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Abstract
We consider the Strictly Chordal Editing problem, where one is given an undirected graph
G = (V, E) and a parameter k ∈ N and seeks to edit (add or delete) at most k edges from G to obtain
a strictly chordal graph. Problems Strictly Chordal Completion and Strictly Chordal
Deletion are defined similarly, by only allowing edge additions for the former, and only edge
deletions for the latter. Strictly chordal graphs are a generalization of 3-leaf power graphs and a
subclass of 4-leaf power graphs. They can be defined, e.g., as dart and gem-free chordal graphs. We
prove the NP-completeness for all three variants of the problem and provide an O(k3) vertex-kernel
for the completion version and O(k4) vertex-kernels for the two others.
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1 Introduction

Parameterized algorithms are among the most natural approaches to tackle NP-hard optim-
ization problems [13]. In particular, they have been very successful in dealing with so-called
edge modification problems on graphs: given as input an arbitrary graph G = (V, E) and a
parameter k ∈ N, the goal is to transform G into a graph with some specific properties (i.e.,
belonging to a specific graph class G) by adding and/or deleting at most k edges. Parameter-
ized algorithms (also called FPT for fixed parameter tractable) aim at a time complexity of
type f(k) · nO(1), where f is some computable function, hence the combinatorial explosion is
restricted to parameter k.

When the target class G is characterized by a finite family of forbidden induced subgraphs,
modification problems are FPT by a result of Cai [8]. Indeed, as long as our graph contains
one of the forbidden subgraphs, we can try each possibility to correct this obstruction and
branch by recursive calls. On each branch, the budget k is strictly diminished, therefore
the whole algorithm has a number of calls bounded by some function f(k). The situation is
more complicated when the target class G is characterized by an infinite family of forbidden
induced subgraphs. Nonetheless, a large literature is devoted to edge modification problems
towards chordal graphs (where we forbid all induced cycles with at least four vertices) as well
as sub-classes of chordal graphs, typically obtained by requiring some fixed set of obstructions,
besides the long cycles. Observe that, in this case, the situation remains relatively simple if
we restrict ourselves to edge completion problems, where we are only allowed to add edges to
the input graphs. Indeed, in this case, if a graph has a cycle of length longer than k + 3,
it cannot be made chordal by adding at most k edges. Therefore we can use again the

© Maël Dumas, Anthony Perez, and Ioan Todinca;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.IPEC.2021.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Polynomial Kernels for Strictly Chordal Edge Modification Problems

approach of Cai to deal with cycles of length at most k + 3 and other obstructions, and either
the algorithm finds a solution in f(k) recursive calls, or we can conclude that we have a
no-instance. The cases of edge deletion problems (where we are only allowed to remove edges)
and edge editing problems (where we are allowed to both remove edges or add missing edges)
are more complicated, since even long cycles can be eliminated by a single edge removal.
Therefore more efforts and more sophisticated techniques were necessary in these situations,
but several such problems turned out to be FPT [10, 14, 15]. The interested reader can
refer to [11] for a broad and comprehensive survey on parameterized algorithms for edge
modification problems.

We focus here on a sub-family of parameterized algorithms, namely on kernelization. The
goal of kernelization is to provide a polynomial algorithm transforming any instance (I, k) of
the problem into an equivalent instance (I ′, k′) where k′ is upper bounded by some function
of k (in our case we will simply have k′ ≤ k), and the size of the new instance I ′ is upper
bounded by some function g(k). Hence the size of the reduced instance does not depend
on the size of the original instance. While kernelization is possible for all FPT problems
(the two notions are actually equivalent), the interesting question is whether a given FPT
problem admits polynomial kernels, where the size of the reduced instance is bounded by
some polynomial in k. Note that, under some complexity assumptions, not all FPT problems
admit polynomial kernels [5, 6, 7, 9, 19, 24].

In this paper we provide polynomial kernels for Strictly Chordal Completion,
Strictly Chordal Deletion and Strictly Chordal Editing. Strictly chordal graphs
are a subclass of chordal graphs, also known as block duplicate graphs [22, 23, 18]. They can
be obtained from block graphs, i.e., graphs in which every block (bi-connected component)
induces a clique, by repeatedly choosing some vertex u and adding a true twin v of u, that is
a vertex v adjacent to u and all other neighbors of u. They can also be characterized as dart,
gem-free chordal graphs (see Figure 1 and next section). Strictly chordal graphs are known
to be a subclass of 4-leaf power graphs [23], and a super-class of 3-leaf power graphs. Leaf
power graphs have been introduced in the context of phylogeny reconstruction [28]. A graph
is said to be p-leaf power, for some integer p, if its vertices can be bijectively mapped onto
the leaves of some tree, such that two vertices are adjacent in the graph if the corresponding
leaves are at distance at most p in the tree.

Related work

Kernelization for chordal completion goes back to the ’90s and the seminal paper of
Kaplan, Shamir and Tarjan [21]. Since then, several authors addressed completion, deletion
and/or editing problems towards sub-classes of chordal graphs, as 3-leaf power graphs [3], split
and threshold graphs [20], proper interval graphs [4], trivially perfect graphs [2, 16, 17, 20]
or ptolemaic graphs [12]. All these classes have in common that they can be defined as
chordal graphs, plus a constant number of obstructions. Several questions remain open, for
example it is not known whether chordal deletion or chordal editing admit polynomial
kernels [11]. We could also ask whether completion and editing problems towards 4-leaf
power graphs admit a polynomial kernel, knowing that they are FPT [15].

Our contribution

Firstly, we prove that problems Strictly Chordal Completion, Strictly Chordal
Deletion and Strictly Chordal Editing are NP-complete. Secondly, we give a kernel-
ization algorithm for the Strictly Chordal Completion problem, producing a reduced
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instance with O(k3) vertices. Eventually, we discuss how to extend this approach in order
to obtain an O(k4)-vertex kernel for both Strictly Chordal Deletion and Strictly
Chordal Editing. Above all, our purpose is to exhibit general techniques that might, we
hope, be extended to kernelizations for edge modification problems towards other graph
classes. Several such algorithms, e.g., [3, 17] share the following feature. Very informally, the
target class G admits a tree-like decomposition, in the sense that the vertices of any graph
H ∈ G can be partitioned into clique modules, and these modules can be mapped onto the
nodes of a decomposition tree, the structure of the tree describing the adjacencies between
modules. Therefore, if an arbitrary graph G can be transformed into graph H by at most k

edge additions or deletions, at most 2k modules can be affected by the modifications. By
removing the affected nodes from the decomposition tree, we are left with several components
that correspond, in the initial graph G as well as in H, to induced subgraphs that may be
large but that already belong to the target class. Moreover, these chunks are attached to
the rest of graph G in a very regular way, through one or two nodes of the decomposition
tree. The kernelization algorithms need to analyze these chunks and provide reduction rules,
typically by ensuring a small number of nodes in the decomposition tree, plus the fact that
each node corresponds to a module of small size.

The class of strictly chordal graphs does not have exactly a tree-like decomposition, but
still can be decomposed into a structure of block graph, which can be seen as a generalization
of a tree. Our algorithms exploit these informal observations and provide the necessary
reduction rules together with the combinatorial analysis for the kernel size. Proofs of
statements labeled with (⋆) are omitted in this extended abstract.

2 Preliminaries

We consider simple, undirected graphs G = (V, E) where V denotes the vertex set and
E ⊆ (V × V ) the edge set of G. We will sometimes use V (G) and E(G) to clarify the context.
Given a vertex u ∈ V , the open neighborhood of u is the set NG(u) = {v ∈ V : uv ∈ E}. The
closed neighborhood of u is defined as NG[u] = NG(u) ∪ {u}. Two vertices u and v are true
twins if NG[u] = NG[v]. Given a subset of vertices S ⊆ V , NG[S] is the set ∪v∈SNG[v] and
NG(S) is the set NG[S]\S. We will omit the mention to G whenever the context is clear. The
subgraph induced by S is defined as G[S] = (S, ES) where ES = {uv ∈ E : u ∈ S, v ∈ S}.
For the sake of readability, given a subset S ⊆ V we define G \ S as G[V \ S]. A subgraph
C is a connected component of G if it is a maximal connected subgraph of G. A subset of
vertices M ⊆ V is a module if for every vertices x, y ∈ M , N(x)\M = N(y)\M . A set S ⊆ V

is a separator of G if G\S is not connected. Given two vertices u and v of G, the separator
S is a uv-separator if u and v lie in distinct connected components of G\S. Moreover, S is a
minimal uv-separator if no proper subset of S is a uv-separator. Finally, a separator S is
minimal if there exists a pair {u, v} such that S is a minimal uv-separator.

Figure 1 The diamond, dart, gem and cycle of length at least 4.

▶ Definition 1. Given a graph G = (V, E), a critical clique of G is a set K ⊆ V such that
G[K] is a clique, K is a module and is inclusion-wise maximal under this property.
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17:4 Polynomial Kernels for Strictly Chordal Edge Modification Problems

Notice that K is a maximal set of true twins and that the set K(G) of critical cliques of
any graph G partitions its vertex set V (G). This leads to the following definition.

▶ Definition 2 (Critical clique graph). Let G = (V, E) be a graph. The critical clique graph
of G is the graph C(G) = (K(G), EC) with EC = {KK ′ | ∀u ∈ K, ∀v ∈ K ′, uv ∈ E}.

Strictly chordal graphs

Block graphs are graphs in which every block (bi-connected component) is a clique. They can
also be characterized as chordal graphs that do not contain diamonds as induced subgraphs [1].
A natural generalization of block graphs are strictly chordal graphs, also known as block
duplicate graphs [22, 23, 18], that are obtained from block graphs by adding true twins [18].

▶ Theorem 3 ([26]). Let G = (V, E) be a graph. The following conditions are equivalent:
1. G is a strictly chordal graph,
2. The critical clique graph C(G) is a block graph,
3. G does not contain any dart, gem or hole as an induced subgraph (see Figure 1),
4. The minimal separators of G are pairwise disjoint.

We consider the following problem:

Strictly Chordal Editing
Input: A graph G = (V, E), a parameter k ∈ N
Question: Does there exist a set of pairs F ⊆ (V × V ) of size at most k such that the graph
H = (V, E△F ) is strictly chordal, with E△F = (E \ F ) ∪ (F \ E)?

The Strictly Chordal Completion and Strictly Chordal Deletion problems
are defined similarly by requiring F to be disjoint from (resp. included in) edge set E. Given
a graph G = (V, E), a set F ⊆ (V × V ) such that the graph H = (V, E△F ) is strictly
chordal is called an edition of G. When F is disjoint from E (resp. included in E) it is
called a completion (resp. a deletion) of G. For the sake of simplicity we use G△F , G + F

and G − F to denote the resulting strictly chordal graphs in all version of the problem. In
all cases, F is optimal whenever it is minimum-sized. Given an instance (G = (V, E), k)
of any of the aforementioned problems, we say that F is a k-edition (resp. k-completion,
k-deletion) whenever F is an edition (resp. completion, deletion) of size at most k. Finally, a
vertex is affected by F whenever it is contained in some pair of F . We say that an instance
(G = (V, E), k) of any of the aforementioned problems is a yes-instance whenever it admits a
k-edition (resp. k-completion, k-deletion).

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint graphs and let S1 ⊆ V1, S2 ⊆
V2. The join composition of G1 and G2 on S1 and S2, denoted (G1, S1) ⊗ (G2, S2), is the
graph (V1 ∪ V2, E1 ∪ E2 ∪ (S1 × S2)).

▶ Lemma 4 ([22]). Let G1 = (V1, E1) and G2 = (V2, E2) be two strictly chordal graphs
and let S1 ⊆ V1, S2 ⊆ V2. The graph G = (G1, S1) ⊗ (G2, S2) is strictly chordal if for each
i ∈ {1, 2}, Si is a critical clique or is a clique included in exactly one maximal clique of Gi.

We will use the following result that guarantees that any clique module of a given graph
G will remain a clique module in any optimal edge modification towards some hereditary
class of graphs, in particular towards strictly chordal graphs.

▶ Lemma 5 ([3]). Let G be an hereditary class of graphs closed under true twin addition.
For every graph G = (V, E), there exists an optimal edition (resp. completion, deletion) F

into a graph of G such that for any two critical cliques K and K’ either (K × K ′) ⊆ F or
(K × K ′) ∩ F = ∅.
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In the remainder of this paper we always assume that the considered optimal editions
(resp. completions, deletions) satisfy Lemma 5.

2.1 Hardness results
The NP-completeness of Strictly Chordal Completion follows directly from the proof
of NP-completeness of 3-Leaf Power Completion from [14]. We can use the same
reduction from Biclique Deletion, taking the complement of a bipartite graph and adding
an universal vertex.

▶ Theorem 6. Strictly Chordal Completion is NP-complete.

We show the NP-completeness of Strictly Chordal Editing and Strictly Chordal
Deletion by giving a reduction from Cluster Editing and Cluster Deletion, known
to be NP-complete [25, 30, 27].

▶ Theorem 7. Strictly Chordal Editing and Strictly Chordal Deletion are
NP-complete.

Proof. A graph is a cluster graph if it does not contain any induced path on three vertices
(so-called P3). Given an instance (G = (V, E), k) of Cluster Editing, we construct an
instance of Strictly Chordal Editing by adding a clique U = {u1, . . . , uk+1} of size
k + 1 adjacent to all vertices of V , and for each vertex x in V , k + 1 vertices {vx

1 , . . . , vx
k+1}

adjacent only to x. Let (G′ = (V ′, E′), k) be the produced instance. We show that the graph
G admits a k-edition into a cluster graph if and only if G′ admits a k-edition into a strictly
chordal graph. Suppose first that there is a k-edition F of G into a cluster graph. The graph
G△F is a graph without any P3 as induced subgraph. Now consider the graph H ′ = G′△F .
By construction H ′[V ] contains no P3, so H ′ is chordal and contains neither gems nor dart.
By Theorem 3, it follows that H ′ is strictly chordal. Now suppose that there exists a k-edition
F ′ of G′ into a strictly chordal graph. By contradiction, suppose that G′ contains a P3
{x, y, z} where x, z are the ends of the path. Then, there exist i, j ∈ {1, . . . , k + 1} such that
{x, y, z, ui, vy

j } forms a dart, contradicting that G′△F ′ is strictly chordal, thus G△F is a
cluster graph.

The same reduction can be done from Cluster Deletion to Strictly Chordal
Deletion. This concludes the proof. ◀

3 Kernelization algorithm for Strictly Chordal Completion

We begin this section by providing a high-level description of our kernelization algorithm. We
use the critical clique graph of strictly chordal graphs to bound the number of vertices of a
reduced instance. Let us consider a positive instance (G = (V, E), k) of Strictly Chordal
Completion, F a suitable solution and H = G + F . Denote by C(H) the critical clique
graph of H as described Definition 2 and recall that C(H) is a block graph (Theorem 3).
Since |F | ≤ k, we know that at most 2k critical cliques of C(H) may contain affected vertices.
Let A be the set of such critical cliques, T the minimum subgraph of C(H) that spans all
critical cliques of A and A′ the set of critical cliques of degree at least 3 in T . We shall
see later that |A′\A| ≤ 3 · |A| (Lemma 19). We will define the notion of block-branch,
corresponding to subgraphs of G that are strictly chordal. We will focus our interest on two
types of block-branches: the ones that are connected to the rest of the graph by only one
critical clique, called 1-block-branches, and the ones that are connected to the rest of the
graph by exactly two critical cliques, called 2-block-branches. The connected components
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of the graph T\(A ∪ A′) correspond to parts of 2-block-branches and the length of these
2-block-branches will be bounded by 3. We will see that there are at most 4k such connected
components, thus there is O(k) critical cliques in T . Finally, the connected components of
the graph C(H)\V (T ) correspond to 1-block-branches or sets of connected 1-block-branches.
Each 1-block-branch will be reduced to 2 critical cliques, and to each critical clique or
maximal clique of T there is a linear number of 1-block-branches of C(H)\V (T ) adjacent to
it. Altogether, the graph C(H) contains O(k2) critical cliques, and each critical clique is of
size at most k + 1, hence the graph G contains O(k3) vertices.

3.1 Classical reduction rules
We first give classical reduction rules when dealing with modification problems. The first
rule is safe for any target graph class hereditary and closed under disjoint union. The second
one comes from the fact that strictly chordal graphs are hereditary and closed under true
twin addition, combined with Lemma 5.

▶ Rule 1. Let C be a strictly chordal connected component of G. Remove V (C) from G.

▶ Rule 2. Let K ⊆ V be a set of true twins of G such that |K| > k + 1. Remove |K|− (k + 1)
arbitrary vertices in K from G.

▶ Lemma 8 (Folklore, [3]). Rules 1 and 2 are safe and can be applied in polynomial time.

3.2 Block-branch reduction rules
We now consider the main structure of our kernelization algorithm, namely block-branches.

▶ Definition 9 (block-branch). Let G = (V, E) be a graph. We say that a subgraph B of G

is a block-branch if V (B) is an union of critical cliques K1, . . . , Kr ∈ K(G) such that the
subgraph of C(G) induced by K1, . . . , Kr is a connected block graph.

We emphasize that our definition of a block-branch B is stronger than simply requiring
B to be an induced strictly chordal graph. For example, if G is the dart graph, the subgraph
obtained by removing the pendant vertex is strictly chordal, but it is not a block-branch
because the corresponding critical cliques do not form a block graph in C(G). Let B be a
block-branch of graph G and let K1, . . . , Kr be the critical cliques of G contained in V (B).
We say that Ki is an attachment point of B if NG(Ki) \ V (B) ̸= ∅. A block-branch B is a
p-block-branch if it has exactly p attachment points. We denote BR the subgraph of B in
which all attachment points have been removed.

We first give structural Lemmata on block-branches that will be helpful to prove the
safeness of our rules.

▶ Lemma 10. Let G = (V, E) be a graph and B a block-branch of G. For any attachment
point P of B, let B′ = B\P , consider the connected components G1, G2, . . . , Gr of B′ and let
Qi = NB(P ) ∩ V (Gi). For every i, 1 ≤ i ≤ r, Qi is a critical clique of Gi or Qi is included
in exactly one maximal clique of Gi.

Proof. First, we show that all sets Qi are cliques. Suppose that Qi is not a clique for some
1 ≤ i ≤ r. Let x and y be non adjacent vertices of Qi and z ∈ P . Since Gi is connected, take
a shortest path π between x and y in Gi. The subgraph induced by the vertices {x, y, z}
and those of π contains either a cycle of length at least 4 if z is not adjacent to any inner
vertex of π, which is a contradiction since B is a block graph, or a diamond with z being
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one of its vertices of degree 3. In the latter case, since z is not in the same critical clique of
C(G) as its true twin in the diamond, the critical cliques of C(G) that contain some vertices
of this diamond also form a diamond in C(G). This diamond is formed by critical cliques
of G contained in B, contradicting the definition of a block-branch. In all cases we have a
contradiction, it remains that Qi is a clique in G.

Now, suppose that Qi, 1 ≤ i ≤ r is included in two or more maximal cliques in Gi and
let u, v ∈ V (Gi)\Qi be two vertices adjacent to Qi such that uv /∈ E(Gi). If Qi is not a
critical clique of Gi, there are two cases, either Qi is not a module of Gi or Qi is included
in a larger module of Gi. In the first case, there are two vertices x, y ∈ Qi that are not in
the same module of Gi. Let z ∈ V (Gi)\Qi be a vertex adjacent to only x or y, say w.l.o.g.
x. The subgraph of G induced by {u, v, x, y, z} is either a dart if z is not adjacent to u nor
v or a gem if it is adjacent to exactly one of them. If z is adjacent to both u and v, then
{z, u, y, v} forms a C4 in this order, leading to a contradiction. In the second case, that is
Qi is included in a larger module of Gi, let x ∈ Qi, y a vertex in the same module as x in Gi

and z ∈ P . Observe that zy /∈ E(G). The set {x, y, z, u, v} induces a dart in G. In all cases
we have a contradiction, since the forbidden structure is also contained in B. It remains that
Qi is a critical clique of Gi or Qi is included in exactly one maximal clique of Gi. ◀

▶ Lemma 11. Let G = (V, E) be a graph and B a block-branch of G. Let F be an optimal
completion of G that respects Lemma 5, and H = G + F . For any attachment point P of B,
let C be the critical clique of H which contains P . Then C ′ = C\V (BR) is a critical clique
of H ′ = H\V (BR) or is included in exactly one maximal clique of H ′.

Proof. Assume that C ′ is included in two or more maximal cliques in H ′. Let u, v ∈ V (H ′)\C ′

be two vertices adjacent to C ′ such that uv /∈ E(H ′). If C ′ is not a critical clique of H ′, then
either C ′ is not a module of H ′ or C ′ is included in a larger module of H ′. In the first case,
there are two vertices x, y ∈ C ′ that are not in the same module of H ′. Let z ∈ V (H ′)\C ′ be
a vertex adjacent to only x or y, say w.l.o.g. x. The subgraph of H induced by {u, v, x, y, z}
is either a dart if z is not adjacent to u nor v or a gem if it is adjacent to exactly one of
them. If z is adjacent to both u and v, then {z, u, y, v} forms a C4 in this order, leading to a
contradiction. In the second case, C ′ is included in a larger module of H ′. Let x ∈ C ′, y

be a vertex in the same module as x in H ′ and z ∈ NB(P ). The set {x, y, z, u, v} induces a
dart in H if zy is not in E(H), else a gem in H. In all cases we have a contradiction since H

is strictly chordal. It remains that C ′ is a critical clique of H ′ or C ′ is included in exactly
one maximal clique of H ′. ◀

▶ Lemma 12. Let G = (V, E) be a graph and B a 1-block-branch of G with attachment point
P . There exists an optimal completion F of G such that:

The set of vertices of B affected by F is included in P ∪ NB(P ).
In H = G+F the vertices of NB(P ) are all adjacent to the same vertices of V (G)\V (BR).

Proof. Let F be an optimal completion of G. Let C be the critical clique of H which contains
P and let C ′ = C\V (BR). Let Q1, . . . , Qr be the cliques that partition NB(P ) (Lemma 10)
and Gi the connected component of BR which contains Qi. The graphs H ′ = H\V (BR)
and Gi, for 1 ≤ i ≤ r, are strictly chordal by heredity. By Lemma 10, for 1 ≤ i ≤ r, Qi

is a critical clique of Gi or is in exactly one maximal clique of Gi. By Lemma 11, C ′ is a
critical clique of H ′ or is in exactly one maximal clique of H ′. Thus, by Lemma 4 the graph
H∗ corresponding to the graph (

⋃
1≤i≤r Gi,

⋃
1≤i≤r Qi) ⊗ (H ′, C ′) is a strictly chordal graph.

Let F ∗ be such that H∗ = G + F ∗. By construction F ∗ ⊆ F , and the desired properties are
verified. ◀
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P C ′

H ′

G1
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G2
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BR

Figure 2 Illustration of the proof of Lemma 12 for r = 3. The graph H∗ = (G1 ∪ G2 ∪ G3, Q1 ∪
Q2 ∪ Q3) ⊗ (H ′, C′) is strictly chordal by Lemma 4.

▶ Rule 3. Let (G = (V, E), k) be an instance of Strictly Chordal Completion. If G

contains a 1-block-branch B with attachment point P , then remove from G the vertices of
V (BR) and add a clique K of size min{|NB(P )|, k + 1} adjacent to P .

▶ Lemma 13 (⋆). Rule 3 is safe.

▶ Lemma 14. Let (G = (V, E), k) be a yes-instance of Strictly Chordal Completion,
reduced by Rule 2. Let B1, . . . , Bl be disjoint 1-block-branches of G with attachment points
P1, . . . , Pl which have the same neighborhood N in G\

⋃l
i=1 V (Bi) and form a disjoint union of

cliques Q1, . . . Qr in G[P1 ∪· · ·∪Pl]. If Σl
i=1|Pi| > 2k+1, then for every k-completion F of G,

N has to be a clique of H = G+F . Moreover, if r > 1 and (Σl
i=1|Pi|)−max1≤j≤r{|Qj |} > k

then N is a critical clique of H.

Proof. If r = 1, assume for a contradiction that N is not a clique in H and let x, y ∈ N

such that xy /∈ E(H). By our hypothesis, |Q1| > 2k + 1. Recall that since G is reduced by
Rule 2, its critical cliques have at most k + 1 vertices, in particular each Pi is of size at most
k + 1. At least one block-branch Bi contains some edge uz with u ∈ Pi and z ∈ V (Bi) \ Pi

(otherwise each block-branch Bi is formed only of Pi, so Q1 would be a clique module in G,
hence contained in some critical clique of G, contradicting the fact that all critical cliques of
G are of size at most k + 1). In graph G, z is not adjacent to any other block-branch Bj , for
any j ≠ i. Since

∑
j ̸=i |Pj | > k and F is of size at most k, there must exist some j ̸= i and

some vertex v ∈ Pj such that vz /∈ E(H). Let us examine the subgraph of H induced by
vertices {z, u, v, x, y}. If z is not adjacent to any of {x, y}, we obtain a dart. If it is adjacent
to exactly one of them, the five vertices induce a gem. Finally, if z is adjacent to both x and
y in H, then {z, x, v, y} forms a C4 in this order. In all cases we have a contradiction. It
remains that N is a clique in H.

If r > 1, suppose for a contradiction that N is not a clique in H, then there exist two
vertices x, y ∈ N such that xy /∈ E(H). For any pair of vertices ui ∈ Qi, uj ∈ Qj , i ̸= j,
the set {x, ui, y, uj} induces a C4 in G. Thus (uj , ui) has to be in F , implying |F | > k, a
contradiction. Hence N has to be a clique in H. Suppose now that N is not a module in H,
then there exists x, y ∈ N and z ∈ V (G)\(N ∪ Q1 ∪ · · · ∪ Qr) adjacent to only one of the
vertices x or y, say w.l.o.g. x. For any pair of vertices ui ∈ Qi, uj ∈ Qj , i ̸= j, if (uj , ui) /∈ F
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the set {x, y, ui, uj , z} induces a dart if neither ui nor uj is adjacent to z, a gem if one of them
is adjacent to z, or if both of them are adjacent to z, {y, ui, uj , z} induces a C4 in H. Thus
(uj , ui) has to be in F , implying |F | > k, a contradiction. Hence N must be a module in H.
If N is not a critical clique of H, then it is strictly contained in some critical clique N ′. A
vertex x ∈ N ′\N must have been made adjacent to NH [N ]. If x is not in some Pi or NBi

(Pi),
then it must have been made adjacent to all vertices of P1 ∪ · · · ∪ Pl, implying |F | > k, a
contradiction. If x is in some Pi or or NBi

(Pi), since (Σl
i=1|Pi|) − max1≤j≤r{|Qj |} > k,

then it must have been made adjacent to the vertices of every Pj , j ̸= i, implying |F | > k, a
contradiction. It remains that N is a critical clique in H. ◀

▶ Rule 4. Let (G = (V, E), k) be an instance of Strictly Chordal Completion and
B1, . . . , Bl disjoint 1-block-branches of G with attachment points P1, . . . , Pl having the same
neighborhood N in G\

⋃l
i=1 V (Bi). Assume that Σl

i=1|Pi| > 2k + 1 and let Q1, . . . Qr be the
disjoint union of cliques in G[P1 ∪ · · · ∪ Pl].

If r = 1, remove the vertices
⋃l

i=1 V (Bi), add two adjacent cliques K and K ′ of size k + 1
with neighborhood N and a vertex uK adjacent to every vertex of K.
If r > 1 and (Σl

i=1|Pi|) − max1≤j≤r{|Qj |} > k, remove the vertices
⋃l

i=1 V (Bi) and add
two non-adjacent cliques of size k + 1 with neighborhood N .

▶ Lemma 15 (⋆). Rule 4 is safe.

3.3 Reducing the 2-block-branchs
Let B be a 2-block-branch of a graph G reduced by Rule 3, with attachment points P1 and
P2. We say that B is clean if BR is connected, and that the length of a clean 2-block-branch
is the length of a shortest path between its two attachment points in C(B).

▶ Lemma 16. Let G = (V, E) be graph and B a clean 2-block-branch of length at least 3 with
attachment points P1, P2 that are in different connected components of G\V (BR). There
exists an optimal completion F of G such that:

The set of vertices of B affected by F is included in P1 ∪ NB(P1) ∪ P2 ∪ NB(P2),
In H = G + F , the vertices of NB(P1) (resp. NB(P2)) are all adjacent to the same
vertices of V (G)\V (BR).

Proof. Let F be an optimal completion of G, and H = G + F . Recall that by hypothesis
P1 and P2 are in different connected components of G \ V (BR) and let G1 and G2 be these
components. Consider the graphs H1 = H[V (G1) ∪ V (BR)], H2 = H[V (G2) ∪ V (BR)] and
H3 = H[V (G)\(V (G1) ∪ V (G2) ∪ V (BR))], which are strictly chordal graphs by heredity.
Let Ci be the critical clique of Hi which contains Pi, and C ′

i = Ci\V (BR), i ∈ {1, 2}. By
Lemma 11, C ′

i is a critical clique of H ′
i = Hi\V (BR) or is in exactly one maximal clique of

H ′
i. Since P1 are P2 are at distance at least 3 to each other, NB(P1) and NB(P2) are disjoint.

Since BR is connected, Lemma 10 gives that NB(P1) and NB(P2) are cliques in G and are
critical cliques of BR or are each in exactly one maximal clique of BR. By Lemma 4, the graph
H∗ corresponding to the disjoint union of ((BR, NB(P1)) ⊗ (H ′

1, C ′
1)), NB(P2)) ⊗ (H ′

2, C ′
2)

and H3 is strictly chordal and the completion F ∗ ⊆ F , such that H∗ = G + F ∗, respects the
desired properties. ◀

▶ Rule 5. Let (G = (V, E), k) be an instance of Strictly Chordal Completion and B

a clean 2-block-branch of G of length at least 3 with attachment points P1, P2 that are in
different connected components of G\V (BR). Remove the vertices of BR, and add two new
cliques K1 and K2 of size respectively min{|NB(P1)|, k + 1} and min{|NB(P2)|, k + 1} with
the edges (P1 × K1), (K1 × K2), (K2 × P2).
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NB(P1)

P1 P2

C ′
1 C ′

2

H ′
1 H ′

2

BR

NB(P2)

Figure 3 Illustration of the proof of Lemma 16. The graph H∗ = ((BR, NB(P1)) ⊗
(H ′

1, C′
1)), NB(P2)) ⊗ (H ′

2, C′
2) is strictly chordal by Lemma 4.

▶ Lemma 17 (⋆). Rule 5 is safe.

4 Size of the kernel

We first state that reduction rules involving block-branches can be applied in polynomial
time.

▶ Lemma 18. Given an instance (G = (V, E), k) of Strictly Chordal Completion,
Rules 3 to 5 can be applied in polynomial time.

Proof. We rely on a linear time computation of the critical clique graph C(G) of G [29] and
a linear time recognition algorithm for block graphs [1]. We show that we can enumerate all
1-block-branches and 2-block-branches in polynomial time. Since an attachment point is by
definition a critical clique of G, one can detect 1-block-branches by removing a critical clique
of C(G) and look among the remaining connected components those that induce a connected
block graph together with P (in C(G)). Considering a maximal set of such components
together with P gives a 1-block-branch B. We proceed similarly to detect clean 2-block-
branches by removing a pair of critical cliques P1, P2 of C(G), and look among the remaining
connected components those that induce a connected block graph (in C(G)) together with P1
and P2. Such components together with P1 and P2 gives a clean 2-block-branch B. Recall
that Rule 5 only applies if P1 and P2 are not in the same component of G\V (BR), which
can easily be verified. Since there is O(|V (G)|) critical cliques, the result follows. ◀

▶ Lemma 19. Let G = (V, E) be a connected block graph, a set A ⊆ V (G) and TA be a
minimal connected induced subgraph of G that spans all vertices of A. Denote by f(TA) the
set of vertices of degree at least 3 in TA. We have:

(i) The subgraph TA is unique,
(ii) |f(TA) \ A| ≤ 3 · |A|,
(iii) The graph TA\(A ∪ f(TA)) contains at most 2 · |A| connected components.

Proof. A convenient way to represent the tree-like structure of block graph G is its block-cut
tree TBC(G). Recall that the block-cut tree of a graph G has two types of nodes: the
block nodes correspond to blocks of G (i.e, bi-connected components which, in our case, are
precisely the maximal cliques of G) and the cut nodes correspond to cut-vertices of G. We
put an edge between a cut node and a block node in TBC(G) if the corresponding cut-vertex
belongs to the corresponding block of G.

Each vertex of G that is not a cut-vertex belongs to a unique block of G. Therefore
we can map each vertex v of V (G) on a unique node n(v) of TBC(G) as follows: if v is a
cut-vertex, we map it on its corresponding cut node in TBC(G), otherwise we map it on the
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block node corresponding to the unique block of G containing v. Observe that, for any two
vertices u, v ∈ A, any (elementary) path P from u to v in G corresponds to the path PBC

from n(u) to n(v) in TBC(G). In particular, P contains all vertices corresponding to cut
nodes of PBC , therefore TA must contain all these vertices. Altogether, the vertices of TA

are precisely the vertices of A, plus all cut-vertices of G corresponding to the cut nodes of
such paths, implying the unicity of TA.

Let TBC(A) denote the subtree of TBC(G) spanning all nodes of n(A) = {n(a) | a ∈ A}.
We count the vertices of f(TA) \ A, so let a′ be such a vertex. By the previous observation,
it is a cut-vertex of G, so n(a′) is a cut node of TBC(A). Let v be a neighbor of a′ in TA. By
construction of TA and TBC(A), there is a block node b adjacent to n(a′) in TBC(A), such
that v and a′ are in the maximal clique of G corresponding to node b. Moreover, v is in A,
or v is a cut-vertex of G such that the cut node n(v) is adjacent to b in TBC(A). Hence we
have:
1. n(a′) is of degree at least 3 in TBC(A), or
2. n(a′) is the neighbor of a block node b of degree at least three in TBC(A), or, if none of

these hold, then
3. n(a′) has exactly two neighbors b and b′ in TBC(A), the corresponding maximal cliques

of G contain at least p vertices of A, where p plus the degrees of b and b′ in TBC is at
least three.

Let k be the number of leaves of TBC(A). Observe that for any leaf l of TBC(A), there is
some a ∈ A such that n(a) = l. Choose for each leaf l a unique vertex al ∈ A such that
n(al) = l, we call al a leaf vertex. Note that the number of vertices a′ ∈ f(A) corresponding
to the first two items of the above enumeration is upper bounded by 3k. Indeed, n(a′) is
incident to an edge of TBC(A), having an end node of degree at least 3. One can easily check
that, in any tree of k leaves, the number of such edges is bounded by 3k (this can be shown
by induction on the number of leaves of the tree, adding a new leaf node at a time). We
count now the vertices a′ ∈ f(A) of the third type. By the third item, a′ has at least one
neighbor a ∈ A in graph TA, such that a is not a leaf vertex. Observe that a can be in the
neighborhood of at most two vertices a′ ∈ f(A) of this third type. Altogether it follows that
|f(A) \ A ≤ 3k + 2(|A| − k) ≤ 3 · |A|.

To prove the third item, the number of components of TA \ (A ∪ f(A)), we visualize again
the situation in TBC(A). Recall that for any node of degree at least three in TBC(A) it is
either a cut node, in which case it is in f(A) (the first case of the enumeration above), or it is
a block node but then all its neighbors in TBC(A) correspond to vertices of f(A) (the second
case of the enumeration above). Therefore the components of TA \ f(A) correspond to the
components of TBC(A) after removal of all nodes of degree at least 3. Hence the number of
such components is upper bounded by 2k. Removing the leaf vertices of A does not increase
the number of components, and the removal of each other vertex of A increases the number
of components by at most one. Thus TA \ (A ∪ f(A)) has at most 2 cdot|A| components,
concluding the proof of our lemma. ◀

▶ Lemma 20 ([29]). Let G = (V, E) be a graph and H = G△{uv} for u, v ∈ V , then
K(H) ≤ K(G) + 2.

▶ Theorem 21. Strictly Chordal Completion admits a kernel with O(k3) vertices.

Proof. Let (G = (V, E), k) be a reduced yes-instance of Strictly Chordal Completion,
F a k-completion of G and H = G + F . We assume that G is connected, the following
arguments can be easily adapted if this is not the case by summing over all connected
components of G. The graph H is strictly chordal, thus the graph C(H) is a block graph.
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We first show that C(H) has O(k2) vertices. We say that a critical clique of C(H) is affected
if it contains a vertex affected by F . Let A be the set of affected critical cliques of C(H).
Since |F | ≤ k, we have |A| ≤ 2k. Let T be the connected minimal subgraph of H that spans
all critical cliques of A, and A′ the set of vertices of degree at least 3 in T .

We first show that |V (T )| is O(k). By Lemma 19, |A′ \ A| ≤ 3 · |A| ≤ 6k. The connected
components of the graph T\(A ∪ A′) are paths since every vertex is of degree at most 2 and
by Lemma 19 there are at most 4k such paths. Let R be one of these paths, it is composed
of unaffected critical cliques, thus there exists a 2-block-branch B of G that contains R.
Moreover, the extremities of R are the attachment points of B, which have been reduced by
Rule 5. Thus R is of length at most 3. It remains that |V (T )| = 2k + 6k + 4 · 4k = O(k).

We will now show that C(H)\V (T ) contains O(k2) critical cliques. First observe that
each connected component of C(H)\V (T ) is adjacent to some vertices of T since the graph
is reduced by Rule 1. Since C(H) is a block graph, connected components of C(H)\V (T )
are adjacent to either a critical clique of T or a maximal clique of T (else, there would
be a diamond in C(H)). We claim that there are O(k2) critical cliques in the connected
components of C(H)\V (T ) adjacent to maximal cliques of T . Since T is a block graph and
|V (T )| = O(k), there are O(k) maximal cliques in T . Moreover, there is only one connected
component of C(H)\V (T ) adjacent to each maximal clique, otherwise there would be a
diamond in C(H). Take K a maximal clique of T and let X be its adjacent connected
component of C(H)\V (T ). Observe that X has to be an union of 1-block-branches and their
attachment points form a clique. By Rule 4, there are at most 2k + 1 1-block-branches in X

and each one has been reduced by Rule 3, thus X contains at most 4k + 2 critical cliques.
Finally, we claim that there are O(k2) critical cliques in the connected components of

C(H)\V (T ) adjacent to critical cliques of T . First take a critical clique of T\A and its
adjacent connected components of C(H)\V (T ). Observe that they form a 1-block-branch,
reduced by Rule 3, thus the adjacent connected component consists in only one critical
clique. Next, take a critical clique a of A, and let C1, . . . , Cr be the connected components of
C(H)\V (T ) adjacent to a and Y the union of these connected components. Observe that each
Ci has to be an union of 1-block-branches and their attachment points form a clique Qi. Let
B1, . . . , Bl with attachment points P1, . . . , Pl be the 1-block-branches of Y . By Rule 4, there
are at most 2k + 1 1-block-branches by connected component and if Σl

i=1|Pi| > 2k + 1, then
(Σl

i=1|Pi|) − max1≤j≤r{|Qj |} ≤ k , implying that there are at most 3k + 1 1-block-branches
in C. Each of these 1-block-branches is reduced by Rule 3, hence Y contains at most 6k + 2
critical cliques in total.

We conclude that |V (C(H))| = O(k2) and by Lemma 20, we have |V (C(G))| ≤ |V (C(H))|+
2k, therefore by Rule 2, |V (G)| = O(k3). To conclude, we claim that a reduced instance
can be computed in polynomial time. Indeed, Lemma 8 states that it is possible to reduce
exhaustively a graph under Rules 1 and 2. Once this is done, it remains to apply exhaustively
Rules 3 to 5 which is ensured by Lemma 18. ◀

5 Kernels for edition and deletion

In this section we present the kernel for Strictly Chordal Editing, all the following
arguments also hold for Strictly Chordal Deletion. It is clear that Rules 1 and 2
are also safe for Strictly Chordal Editing, as well as Lemma 11. Lemma 12 also
holds although the proof needs to be adapted to take in consideration the possibility of
disconnecting the attachment point of a 1-block-branch B and BR. It follows that Rule 3 is
safe for the edition version. Next, Lemma 14 holds for edition with similar arguments for the
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X

Y

Figure 4 Illustration of the critical clique graph of an reduced instance in the proof of Theorem 21.
Square nodes correspond to vertices of T , the ones filled in black are vertices of A, the ones filled in
grey are vertices of A′\A.

proof, implying the safeness of Rule 4 for edition. The main difference lies in Rule 5 handling
2-block-branches. Indeed, in this case, an optimal edition may affect vertices that are not
contained in an attachment point nor their neighborhood in the branch. However, this case
can be dealt with with more intricate arguments (Rule 6).

Finally, we can observe that for a clean 2-block-branch B of some graph G, an edition can
remove edges and disconnect B. We thus have to consider 2-block-branches whose attachment
points lie in the same connected component of G\V (BR). We hence have to take this into
consideration for our new reduction rule. To that aim, we use a minimum-sized (P1, P2)-cut
of B where P1 and P2 are its attachment points. More precisely, we define min-cut(B)
as a set M ⊆ E(B) of minimum size such that P1 and P2 are not in the same connected
component of B − M . We can observe that min-cut(B) contains the edges between a pair of
consecutive critical cliques of a shortest path between P1 and P2 and the edges between one
of these critical cliques and the critical cliques they have in their common neighborhood.

▶ Observation 22. Let F be an optimal edition of G and F1 ⊆ F . If F2 is an optimal edition
of the graph G△F1 , then F1 ∪ F2 is an optimal edition of G.

▶ Lemma 23. Let G = (V, E) be graph and B a clean 2-block-branch of length at least k + 4
with attachment points P1, P2. There exists an optimal edition F of G such that:

If P1 and P2 are not in the same connected component of B△F , then F may contain
edges of min-cut(B).
In each case, the other vertices of B affected by F are included in P1 ∪ NB(P1) ∪ P2 ∪
NB(P2),
In G△F the vertices of NB(P1) (resp. NB(P2)) are all adjacent to the same vertices of
V (G)\V (BR).

Proof. Let F be an optimal edition of G, H = G△F . Let C1 (resp. C2) be the critical clique
of H which contains P1 (resp. P2), C ′

1 = C1\(BR) and C ′
2 = C2\(BR). We first consider the

case where B is not connected in B△F . If F1 = (P1 × NB(P1)) ⊆ F , consider the graph
G1 = G△F1. Observe that B1 = B\P1 is a 1-block-branch of G1 with attachment point P2.
By Lemma 12 there exists an optimal edition F2 of G1 where the vertices of B1 affected by
F2 are in P2 ∪ NB1(P2). By Observation 22, F1 ∪ F2 is an optimal edition and it satisfies the
desired properties. The same arguments can be used if (P2 × NB(P2)) ⊆ F .
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If F contains neither (P1 × NB(P1)) nor (P2 × NB(P2)), since F is optimal, it must
contain F1 = min-cut(B). We consider the graph G1 = G△F1, there are two components
in G1[V (B)], say B1 the one containing P1 and B2 the other one containing P2. These
connected components are 1-block-branches with attachment points P1 and P2. As before
Lemma 12 applies on the 1-block-branches B1 and B2, thus there is an optimal edition F2
of G1 where the only vertices of B1 and B2 affected are (P1 × NB(P1)) and (P2 × NB(P2)).
Thus, the edition F1 ∪ F2 is an optimal edition of G that respects the desired properties.

In the case where B is connected in B△F , observe that C ′
1 and C ′

2 have to be in different
connected components of H\V (BR). Otherwise there would be a shortest path pH from
c1 ∈ C ′

1 to c2 ∈ C ′
2 in H\V (BR) (of length potentially 0 if c1 = c2) and a shortest path pB

from c1 to c2 in B of length at least k + 4. There is no edge between the two paths in G, so
H[V (pB) ∪ V (pH)] admits at least one cycle of length at least 4, contradiction. Since BR is
connected, by Lemma 10, NB(P1) and NB(P2) are cliques in G, NB(P1) and NB(P2) are
critical cliques of BR or each are in exactly one maximal clique of BR. By Lemma 11, C ′

1
and C ′

2 are either critical cliques of H ′ = H\V (BR) or are in exactly one maximal clique of
the connected component H ′

1 (resp. H ′
2) of H ′ which contains C ′

1 (resp. C ′
2). Let H3 be the

union of connected components of H that do not contain B. By Lemma 4, the graph H∗

corresponding to the disjoint union of ((BR, NB(P1)) ⊗ (H ′
1, C ′

1)), NB(P2)) ⊗ (H ′
2, C ′

2) and
H3 is strictly chordal and the completion F ∗ such that H∗ = G + F ∗ respects the desired
properties. ◀

▶ Rule 6. Let (G = (V, E), k) be an instance of Strictly Chordal Editing and B a
clean 2-block-branch of G of length at least k + 4 with attachment points P1, P2. Then remove
the vertices of BR, and add the following path of k + 5 cliques:

Kmin{|NB(P1)|,k+1} − Kk+1 − K1 − K|min-cut(B)| − K1
k+1 − · · · − Kk

k+1 − Kmin{|NB(P2)|,k+1}

where Kn is the clique of size n and Kmin{|NB(P1)|,k+1} (resp. Kmin{|NB(P2)|,k+1}) is adjacent
to P1 (resp. P2).

▶ Lemma 24 (⋆). Rule 6 is safe.

Notice that Lemma 18 allows to detect any clean 2-block-branch. For the size of the
kernel, the proof is similar, however, in this case the paths are of length O(k), thus there are
O(k2) vertices and maximal cliques in the inclusion-minimal subgraph spanning the affected
critical cliques. Thus a reduced graph contains O(k4) vertices.

▶ Theorem 25. Strictly Chordal Editing and Strictly Chordal Deletion admits
a kernel with O(k4) vertices.

6 Conclusion

We presented polynomial size kernels for the three variants of strictly chordal edge modification
problems. Our conviction is that the approach based on decompositions of the target class,
combined with the ability of reducing the size of the bags of the decomposition and of limiting
the number of affected bags to O(k) is a promising starting point for edge modification
problems, especially into subclasses of chordal graphs. The technique has been employed
especially for classes that admit a tree-like decompositions with disjoint bags (e.g., 3-leaf
power and trivially perfect graphs [3, 17]), also for other types of tree-like decompositions
with non-disjoint bags (e.g., ptolemaic graphs [12]). We generalize it here to scrictly chordal
graphs, that have a decomposition into disjoint bags as nodes of a block graph.
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The difficulty is that, at this stage, each class requires ad-hoc arguments and reduction
rules, based on its specific decomposition. An ambitious goal would be to obtain a generic
algorithm for edge modification problems into any class of chordal graphs, plus a finite set
of obstructions, as conjectured by Bessy and Perez [4]. We also ask whether 4-leaf power
completion, deletion and editing problems admit a polynomial kernel.
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