
Long Paths Make Pattern-Counting Hard, and
Deep Trees Make It Harder
Vít Jelínek #

Computer Science Institute, Charles University, Prague, Czech Republic

Michal Opler #

Computer Science Institute, Charles University, Prague, Czech Republic

Jakub Pekárek #

Department of Applied Mathematics, Charles University, Prague, Czech Republic

Abstract
We study the counting problem known as #PPM, whose input is a pair of permutations π and τ

(called pattern and text, respectively), and the task is to find the number of subsequences of τ that
have the same relative order as π. A simple brute-force approach solves #PPM for a pattern of
length k and a text of length n in time O(nk+1), while Berendsohn, Kozma and Marx have recently
shown that under the exponential time hypothesis (ETH), it cannot be solved in time f(k)no(k/ log k)

for any function f . In this paper, we consider the restriction of #PPM, known as C-Pattern
#PPM, where the pattern π must belong to a hereditary permutation class C. Our goal is to identify
the structural properties of C that determine the complexity of C-Pattern #PPM.

We focus on two such structural properties, known as the long path property (LPP) and the deep
tree property (DTP). Assuming ETH, we obtain these results:
1. If C has the LPP, then C-Pattern #PPM cannot be solved in time f(k)no(

√
k) for any function

f , and
2. if C has the DTP, then C-Pattern #PPM cannot be solved in time f(k)no(k/ log2 k) for any

function f .
Furthermore, when C is one of the so-called monotone grid classes, we show that if C has the LPP
but not the DTP, then C-Pattern #PPM can be solved in time f(k)nO(

√
k). In particular, the

lower bounds above are tight up to the polylog terms in the exponents.

2012 ACM Subject Classification Mathematics of computing → Permutations and combinations;
Theory of computation → Pattern matching; Theory of computation → Problems, reductions and
completeness

Keywords and phrases Permutation pattern matching, subexponential algorithm, conditional lower
bounds, tree-width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.22

Related Version Full Version: https://arxiv.org/abs/2111.03479

Funding Vít Jelínek: Supported by project 18-19158S of the Czech Science Foundation.
Michal Opler : Supported by project 21-32817S of the Czech Science Foundation and by project
SVV–2020–260578.

1 Introduction

One of the most frequently studied algorithmic problems related to permutations is known as
Permutation pattern matching (or PPM). The input of PPM is a pair of permutations
τ (the “text”) of length n and π (the “pattern”) of length k, and the goal is to determine
whether τ contains π as a subpermutation (see Section 2 for formal definitions).

In full generality, PPM is NP-complete, as shown by Bose et al. [4]. Thus most research
into PPM focuses either on improved exact algorithms, or on identifying special types of
inputs for which the PPM can be solved in polynomial time, or at least in subexponential
time. Note that a direct brute-force approach solves PPM in time O(nk+1).

© Vít Jelínek, Michal Opler, and Jakub Pekárek;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jelinek@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-4831-4079
mailto:opler@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-4389-5807
mailto:pekarej@kam.mff.cuni.cz
https://orcid.org/0000-0002-5409-3930
https://doi.org/10.4230/LIPIcs.IPEC.2021.22
https://arxiv.org/abs/2111.03479
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

A particularly fruitful technique to solving PPM has been proposed by Ahal and Ra-
binovich [1], who showed that PPM can be solved in time nO(tw(π)), where tw(π) denotes
the tree-width of the so-called incidence graph of the pattern π. The bound was subsequently
tightened to ntw(π)+1 by Berendsohn, Kozma and Marx [3], who have used it to show that
PPM can be solved in time nk/4+o(k).

Another approach to PPM, due to Guillemot and Marx [9] (with a slight improvement by
Fox [8]) shows that the problem can be solved in time n · 2O(k2), implying that the problem
is fixed-parameter tractable with parameter k.

Closely related to PPM is its counting version #PPM, whose goal is to compute the
number of occurrences of the pattern π in the text τ . Berendsohn et al. [3] show that their
bounds of O(ntw(π)+1) and nk/4+o(k) for PPM also apply to solving #PPM. In contrast,
the FPT result for PPM by Guillemot and Marx [9] likely does not extend to #PPM, since
Berendsohn et al. [3] show that, under the exponential time hypothesis (ETH), #PPM
cannot be solved in time f(k)no(k/ log k), for any function f .

Given that both PPM and #PPM are hard in general, it is natural to consider their
complexity on restricted inputs. A common approach is to fix a hereditary class C of
permutations, and study the restriction of PPM or #PPM to inputs where the pattern
π belongs to C. Such restriction is known as C-Pattern PPM and C-Pattern #PPM,
respectively. It follows from the results of Ahal and Rabinovich [1] and Berendsohn et al. [3],
that the restricted problems are polynomial whenever the function tw(π) is bounded on the
class C. This idea is the basis for previous results establishing sharp thresholds between
polynomial and NP-hard cases of C-Pattern PPM [11, 12]. In fact, in all the known cases
when C-Pattern PPM and C-Pattern #PPM are polynomial, the class C has bounded
tree-width.

While distinguishing the polynomial cases of C-Pattern PPM from the NP-hard ones
is obviously the main focus of research, it is also of interest to distinguish subexponential
cases from those cases which (under suitable complexity assumptions, such as the ETH)
require exponential or near-exponential time. Here again, the tree-width plays a key role. It
is convenient to associate to a class C its tree-width growth function

twC(k) = max{tw(π); π ∈ C ∧ |π| = k}.

Indeed, Berendsohn et al. [3], extending previous results by Guillemot and Vialette [10], have
shown that when C is the class of 2-monotone permutations (i.e., the permutations merged
from two monotone sequences), then twC(k) = O(

√
k), and consequently C-Pattern #PPM

can be solved in the subexponential time nO(
√

k). They show, however, that for the class of
3-monotone permutations, the tree-width growth is of order Ω(k/ log k). Later Berendsohn [2,
Theorem 4.1] showed that for the class C = Av(654321), consisting of permutations that can
be merged from 5 increasing subsequences, C-Pattern #PPM cannot be solved in time
f(k)no(k/ log4 k) for any function f , unless ETH fails.

In the context of C-Pattern PPM and C-Pattern #PPM, most of the research
focuses on the cases when C is a principal class, i.e., the class Av(σ) of all the permutations
that avoid a single forbidden pattern σ. Unfortunately, principal classes seldom admit a
suitable structural characterisation of their elements, and even in those cases where such
characterisations exist, they are very different from one class to another. This makes it hard
to obtain general results that apply uniformly to a large set of principal classes.

To sidestep this issue, we mostly avoid dealing with individual principal classes directly,
and instead we primarily focus on a different type of permutation classes, the so-called
monotone grid classes. We then consider two structural properties of a general permutation

V. Jelínek, M. Opler, and J. Pekárek 22:3

class C, called the long path property (LPP) and the deep tree property (DTP). Both these
properties can be viewed as stating that C contains monotone grid subclasses of a particular
type. We establish lower bounds for the complexity of C-Pattern #PPM applicable to
any class C with LPP or DTP. The definitions of LPP and DTP are somewhat technical
(see Section 3); however, it is usually not too hard to verify whether a given class has these
properties. Indeed, we are able to identify all the principal classes that have LPP, as well as
all those that have DTP; see Subsection 3.2.

The LPP has already played a central part in a dichotomy result of the authors [12], and
implicitly also in the work of Berendsohn [2] and Berendsohn et al. [3]. These previous results
imply that for a monotone grid class C these properties are equivalent (assuming P ̸= NP):
(i) C has LPP, (ii) twC(k) is unbounded, (iii) twC(k) = Ω(

√
k), and (iv) C-Pattern PPM

is NP-complete. For all we know, the equivalence might hold for an arbitrary hereditary
class C, i.e., not just a monotone grid class. However, we do not even know whether every
class of unbounded tree-width has LPP.

The DTP is a strengthening of LPP, which we introduce in this paper, with the aim of
distinguishing the cases of C-Pattern #PPM that can be solved in the subexponential
time f(k)nO(

√
k) from those that cannot be solved in time f(k)no(k/ log k). While LPP forces

tree-width growth of order Ω(
√

k), DTP forces tree-width growth of order Ω(k/ log k).
Our main results show that the lower bounds on tree-width imposed by LPP and DTP

are accompanied by the corresponding complexity lower bounds for C-Pattern #PPM.
Specifically, we show that under ETH, the following holds for any permutation class C (see
Theorem 18):

If C has the LPP, then C-Pattern #PPM cannot be solved in time f(k)no(
√

k) for any
function f , and
if C has the DTP, then C-Pattern #PPM cannot be solved in time f(k)no(k/ log2 k) for
any function f .

In addition, we show that for classes with LPP, the Ahal–Rabinovich PPM algorithm
with complexity nO(tw(π)) is asymptotically optimal. More precisely, we show that if ETH
holds, then for a class C with LPP, no algorithm may solve C-Pattern PPM in time f(t)no(t)

for any function f , where t = tw(π) (see Theorem 15). All these complexity lower-bounds
are presented in Section 4.

Recall that by a result of Berendsohn et al. [3], the class C = Av(321) has tree-width
growth twC(k) = O(

√
k), and therefore C-Pattern #PPM can be solved in time nO(

√
k). It

turns out that this class has LPP, which implies, by our results above, that twC(k) = Ω(
√

k)
and that C-Pattern #PPM cannot be solved in time f(k)no(

√
k) for any function f . In

particular, both the tree-width bound and the complexity bound are tight.
For any class C with DTP, the tree-width lower bound Ω(k/ log k) and the complexity

lower-bound f(k)no(k/ log2 k) both match, up to the logarithmic terms, the trivial upper
bounds of k and nO(k), respectively.

As we mentioned before, we mostly focus on monotone grid classes. We will show that
for a monotone grid class C, both LPP and DTP can be easily characterised in terms of a
certain graph associated to a monotone grid class C, called the cell graph, and that these
two properties asymptotically determine twC(·). An earlier paper of the authors [12] shows
that a monotone grid class has bounded tree-width (and hence neither LPP nor DTP) if and
only if its cell graph is acyclic. We extend this result as follows (see Corollary 7):

If the cell graph of a monotone grid class C is not acyclic but has at most one cycle in
each component, then C has LPP but not DTP, and twC(k) ∈ Θ(

√
k).

If the cell graph of a monotone grid class C has a component with at least two cycles,
then C has DTP and twC(k) ∈ Ω(k/ log k).

IPEC 2021

22:4 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

2 Preliminaries

A permutation of length n is a sequence in which each element of the set [n] = {1, 2, . . . , n}
appears exactly once. When writing out short permutations explicitly, we shall omit all
punctuation and write, e.g., 15342 for the permutation 1, 5, 3, 4, 2. The permutation diagram
of π is the set of points Sπ = {(i, πi); i ∈ [n]} in the plane. Observe that no two points from
Sπ share the same x- or y-coordinate. We say that such a set is in general position.

For a point p in the plane, we denote its horizontal coordinate as p.x, and its vertical
coordinate as p.y. Two finite sets S, R ⊆ R2 in general position are isomorphic if there is a
bijection f : S → R such that for any pair of points p ̸= q of S we have f(p).x < f(q).x if
and only if p.x < q.x, and f(p).y < f(p).y if and only if p.y < q.y. The reduction of a finite
set S ⊆ R2 in general position is the unique permutation π such that S is isomorphic to Sπ.
We write π = red(S).

We say that a permutation τ contains a permutation π, written π ≤ τ , if the diagram of
τ contains a subset that is isomorphic to the diagram of π. If τ does not contain π, we say
that it avoids π. A permutation class is a set C of permutations which is hereditary, i.e., for
every σ ∈ C and every π ≤ σ, we have π ∈ C. For a permutation π, we let Av(π) denote the
set of all the permutations that avoid π; this is clearly a permutation class. The class Av(21)
of all the increasing permutations and the class Av(12) of all the decreasing permutations
are denoted by the symbols and , respectively.

We will frequently refer to symmetries that transform permutations into other permuta-
tions. For our purposes, it is convenient to describe these symmetries geometrically, as
transformations of the plane acting on permutation diagrams. We define the m-box to be
the set (1

2 , m + 1
2) × (1

2 , m + 1
2). Observe that for every permutation π of length at most m,

the permutation diagram Sπ is a subset of the m-box. We view permutation symmetries as
bijections acting of the whole m-box. There are eight such symmetries, generated by:
reversal which reflects the m-box horizontally, i.e. the image of point p is (m + 1 − p.x, p.y),
complement which reflects the m-box vertically, i.e. the image of point p is (p.x, m+1−p.y),
inverse which reflects the m-box through its main diagonal, i.e. the image of point p is

(p.y, p.x).
In particular, the reversal of a permutation π = π1, . . . , πn is the permutation πr =
πnπn−1, . . . , π1, the complement of π is the permutation πc = n + 1 − π1, n + 1 − π2, . . . , n +
1 − πn, and the inverse π−1 is the permutation σ = σ1, . . . , σn such that σi = j ⇐⇒ πj = i.
We also apply these symmetries to sets of permutations, in an obvious way: if Ψ is one
of the eight symmetries defined above and C is a permutation class, we define Ψ(C) as
{Ψ(π); π ∈ C}.

The incidence graph Gπ of a permutation π = π1, . . . , πn is the graph whose vertices are
the n entries π1, . . . , πn, with two entries πi and πj connected by an edge if |i − j| = 1 or
|πi − πj | = 1. In particular, the graph Gπ is a union of two paths, one of them visiting the
entries of π in left-to-right order, and the other in top-to-bottom order. We let tw(π) denote
the tree-width of Gπ.

Monotone grid classes

An important type of permutation classes are the so-called monotone grid-classes, which
we now define. A gridding matrix of size k × ℓ is a matrix M with k columns and ℓ rows,
whose every entry is a permutation class. A monotone gridding matrix is a gridding matrix
whose every entry is one of the three classes ∅, or . Note that to be consistent with the
Cartesian coordinates that we use to describe permutation diagrams, we will number the

V. Jelínek, M. Opler, and J. Pekárek 22:5

M =

Av(12) Av(21)

Av(21) Av(12)


Figure 1 A monotone gridding matrix M on the left and a permutation equipped with an

M-gridding on the right. Empty entries of M are omitted and the edges of GM are drawn in M.

rows of a matrix from bottom to top, and we give the column coordinate as the first one. In
particular, Mi,j denotes the entry in column i and row j of the matrix M, with 1 ≤ i ≤ k

and 1 ≤ j ≤ ℓ.
Let π be a permutation of length n. A (k × ℓ)-gridding of π is a pair of weakly increasing

sequences 1 = c1 ≤ c2 ≤ · · · ≤ ck+1 = n + 1 and 1 = r1 ≤ r2 ≤ · · · ≤ rℓ+1 = n + 1. For
i ∈ [k] and j ∈ [ℓ], the (i, j)-cell of the gridding of π is the set of points p ∈ Sπ satisfying
ci ≤ p.x < ci+1 and rj ≤ p.y < rj+1. Note that each point of the diagram Sπ belongs to a
unique cell of the gridding. A permutation π together with a gridding (c, r) forms a gridded
permutation.

Let M be a gridding matrix of size k × ℓ. We say that the gridding of π is an M-gridding
if for every i ∈ [k] and j ∈ [ℓ], the subpermutation of π induced by the points in the (i, j)-cell
of the gridding of π belongs to the class Mi,j .

We let Grid(M) denote the set of permutations that admit an M-gridding. This is
clearly a permutation class. A monotone grid class is any permutation class Grid(M) for a
monotone gridding matrix M.

The cell graph of a gridding matrix M, denoted GM, is the graph whose vertices are all
the pairs (i, j) for which Mi,j is an infinite permutation class. Two vertices are adjacent if
they appear in the same row or the same column of M, and there is no other cell containing
an infinite class between them. See Figure 1. A proper-turning path in GM is a path P such
that no three vertices of P share the same row or column.

Grid transforms and orientations

Let π be a permutation of length n with a (k × ℓ)-gridding (c, r), where c = (c1, . . . , ck+1)
and r = (r1, . . . , rℓ+1). The reversal of the i-th column of π is the operation that transforms
π into a new permutation π′ by taking the rectangle [ci, ci+1 − 1] × [1, n] and flipping it along
its vertical axis, thus producing the diagram of a new permutation π′. Equivalently, π′ is
created from π by reversing the order of the entries of π at positions ci, ci + 1, . . . , ci+1 − 1.
We view π′ as a gridded permutation, with the same gridding (c, r) as π.

Similarly, the complementation of the j-th row transforms the diagram of π by flipping
the rectangle [1, n] × [rj , rj+1 − 1] along its horizontal axis, producing the diagram of a new
gridded permutation π′.

We may similarly apply reversals to the columns of a gridding matrix M and complements
to its rows. Reversing the i-th column of M produces a new gridding matrix, in which all the
classes in the i-th column of M are replaced by their reversals. Row complementation of a
gridding matrix is defined analogously. Note that a column reversal or a row complementation
in a gridded permutation or in a gridding matrix is an involution, i.e., repeating the same
operation twice restores the original permutation or matrix. Note also that when we perform
a sequence of column reversals and row complementations, then the end result does not
depend on the order in which the operations were performed.

IPEC 2021

22:6 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

To describe succinctly a sequence of row and column operations, we introduce the notion
of (k × ℓ)-orientation, which is a pair of functions F = (fc, fr) with fc : [k] → {−1, 1} and
fr : [ℓ] → {−1, 1}. Applying the orientation F to a (k × ℓ)-gridded permutation π produces
a new gridded permutation F(π) with the same gridding as π, obtained by reversing each
column i such that fc(i) = −1 and complementing each row j such that fr(j) = −1. The
application of F to a gridding matrix M is defined analogously, and produces a gridding
matrix denoted F(M). Note that (c, r) is an M-gridding of π if and only if it is an
F(M)-gridding of F(π).

An orientation F is a consistent orientation of a monotone gridding matrix M, if every
nonempty entry of F(M) is equal to . As an example, the matrix

()
has a consistent

orientation acting by reversing the first column and complementing the first row. On the
other hand, the matrix

()
has no consistent orientation, since applying any orientation

to this matrix yields a matrix with an odd number of -entries.
The following lemma, due to Vatter and Waton [15], will be later useful.

▶ Lemma 1. Every monotone gridding matrix whose cell graph is acyclic has a consistent
orientation.

Tile assembly

In the hardness reductions that we are about to present, we frequently need to construct
permutations whose diagrams have a natural k × ℓ grid-like structure. We describe such
a diagram by taking each cell individually and describing the points inside it. For such a
description, it is often convenient to assume that each cell has its own coordinate system
whose origin is near the bottom-left corner of the cell. This allows us to describe the
coordinates of the points inside the cell without referring to the position of the cell within the
whole permutation diagram. In effect, we describe the diagram of the gridded permutation by
first constructing a set of independent “tiles” Ti,j for i ∈ [k] and j ∈ [ℓ] of the same size, and
then translating each tile Ti,j to column i and row j of the diagram. On top of that, we often
need to apply an orientation to the gridded permutation whose diagram we constructed.

We now describe the whole procedure more formally. Fix an integer m and recall that an
m-box is a square of the form (1

2 , m + 1
2) × (1

2 , m + 1
2). An m-tile is a finite set of points

inside the m-box. Note that the coordinates of the points in the tile may not be integers. A
(k × ℓ)-family of m-tiles is a collection (Ti,j ; i ∈ [k], j ∈ [ℓ]) where each Ti,j is an M -tile. Let
F be a (k × ℓ)-orientation. The F-assembly of the family (Ti,j ; i ∈ [k], j ∈ [ℓ]) is the gridded
permutation obtained as follows.

First, we translate each tile Ti,j by adding m(i − 1) to each horizontal coordinate and
m(j − 1) to each vertical coordinate. Thus, the m-tiles will be disjoint. If the union of the
translated tiles is not in general position, we rotate it slightly clockwise to reach general
position. Notice that we can do so without changing the relative position of any pair of
points that were already in general position. This yields a point set isomorphic to a unique
permutation π. See Figure 2. Additionally, π has a natural gridding whose cells correspond to
the translated tiles. To finish the construction, we apply the orientation F to π, obtaining the
gridded permutation F(π), which is the F -assembly of the family of tiles (Ti,j ; i ∈ [k], j ∈ [ℓ]).

▶ Observation 2. Let (Ti,j ; i ∈ [k], j ∈ [ℓ]) be a family of tiles, let F be an orientation, and
let M be a gridding matrix such that Ti,j is isomorphic to a permutation from the class Mi,j .
Then the F-assembly of the family of tiles (Ti,j ; i ∈ [k], j ∈ [ℓ]) is a permutation from the
class Grid(F(M)).

V. Jelínek, M. Opler, and J. Pekárek 22:7

T1,2 = T2,2 =

T1,1 = T2,1 =

−→

1 −1

1

−1

Figure 2 A 2×2 family of tiles T on the left and its F-assembly on the right for a 2×2 orientation
F given next to each row and column on the right. General position is attained by rotating the
resulting point set clockwise. The dashed lines indicate relative positions of two particular points.

3 Tree-width bounds

3.1 Width of monotone grid classes
We say that a permutation class C has the long path property (LPP) if for every k the
class C contains a monotone grid subclass whose cell graph is a path of length k. The next
proposition builds upon the ideas of Berendsohn et al. [3], who proved a similar result for the
class Av(321) using the fact that this class contains a staircase-shaped grid path of arbitrary
length.

▶ Proposition 3. If a permutation class C has the LPP then twC(n) ∈ Ω(
√

n).

Proof. First, we show that C contains for every k a grid subclass whose cell graph is a
proper-turning path of length k, i.e. a path in which no three consecutive vertices are in the
same row or column of the gridding. For the contrary, assume that there is ℓ such that C
does not contain such path of length ℓ. The LPP then implies that C contains for every t a
class Grid(M) where M is either a 1 × t or t × 1 matrix without empty entries. However,
any such matrix of dimensions 1 × n or n × 1 contains all permutations of length n and thus,
C must actually be the class of all permutations that contains all possible proper turning
paths.

So we can suppose that there is a monotone gridding matrix M such that M is a
proper-turning path v1, . . . , v2m−1 of length 2m − 1 and Grid(M) is contained in C. We
explicitly construct a permutation π ∈ Grid(M) such that Gπ contains an m × m grid graph
as a subgraph. The claim then follows since the tree-width of m × m grid graph is exactly m.

For i ∈ [m] and j ∈ [i], let

pi,j = (m + 2j − i − 1, m + 2j − i − 1), p2m−i,j = pi,j .

We define a family of 2m-tiles P by setting Pvi
to be the set of points pi,j for all possible

choices of j.
Let F be a consistent orientation of M guaranteed by Lemma 1 and let π be the F-

assembly of P. The sets Pvi
were defined in such a way that for every i the points in Pv2i

have both coordinates odd whereas the points in Pv2i+1 have both coordinates even. Since
M is a proper turning path, there are always at most two non-empty tiles sharing the same
row or column in π and in such case they correspond to neighboring vertices of the path.
Moreover, if they share a common row, then the y-coordinates of their points are interleaved,
and if they share a common column, the same holds for the x-coordinates.

IPEC 2021

22:8 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

Figure 3 Illustration of the proof of Proposition 3. Embedding a 3 × 3 grid graph (left) into a
permutation from a monotone grid class whose cell graph is a path of length 5 (right).

It remains to show that Gπ contains an m × m grid graph as a subgraph. Let si,j be the
image of pi,j under the F -assembly. We claim that we can map consecutive diagonals of the
grid to the tiles Pvi . See Figure 3. More precisely, for x, y ∈ [m] set

gx,y =
{

sx+y−1,x if x + y ≤ m + 1,
sx+y−1,m−y+1 otherwise.

We start by showing that for any i ∈ [m − 1], there is an edge between si,j and si+1,j , and
also between si,j and si+1,j+1. This follows since the points of Pvi

and Pvi+1 have their x-
or y-coordinates interleaved and there is no other tile occupying their shared row or column.
Due to symmetry, it holds that for i > m, there is an edge between si,j and si−1,j and also
between si,j and si−1,j+1.

If we take x, y ∈ [m] such that x + y ≤ m (i.e. gx,y lies below the anti-diagonal of the
grid), the fact proved in the previous paragraph directly translates to the existence of edges
between gx,y and gx+1,y and between gx,y and gx,y+1. On the other hand for x, y ∈ [m] such
that x + y ≥ m + 2, the points gx,y, gx−1,y and gx,y−1 translate to sx+y−1,x, sx+y−2,x−1 and
sx+y−2,x. Therefore, in this case there are edges between gx,y and gx−1,y and between gx,y

and gx,y−1. This concludes the proof as any edge in the m × m grid graph is of one of the
two types whose existence we proved. ◀

It turns out that there is a large family of monotone grid classes for which twC ∈ Θ(
√

n),
namely every monotone grid class whose cell graph is not acyclic yet it does not contain two
connected cycles. We include the complete proof in the full version, and here we only briefly
describe its main ideas.

▶ Theorem 4. If M is a connected monotone gridding matrix that contains a single cycle in
its cell graph then twGrid(M)(n) ∈ Θ(

√
n)

Proof idea. First, we show that twGrid(M)(n) ∈ Ω(
√

n). It has been previously proved by
the authors in [12, Lemma 3.5] that a cycle in a grid class implies the LPP. The lower bound
readily follows from Proposition 3.

For the upper bound, let π be a permutation of Grid(M) with a given M-gridding. We
observe that there is only O(1) edges whose endpoints share neither a common row nor a
common column. Therefore, we can focus on the graph G′ obtained from Gπ by removing
these edges. We subsequently show that G′ can be drawn on a surface of Euler genus 1 with
O(n) total crossings. Standard techniques [7] then imply that tw(G′) ∈ O(

√
n).

V. Jelínek, M. Opler, and J. Pekárek 22:9

Figure 4 A schematic drawing of Gπ for π from a unicyclic grid class on the projective plane.
Instead of drawing the specific points of π, we place arrows to indicate the orientation of each cell.
Different color is used for each set of edges that share a single row or column, and the exceptional
edges are omitted.

Suppose that c1, c2, . . . , cm are the entries of M that lie on its only cycle in this order.
The cell graph GM consists of the cycle and trees that are attached to it. If we remove all
the edges that participate in the cycle, we end up with m trees T1, . . . , Tm called tendrils
such that the tree Ti contains the entry ci.

We prove that the points of a single tendril can be drawn on a straight segment in a way
such that the points from different cells are ordered consistently, and moreover, there are
only O(n) crossings between edges going inside a single tendril. We use this to draw each
tendril on a parallel line, called meridian, and subsequently, we draw the edges connecting
points in different tendrils as polylines that do not cross each other. We are forced to add
one crosscap between some pair of meridians if M does not admit a consistent orientation.
Finally, we check that we produced at most O(n) crossing between the edges whose endpoints
occupy a single tendril and the edges connecting two different tendrils. See Figure 4. ◀

For integer constants c and d, a c-subdivided binary tree of depth d is a graph obtained
from a binary tree of depth d by replacing every edge by a path of length at most c. We say
that a permutation class C has the deep tree property (DTP) if there is a constant c such that
for every d, the class C contains a monotone grid subclass whose cell graph is a c-subdivided
binary tree of depth d. Observe that DTP straightforwardly implies LPP. We say that a
class C has near-linear width if twC(n) ∈ Ω(n/ log n).

▶ Proposition 5. If a permutation class C has the DTP, then it has near-linear width.

Proof. Inspired by the approach of Berendsohn [3], we want to show that for a graph G of
large tree-width, we can find a permutation σ ∈ C such that Gσ contains G as a minor while
the length of σ exceeds the size of G by at most a logarithmic factor.

To that end, fix an arbitrary graph G with vertex set VG = [n] and edges {e1, . . . , em}
where ei = {ai, bi}. Let M be a monotone gridding matrix such that Grid(M) ⊆ C and the
cell graph of M is a c-subdivided binary tree with exactly m leaves. Let r denote the root of
this tree. It follows that the tree has maximal depth at most c(log m + 1). We turn GM into
an oriented graph by orienting all edges consistently away from r. For any vertex v of the
tree, the descendants of v, denoted by D(v), are all the out-neighbors of v.

We assign a set Aw ⊆ VG to each vertex w of the tree. First, we arbitrarily order the m

leaves of GM as v1, . . . , vm. Then we inductively define

Aw =
{

{ai, bi} if w = vi for i ∈ [m] where ei = {ai, bi},⋃
v∈D(w) Av otherwise.

(1)

IPEC 2021

22:10 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

We remark that
∑

v |Av| = O(m log m) since each vertex i ∈ VG is present in exactly
deg(i) leaves and in the paths of length O(log m) that connect those leaves to r. We proceed
to define a family of m-tiles P by setting Pv = {(i, i) | i ∈ Av} for every vertex v of the tree,
and keeping all the other tiles empty.

Let F be a consistent orientation obtained from the application of Lemma 1 on M and
let π be the F-assembly of P. Since every tile is an increasing point set, it follows that π

belongs to Grid(M).
In order to simplify the rest of the proof, we color S with n colors. We assign a color

i ∈ VG to a point p ∈ S with preimage (i, i) in Px,y. We claim that S satisfies the following
conditions:
(a) The subgraph of Gπ induced by a single color is connected;
(b) For each edge ei = {ai, bi} of G there is an edge in Gπ between a vertex of color ai and

a vertex of color bi.

Fix a color i ∈ VG. Let Qi be the set of all vertices v of GM such that i ∈ Av. Clearly,
Qi induces a connected subtree of GM. Recall that every point of color i has always the
coordinates (i, i) inside any tile. It follows that for points (i, i) in two neighboring tiles,
the F-assembly of P transforms them first to points that share one coordinate and then by
rotating slightly clockwise makes them either horizontal or vertical neighbors. Therefore, the
subgraph of Gπ induced by color i is connected, which proves a.

Every leaf vi must be the only non-empty vertex in its row or column. Let us assume the
latter case as the other one is symmetric. Therefore, the two points contained in the image
of Pvi form an edge in Gπ since no other point lies in the vertical strip between them. In
particular, the leaf vi satisfies the condition b for edge ei.

The conditions a and b together imply that we can obtain a supergraph of G by contracting
every monochromatic subgraph of Gπ to a single vertex and thus, G is a minor of Gπ. Observe
that the total size of π is equal to

∑
v |Av| which we showed to be O(m log m). And since

there exist graphs on n vertices with O(n) edges and tree-width Ω(n), we deduce that
twC(n) ≥ twGrid(M)(n) ∈ Ω(n/ log n). ◀

We continue by introducing a different property that implies the deep tree property and
is at the same time easier to show for a specific class C. A permutation class C has the bicycle
property if it contains a monotone grid subclass whose cell graph is connected and contains
at least two cycles. We include the full, rather technical, proof in the full version, providing
here with only a brief sketch.

▶ Proposition 6. If a permutation class C has the bicycle property, then it also has the DTP
(and therefore near-linear width).

Proof idea. The proof consists of two parts. First, we will show that there is always a grid
subclass of C that contains in its cell graph two connected cycles of a certain special type.
To that end, observe that the cell graph GM can either be two cycles connected by a path or
one cycle with a chord. For the latter case, we show that by replacing each entry in M with
a suitable 3 × 3 matrix, we obtain a matrix N such that Grid(N) is a subclass of Grid(M)
and moreover, the cell graph GN contains two cycles joined with a path. See Figure 5.

In the second step, we find a way to wind a c-subdivided binary tree of arbitrary depth
into the two cycles joined with a path and thus, showing that C has the DTP. ◀

For monotone grid classes, the results of this section imply a sharp dichotomy.

V. Jelínek, M. Opler, and J. Pekárek 22:11

Figure 5 Left: a gridding matrix M whose cell graph is a cycle with a chord. Right: a gridding
matrix N such that Grid(N) is contained in Grid(M) and the cell graph GN consists of two cycles
joined by a path.

▶ Corollary 7. For a monotone grid class Grid(M) exactly one of the following holds.
GM is acyclic and twC(k) ∈ Θ(1).
GM contains at most one cycle in each component, C has LPP and twC(k) ∈ Θ(

√
k).

GM has a component with at least two cycles, C has DTP and twC(k) ∈ Ω(k/ log k).

3.2 The case of principal classes
In this section, we investigate the long path and deep tree properties of principal classes, i.e.,
the classes of the form Av(π). Combined with the results of Subsection 3.1, it allows us to
infer lower bounds for the tree-width growth function of Av(σ). Whereas together with the
results of Section 4, we obtain conditional lower bounds for counting patterns from Av(σ).
Let us note that previously Berendsohn [2] has shown that for any π of length at least 4 that
is not symmetric to one of {3412, 3142, 4213, 4123, 42153, 41352, 42513}, the class Av(π) has
near-linear width. We reproduce and improve this result in a concise way with the tools that
we have built up.

The k-step increasing (C, D)-staircase, denoted by Stk(C, D) is a grid class Grid(M) of a
k × (k + 1) gridding matrix M such that the only non-empty entries in M are Mi,i = C and
Mi,i+1 = D for every i ∈ [k]. In other words, the entries on the main diagonal are equal to C
and the entries of the adjacent lower diagonal are equal to D. The increasing (C, D)-staircase,
denoted by St(C, D), is the union of Stk(C, D) over all k ∈ N.

The authors [13] recently showed that Av(σ) contains a certain staircase class for three
patterns of length 3 and certain 2 × 2 grid classes for four patterns of length 4. Moreover, at
least one of these patterns or their symmetries is contained in every permutation of length at
least 4 that is not symmetric to one of 3412, 3142, 4213, 4123 or 41352.

▶ Proposition 8 (Jelínek et al.[13]). We have St(, Av(321)) ⊆ Av(4321), St(, Av(231)) ⊆
Av(4231) and St(, Av(312)) ⊆ Av(4312).

▶ Proposition 9 (Jelínek et al.[13]). The class Av(σ) contains the class Grid(M) for the
gridding matrix M =

(
Av(π)

)
whenever

π = 132 and σ = 14523, or
π = 231 and σ = 24513, or
π = 321 and σ ∈ {32154, 42513}.

IPEC 2021

22:12 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

σ LPP, DTP of Av(σ) Comment
1, 21, 312 neither LPP nor

DTP
twAv(σ) ∈ Θ(1) by Ahal and Rabinovich [1] which
would contradict Proposition 3.

321, 3412, 3142,
4213, 4123, 41352

LPP but not DTP LPP of 321 and 3412 follows due to Jelínek and
Kynčl [11], the rest contains either 123 or 321. The
absence of DTP is proved in the full version.

All other both LPP and DTP DTP by Proposition 10, LPP follows.

Figure 6 The long path and deep tree properties of principal classes, i.e. classes of form Av(σ).
Only one pattern σ from each symmetry group is listed.

▶ Proposition 10. If σ is a permutation of length at least 4 that is not in symmetric to any
of 3412, 3142, 4213, 4123 or 41352, then Av(σ) has the bicycle property and thus, Av(σ) has
near-linear width.

Proof. We start by proving that every class defined by forbidding a pattern of length 3 must
contain a special type of monotone grid subclass. For arbitrary π of length 3, the class Av(π)
contains a grid class Grid(M) such that M is a 2 × 2 monotone gridding matrix with three
non-empty entries. Since there are only two different symmetry types of permutations of
length 3, it is enough to check that

Grid
(

·

)
⊆ Av(321) and Grid

(
·

)
⊆ Av(132).

First, we prove the claim for the patterns that appear in Proposition 8. Let σ ∈ {4321,

4231, 4312} and take a 3-step increasing staircase St3(, Av(π)) for π of length 3 that is
contained in Av(σ). Let M′ be a 6×8 monotone gridding matrix obtained from St3(, Av(π))
by replacing every -entry by the identity matrix

(
·

·

)
and every Av(π)-entry with its

2 × 2 monotone grid subclass which has three non-empty entries. Clearly, Grid(M′) is a
subclass of Av(σ), and it is easy to check that for any π, the cell graph of M′ is connected
and contains two cycles.

We prove the claim for the patterns that appear in Proposition 9 in a similar fashion.
Let σ ∈ {14523, 24513, 32154, 42513} and take M to be the grid class Grid

(
Av(π)

)
for

π of length 3 that is contained in Av(σ). Similar to before, let M′ be the gridding matrix
obtained from M by replacing the -entry with the matrix

(
·

·

)
, both -entries with the

matrix
(

·
·

)
, and Av(π) with its 2 × 2 monotone grid subclass which has three non-empty

entries. Again, Grid(M′) is a subclass of Av(σ), and it is easy to check that for any π, the
cell graph of M′ is connected and contains two cycles. ◀

We can actually show that the DTP cannot get us any further, since for any σ ∈ {3412,

3142, 4213, 4123, 41352}, the class Av(σ) does not have the DTP. See the full version for the
whole discussion. Hereby, we actually obtained a complete knowledge of LPP and DTP for
principal classes. See Figure 6.

4 Hardness of #PPM

In this section, we provide conditional lower bounds for modified variants of C-Pattern
PPM given LPP or DTP. The results of this section are proved under a slightly stronger
assumptions about the classes. Apart from the LPP or DTP property, we furthermore require

V. Jelínek, M. Opler, and J. Pekárek 22:13

an algorithm that provides a witnessing long path or deep tree. Formally, a class C has the
computable LPP if it has the LPP and there is an algorithm that, for a given k, outputs the
description of a monotone grid subclass of C whose cell graph is a path of length k. Similarly,
a class C has the computable DTP if it has the DTP and there is an algorithm that, for
a given k, outputs the description of a monotone grid subclass of C whose cell graph is a
c-subdivided binary tree of depth k. Observe that all the specific examples of classes we
encountered (and especially the principal classes in Subsection 3.2) posses the computable
version of their corresponding properties.

We will reduce from the well-known problem partitioned subgraph isomorphism (PSI)
defined as follows. We receive on input two graphs G = (VG, EG) and H = (VH , EH) together
with a coloring χ : VH → VG of vertices of H, using the vertices of G as colors. We have
to decide if there is a mapping ϕ : VG → VH such that whenever {u, v} ∈ EG then also
{ϕ(u), ϕ(v)} ∈ EH and moreover χ(ϕ(v)) = v for every v ∈ VG. Less formally, we aim to find
G as a subgraph of H, but we prescribe in advance where each vertex can be mapped to. It
is a well-known fact that PSI is hard to solve.

▶ Theorem 11 (Marx [14], Bringmann et al. [5]). Unless ETH fails, PSI cannot be solved in
time f(k) · no(k/ log k) for any function f , where n = |VH | and k = |EG|. This is true even
when we require G to have exactly as many vertices as edges.

If we additionally fix G to be the clique on k vertices we obtain the problem called
Partitioned Clique. Formally, the input to Partitioned Clique consists of a graph
H = (VH , EH) together with a coloring χ : VH → [k] and we have to decide if there is a
k-clique in H that hits all k available colors. It is easy to see that Partitioned Clique can
be solved in time f(k) · nO(k). However, there is also a matching conditional lower bound.

▶ Theorem 12 (Cygan et al. [6]). Unless ETH fails, Partitioned Clique cannot be solved
in time f(k) · no(k) for any function f , where n = |VH |.

We shall also not reduce directly to the problems of interest. Rather, we first reduce to
the C-Pattern Anchored PPM (C-Pattern APPM) problem, defined as follows. The input
consists of permutations π ∈ C and arbitrary τ together with pairs of points A in π and B in
τ that are called anchors. We are promised that arbitrary inflation of the points in A with
either two increasing or two decreasing sequences creates π′ that is still contained in C. The
goal is to decide whether there is an embedding of π into τ that maps A to B.

For C with the computable LPP, we are able to reduce Partitioned Clique to C-
Pattern APPM such that the size of the pattern π is linear in the number of vertices
of the clique. And for C with the computable DTP, we provide a reduction from PSI to
C-Pattern APPM such that the size of π is almost linear in the size of the graph G. Due to
the space constraints and technicality of the reductions, we include here only brief overviews
and describe both of them, including the proofs of correctness in the full version.

▶ Lemma 13. Let C be a class with the computable LPP. An instance (G, χ) of Partitioned
Clique can be reduced to an instance (π, τ, A, B) of C-Pattern APPM where |π| ∈ O(k2)
and |τ | ∈ O(|VH |2) in time f(k) · |VH |O(1) for some function f . Moreover, tw(π) ∈ O(k).

Proof idea. Using the computable LPP, we obtain a monotone gridding matrix M such that
Grid(M) is a subclass of C and the cell graph of M is a proper-turning path with 4k − 2
vertices v1, . . . , v4k−2. We construct the pattern π via an F-assembly from a family of tiles
P and the text τ from a family of tiles T where the only non-empty tiles in both families
correspond to the non-empty entries of M and moreover, each non-empty tile in P is an
increasing sequence.

IPEC 2021

22:14 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

The first tiles Pv1 and Tv1 both contain only pair of elements whose images under the
F -assembly are taken as the anchors A and B. Their role is to guarantee that any embedding
of π into τ that maps A to B must be grid-preserving, i.e. it maps the image of the tile Pvi

to the image of the tile Tvi for every i. The second pair of tiles Pv2 and Tv2 then simulates
a mapping ϕ : [k] → VH that respects the coloring χ. And finally for every i ∈ [k], the
tiles corresponding to vertices v4a−1, v4a, v4a+1 and v4a+2 verify that there is an edge in H

between the vertex ϕ(i) and ϕ(j) for every j > i. ◀

▶ Lemma 14. Let C be a class with the computable DTP. An instance (G, H, χ) of PSI can
be reduced to an instance (π, τ, A, B) of C-Pattern APPM where |π| ∈ O(|EG| · log |EG|)
and |τ | ∈ O(|EH | + |VH | · |EG|) in time f(|EG|) · |VH |O(1) for some function f .

Proof idea. In this reduction, we combine the ideas of the reduction for the LPP (Lemma 13)
with the proof that DTP implies near-linear tree-width (Proposition 5).

Using the computable DTP, we obtain a monotone gridding matrix M such that Grid(M)
is a subclass of C and the cell graph of M is a c-subdivided binary tree with |EG| leaves.
Additionally, we require that the root r of the tree has a single child r′, and that each parent
of a leaf has no other children. We again construct the pattern π via an F-assembly from
a family of tiles P and the text τ from a family of tiles T where the only non-empty tiles
in both families correspond to the non-empty entries of M with each non-empty tile in P
being an increasing sequence.

We set the tiles Pr and Tr to contain each a pair of elements which become the anchors
A and B under the F-assembly and which guarantee that any embedding of π into τ

that respects the anchors must be grid-preserving. Using the same idea as in the proof of
Lemma 13, the pair of tiles Pr′ and Tr′ is used to simulate a mapping ϕ : VG → VH that
respects the coloring χ. But now instead of verifying sequentially the neighborhood of each
vertex in G, we aim to verify the existence of each edge in a particular leaf.

Set k = |EG|. Following along the proof of Proposition 5, we orient the edges of the cell
graph GM consistently away from r and for any vertex v, the descendants of v, denoted
by D(v), are all the out-neighbors of v. We arbitrarily order the edges EG = {e1, . . . , ek}
and also the k leaves of GM as v1, . . . , vk, and we define the sets Aw exactly as in (1). We
additionally assume that Ar = [k] which corresponds to G having no isolated vertices. We
again have

∑
v Av ∈ O(k log k).

Now we spread the information about the mapping ϕ from r′ to each leaf while keeping
in each vertex only the information necessary to decide the existence of edges assigned to
leaves in its subtree. In other words for a vertex v, we force the mapping of Pv into Tv to
encode the mapping ϕ restricted to Av. This in particular allows us to bound the size of
π by O(k log k). Finally, we use the leaf vi and its parent to test the existence of an edge
{ϕ(ai), ϕ(bi)} ∈ EH where ei = {ai, bi} using the same construction as in Lemma 13. ◀

Observe that both reductions produce π and τ as gridded permutations belonging to some
monotone grid class Grid(M) via an F-assembly from families of tiles. Importantly, they
share the property that any embedding of π into τ that maps A to B must be grid-preserving,
i.e., it maps the (i, j)-cell of the gridding of π to th (i, j)-cell of the gridding of τ for every i

and j. Moreover, both A and B are pairs of consecutive points in the left-to-right order.

4.1 Consequences
▶ Theorem 15. If C has the computable long-path property then C-Pattern PPM cannot
be solved in time f(t) · no(t) where t = tw(π) for any function f , unless ETH fails.

V. Jelínek, M. Opler, and J. Pekárek 22:15

Proof. Let (π, τ, A, B) be the instance of C-Pattern APPM produced by Lemma 13 and
let m be the length of τ . We define π′ as the permutation obtained from π by inflating both
of the anchors in A with either two increasing or decreasing sequences of length m such that
π′ is still contained in C. Recall that one of these inflations is always possible. And similarly,
we let τ ′ be the permutation obtained from τ by inflating both of the anchors in B with the
same type of monotone sequences of length m as in π′.

We claim that π′ is contained in τ ′ if and only if (π, τ, A, B) is a positive instance of
C-Pattern APPM. It is clear that if there is an embedding of π into τ that maps A to B,
then there is an embedding of π′ into τ ′.

For the other direction, assume there is an embedding ϕ of π′ into τ ′. The inflated
anchors in π′ contain exactly 2m points while τ ′ contains only m − 2 points outside of its
inflated anchors. Therefore, at least m + 2 points of the inflated anchors in π′ are mapped
by ϕ to the inflated anchors in τ ′ and in particular, there must be at least one point in each
of the anchors in π′ mapped to the corresponding anchor in τ ′. Since the anchors A and B

are pairs of consecutive points, observe that we can, in fact, map the whole inflated anchors
in π′ to the inflated anchors in τ ′. It follows that we obtain a desired anchored embedding of
π into τ by deflating the anchors back to a single point.

Finally, we show that tw(π′) ≤ tw(π) + 2. The desired bound follows as otherwise, we
could use a faster algorithm for C-Pattern PPM to decide the instance (π, τ, A, B) of
C-Pattern APPM and consequently refute ETH by the “moreover” part of Lemma 13.
We claim that in general, if σ′ is obtained from σ by inflating one point with a monotone
sequence then tw(σ′) ≤ tw(σ) + 1. To see that, notice that when we inflate a point of σ with
a monotone sequence of length 2, we get σ′ such that tw(σ′) ≤ tw(σ) + 1. However, if we
inflate the same point by a longer monotone sequence and obtain a permutation σ′′ then
Gσ′′ can be obtained by edge subdivisions from Gσ′ , and it is well-known that subdividing
en edge does not increase tree-width. ◀

In order to show the hardness of C-Pattern #PPM, we first reduce to an intermediate
problem called C-Pattern Surjective Colored PPM (C-Pattern SCPPM) whose input
consists of a pattern π ∈ C, a text τ and a coloring χ : τ → [t]. We need to decide whether
there is an embedding of π into τ that hits all t possible colors. This intermediate reduction
allows us to infer conditional lower bounds for C-Pattern #PPM via the following lemma.

▶ Lemma 16 (Berendsohn [2]). Let there be an algorithm that solves C-Pattern #PPM in
time f(k) · nO(g(k)) for some functions f and g. Then C-Pattern SCPPM can be solved in
time h(k) · nO(g(k)) for some function h.

▶ Lemma 17. An instance (π, τ, A, B) of C-Pattern APPM produced by Lemma 13 or
14 can be reduced to an instance (π′, τ ′, χ) of C-Pattern SCPPM where |π′| ∈ O(|π|) and
|τ ′| ∈ O(|τ |) in polynomial time.

Proof. The general idea of the proof is the same as in Theorem 15 – we force matching of
the anchors by inflating them with long monotone sequences. The C-Pattern SCPPM
problem, however, allows us to use sequences with length depending only on π. Let k be
the length of π and let π′ be the permutation obtained by inflating the anchors A with
either two increasing or decreasing sequences of length k such that π′ ∈ C, and let τ ′ be the
permutation obtained by the same inflation of the anchors B. We define χ : τ → [2k + 1]
by coloring every point added during the inflation with a unique color and using a single
additional color for every other point. Clearly, |π′| ∈ O(|π|) and |τ ′| ∈ O(|τ |).

We need to verify the correctness of our construction. If (π, τ, A, B) is a positive instance
of C-Pattern APPM then (π′, τ ′, χ) is a positive instance of C-Pattern SCPPM as
we can simply map the inflated anchors of π′ to the inflated anchors of τ ′. For the other

IPEC 2021

22:16 Long Paths Make Pattern-Counting Hard, and Deep Trees Make It Harder

direction, assume there is an embedding ϕ of π′ into τ ′ that hits all the 2k + 1 colors. In
other words, the image of π′ under ϕ contains the whole inflated anchors of τ ′. Since there
are only k − 2 points in π′ outside of the anchors, at least k + 2 points of the anchors in π′

maps to the anchors in τ ′. In particular, there must be at least one point in each of the two
increasing inflated anchors in π′ that maps to the corresponding anchor in τ ′. By the same
argument as in the proof of Theorem 15, we conclude that the inflated anchors map without
loss of generality to the inflated anchors. ◀

▶ Theorem 18. Unless ETH fails, C-Pattern #PPM cannot be solved for any function f

in time f(k) · no(√
k) if C has the computable LPP, and

in time f(k) · no(k/ log2 k) if C has the computable DTP.

Proof. For C with the computable LPP, a faster algorithm would refute ETH via

Partitioned Clique
Lemma 13

→ C-Pattern APPM
Lemma 17

→ C-Pattern SCPPM
Lemma 16

→ C-Pattern #PPM

Whereas for C with the computable DTP, a faster algorithm would refute ETH via

PSI
Lemma 14

→ C-Pattern APPM
Lemma 17

→ C-Pattern SCPPM
Lemma 16

→ C-Pattern #PPM. ◀

References
1 Shlomo Ahal and Yuri Rabinovich. On complexity of the subpattern problem. SIAM J.

Discrete Math., 22(2):629–649, 2008. doi:10.1137/S0895480104444776.
2 Benjamin Aram Berendsohn. Complexity of permutation pattern matching. Master’s thesis,

Freie Universität Berlin, Berlin, 2019.
3 Benjamin Aram Berendsohn, László Kozma, and Dániel Marx. Finding and counting per-

mutations via CSPs. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th International
Symposium on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019,
Munich, Germany, volume 148 of LIPIcs, pages 1:1–1:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.1.

4 Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations.
Inform. Process. Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.

5 Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting set for
hypergraphs of low VC-dimension. In 24th Annual European Symposium on Algorithms,
volume 57 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 23, 18. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2016.

6 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, Cham,
2015. doi:10.1007/978-3-319-21275-3.

7 Vida Dujmović, David Eppstein, and David R. Wood. Structure of graphs with locally
restricted crossings. SIAM Journal on Discrete Mathematics, 31(2):805–824, 2017. doi:
10.1137/16M1062879.

8 Jacob Fox. Stanley–Wilf limits are typically exponential. arXiv:1310.8378v1, 2013.
9 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.

In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 82–101. ACM, New York, 2014. doi:10.1137/1.9781611973402.7.

10 Sylvain Guillemot and Stéphane Vialette. Pattern matching for 321-avoiding permutations. In
Algorithms and computation, volume 5878 of Lecture Notes in Comput. Sci., pages 1064–1073.
Springer, Berlin, 2009. doi:10.1007/978-3-642-10631-6_107.

11 Vít Jelínek and Jan Kynčl. Hardness of permutation pattern matching. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 378–396. SIAM,
Philadelphia, PA, 2017. doi:10.1137/1.9781611974782.24.

https://doi.org/10.1137/S0895480104444776
https://doi.org/10.4230/LIPIcs.IPEC.2019.1
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/16M1062879
https://doi.org/10.1137/16M1062879
https://arxiv.org/abs/1310.8378v1
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1007/978-3-642-10631-6_107
https://doi.org/10.1137/1.9781611974782.24

V. Jelínek, M. Opler, and J. Pekárek 22:17

12 Vít Jelínek, Michal Opler, and Jakub Pekárek. A complexity dichotomy for permutation
pattern matching on grid classes. In Javier Esparza and Daniel Král’, editors, 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28,
2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 52:1–52:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.52.

13 Vít Jelínek, Michal Opler, and Jakub Pekárek. Griddings of Permutations and Hardness
of Pattern Matching. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2021), volume 202
of LIPIcs, pages 65:1–65:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.MFCS.2021.65.

14 Dániel Marx. Can you beat treewidth? Theory Comput., 6:85–112, 2010. doi:10.4086/toc.
2010.v006a005.

15 Vincent Vatter and Steve Waton. On partial well-order for monotone grid classes of permuta-
tions. Order, 28(2):193–199, 2011. doi:10.1007/s11083-010-9165-1.

IPEC 2021

https://doi.org/10.4230/LIPIcs.MFCS.2020.52
https://doi.org/10.4230/LIPIcs.MFCS.2021.65
https://doi.org/10.4230/LIPIcs.MFCS.2021.65
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1007/s11083-010-9165-1

	1 Introduction
	2 Preliminaries
	3 Tree-width bounds
	3.1 Width of monotone grid classes
	3.2 The case of principal classes

	4 Hardness of #PPM
	4.1 Consequences

