
Improved Kernels for Edge Modification Problems
Yixin Cao #

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China

Yuping Ke #

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China

Abstract
In an edge modification problem, we are asked to modify at most k edges of a given graph to
make the graph satisfy a certain property. Depending on the operations allowed, we have the
completion problems and the edge deletion problems. A great amount of efforts have been devoted
to understanding the kernelization complexity of these problems. We revisit several well-studied
edge modification problems, and develop improved kernels for them:

a 2k-vertex kernel for the cluster edge deletion problem,
a 3k2-vertex kernel for the trivially perfect completion problem,
a 5k1.5-vertex kernel for the split completion problem and the split edge deletion problem, and
a 5k1.5-vertex kernel for the pseudo-split completion problem and the pseudo-split edge deletion
problem.

Moreover, our kernels for split completion and pseudo-split completion have only O(k2.5) edges. Our
results also include a 2k-vertex kernel for the strong triadic closure problem, which is related to
cluster edge deletion.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Kernelization, edge modification, cluster, trivially perfect graphs, split graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.13

Related Version Full Version: https://arxiv.org/abs/2104.14510

Funding Supported by RGC grants 15201317 and 15226116, and NSFC grant 61972330.

1 Introduction

In an edge modification problem, we are asked to modify at most k edges of a given graph G

to make the graph satisfy a certain property. In particular, we have edge deletion problems
and completion problems when the allowed operations are edge deletions and, respectively,
edge additions. There is also a more general version that allows both operations. The present
paper will be focused on a single type of modifications. For most graph properties, these
edge modification problems are known to be NP-complete [21, 18, 15]. A graph G having a
certain property is equivalent to that G belongs to some specific graph class. Cai [2] observed
that if the desired graph class can be characterized by a finite number of forbidden induced
subgraphs, then these problems are fixed-parameter tractable.

One is then naturally interested in the kernelization complexity of edge modification
problems toward these easy graph classes. Given an instance (G,k), a kernelization algorithm
produces in polynomial time an equivalent instance (G ′,k ′) – (G,k) is a yes-instance if and
only if (G ′,k ′) is a yes-instance – such that k ′ ⩽ k and the size of G ′ is bounded by a
computable function of k. The output instance (G ′,k ′) is a polynomial kernel if the size of
G ′ is bounded from above by a polynomial function of k ′. Although progress has been made
in this regard, we get stuck for several important graph classes. We have evidence that some
of them do not have polynomial kernels, under certain complexity assumptions, and it is
believed that those that do have are exceptions [16]. This makes a sharp contrast with the
vertex deletion problems (deleting vertices instead of edges), for which a polynomial kernel

© Yixin Cao and Yuping Ke;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yixin.cao@polyu.edu.hk
https://orcid.org/0000-0002-6927-438X
mailto:yuping.ke@connect.polyu.hk
https://orcid.org/0000-0002-2753-0066
https://doi.org/10.4230/LIPIcs.IPEC.2021.13
https://arxiv.org/abs/2104.14510
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Improved Kernels for Edge Modification Problems

is guaranteed when the number of forbidden induced subgraphs is finite [9]. We refer the
reader to the recent survey of Crespelle et al. [4], particularly its Section 2.1 and Table 1, for
the most relevant results.

We revisit several well-studied edge modification problems, and develop improved kernels
for them. Our results are summarized in Table 1. All the target graph classes can be defined
by a small number of forbidden induced subgraphs (listed in Figure 1). It is worth mentioning
that the edge deletion problem to a graph class is polynomially equivalent to the completion
problem to its complement graph class (consisting of the complements of all graphs in the
original graph class). Moreover, some graph classes, e.g., split graphs ({2K2,C4,C5}-free), are
self-complementary, and thus the edge deletion problem and the completion problem toward
such a class are equivalent.

Table 1 Main results of this paper, shown as the number of vertices in the kernels.

problem previous result our result

cluster edge deletion 4k [11] 2k
trivially perfect completion O(k7) [7] 3k2

split completion (edge deletion) O(k2) [10] 5k1.5

pseudo-split completion (edge deletion) - 5k1.5

strong triadic closure 4k [11] 2k

(a) P3. (b) 2K2. (c) P4. (d) C4. (e) C5.

Figure 1 Forbidden induced graphs. Note that 2K2 and C4 are complements of each other, while
the complements of P4 and C5 are themselves.

A cluster graph is a disjoint union of cliques. Since cluster graphs are precisely P3-free
graphs, edge modification problems to cluster graphs are the simplest of all nontrivial edge
modification problems. Note that edge modification problems toward P2-free graphs, i.e.,
edgeless graphs, are trivial. Also trivial is the cluster completion problem: the minimum
solution is to add edges to make every component of the input graph complete. Both cluster
edge editing and cluster edge deletion are NP-complete and have received wide attentions.
After a sequence of results, Cao and Chen [3] devised a 2k-vertex kernel for the cluster edge
editing problem. Their algorithm actually implies a 2k-vertex kernel for the cluster edge
deletion problem. We record this simple result here for future reference. Less trivially, we
show that the same algorithm produces a kernel of the same size for the strong triadic closure
problem, which, though originally not posed as an edge modification problem, is closely
related to cluster edge deletion [14]. As the original results [3], both algorithms work for the
weighted versions of the problems as well.

The second problem is the trivially perfect completion problem. Drange and Pilipczuk [7]
presented an O(k7)-vertex kernel for this problem.1 We propose a very simple kernelization
algorithm, which has only two simple reduction rules, and the resulting kernel contains at

1 Guo [12] has claimed an O(k3)-vertex kernel for this problem, with details deferred to a full version
that has never appeared. The algorithm of Drange and Pilipczuk [7] works for the more general trivially
perfect editing problem. Independent to our work, Dumas et al. [8] improved it to O(k3), which also
implies an O(k3)-vertex kernel for the trivially perfect completion problem.

Y. Cao and Y. Ke 13:3

most 2k2 + 2k vertices. The forbidden induced subgraphs of trivially perfect graphs are P4
and C4. Note that adding the edge to connect the two ends of a P4 merely turns it into
a C4. Thus, in each P4 or C4, there are two missing edges such that every solution needs
to contain at least one of them. Note that each vertex of the P4 or C4 is an end of one of
the two missing edges. Our first rule is the most routine for this kind of problems, namely,
adding a missing edge if it is one of the two possible missing edges in k+ 1 or more P4’s and
C4’s. Our second rule removes all vertices that are not contained in any P4 or C4 of G. Now
the analysis is similar as Buss and Goldsmith’s kernelization algorithm for the vertex cover
problem [1]. Since every solution contains at least one of the pair of potential missing edges
(for some P4 or C4), and since each potential edge is in at most k pairs, there cannot be more
than k2 + k potential edges in a yes-instance. On the other hand, every vertex is in a P4 or
C4, hence an end of some potential edge. We are thus safe to return a trivial no-instance
when |V(G)| > 2k2 + 2k. Toward this result we also obtain some nontrivial observations on
minimal solutions of the problem with respect to modules of the input graph.

A graph is a split graph if its vertex set can be partitioned into a clique and an independent
set. Split graphs are {2K2,C4,C5}-free graphs. The split completion problem, which is
equivalent to split edge deletion, is NP-complete [17], while somewhat surprisingly, the
split edge editing problem can be solved in polynomial time [13]. Guo [12] presented an
O(k4)-vertex kernel for the split completion problem, which was improved to O(k2) by Ghosh
et al. [10]. For the convenience of presentation, we work on the edge deletion problem. We
consider the partition of the vertex set after applying an optimal solution. We observe that
for most of the vertices we know to which side they have to belong. It is nevertheless not safe
to directly delete these “decided” vertices. We thus work on the annotated version, where we
mark certain vertices that have to be in the independent set. Guo [12] has proved that it is
safe to remove a vertex that is not contained in any 2K2, C4, or C5. We show that a similar
rule can be applied to annotated instances, and after its application, there can be at most
O(k1.5) vertices in a yes-instance. Finally, a simple step that removes the marks concludes
the algorithm. Our kernel for split completion has only O(k2.5) edges.2 With minor tweaks,
our algorithm produces a kernel of the same size for the pseudo-split ({2K2,C4}-free graphs)
edge deletion problem. A pseudo-split graph is either a split graph or a split graph plus a C5
such that every vertex on the C5 is adjacent to every vertex in the clique part of the split
graph and is nonadjacent to any vertex in the independent part of the split graph. The first
difficulty toward this adaptation is that it is not always safe to remove vertices not contained
in any 2K2 or C4. We get over this obstacle by observing that we can remove vertices not
contained in any 2K2, C4, or C5. As we recycle the reduction rules for split edge deletion,
only the arguments for their safeness need to be slightly revised. Drange et al. [6] have used a
similar approach to develop a subexponential-time algorithm for the pseudo-split completion
problem.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and edge set
of a graph G are denoted by, respectively, V(G) and E(G). For a subset U ⊆ V(G), denote
by G[U] the subgraph of G induced by U, and by G−U the subgraph G[V(G) \U], which
is further shortened to G− v when U = {v}. The neighborhood of a vertex v in G, denoted

2 Independent to our work, Bathie, Bousquet, and Pierron (arXiv:2105.09566) use a similar technique to
obtain a linear-vertex kernel for these problems.

IPEC 2021

13:4 Improved Kernels for Edge Modification Problems

by NG(v), comprises vertices adjacent to v, i.e., NG(v) = {u | uv ∈ E(G)}, and the closed
neighborhood of v is NG[v] = NG(v) ∪ {v}. The closed neighborhood and the neighborhood of
a set U ⊆ V(G) of vertices are defined as NG[U] =

⋃
v∈U NG[v] and NG(U) = NG[U] \ U,

respectively. We may omit the subscript when there is no ambiguity on the graph under
discussion. Two vertices u and v are true twins in G if N[u] = N[v]; note that true twins are
necessarily adjacent. A clique is a set of pairwise adjacent vertices, and an independent set is
a set of pairwise nonadjacent vertices. A graph G is complete if V(G) is a clique. A vertex v

is simplicial if N[v] is a clique, and a vertex v is universal if N[v] = V(G). An induced path
and an induced cycle on ℓ vertices are denoted by Pℓ and Cℓ respectively.

For any two subsets X, Y ⊆ V(G), we use E(X, Y) to denote the set of edges of which one
endpoint is in X and the other in Y. Note that we do not require X and Y to be disjoint. Thus,
E(X,X) = E(G[X]), i.e., all the edges with both endpoints in X, and E(X,V(G)) consists of
all the edges with at least one endpoint in X.

Let F be a fixed graph. We say that a graph G is F-free if G does not contain F as an
induced subgraph. For a set F of graphs, a graph G is F-free if G is F-free for every F ∈ F.
If every F ∈ F is minimal, i.e., not containing any F ′ ∈ F as a proper induced subgraph,
then the set F of graphs are the (minimal) forbidden induced subgraphs of this class. See
Figure 1 for the forbidden induced subgraphs considered in the present paper. For a set E ′ of
non-edges, we denote by G+E ′ the graph with vertex set V(G) and edge set E(G)∪E ′; for a
set E ′ ⊆ E(G), we denote by G− E ′ the graph with vertex set V(G) and edge set E(G) \ E ′.
The problems to be studied are formally defined as follows, where G is a graph class.

Input: A graph G and a nonnegative integer k.
Output: Is there a set E+ of at most k edges such that G+ E+ is in G?

G completion

Input: A graph G and a nonnegative integer k.
Output: Is there a set E− of at most k edges such that G− E− is in G?

G edge deletion

Since it is always clear from the context what problem we are talking about, when we
mention an instance (G,k), we do not always explicitly specify the problem. We use opt(G)

to denote the size of optimal solutions of G for the optimization version of a certain problem.
Thus, (G,k) is a yes-instance if and only if opt(G) ⩽ k.

For each problem, we apply a sequence of reduction rules. Each rule transforms an
instance (G,k) to a new instance (G ′,k ′). We say that a rule is safe if (G,k) is a yes-instance
if and only if (G ′,k ′) is a yes-instance. Since all of our reduction rules are very simple
and most of them are obviously doable in polynomial time, we omit the details of their
implementation and analyze their running time only when it is nontrivial.

3 Cluster edge deletion and strong triadic closure

A graph is a cluster graph if every component of this graph is a complete subgraph. It is well
known that a graph is a cluster graph if and only if it is P3-free. Our first problem is the
cluster edge deletion problem. For a vertex set U ⊆ V(G), we write d(U) = |E(U,V(G) \U)|,
i.e., the number of edges between U and V(G) \ U; we write d(v) instead of d({v}) for a
singleton set.

Y. Cao and Y. Ke 13:5

▶ Rule 3.1. If there is a simplicial vertex v such that d(N[v]) ⩽ d(v), then remove N[v] and
decrease k by d(N[v]).

Safeness of Rule 3.1. We show that opt(G) = opt(G − N[v]) + d(N[v]). Let E− be an
optimal solution to the graph G. We have nothing to show if N[v] is a separate component
of G− E−. In the rest of the proof, N[v] is not a component of G− E−. Let G[X] denote the
component of G− E− that contains v. Since X is a clique and N[v] ̸= X, we have X ⊂ N[v].
In other words, neither X nor N[v] \ X is empty. Since any induced subgraph of G− E− is a
cluster graph, the subset of edges in E− with both endpoints in V(G) \N[v] is a solution to
G−N[v]. Noting that this solution is disjoint from E(X,V(G) \ X), we have

opt(G) ⩾|E− ∩ E(G−N[v])|+ d(X)

⩾opt(G−N[v]) + |X| · |N[v] \ X|

⩾opt(G−N[v]) + |X|+ |N[v] \ X|− 1 (1)
=opt(G−N[v]) + d(v),

where the third inequality holds because both |X| and |N[v] \ X| are positive integers. For
any solution E ′

− of G−N[v], the set E ′
− ∪ E(N[v],V(G) \N[v]) is a solution of G. Thus,

opt(G) ⩽ opt(G−N[v]) + d(N[v]) ⩽ opt(G−N[v]) + d(v). (2)

Therefore, all the inequalities in (1) and (2) are tight. In other words, if we remove all the
edges between N[v] and V(G) \N[v], and then delete an optimal solution to G−N[v], then
we have an optimal solution to the graph G. ◀

A trivial but crucial fact is that a solution E− has at most 2|E−| endpoints. If a vertex v

is not an end of any edge in E−, then v has to be simplicial.

▶ Theorem 1. There is a 2k-vertex kernel for the cluster edge deletion problem.

Proof. Let G be a graph to which Rule 3.1 is not applicable. We show that if (G,k) is a
yes-instance, then |V(G)| ⩽ 2k. Let E− be an optimal solution to G, and let {v1, v2, . . . , vr}
be the vertices that are not incident to any edge in E−; they have to be simplicial. For
i = 1, . . . , r, the set N[vi] forms a component of G−E−. Note that for distinct i, j ∈ {1, . . . , r},
the sets N[vi] and N[vj] are either the same (when vi and vj are true twins) or mutually
disjoint: if N[vi] ̸= N[vj] and there exists x ∈ N[vi]∩N[vj], then one of xvi and xvj needs to
be in E−. We divide the cost of each edge uv ∈ E− and assign them to u and v equally. For
i = 1, . . . , r, the total cost attributed to all the vertices in N[vi] is d(N[vi])/2. Each of the
vertices not in

⋃r
i=1 N[vi] is an end of at least one edge in E− and therefore bears cost at

least 1/2. Summing them up, we get a lower bound for the total cost:

|E−| ⩾
1
2

r∑
i=1

d(N[vi]) +
1
2 |V(G) \

r⋃
i=1

N[vi]|

⩾
1
2

r∑
i=1

|N[vi]|+
1
2 |V(G) \

r⋃
i=1

N[vi]|

⩾
1
2 |V(G)|.

The second inequality holds because Rule 3.1 does not apply to vi for i = 1, . . . , r. Thus,
|V(G)|/2 ⩽ |E−| ⩽ k for a yes-instance, and we can return a trivial no-instance if |V(G)| > 2k.
This concludes the proof. ◀

IPEC 2021

13:6 Improved Kernels for Edge Modification Problems

Let us mention that the condition of Rule 3.1 can be weakened to d(N[v]) < 2d(v) − 1.
We do not prove the stronger statement because it does not improve the analysis of the kernel
size, but let us briefly explain why it is true. The bound opt(G) ⩾ opt(G−N[v]) + 2d(v) − 1
holds unless |X| = 1 or |N[v] \ X| = 1; see the third inequality of (1). In the first case, v
itself makes a trivial component, and all the vertices in N(v) are in the same component;
this can only happen when there exists another vertex u with N(v) ⊆ N(u). In the second
case, a vertex u ∈ N(v) is incident to all the edges between N(v) and V(G) \ N[v]. If
d(N[v]) < 2d(v) − 1, then opt(G) ⩾ opt(G−N[v]) + 2d(v) − 1 holds in both cases.

(a) (b) (c)

Figure 2 The example given by Konstantinidis et al. [14]: (a) the input graph; (b) a maximum
cluster subgraph with seven edges; and (c) a maximum strong triadic closure with eight edges.

In the original definition, which was motivated by applications in social networks, the
strong triadic closure problem asks for a partition of the edge set of the input graph into
strong edges and weak ones, such that for every two vertices that are linked to a common
neighbor with strong edges are adjacent. The objective is to maximize the number of strong
edges. For our purpose, it is more convenient to define the problem as follows.

Input: A graph G and a nonnegative integer k.
Output: Is there a set E− of at most k edges such that the missing edge of

every P3 of G− E− is in E(G)?

Strong triadic closure

Thus, we call the set of weak edges as the solution to the strong triadic closure problem.
For any set E− ⊆ E(G), if G− E− is a cluster graph, then E− is also a solution to the strong
triadic closure problem: setting all edges in E− weak, and all other edges strong is a feasible
partition of E(G). As illustration in Figure 2, however, a strong triadic closure of a graph
can have fewer weak edges than an optimal solution to the cluster edge deletion problem on
the same graph. Surprisingly, Rule 3.1 works for the strong triadic closure problem without
change.

▶ Lemma 2. Rule 3.1 is safe for the strong triadic closure problem.

Proof. We show that opt(G) = opt(G−N[v]) + d(N[v]). Let E− be an optimal solution to
the graph G. We have nothing to show if N[v] is a separate component of G− E−. In the
rest of the proof, N[v] is not a component of G− E−. Let X denote the set of vertices with
N[X] = N[v], and Y ⊆ N[v] the endpoints of these edges in E(N[v],V(G) \N[v]) \ E− (i.e.,
edges between N[v] and V(G) \N[v] that are not in E−). Note that X ̸= ∅ because v ∈ X,
and Y ̸= ∅ because E(N[v],V(G) \N[v]) ̸⊆ E− (otherwise N[v] is a component of G− E− by
the minimality of E−).

By definition, the subset of edges in E− with both endpoints in G −N[v] is a solution
to G −N[v]. By the selection of X and Y, every vertex in N[v] \ (X ∪ Y) is incident to at
least one edge in E− ∩ E(N[v],V(G) \N[v]). For every x ∈ X and every y ∈ Y, there exists

Y. Cao and Y. Ke 13:7

z ∈ V(G) \N[v] that is adjacent to y but not x; hence, xyz is a P3. As a result, all the edges
between X and Y have to be in E−. Thus,

opt(G) =|E− ∩ E(G−N[v])|+ |E− ∩ E(N[v],V(G) \N[v])|+ |E− ∩ E(N[v])|

⩾opt(G−N[v]) + |N[v] \ (X ∪ Y)|+ |X| · |Y|
⩾opt(G−N[v]) + |N[v]|− |X|− |Y|+ |X|+ |Y|− 1 (3)
⩾opt(G−N[v]) + |N[v]|− 1
=opt(G−N[v]) + d(v),

where |X| · |Y| ⩾ |X|+ |Y|− 1 because both |X| and |Y| are positive integers. For any solution
E ′
− of G−N[v], the set E ′

− ∪ E(N[v],V(G) \N[v]) is a solution of G. Thus,

opt(G) ⩽ opt(G−N[v]) + d(N[v]) ⩽ opt(G−N[v]) + d(v). (4)

Therefore, all the inequalities in (3) and (4) are tight. In other words, if we remove all the
edges between N[v] and V(G) \N[v], and then delete an optimal solution to G−N[v], then
we have an optimal solution to the graph G. ◀

The proof of the following theorem is a word-for-word copy of that for Theorem 1, hence
omitted.

▶ Theorem 3. There is a 2k-vertex kernel for the strong triadic closure problem.

We should remark that our kernelization algorithms for the cluster edge deletion problem
and the strong triadic closure problem work for the weighted versions as well; see [3].

4 Trivially perfect completion

In this section we study the trivially perfect completion problem. Trivially perfect graphs are
{P4,C4}-free graphs. If there is a pair of adjacent vertices u, v such that neither N[u] \N[v]

nor N[v] \N[u] is empty, then they are contained in a P4 or C4. Trivially perfect graphs
have many nice characterizations. Here are two of them.

▶ Theorem 4 ([19, 20]). The following are equivalent for a graph H.
i) H is a trivially perfect graph.
ii) Every connected induced subgraph of H contains a universal vertex.
iii) For every pair of adjacent vertices u and v, one of N[u] and N[v] is a subset of the

other.

If a vertex v is not contained in any P4 or C4, then for every neighbor u of v, one of N[u]

and N[v] is a subset of the other.

▶ Lemma 5 (⋆3). If a vertex v is not contained in any P4 or C4, then opt(G− v) = opt(G).

As a simple result of Lemma 5, we have the following reduction rule (which was mentioned
by Guo [12], without a proof). In particular, all universal vertices of every component of G
can be removed.

▶ Rule 4.1. If there is a vertex v that is not contained in any P4 or C4, then remove v.

3 Proofs of propositions marked with ⋆ are deferred to the full version.

IPEC 2021

13:8 Improved Kernels for Edge Modification Problems

For each induced 4-path or 4-cycle v1v2v3v4, we call the missing edges {v1, v3} and {v2, v4}

the candidate edges for this path or cycle. Clearly, any solution of a graph G contains at
least one candidate edge of every P4 or C4; note that a P4 has another missing edge, the
addition of which merely turns the P4 into a C4.

▶ Rule 4.2. If uv is a candidate edge of k + 1 or more P4’s and C4’s in G, then add the
edge uv and decrease k by one.

Safeness of Rule 4.2. Since each P4 or C4 of G has precisely two candidate edges, if a
solution E+ of G does not contain uv, then E+ must contain the other candidate edge of
each of the k+ 1 P4’s and C4’s, hence |E+| > k. ◀

We are thus ready for the main result of this section.

▶ Theorem 6. There is a (2k2+2k)-vertex kernel for the trivially perfect completion problem.

Proof. After applying Rule 4.2 and then Rule 4.1 exhaustively, we return (G,k) if |V(G)| ⩽
2k2 + 2k, or a trivial no-instance otherwise. We consider all the candidate edges of G. We
say that two candidate edges are associated if they belong to the same P4 or C4; i.e., their
endpoints are disjoint and together induce a P4 or C4. Since Rule 4.2 is not applicable, each
candidate edge is associated with at most k candidate edges. On the other hand, of any two
associated edges, one has to be in any solution of G. Thus, if (G,k) is a yes-instance, there
can be at most k2 + k candidate edges. Since Rule 4.1 is not applicable, every vertex is in
some P4 or C4, and hence is an end of a candidate edge. Thus, |V(G)| ⩽ 2k2 + 2k if (G,k) is
a yes-instance. ◀

The analysis of the kernel in Theorem 6 is essentially the same as Buss and Goldsmith’s
kernelization algorithm for the vertex cover problem [1]. In a sense, we are looking for a
vertex cover of an auxiliary graph in which each vertex corresponds to a candidate edge of G,
and two vertices are adjacent if their corresponding edges are associated. We note that the
same approach implies a simple O(k2)-vertex kernel for the threshold completion problem,
matching the result of Drange et al. [5]. The forbidden induced subgraphs of threshold
graphs are 2K2, P4, and C4. The observation on the missing edges of a P4 or C4 is the same
as above, while the four missing edges of a 2K2 can be organized as two pairs such that each
solution has to contain at least one from each pair. However, we are not able to employ the
2k-vertex kernels for vertex cover to directly derive a linear-vertex kernel for either of the
two problems.

Before closing this section, let us mention some observations that might be of independent
interest. A set M of vertices is a module if N(M) = N(v) \M for every v ∈M.

▶ Lemma 7 (⋆). A module M of a graph G remains a module in any minimal trivially
perfect completion Ĝ of G.

5 Split edge deletion and split completion

A graph is a split graph if its vertex set can be partitioned into a clique and an independent
set. We use C⊎ I, where C being a clique and I an independent set, to denote a split partition
of a split graph. Note that a split graph may have more than one split partition; e.g., a
complete graph on n vertices has n + 1 different split partitions. The forbidden induced
subgraphs of split graphs are 2K2, C4, and C5. From both the definition and the forbidden
induced subgraphs we can see that the complement of a split graph is also a split graph.
Thus, the split completion problem is polynomially equivalent to the split edge deletion
problem. For the convenience of presentation, we work on the edge deletion problem.

Y. Cao and Y. Ke 13:9

Note that (G,k) is a yes-instance if and only if there exists a partition C ⊎ I of V(G)

such that C is a clique and |E(I, I)| ⩽ k; this is a split partition of G− E(I, I). We call such a
partition a valid partition of the instance (G,k). The problem is thus equivalent to finding
a valid partition. We notice that some vertices can be easily decided to which side of a
valid partition they should belong. For example, unless the instance is trivial, a simplicial
vertex always belong to the independent set in any valid partition. Even after we know
the destinations of these vertices, however, we cannot safely delete them. This brings us to
the annotated version of the problem, where we mark certain vertices that can only be put
into the independent set in a valid partition. We use (G, I0,k) to denote such an annotated
instance, where I0 denotes the set of marked vertices. The original instance can be viewed
as (G, ∅,k), and a valid partition of an annotated instance (G, I0,k) needs to satisfy the
additional requirement that I0 ⊆ I.

We can easily retrieve back an unannotated instance from an annotated instance. It
suffices to add a small number of new vertices and make each of them adjacent to all other
vertices but I0.

▶ Rule 5.1. Let (G, I0,k) be an annotated instance. Add a clique of
√

2k+ 1 new vertices,
and make each of them adjacent to all the vertices in V(G) \ I0. Return the result as an
unannotated instance.

Safeness of Rule 5.1. Let K denote the clique of new vertices, and let (G ′,k) be the resulting
instance. For any valid partition C⊎I of (G, I0,k), the partition (C∪K)⊎I is a valid partition
of (G ′,k) because C ⊆ V(G) \ I ⊆ N(x) for every x ∈ K. For a valid partition C⊎ I of (G ′,k),
if any vertex in I0 is in C, then we must have K ⊆ I. Since K is a clique of order

√
2k+ 1, we

have |E(I, I)| > k, which contradicts the validity of the partition. ◀

The aforementioned observation on simplicial vertices is formalized by the following rule.

▶ Rule 5.2. Let v be a simplicial vertex in V(G) \ I0. If |E(G− (N[v] \ I0))| ⩽ k, then return
a trivial yes-instance. Otherwise, add v to I0.

Safeness of Rule 5.2. In the first case, (N[v] \ I0) ⊎ (V(G) \N[v] ∪ I0) is a valid partition.
Otherwise, we show by contradiction that v ∈ I in any valid partition C ⊎ I of (G, I0,k).
Since C is a clique, if v ∈ C, then C ⊆ N[v] \ I0. Thus, E(G− (N[v] \ I0)) ⊆ E(I, I), but then
|E(I, I)| > k, contradicting the validity of the partition. ◀

We construct a modulator M as follows. We greedily find a maximal packing of vertex-
disjoint 2K2’s, C4’s, and C5’s. Let M be the set of vertices in all subgraphs we found. We
can terminate the algorithm by returning a trivial no-instance if we have found more than
k vertex-disjoint forbidden induced subgraphs from G. Henceforth, we may assume that
|M| ⩽ 5k, and we fix a split partition CM ⊎ IM of G−M. The following simple observation
enables us to know the destinations of more vertices.

▶ Lemma 8 (⋆). For any valid partition C ⊎ I of (G,k), if one exists, (i) |IM ∩ C| ⩽ 1; and
(ii) |CM ∩ I| ⩽

√
2k.

We say that a vertex is a c-vertex, respectively, an i-vertex, if it is in C, respectively, in I,
for any valid partition C ⊎ I of (G, I0,k). By Lemma 8(i), C contains at most one vertex in
IM. Thus, every vertex that has more than k+ 1 neighbors in IM is a c-vertex, while the
following are i-vertices:

every vertex with more than
√

2k non-neighbors in CM; and
every vertex nonadjacent to a c-vertex.

IPEC 2021

13:10 Improved Kernels for Edge Modification Problems

We can indeed delete all the c-vertices, as long as we keep their non-neighbors marked. Note
that after obtaining the initial split partition CM ⊎ IM of G−M, we do not need to maintain
the invariant that M is a modulator, though we do maintain that CM is a clique and that
IM is an independent set throughout. During our algorithm, we maintain M, CM, IM, and
I0 as a partition of V(G). Therefore, whenever we mark a vertex, we remove it from the set
that originally contains it, and move it to I0.

▶ Rule 5.3. Let (G, I0,k) be an annotated instance.
i) Mark every vertex that has more than

√
2k non-neighbors in CM.

ii) If a vertex v has more than k + 1 neighbors in IM ∪ I0, then mark every vertex in
V(G) \N[v] and delete v.

Safeness of Rule 5.3. Let I ′0 denote the set of marked vertices after the reduction. It is
trivial that if the resulting instance of i) is a yes-instance, then the original is also a yes-
instance. For ii), any valid partition C ′ ⊎ I ′ of (G − v, I ′0,k) can be extended to a valid
partition (C ′ ∪ {v}) ⊎ I ′ of (G, I0,k) because C ′ ⊆ V(G) \ I ′0 ⊆ N[v].

For the other direction, let C⊎ I be any valid partition of (G, I0,k). i) Since C is a clique,
CM \N(v) ⊆ I for every v ∈ C. By Lemma 8(ii), if |CM \N(v)| >

√
2k for some vertex v,

then v has to be in I. Thus, C ⊎ I is also a valid partition of the new instance (G, I ′0,k). ii)
By Lemma 8(i), |IM \ I| ⩽ 1. As I0 ⊆ I and |N(v) ∩ (IM ∪ I0)| > k + 1, there are at least
k+ 1 edges between v and I. Since |E(I, I)| ⩽ k, we must have v ∈ C. Moreover, since C is a
clique, C ⊆ N[v], and every vertex nonadjacent to v has to be in I. This justifies the marking
of V(G) \N[v]. Clearly, (C \ {v}) ⊎ I is a valid partition of (G− v, I ′0,k). ◀

The next rule is straightforward: since I0 has to be in the independent set, every solution
contains all the edges in E(I0, I0).

▶ Rule 5.4. Let (G, I0,k) be an annotated instance. Remove all the edges in E(I0, I0), and
decrease k accordingly.

Safeness of Rule 5.4. By the definition of the annotated instance, any solution E− of
(G, I0,k) contains all the edges in E(I0, I0). Moreover, E−\E(I0, I0) is a solution to G−E(I0, I0),
and its size is at most k− |E(I0, I0)|. On the other hand, if (G− E(I0, I0),k− |E(I0, I0)|) is a
yes-instance, then any solution of this instance, together with E(I0, I0), makes a solution of
(G, I0,k) of size at most k. ◀

Once there are no edges among vertices in I0, we can replace I0 with another independent
set as long as we keep track of the number of edges between every vertex v ∈ V(G) \ I0 and
I0. The following rule reduces the cardinality of I0. Note that if Rule 5.3 is not applicable,
then p ⩽ k.

▶ Rule 5.5. Let (G, I0,k) be an annotated instance where I0 is an independent set. Introduce
p new vertices v1, v2, . . ., vp, where p = maxv∈V(G) |N(v) ∩ I0|. For each vertex x ∈ N(I0),
make x adjacent to v1, . . ., v|N(x)∩I0|. Remove all vertices in I0, and mark the set of new
vertices.

Instead of proving the safeness of Rule 5.5, we prove a stronger statement.

▶ Lemma 9. Let (G, I0,k) and (G ′, I ′0,k) be two annotated instances where G− I0 = G ′ − I ′0
and both I0 and I ′0 are independent sets. If |NG(x)∩I0| = |NG′(x)∩I ′0| for every x ∈ V(G)\I0,
then (G, I0,k) is a yes-instance if and only if (G ′, I ′0,k) is a yes-instance.

Y. Cao and Y. Ke 13:11

Proof. We show that C ⊎ I is a valid partition of (G, I0,k) if and only if C ⊎ ((I \ I0) ∪ I ′0) is
a valid partition of (G ′, I ′0,k). Note that

|E(I \ I0, I0)| =
∑

x∈I\I0

|NG(x) ∩ I0| =
∑

x∈I\I′
0

|NG′(x) ∩ I ′0| = |E(I \ I ′0, I ′0)|.

Since G− I0 = G ′ − I ′0, and since there is no edge in G[I0] or G ′[I ′0], the claim follows. ◀

Let us recall an important observation of Guo [12].

▶ Lemma 10 ([12]). If a vertex v is not contained in any 2K2, C4, or C5, then opt(G− v) =

opt(G).

Both Guo [12] and Ghosh et al. [10] used a rule derived from this observation to delete
vertices, and this is their only rule that removes vertices from the graph. We may show that
the same rule indeed works for our annotated instances, for which however we have to go
through the original argument of [12]. We note that if a vertex v in I0 is adjacent to two
vertices u and w with uw ̸∈ E(G), then any solution has to contain at least one of edges uv

and vw (u and w cannot be both in the clique). We say that an induced P3 is I0-centered
if the degree-two vertex of this P3 is from I0. In a sense, I0-centered P3’s are “minimal
forbidden structures” for our annotated instances. Accordingly, a C4 or C5 involving a vertex
from I0 is no longer minimal. In summary, the “minimal forbidden structures” are C4’s and
C5’s in G − I0, all 2K2’s, and I0-centered P3’s. Note that a “minimal forbidden structure”
intersecting I0 has to be a 2K2 or an I0-centered P3, and this gives another explanation of the
correctness of Lemma 9, which exchanges these two kinds of “minimal forbidden structures”
with each other. The following rule can be viewed as the annotated version of the rule of
Guo [12], and its safeness can be argued using Lemma 10.

▶ Rule 5.6 (⋆). Let (G, I0,k) be an annotated instance where I0 is an independent set, and
let v be a vertex in CM. If v is not contained in any 2K2 or any I0-centered P3, and every
C4 and C5 that contains v intersects I0, then remove v from G.

We call an annotated instance reduced if none of Rules 5.2–5.6 is applicable to this
instance. The following lemma bounds the cardinalities of CM and IM in a reduced instance.

▶ Lemma 11. If a reduced instance (G, I0,k) is a yes-instance, then |CM| ⩽ 3k
√

2k and
|IM| ⩽ k+ 1.

Proof. Let E− be any solution to (G, I0,k) with at most k edges. Since Rule 5.6 is not
applicable, every vertex in CM is contained in some 2K2 or I0-centered P3, or some C4 or
C5 in G− I0. Any of these structures contains an edge in E−. Therefore, to bound |CM|, it
suffices to count how many vertices in CM can form a 2K2 or I0-centered P3, or a C4 or C5
in G− I0 with an edge xy ∈ E−.

If a vertex v ∈ CM is in a 2K2 with edge xy, then either v ∈ {x,y} or v is adjacent to
neither x nor y. In the first case, no other vertex in CM can occur in any 2K2 with xy.
Since xy ∈ E(G), at least one of them is not in I0 (Rule 5.4). This vertex has at most√

2k non-neighbors in CM. Therefore, the total number of vertices in CM that can occur
in any 2K2 with xy is at most

√
2k.

If xy is an edge in any I0-centered P3, then precisely one of them is in I0. Assume without
loss of generality x ∈ I0. If a vertex v ∈ CM is in an I0-centered P3 with the edge xy, then
either v = y, or v is not adjacent to y. Since y ̸∈ I0, it has at most

√
2k non-neighbors

in CM. Thus, the total number of vertices in CM that can occur in any I0-centered P3
containing xy is at most

√
2k+ 1.

IPEC 2021

13:12 Improved Kernels for Edge Modification Problems

If a vertex v ∈ CM is in a C4 or C5 that contains xy, then v is adjacent to at most one of
x and y. Since this C4 or C5 is in G− I0, each of x and y has at most

√
2k non-neighbors

in CM. Thus, the total number of vertices in CM that can occur in such a C4 or C5 is at
most 2

√
2k.

Noting that an edge cannot satisfy the conditions of both the second (|{x,y} ∩ I0| = 1) and
third (|{x,y} ∩ I0| = 0) categories, we can conclude |CM| ⩽ k(

√
2k+ 2

√
2k) = 3k

√
2k.

Since Rule 5.2 is not applicable, no vertex in IM is simplicial. Suppose that C ⊎ I is a
valid partition of G. Since C is a clique, for each vertex v ∈ IM ∩ I, at least one neighbor
of v is in I. Therefore, each vertex v ∈ IM ∩ I is incident to an edge in the solution E(I, I).
Noting that IM is an independent set, we have k ⩾ |IM ∩ I| ⩾ |IM| − 1, where the second
inequality follows from Lemma 8(i). Thus, |IM| ⩽ k+ 1, and this concludes this proof. ◀

Note that the application of Rule 5.1 is different from the other ones. The application of
one of Rules 5.2–5.6 may trigger the applicable of another. After the application of Rule 5.1,
the instance is no longer annotated, and we will not go back to check the other rules. We
summarize the algorithm in Algorithm 1.

Algorithm 1 A summary of our kernelization algorithm for split edge deletion.
Input: an instance (G,k) of the split edge deletion problem.
Output: an equivalent instance (G ′,k ′) with |V(G ′)| = O(k ′1.5).

1. I0 ← ∅;
1. M← a maximal packing of vertex-disjoint 2K2’s, C4’s, and C5’s;
2. if |M| > 5k then return a trivial no-instance;
3. if k < 0 then return a trivial no-instance;
4. for each simplicial vertex v ∈ V(G) \ I0 do (Rule 5.2)

if |E(G− (N[v] \ I0))| ⩽ k then return a trivial yes-instance;
else I0 ← I0 ∪ {v};

5. remove c-vertices and mark i-vertices (Rule 5.3);
6. if E(I0, I0) ̸= ∅ then

remove edges in E(I0, I0) and decrease k (Rule 5.4);
7. merge I0 into ⩽ k vertices (Rule 5.5);
8. remove vertices in CM not contained in certain structures (Rule 5.6);
9. if any of Rules 5.2–5.4 and 5.6 made a change then goto 3;
10. if |CM|+ |IM| > 3k

√
2k+ k+ 1 then return a trivial no-instance;

11. add
√

2k+ 1 new vertices and remove all marks (Rule 5.1);
12. return (G,k).

▶ Theorem 12. There is an O(k1.5)-vertex kernel for the split edge deletion problem.

Proof. We use the algorithm described in Algorithm 1. The first two steps build the
modulator, and their correctness follows from that any solution contains at least one edge of
each forbidden induced subgraph of G. Step 3 is obviously correct. Steps 4–8 follow from
the safeness of the rules; so is step 11. The correctness of step 10 is ensured by Lemma 11.

The cardinality of M is at most 5k, and it never increases during the algorithm. After
step 7, |I0| ⩽ k. We have bounded the cardinalities of CM and IM in Lemma 11. Step 11
increases |CM| by

√
2k+ 1. Putting them together, we have

|V(G)| ⩽ 5k+ k+ (3k
√

2k+
√

2k+ 1) + k+ 1 = O(k1.5).

It is easy to verify that each reduction rule can be checked and applied in polynomial
time. To see that the algorithm runs in polynomial time, note that if any of Rules 5.2–5.4
and 5.6 made a change to the instance, then either k decreases by one (Rule 5.4), or the
cardinality of V(G) \ I0 decreases by one (the other three rules). ◀

Y. Cao and Y. Ke 13:13

Since the class of split graphs is self-complementary, our algorithm also implies a kernel
for the split completion problem. This kernel actually has fewer edges than the one for split
edge deletion.

▶ Theorem 13. There is a kernel of O(k1.5) vertices and O(k2.5) edges for the split completion
problem.

Proof. Let (G,k) be the input instance of the split completion problem. We can either take
the complement of the input graph and consider it as an instance of the split edge deletion
problem, or run the “complemented versions” of the rules. In the final result, we have an
independent set of at most O(k

√
k) vertices, and at most O(k) other vertices. The claim

then follows. ◀

6 Pseudo-split edge deletion and pseudo-split completion

The algorithm in Alg. 1 also works for the pseudo-split ({2K2,C4}-free) edge deletion problem.

▶ Theorem 14. There is an O(k1.5)-vertex kernel for the pseudo-split edge deletion problem.
There is a kernel of O(k1.5) vertices and O(k2.5) edges for the pseudo-split completion problem.

References
1 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM Journal on

Computing, 22(3):560–572, 1993. doi:10.1137/0222038.
2 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

3 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/s00453-011-9595-1.

4 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. arXiv:2001.06867, 2020.

5 Pål Grønås Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D. Sullivan. On the
threshold of intractability. In Nikhil Bansal and Irene Finocchi, editors, Proceedings of the 23rd,
volume 9294 of LNCS, pages 411–423. Springer, 2015. doi:10.1007/978-3-662-48350-3_35.

6 Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring
the subexponential complexity of completion problems. ACM Transactions on Computation
Theory (TOCT), 7(4):1–38, 2015. doi:10.1145/2799640.

7 Pål Grønås Drange and Michal Pilipczuk. A polynomial kernel for trivially perfect editing.
Algorithmica, 80(12):3481–3524, 2018. doi:10.1007/s00453-017-0401-6.

8 Maël Dumas, Anthony Perez, and Ioan Todinca. A Cubic Vertex-Kernel for Trivially Perfect
Editing. In 46th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics (LIPIcs), pages
45:1–45:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
MFCS.2021.45.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
10 Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh

Rai, and M. S. Ramanujan. Faster parameterized algorithms for deletion to split graphs.
Algorithmica, 71(4):989–1006, 2015. doi:10.1007/s00453-013-9837-5.

11 Niels Grüttemeier and Christian Komusiewicz. On the relation of strong triadic closure and
cluster deletion. Algorithmica, 82(4):853–880, 2020. doi:10.1007/s00453-019-00617-1.

IPEC 2021

https://doi.org/10.1137/0222038
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/978-3-662-48350-3_35
https://doi.org/10.1145/2799640
https://doi.org/10.1007/s00453-017-0401-6
https://doi.org/10.4230/LIPIcs.MFCS.2021.45
https://doi.org/10.4230/LIPIcs.MFCS.2021.45
https://doi.org/10.1007/s00453-013-9837-5
https://doi.org/10.1007/s00453-019-00617-1

13:14 Improved Kernels for Edge Modification Problems

12 Jiong Guo. Problem kernels for NP-complete edge deletion problems: Split and related graphs.
In Takeshi Tokuyama, editor, Proceedings of the 18th, volume 4835 of LNCS, pages 915–926.
Springer, 2007. doi:10.1007/978-3-540-77120-3_79.

13 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275–284,
1981. doi:10.1007/BF02579333.

14 Athanasios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos. Strong
triadic closure in cographs and graphs of low maximum degree. Theoretical Computer Science,
740:76–84, 2018. doi:10.1016/j.tcs.2018.05.012.

15 Federico Mancini. Graph Modification Problems Related to Graph Classes. PhD thesis,
University of Bergen, Bergen, Norway, 2008.

16 Dániel Marx and R. B. Sandeep. Incompressibility of H-free edge modification problems:
Towards a dichotomy. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors,
Proceedings of the 28th, volume 173 of LIPIcs, pages 72:1–72:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.72.

17 Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge
modification problems. Discrete Applied Mathematics, 113(1):109–128, 2001. doi:10.1016/
S0166-218X(00)00391-7.

18 Roded Sharan. Graph Modification Problems and their Applications to Genomic Research.
PhD thesis, Tel-Aviv University, Tel Aviv, Israel, 2002.

19 E. S. Wolk. The comparability graph of a tree. Proceedings of the American Mathematical
Society, 13:789–795, 1962. doi:10.1090/S0002-9939-1962-0172273-0.

20 Jing-Ho Yan, Jer-Jeong Chen, and Gerard Jennhwa Chang. Quasi-threshold graphs. Discrete
Applied Mathematics, 69(3):247–255, 1996. doi:10.1016/0166-218X(96)00094-7.

21 Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309,
1981. doi:10.1137/0210021.

https://doi.org/10.1007/978-3-540-77120-3_79
https://doi.org/10.1007/BF02579333
https://doi.org/10.1016/j.tcs.2018.05.012
https://doi.org/10.4230/LIPIcs.ESA.2020.72
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1090/S0002-9939-1962-0172273-0
https://doi.org/10.1016/0166-218X(96)00094-7
https://doi.org/10.1137/0210021

	1 Introduction
	2 Preliminaries
	3 Cluster edge deletion and strong triadic closure
	4 Trivially perfect completion
	5 Split edge deletion and split completion
	6 Pseudo-split edge deletion and pseudo-split completion

