polygon as dummy points. Any homothetic
copy of Q∗ that intersects B cannot be expanded indefinitely without containing some of
these dummy points. So all Voronoi cells of input points are bounded. For each point x ∈ B,
since the dummy points lie outside λQ∗ + x and B ⊆ λQ∗ + x (i.e., λQ∗ + x is not empty of
the input points), the portion of the Voronoi diagram inside B is unaffected by the dummy
points.

3 Training phase

Sample set S. Take mn ln(mn) instances I1, I2, . . . , Imn ln(mn). Define x1, . . . , xmn ln(mn) by
taking the p1’s in I1, . . . , Im ln(mn) to be x1, . . . , xm ln(mn), p2’s in Im ln(mn)+1, . . . , I2m ln(mn)
to be xm ln(mn)+1, . . . , x2m ln(mn), and so on. The set S of sample points includes a 1

mn -net
of the xi’s with respect to the family of homothetic copies of Q∗, as well as the O(1) dummy
points. The set S has O(mn) points and can be constructed in O(mn logO(1)(mn)) time as
homothetic copies of Q∗ are pseudo-disks [1, 19].

Point location. Compute VorQ(S) and triangulate it by connecting each p ∈ S to VS ∩
∂Vp(S), i.e., the Voronoi edge bends and Voronoi vertices in ∂Vp(S). For unbounded Voronoi
cells, we view the infinite Voronoi edges as leading to some vertices at infinity; an extra
triangulation edge that goes between two infinite Voronoi edges also leads to a vertex at
infinity, giving rise to unbounded triangles. Figure 2 shows an example.

Construct a point location structure LS for the triangulated VorQ(S) with O(log(mn))
query time [13]. Take another mεnε input instances and use LS to locate the points in
these input instances in the triangulated VorQ(S). For every i ∈ [n] and every triangle t, we
compute π̃i,t to be the ratio of the frequency of t hit by pi to mεnε, which is an estimate of
Pr[pi ∈ t]. For each i ∈ [n], form a subdivision Si that consists of triangles with positive π̃i,t’s,
triangulate the exterior of Si, and give these new triangles a zero estimated probability. Set
the weight of each triangle in Si to be the maximum of (mn)−ε and its estimated probability.
Construct a distribution-sensitive point location structure Li for Si based on the triangle
weights [2, 16]. Note that Li has O(mεnε) size, and locating a point in a triangle t ∈ Si

takes O
(
log Wi

wt

)
time, where wt is the weight of t and Wi is the total weight in Si.
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Figure 2 Part of the triangulation of a Voronoi diagram induced by the triangle shown with a gray
center. The solid edges form the Voronoi diagram. The dashed edges refine it into a triangulation.

For any input instance (p1, . . . , pn) in the operation phase, we will query Li to locate pi

in the triangulated VorQ(S), which may fail if pi falls into a triangle with zero estimated
probability. If the search fails, we query LS to locate pi.

Net-tree. We first define a metric that is induced by a centrally symmetric convex polygon.
Define Q̂ = {x − y : x, y ∈ Q∗}, i.e., the Minkowski sum of Q∗ and −Q∗, or equivalently Q∗

and Q. It is centrally symmetric by definition. It can be visualized as the region covered
by all possible placements of Q∗ that has the origin in the polygon boundary. Since Q̂ is
a Minkowski sum, its number of vertices is within a constant factor of the total number of
vertices of Q∗ and −Q∗, which is O(1).

Let d be the metric induced by the centrally symmetric convex polygon Q̂, which is a
doubling metric – there is a constant λ > 0 such that for any point x ∈ R2 and any positive
number r, the ball with respect to d centered at x with radius r can be covered by λ balls
with respect to d of radius r/2.

Given a set of points P , a net-tree for P with respect to d [15] is an analog of the
well-separated pair decomposition for Euclidean spaces [4]. It is a rooted tree whose leaves
are the points in P . For each node v, let parent(v) denote its parent, and let Pv denote the
subset of P at the leaves that descend from v. Every tree node v is given a representative
point pv and an integer level ℓv. Let τ ≥ 11 be a fixed constant. Let B(x, h) denote the ball
{y ∈ R2 : d(x, y) ≤ h}. By the results in [15] (Definition 2.1 and the remark that follows
Proposition 2.2), the following properties are satisfied by a net-tree:
(a) pv ∈ Pv.
(b) For every non-root node v, ℓv < ℓparent(v), and if v is a leaf, then ℓv = −∞.
(c) Every internal node has at least two and at most a constant number of children.
(d) For every node v, B

(
pv, 2τ

τ−1 · τ ℓv
)

contains Pv.
(e) For every non-root node v, B

(
pv, τ−5

2τ−2 · τ ℓparent(v)−1)
∩ P ⊂ Pv.

(f) For every internal node v, there is a child w of v such that pw = pv.

Clusters. We construct a net-tree TS for S in O(mn log(mn)) expected time [15]. We define
clusters as follows. Label all leaves of TS as unclustered initially. Select the leftmost m

unclustered leaves of TS ; if there are fewer than m such leaves, select them all. Find the
subtree rooted at a node v of TS that contains the selected unclustered leaves, but no child
subtree of v contains them all. We call the subtree rooted at v a cluster and label all its leaves
clustered. Then, we repeat the above until all leaves of TS are clustered. By construction,
the clusters are disjoint, each cluster has O(m) nodes, and there are O(n) clusters in TS .

We assign nodes in each cluster a unique cluster index in the range [1, O(n)]. We also
assign each node of a cluster three indices from the range [1, O(m)] according to its rank in
the preorder, inorder, and postorder traversals of that cluster. The preorder and postorder
indices allow us to tell in O(1) time whether two nodes are an ancestor-descendant pair.

ISAAC 2021



8:6 Self-Improving Voronoi Construction

We keep an initially empty van Emde Boas tree EBc [21] with each cluster c. The
universe for EBc is the set of leaves in the cluster c, and the inorder of these leaves in c is
the total order for EBc. We also build a nearest common ancestor query data structure for
each cluster [20]. The nearest common ancestor query of any two nodes can be reported in
O(log log m) time.

Planar separator. VorQ(S) is a planar graph of O(mn) size with all Voronoi edge bends
and Voronoi vertices as graph vertices. By a recursive application of the planar separator
theorem, one can produce an m2-division of VorQ(S): it is divided into O(n/m) regions, each
region contains O(m2) vertices, and the boundary of each region contains O(m) vertices [14].

Extract the subset B ⊂ S of points whose Voronoi cell boundaries contain some region
boundary vertices in the m2-division. So |B| = O(m · n/m) = O(n). Compute VorQ(B) and
triangulate it as in triangulating VorQ(S). By our choice of B, the region boundaries in the
m2-division of VorQ(S) form a subgraph of VorQ(B). Label in O(n) time the Voronoi edge
bends and Voronoi vertices in VorQ(B) whether they exist in VorQ(S).

We construct point location data structures for every region Π in the m2-division as
follows. For every boundary vertex w of Π, let Q∗

w be the largest homothetic copy of Q∗

centered at w such that int(Q∗
w) ∩ B = ∅. These Q∗

w’s form an arrangement of O(m2)
complexity, and we construct a point location data structure that allows a point to be located
in this arrangement in O(log m) time. We also construct a point location data structure for
the portion of the triangulated VorQ(S) inside Π. Since the region has O(m2) complexity,
this point location data structure can return in O(log m) time the triangle in the triangulated
VorQ(S) that contains a point inside Π.

Output and performance. The following result summarizes the output and performance of
the training phase. The proof of Lemma 1(a) is similar to an analogous result for sorting
in [8].

▶ Lemma 1. Let Da, a ∈ [m], be the distributions in the hidden mixture. The training phase
computes the following structures in O(mn logO(1)(mn) + mεn1+ε log(mn)) time.

(i) A set S of O(mn) points and VorQ(S). It holds with probability at least 1 − 1/n that
for any a ∈ [1, m] and any v ∈ VS,

∑n
i=1 Pr[Xiv | I ∼ Da] = O(1/m), where Xiv = 1 if

pi ∈ I conflicts with v and Xiv = 0 otherwise.
(ii) Point location structures LS and Li for each i ∈ [n] that allow us to locate pi in the

triangulated VorQ(S) in O
( 1

ε H(ti)
)

expected time, where ti is the random variable that
represents the point location outcome, and H(ti) is the entropy of the distribution of ti.

(iii) A net-tree TS for S, the O(n) clusters in TS, the initially empty van Emde Boas trees
for the clusters, and the nearest common ancestor data structures for the clusters.

(iv) An m2-division of VorQ(S), the subset B ⊆ S of O(n) points whose Voronoi cell
boundaries contain some region boundary vertices in the m2-division, VorQ(B), and
the point location data structures for the regions in the m2-division.

Lemma 1(a) leads to Lemma 2 below, which implies that for any v ∈ VS , if we feed the
input points that conflict with v to a procedure that runs in quadratic time in the worst
case, the expected running time of this procedure over all points in VS is O(n). The proof of
Lemma 2 is just an algebraic manipulation of the probabilities.

▶ Lemma 2. For every v ∈ VS, let Zv be the subset of input points that conflict with v. It
holds with probability at least 1 − O(1/n) that

∑
v∈VS

E
[
|Zv|2

]
= O(n).
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w1
w2

x

q

q′

Q∗w1

Q∗w2

Q∗x

qu

v

(a) (b)

Figure 3 (a) The points q and q′ define a Voronoi edge, and w1 and w2 are two adjacent Voronoi
edge bends or Voronoi vertices on this edge. At any point x between w1 and w2, the polygon Q∗

x

(shown dashed) is a subset of Q∗
w1 ∪ Q∗

w2 . (b) A triangle quv in the triangulated Voronoi diagram in
Figure 2 is shown. If a point p conflicts with the white dot (i.e., lies inside the bold dashed triangle),
then p conflicts with u or v (i.e., lies inside one of the two light dashed circles.)

We state two technical results. Figure 3(a) and (b) illustrate these two lemmas.

▶ Lemma 3. Consider VorQ(Y ) for some point set Y . For any point x ∈ R2, let Q∗
x be the

largest homothetic copy of Q∗ centered at x such that int(Q∗
x) ∩ Y = ∅. Let w1 and w2 be

two adjacent Voronoi edge bends or Voronoi vertices in VorQ(Y ). For any point x ∈ w1w2,
Q∗

x ⊆ Q∗
w1

∪ Q∗
w2

. The same property holds if w1 and w2 are Voronoi vertices connected by a
Voronoi edge, and x lies on that Voronoi edge.

▶ Lemma 4. Let q be a point in some point set Y . Let quv be a triangle in the triangulated
VorQ(Y ). If a point p ̸∈ Y conflicts with a point in quv, then p conflicts with u or v. Hence,
if p conflicts with Vq(Y ), p conflicts with a Voronoi edge bend or Voronoi vertex in ∂Vq(Y ).

4 Operation phase

Given an instance I = (p1, · · · , pn), we construct VorQ(I) using the pseudocode below.

Algorithm 1 Operation Phase.

1. For each i ∈ [n], query Li to find the triangle ti in the triangulated VorQ(S) that contains
pi, and if the search fails, query LS to find ti.

2. For each i ∈ [n], search VorQ(S) from ti to find VS |pi
, i.e., the subset of VS that conflict

with pi. This also gives the subset of S whose Voronoi cells conflict with the input points.
Let R be the union of this subset of S and the set of representative points of all cluster
roots in TS .

3. Compute the compression TR of TS to R.
4. Construct the nearest neighbor graph 1-NNR under the metric d from TR.
5. Compute VorQ(R) from 1-NNR.
6. Modify VorQ(R) to produce VorQ(R ∪ I).
7. Split VorQ(R ∪ I) to produce VorQ(I) and VorQ(R). Return VorQ(I).

We analyze step 1 in Section 4.1, steps 2 and 3 in Section 4.2, steps 4 and 5 in Section 4.3,
and steps 6 and 7 in Section 4.4. Step 1 is the most time-consuming; all other steps run in
O(n) expected time.

ISAAC 2021
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4.1 Point location
By Lemma 1(b), step 1 runs in O

(∑n
i=1

1
ε H(ti)

)
expected time, which is O

( 1
ε n log m +

1
ε H(t1, . . . , tn)

)
as we will show later. By Lemma 5 below, if there is an algorithm that can

use VorQ(I) to determine t1, . . . , tn in c(n) expected time, then H(t1, . . . , tn) = O(c(n) + H),
implying that step 1 takes O

( 1
ε (n log m + c(n) + H)

)
expected time. Any preprocessing cost

of S is excluded from c(n). We present such an algorithm.

▶ Lemma 5 (Lemma 2.3 in [1]). Let D be a distribution on a universe U . Let X : U → X ,
and let Y : U → Y be two random variables. Suppose that there is a comparison-based
algorithm that computes a function f : (I, X(I)) → Y (I) in C expected comparisons over D

for every I ∈ U . Then H(Y ) = C + O(H(X)).

Recall that we have computed in the training phase the subset B ⊆ S whose Voronoi cell
boundaries contain some region boundary vertices in the m2-division of VorQ(S). Note that
|B| = O(n). We have also computed VorQ(B) and point location data structures associated
with the regions in the m2-division. We use VorQ(B) and these point location data structures
determines t1, . . . , tn as follows.

Task 1: Merge VorQ(B) with VorQ(I) to form the triangulated VorQ(B ∪ I).
Task 2: Use VorQ(S), VorQ(B), and VorQ(B ∪ I) to find the triangles t1, . . . , tn.

We discuss these two tasks in the following.

Task 1. For every point p ∈ B, define a polygonal cone surface Cp =
{

(a, b, dQ(p, (a, b)) :
(a, b) ∈ R2}

. Each horizontal cross-section of Cp is a scaled copy of Q centered at p. The
triangulated VorQ(B) is the vertical projection of the lower envelope of {Cp : p ∈ B}, denoted
by L(B). Similarly, L(I) projects to VorQ(I). We take the lower envelope of L(B) and
L(I) to form L(B ∪ I) which projects to VorQ(B ∪ I). We do so in O(n2O(log∗ n)) expected
time with a randomized algorithm that is based on an approach proposed and analyzed by
Chan [5, Section 4].

Task 2. Suppose that for an input point pi ∈ I, we have determined some subset Bi that
satisfies B ⊆ Bi ⊆ S, and we have computed a Voronoi edge bend or Voronoi vertex vi in
VorQ(Bi) that conflicts with pi and is known to be in VS or not.

If vi ∈ VS , we search VorQ(S) from vi to find VS |pi (i.e., the subset of VS that conflict
with pi), which by Lemma 3 also gives the triangle ti in the triangulated VorQ(S) that
contains pi. By Lemma 2, the expected total running time of this procedure over all input
points is O(n).

Suppose that vi ̸∈ VS . So vi is not a region boundary vertex in the m2-division of VorQ(S),
i.e., vi lies inside a region in the m2-division of VorQ(S), say Π. For each boundary vertex w

of Π, let Q∗
w be the largest homothetic copy of Q∗ centered at w such that int(Q∗

w) ∩ B = ∅.
These Q∗

w’s form an arrangement of O(m2) complexity, and we locate pi in this arrangement
in O(log m) time. It tells us whether pi ∈ Q∗

w for some boundary vertex w of Π. If so, then
pi conflicts with w, which belongs to VS , and we search VorQ(S) from w to find VS |pi

and
hence the triangle ti in the triangulated VorQ(S) that contains pi. Otherwise, pi must lie
inside Π in order to conflict with vi inside Π without conflicting with any boundary vertex of
Π. So we do a point location in O(log m) time to locate pi in the portion of the triangulated
VorQ(S) inside Π. This gives ti.
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How do we compute vi for pi? We discuss this computation and provide more details of
Step 2 in the full version [9]. The following lemma summarizes the result that follows from
the discussion above.

▶ Lemma 6. Given VorQ(I), the triangles t1, . . . , tn in the triangulated VorQ(S) that contain
p1, . . . , pn ∈ I can be computed in O

(
n log m + n2O(log∗ n)) expected time.

▶ Lemma 7. Step 1 of the operation phase takes O
( 1

ε (n log m+n2O(log∗ n) +H)
)

expected
time, where H is the entropy of the distribution of VorQ(I).

Proof. Let A ∈ [1, m] be a random variable that indicates which distribution in the
mixture generates the input instance. By the chain rule for conditional entropy [22,
Proposition 2.23], H(ti) ≤ H(ti) + H(A|ti) = H(ti, A) = H(A) + H(ti|A). It is known
that H(A) ≤ log2(domain size of A) = log2 m [22, Theorem 2.43]. Thus,

∑n
i=1 H(ti) ≤

n log2 m +
∑n

i=1 H(ti|A). The variables t1|A, . . . , tn|A are mutually independent. So∑n
i=1 H(ti|A) = H(t1, . . . , tn|A). Since entropy is not increased by conditioning [22, The-

orem 2.38], we get
∑n

i=1 H(ti|A) = H(t1, . . . , tn|A) ≤ H(t1, . . . , tn). By Lemma 6, we
can determine t1, . . . , tn using VorQ(I) in O(n log m + n2O(log∗ n)) expected time. So
H(t1, . . . , tn) = O(n log m + n2O(log∗ n) + H) by Lemma 5, where H is the entropy of
the distribution of VorQ(I). ◀

In the Euclidean metric, merging Vor(B) and Vor(I) into Vor(B ∪ I) can be reduced to
finding the intersection of two convex polyhedra of O(n) size in R3, which can be solved in
O(n) time [5]. So the expected running time of step 1 improves to O

( 1
ε (n log m + H)

)
.

4.2 Construction of R

Step 1 determines the triangle ti in the triangulated VorQ(S) that contains pi ∈ I. We search
VorQ(S) from ti to find VS |pi , which takes O

(∣∣VS |pi

∣∣) time [18]. This search also gives the
Voronoi cells that conflict with pi. The total time over all i ∈ [n] is O

(∑
v∈VS

|Zv|
)
, where

Zv is the subset of input points that conflict with v. Since R includes all sites whose cells
conflict with the input points and the representative points of all cluster roots in TS , we have
|R| ≤

∑
v∈VS

|Zv| + O(n). The following result follows from Lemma 2.

▶ Lemma 8. The set R has O(n) expected size. Step 2 of the operation phase constructs R

in O(n) expected time.

4.3 Extraction of VorQ(R)

4.3.1 Construction of TR

We define a compression of a net-tree T . Select a subset U of leaves in T . Let T ′ ⊆ T be the
minimal subtree that spans U . Bypass all internal nodes in T ′ that have only one child. The
resulting tree is the compression of T to U . The following result is an easy observation.

▶ Lemma 9. Let T be a net-tree. Let T1 be the compression of T to a subset U1 of leaves.
The compression of T1 to any subset U2 of leaves in T1 can also be obtained by a compression
of T to U2.

Conceptually, TR is defined as follows. Select all leaves of TS that are points in R, and
TR is the compression of TS to these selected leaves. Since R includes the representative
points of all cluster roots, all ancestors of the cluster roots in TS will survive the compression
and exist as nodes in TR. The compression affects the clusters only. More precisely, for each
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Figure 4 Three different cases in the manipulation of the stack. The tree shown is a part of TS .
The gray nodes are nodes in Tc. The gray leaves are leaves in Rc.

cluster c in TS , we select its leaves that are points in R and compute the compression Tc

of the cluster c to these selected leaves. Substituting every cluster c in TS by Tc gives the
desired TR. It remains to discuss how to compute the Tc’s.

We divide R in O(n) expected time into sublists R1, R2, . . . such that Rc consists of the
points that are leaves in cluster c. Recall that every cluster c has an initially empty van Emde
Boas tree EBc for its leaves in left-to-right order. For each Rc, we insert all leaves in Rc into
EBc and then repeatedly perform extract-min on EBc. This gives in O(|Rc| log log m) time
a sorted list R′

c of the leaves in Rc according to their left-to-right order in the cluster c.
If |R′

c| = 1, then Tc consists of the single leaf in Rc. Suppose that |R′
c| ≥ 2. We construct

Tc using a stack. Initially, Tc is a single node which is the first leaf in R′
c. The stack stores

the nodes on the rightmost root-to-leaf path in the current Tc, with the root at the stack
bottom and the leaf at the stack top. When we scan the next leaf q in R′

c, we find in cluster
c the nearest common ancestor x of q and q’s predecessor in R′

c. This takes O(log log m)
time [20]. If we see x at the stack top, we add q as a new leaf to Tc with x as its parent, and
then we push q onto the stack. Refer to the left image in Figure 4. If we see an ancestor z of
x at the stack top, let y be the node that was immediately above z in the stack and was just
popped, we make x the rightmost child of z in Tc (which was y previously), we also make y

and q the left and right children of x respectively, and then we push x and q in this order
onto the stack. Refer to the middle image in Figure 4. If neither of the two conditions above
happens and the stack is not empty, we pop the stack and repeat. Refer to the right image
in Figure 4. If the stack becomes empty, we make x the new root of Tc, we also make the
old root of Tc and q the left and right children of x respectively, and then we push x and q

in this order onto the stack. The construction of Tc takes O(|Rc| log log m) time.

▶ Lemma 10. The compression TR of TS to R can be computed in O(n log log m) time.

4.3.2 Construction of the k-nearest neighbor graph
Let X be any subset of S. Assume that the compression TX of TS to X is available. We show
how to use TX to construct in O(k|X|) time the k-nearest neighbor graph of X under the
metric d. We denote this graph by k-NNX . We will use the well-separated pair decomposition
or WSPD for short. For any c ≥ 1, a set

{
{A1, B1}, . . . , {As, Bs}

}
is a c-WSPD of X under

d if the following properties are satisfied:
∀ i, Ai, Bi ⊆ X.
∀ distinct x, y ∈ X, ∃ i such that

{
x, y} ∈

{
{a, b} : a ∈ Ai ∧ b ∈ Bi

}
.

∀ i, the maximum of the diameters of Ai and Bi under d is less than 1
c · d(Ai, Bi). It

implies that Ai ∩ Bi = ∅.
It is known that a c-WSPD has O(cO(1)|X|) size and can be constructed in O(c(O(1)|X|)
time from a net-tree for X [15]. The same method works for a compression TX of TS to X,
giving a c-WPSD of O((c + 1)O(1)|X|) size in O((c + 1)O(1)|X|) time. To compute k-NNX ,
we transfer a strategy in [4] for constructing a Euclidean k-nearest neighbor graph using a
WSPD.
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▶ Lemma 11. Given the compression TX of TS to any subset X ⊆ S, the k-NNX can be
constructed in O(k|X|) time.

The next result shows that the vertex degree of 1-NNX is O(1).

▶ Lemma 12. For any subset X ⊆ S, every vertex in 1-NNX has O(1) degree, and adjacent
vertices in 1-NNX are Voronoi neighbors in VorQ(X).

4.3.3 VorQ(R) from the nearest neighbor graph
We show how to construct VorQ(R) in O(n) expected time using 1-NNR. We use the following
recursive routine which is similar to the one in [3] for constructing an Euclidean Delaunay
triangulation from the Euclidean nearest neighbor graph. The top-level call is VorNN(R, TR).

Algorithm 2 VorNN(Y, TY ).

1. If |Y | = O(1), compute VorQ(Y ) directly and return.
2. Compute 1-NNY under the metric d using TY .
3. Let X ⊆ Y be a random sample such that X meets every connected component of 1-NNY ,

and Pr[p ∈ X] = 1/2 for every p ∈ Y .
4. Compute the compression TX of TY to X.
5. Call VorNN(X, TX) to compute VorQ(X).
6. Using 1-NNY as a guide, insert the points in Y \ X into VorQ(X) to form VorQ(Y ).

There are two differences from [3]. First, we use a compression TY of TS to compute
1-NNY in step 2, which takes O(|Y |) time by Lemma 11. Second, we need to compress TY to
TX in step 4. This compression works in almost the same way as described in Section 4.3.1
except that we can afford to traverse TY in O(|Y |) time to answer all nearest common
ancestor queries required for constructing TX . Thus, step 4 runs in O(|Y |) time.

Step 3 is implemented as follows [3]. Form an arbitrary maximal matching of 1-NNY . By
the definition of 1-NNY , each connected component of 1-NNY contains at least one matched
pair. Randomly select one point from every matched pair. Then, among those unmatched
points in 1-NNY , select each one with probability 1/2 uniformly at random. The selected
points form the subset X required in step 3. The time needed is O(|Y |).

In step 6, for each p ∈ Y \ X that is connected to some point q ∈ X in 1-NNY , p and
q are Voronoi neighbors in VorQ(Y ) by Lemma 12. So p conflicts with a point in Vq(X).
By Lemma 4, p conflicts with a Voronoi edge bend or Voronoi vertex in ∂Vq(X), which can
be found in O

(∣∣∂Vq(X)
∣∣) time. After finding a Voronoi edge bend or Voronoi vertex v in

∂Vq(X) that conflicts with p, we search VorQ(X) from v to find all Voronoi edge bends and
Voronoi vertices that conflict with p. In the same search of VorQ(X) , we modify VorQ(X)
into VorQ

(
X ∪ {p}

)
as in a randomized incremental construction [18]. By the Clarkson-Shor

analysis [12], the expected running time of the search of VorQ(X) and the Voronoi diagram
modification over the insertions of all points in Y \ X is O(|Y |). We spend O

(∣∣∂Vq(X)
∣∣)

time to find v. It translates to an O(1) charge at each vertex of Vq(X). This charging
happens only for q’s neighbors in 1-NNY . By Lemma 12, there are O(1) such neighbors
of q, so the charge at each vertex of Vq(X) is O(1). Moreover, if a vertex of Vq(X) is
destroyed by the insertion of a point from Y \ X, that vertex will not reappear. So the
O

(∣∣∂Vq(X)
∣∣) cost is absorbed by the structural changes which is already taken care of by

the Clarkson-Shor analysis. Unwinding the recursion gives a total expected running time of
O(|R| + |R|/2 + |R|/4 + · · · ) = O(|R|).

▶ Lemma 13. VorNN(R, TR) computes VorQ(R) in O(|R|) expected time.

ISAAC 2021



8:12 Self-Improving Voronoi Construction

4.4 Computing VorQ(I) from VorQ(R) and I

Let q be a point in R. Let v1, v2, . . . be the vertices of Vq(R), in clockwise order, which may
be Voronoi edge bends or Voronoi vertices. Let Q∗

vi
denote the largest homothetic copy of Q∗

centered at vi such that int(Q∗
vi

) ∩ R = ∅. Let Zvi
= Q∗

vi
∩ I where I is an input instance.

▶ Lemma 14. The portions of VorQ(R ∪ I) and VorQ

(
{q} ∪ Zvi

∪ Zvi+1

)
inside the triangle

qvivi+1 are identical.

Proof. Let p be a point in (R ∪ I) \ {q} that contributes to VorQ(R ∪ I) inside qvivi+1. As
qvivi+1 ⊆ Vq(R), p ̸∈ R. So p ∈ I. By Lemma 4, p conflicts with vi or vi+1. ◀

Step 2 of the operation phase has found VS |pi
for each pi ∈ I. VS |pi

and the portions of
the Voronoi edges of VorQ(S) among the points in VS |pi

are preserved in VorQ(R) because R

includes the subset of S whose Voronoi cells conflict with the input points. Hence,
⋃n

i=1 VS |pi

is the set UR of Voronoi edge bends and Voronoi vertices in VorQ(R) that conflict with
the input points. y Lemma 14, we locally compute pieces of VorQ(R ∪ I) and stitch them
together. The running time is O

(∑
u,v(|Zu| + |Zv|) log(|Zu| + |Zv|)

)
, where the sum is over

all pairs {u, v} of adjacent Voronoi edge bends and Voronoi vertices in VorQ(R) such that
{u, v} ∩ UR ̸= ∅. Since the degrees of Voronoi edge bends and Voronoi vertices are two
and three respectively, this running time can be bounded by O

( ∑
v∈UR

|Zv| log |Zv|
)
. Since

UR ⊆ VS , by Lemma 2, step 6 of the operation phase computes VorQ(R∪I) in O(n) expected
time.

In step 7, the splitting of VorQ(R ∪ I) into VorQ(R) and VorQ(I) can be performed
in O(n) expected time by using the algorithm in [6] for splitting a Euclidean Delaunay
triangulation. That algorithm is combinatorial in nature. It relies on the Voronoi diagram
being planar and of O(n) size, all points having O(1) degrees in the nearest neighbor graph,
and that one can delete a site from a Voronoi diagram in time proportional to its number of
Voronoi neighbors. The first two properties hold in our case, and it is known how to delete a
site from an abstract Voronoi diagram so that the expected running time is proportional to
its number of Voronoi neighbors [17].

▶ Lemma 15. Step 6 of the operation phase computes VorQ(R ∪ I) in O(n) expected time,
and step 7 splits VorQ(R ∪ I) into VorQ(I) and VorQ(R) in O(n) expected time.

In summary, since steps 2-7 of the operation phase take O(n) expected time, the limiting
complexity is dominated by the O

( 1
ε n log m + 1

ε n2O(log∗ n) + 1
ε H

)
expected running time of

step 1. In the Euclidean case, step 1 runs faster in O
( 1

ε n log m + 1
ε H

)
time.

▶ Theorem 16. Let Q be a convex polygon with O(1) complexity. Let n be the input size.
For any ε ∈ (0, 1) and any hidden mixture of at most m = o(

√
n) product distributions such

that each distribution contributes an instance with a probability of Ω(1/n), there is a self-
improving algorithm for constructing a Voronoi diagram under dQ with a limiting complexity
of O( 1

ε n log m + 1
ε n2O(log∗ n) + 1

ε H). For the Euclidean metric, the limiting complexity is
O( 1

ε n log m + 1
ε H). The training phase runs in O(mn log2(mn) + mεn1+ε log(mn)) time.

The success probability is at least 1 − O(1/n).

5 Conclusion

It is open whether one can get rid of the requirement that each distribution in the mixture
contributes an instance with a probability of Ω(1/n), which is not needed for self-improving
sorting [8]. Eliminating the n2O(log∗ n) term from the limiting complexity might require
solving the question raised in [5] that whether there is an O(n)-time algorithm for computing
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the lower envelope of pseudo-planes. As a Voronoi diagram can be interpreted as the
lower envelope of some appropriate surfaces, a natural question is what surfaces admit a
self-improving lower envelope algorithm.
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