
Evaluating the Hardness of SAT Instances Using
Evolutionary Optimization Algorithms
Alexander Semenov #

ITMO University, St. Petersburg, Russia

Daniil Chivilikhin #

ITMO University, St. Petersburg, Russia

Artem Pavlenko #

ITMO University, St. Petersburg, Russia
JetBrains Research, St. Petersburg, Russia

Ilya Otpuschennikov #

ISDCT SB RAS, Irkutsk, Russia

Vladimir Ulyantsev #

ITMO University, St. Petersburg, Russia

Alexey Ignatiev #

Monash University, Melbourne, Australia

Abstract
Propositional satisfiability (SAT) solvers are deemed to be among the most efficient reasoners,
which have been successfully used in a wide range of practical applications. As this contrasts the
well-known NP-completeness of SAT, a number of attempts have been made in the recent past to
assess the hardness of propositional formulas in conjunctive normal form (CNF). The present paper
proposes a CNF formula hardness measure which is close in conceptual meaning to the one based
on Backdoor set notion: in both cases some subset B of variables in a CNF formula is used to
define the hardness of the formula w.r.t. this set. In contrast to the backdoor measure, the new
measure does not demand the polynomial decidability of CNF formulas obtained when substituting
assignments of variables from B to the original formula. To estimate this measure the paper suggests
an adaptive (ε, δ)-approximation probabilistic algorithm. The problem of looking for the subset of
variables which provides the minimal hardness value is reduced to optimization of a pseudo-Boolean
black-box function. We apply evolutionary algorithms to this problem and demonstrate applicability
of proposed notions and techniques to tests from several families of unsatisfiable CNF formulas.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Hardware →
Theorem proving and SAT solving; Theory of computation → Optimization with randomized search
heuristics; Mathematics of computing → Combinatorial optimization

Keywords and phrases SAT solving, Boolean formula hardness, Backdoors, Evolutionary algorithms

Digital Object Identifier 10.4230/LIPIcs.CP.2021.47

Supplementary Material Software (Source Code): https://github.com/ctlab/EvoGuess

Funding This work was supported by the Ministry of Science and Higher Education of Russian
Federation, research project no. 075-03-2020-139/2 (goszadanie no. 2019-1339). Ilya Otpuschen-
nikov’s research was funded by Ministry of Science and Higher Education of Russian Federation,
project with no. of state registration: 121041300065-9. Artem Pavlenko was supported by JetBrains
Research.

1 Introduction

Modern Boolean Satisfiability Problem (SAT) solving algorithms are de-facto a standard
computational instrument used in many application domains including symbolic verification,
software testing, bioinformatics, combinatorics, and cryptanalysis [10]. SAT solvers work with
Boolean formulas, most often written in Conjunctive Normal Form (CNF). If determining

© Alexander Semenov, Daniil Chivilikhin, Artem Pavlenko, Ilya Otpuschennikov, Vladimir Ulyantsev,
and Alexey Ignatiev;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 47; pp. 47:1–47:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biclop.rambler@yandex.ru
mailto:chivdan@itmo.ru
mailto:alpavlenko@itmo.ru
mailto:otilya@yandex.ru
mailto:ulyantsev@itmo.ru
mailto:alexey.ignatiev@monash.edu
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://github.com/ctlab/EvoGuess
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Evaluating the Hardness of SAT Instances

satisfiability of a CNF formula takes a SAT solver more than a preallocated amount of time,
a natural question to ask is how hard this formula is for this specific solver? Hereinafter, it
is convenient for us to follow the notation of [2] and use the concept of hardness of a SAT
instance.

For some SAT solving algorithms and some families of formulas their hardness can be
estimated analytically [1, 6, 7, 13,15,31,55,56]. However, to our best knowledge, the general
case of the problem of estimating the hardness of a formula w.r.t. to practical SAT solving
algorithms is yet to be resolved. The main reason for this is that a state-of-the-art SAT
solver is a complicated piece of software, whose behavior depends on a vast number of
various parameters [33,34]. Smallest changes of parameter values may drastically affect the
observable characteristics of the SAT solving process, e.g., the number of unit propagations
or backtracks. This phenomenon is known as heavy-tailed behavior [30]. If a SAT solver
demonstrates such behavior for a concrete CNF formula, then estimating how hard the
formula is for this solver is hardly feasible with the existing methods, or such estimates
will be extremely inaccurate. In light of the myriads of practical applications of modern
SAT solvers, it is of unquestionable importance to propose a universal hardness measure for
arbitrary CNF formulas that could be used in practice for any SAT solver.

Prior work proposed a few hardness measures of Boolean formulas w.r.t. specific SAT
solving algorithms. One of the best-studied approaches estimates parameters of the search
tree generated by the algorithm. This class of measures includes space complexity of tree-like
resolution [27, 40], width of formula [27], and space of formula [2]. For some families of
CNF formulas, e.g. pigeonhole principle formulas [18], such measures may be estimated
analytically. However and as far as we know, there is no computationally efficient way of
estimating any of said measures for an arbitrary CNF formula.

Another approach to estimating formula hardness builds on the concept of a strong
backdoor set (SBS) introduced in [59]. An SBS is a subset of the set of variables of a CNF
formula such that any assignment of the variables from this subset makes the whole formula
polynomially decidable. Clearly, the set of all variables in the formula comprises a trivial
SBS. If for formula C there exists a non-trivial SBS B w.r.t. some polynomial-time algorithm
P , e.g. unit propagation [24], then the hardness of this formula w.r.t. B and P may be
estimated as poly(|C|) · 2|B|. Thus, the notion of SBS gives us a way of estimating the
hardness of a formula based on two main components: the strong backdoor set itself and the
polynomial-time algorithm used for solving weakened SAT instances. Sadly, for an arbitrary
Boolean formula there is no guarantee that a relatively small SBS exists. To check if a given
set B of variables in formula C is an SBS, one has to run the algorithm P on all (in the worst
case) 2|B| CNF instances derived from C by substituting all possible assignments to the
variables of B. The algorithm for solving SAT using backdoors described in [59] enumerates
all subsets of the set of variables of a target CNF formula by iteratively increasing their size.

In this paper, we propose a novel hardness measure of an arbitrary CNF formula w.r.t.
an arbitrary deterministic complete SAT solving algorithm, which may be estimated by
applying standard methods of black-box optimization. Conceptually, the suggested hardness
measure is in some sense similar to the aforementioned SBS-based hardness measure. For
an arbitrary CNF formula over the set X of variables the proposed approach also uses two
components: 1) a set B ∈ 2X , and 2) an arbitrary complete but, most importantly, not
necessarily polynomial SAT solving algorithm A.

The proposed decomposition hardness (or d-hardness) is defined for an arbitrary CNF
formula C. More specifically, we first introduce measure µB,A(C) expressing the hardness of
formula C w.r.t. a concrete set B ∈ 2X and a concrete deterministic complete SAT solving

A. Semenov et al. 47:3

algorithm A. Second, the d-hardness of C is defined as the minimum of µB,A(C) over all
possible sets B. To estimate µB,A(C) in practice, we propose an adaptive probabilistic
(ε, δ)-approximation algorithm. This algorithm uses ideas close to the ones from [36], and is
based on the Monte Carlo method. But in contrast to many similar approaches, the proposed
algorithm can adaptively tune the random sample size to achieve the required accuracy of
µB,A(C) estimation. By estimating µB,A(C) with this algorithm we can reduce the problem
of evaluating d-hardness of an arbitrary formula C to optimization of a stochastic pseudo-
Boolean fitness function [22]. The latter problem is solved with approaches traditionally
used in black-box optimization: namely, evolutionary algorithms [11,41].

To illustrate the usefulness of the d-hardness concept suppose that we have some extremely
hard CNF formula C. Consider the two following approaches. First, launch a SAT solver on
C and wait as long as needed to decide satisfiability of C. There is no guarantee that the
process will finish in any reasonable amount of time. Second, run algorithms that assess the
d-hardness proposed in this article. After a fixed amount of time, say, 12 hours, we will get
some set B ∈ 2X and a corresponding d-hardness estimate. By means of suggested methods
one can compare different CNF formulas in the sense of their d-hardness.

Concrete contributions of this paper are the following.
1. We propose a new measure of hardness for a CNF formula w.r.t. an arbitrary complete

deterministic SAT solving algorithm, and prove its theoretical soundness.
2. We develop an adaptive (ε, δ)-approximation algorithm for estimating this measure.
3. We conduct an experimental evaluation that demonstrates practical applicability of the

proposed measure.

2 Preliminaries

Recall that Boolean variables have values from {0, 1}. A Boolean variable x and its negation
¬x are called literals. Literals x and ¬x are called complementary. A clause is a disjunction
of literals, which does not include complementary ones. A Boolean formula in CNF is a
conjunction of different clauses. Let C be an arbitrary CNF formula and X, |X| = k be
the set of variables encountered in C. An arbitrary total function α : X → {0, 1} defines an
assignment of variables from X. For an arbitrary assignment α the interpretation of formula
C on α and the substitution of α to C are defined in a standard way, see e.g. [16]. Thus,
a Boolean function fC : {0, 1}k → {0, 1} is defined. Assignment α ∈ {0, 1}k : fC(α) = 1 is
called a satisfying assignment for C. If a satisfying assignment exists for C, formula C is
called satisfiable. Otherwise, C is called unsatisfiable.

As in many other works on proof complexity and hardness of Boolean formulas, formulas
are assumed to be in conjunctive normal form (CNF) and unsatisfiable, see e.g. [2, 18,55],
etc. It is justified by the fact that for the majority of satisfiable instances (especially with a
large number of satisfying assignments) it is possible that the algorithm will get “lucky” and
come across a short satisfiability certificate. This is not possible with unsatisfiable instances.

Let C be an unsatisfiable CNF formula over the set of variables X. For an arbitrary set
B ⊆ X, denote the set of all possible assignments to variables of B as {0, 1}|B|. Following [59],
for an arbitrary β ∈ {0, 1}|B| denote C[β/B] the CNF formula derived from C by substitution
of the assignment β of variables B and consequent simplification of the resulting formula.

▶ Definition 1 (Williams et al. [59]). Set B ⊆ X is called a strong backdoor set (SBS) for C

w.r.t. a polynomial-time algorithm P if for any β ∈ {0, 1}|B| the CNF formula C[β/B] is
reported by P to be unsatisfiable.

CP 2021

47:4 Evaluating the Hardness of SAT Instances

The article [2] studied a number of approaches to estimating hardness of Boolean formulas
in CNF, and the main attention was paid to several similar tree-like metrics. However,
for us the particular value are the conclusions made in [2] about the possibility to assess
the hardness of a CNF formula using SBS. The following definition suggests itself as a
consequence of the analysis of results from [2]. In fact, it uses SBS to evaluate the hardness
of an arbitrary CNF formula and reduces this problem to an optimization problem.

▶ Definition 2 (b-hardness). Let C be an arbitrary unsatisfiable CNF formula and B be
an arbitrary SBS for C w.r.t. polynomial-time algorithm P . Denote the total runtime of
P on CNF formulas C[β/B] for all β ∈ {0, 1}|B| by µB,P (C). The backdoor-hardness (or
b-hardness) of C w.r.t. P is specified as µP (C) = minB∈2X µB,P (C), where the minimum is
taken among all possible SBSes for C w.r.t. P .

In [59], an algorithm for solving SAT using SBS is described: it enumerates sets B ∈ 2X

by gradually increasing their cardinality. If for CNF formula C there exists a small-sized SBS,
this algorithm may be quite efficient. Its complexity for an arbitrary C in the assumption
that an SBS B exists such that |B| < k/2 is

O

p(|C|) ·

(
2k√
|B|

)|B|
 , (1)

where k = |X|, p(·) is some polynomial and |C| is the length of the binary encoding of C.

3 d-hardness: Decomposition Hardness of CNF Formula

There are two evident barriers for practical application of the b-hardness notion. First, to
prove that an arbitrary B ∈ 2X is an SBS we have to construct (in the worst case) CNF
formulas C[β/B] for all β ∈ {0, 1}|B|. Second, the algorithm of [59] enumerates sets B of
increasing cardinality (|B| = 1, 2, . . .). Taking into account (1) we can conclude that if,
e.g., the minimal backdoor B has cardinality |B| = 20 and k = 100, finding B with the
aforementioned enumeration algorithm is unrealistic. A similar issue arises for the tree-like
metric of hardness described in [2], where for formula refutation a variant of Beame-Pitassi
algorithm [5] is used.

In this section we introduce a new hardness measure for CNF formulas. When formulating
the main concept we pursue the next two goals: 1) to avoid the barriers referred above, and 2)
to suggest a measure that can be used for any complete SAT solving algorithm, considering
it as a black-box function. Let us begin from the following definition.

▶ Definition 3. For an arbitrary CNF formula C over the set of variables X consider any set
B, B ∈ 2X , and let A be an arbitrary deterministic complete SAT solving algorithm. Define
the hardness of C w.r.t. B and A as µB,A(C) =

∑
β∈{0,1}|B| tA(C[β/B]), where tA(C[β/B])

is the running time of A on CNF formula C[β/B].

The value tA(C[β/B]) may be expressed in any appropriate units. For example, if A

is a solver based on Conflict-Driven Clause Learning (CDCL) [42], tA(C[β/B]) may be
defined as the number of unit clause propagations made by A in the process of proving the
unsatisfiability of C[β/B]. Let us emphasize, that unlike P from Definition 2, in the general
case A is not a polynomial-time algorithm. The following definition arises by analogy with
the concept of b-hardness.

▶ Definition 4 (d-hardness). The decomposition hardness (or d-hardness) µA(C) of CNF
formula C w.r.t algorithm A is defined as:

µA(C) = min
B∈2X

µB,A(C).

A. Semenov et al. 47:5

The main question in the context of these definitions is as follows: is there a practical
way to estimate the values µB,A(C) and µA(C)? Below we give a positive answer to this
question harnessing the idea from [50]: expressing µB,A(C) via a special random variable
with finite expected value and variance.

Let C be an arbitrary CNF formula over the set of variables X and A be an arbitrary
deterministic complete SAT solving algorithm. Consider an arbitrary B ∈ 2X and specify
a uniform distribution on {0, 1}|B|. Define a random variable ξB in the following way:
for any β ∈ {0, 1}|B| the value of ξB equals to the running time of algorithm A on CNF
formula C[β/B]. Since algorithm A is complete, the random variable ξB has spectrum
S(ξB) = {ξ1, . . . , ξM }, where ξi : 0 < ξi < ∞, i ∈ {1, . . . , M}, and ξB has the following
probabilistic distribution:

P (ξB) =
{ s1

2|B| , . . . ,
sM

2|B|

}
,

where by si, i ∈ {1, ..., M} we denote the number of such β ∈ {0, 1}|B| that ξB has the value
ξi. From the above, random variable ξB has an expected value E[ξB]: 0 < E[ξB] < ∞. It is
not hard to verify the correctness of the following expressions:

∑
β∈{0,1}|B|

tA(C[β/B]) =
M∑

i=1
ξi · si = 2|B| ·

M∑
i=1

ξi · si

2|B| .

From the above, we can conclude that

µB,A(C) = 2|B| · E[ξB]. (2)

The equation (2) is quite important because it expresses µB,A(C) via finite expected
value of some random variable and, hence, allows estimating the value using the Monte Carlo
method [43]. In more detail, our nearest goal is to construct such an evaluation µ̃B,A(C) of
the value µB,A(C) that for any fixed ε > 0, δ > 0 the following condition holds:

Pr[(1 − ε) · µB,A(C) ≤ µ̃B,A(C) ≤ (1 + ε) · µB,A(C)] ≥ 1 − δ. (3)

Parameters ε and 1 − δ from (3) in a number of similar cases are named tolerance and
confidence level, respectively.

Now, fix some natural number N . Given C, B, and A, let us carry out N independent
observations of random variable ξB introduced above. We may consider these N observations
as one observation of N independent random variables with the same probability distribution
(remind, that we assume A to be deterministic). Denote these random variables ξ1, . . . , ξN .
Define µ̃B,A(C) as:

µ̃B,A(C) = 2|B|

N
·

N∑
j=1

ξj . (4)

The sense of the fact that will be established below is close to one of the so-called zero-one
estimator theorem from [36], but in our case ξB is not a Bernoulli variable and we cannot
avoid the presence of V ar(ξB) in the resulting lower bound for N .

▶ Theorem 1. Let C be an arbitrary CNF formula over variables X, A be a deterministic
complete SAT solving algorithm, and B be an arbitrary subset of X. Then for µ̃B,A(C)
specified by (4) and for any ε > 0, δ > 0, the condition (3) holds for any N > V ar(ξB)

ε2·δ·E2[ξB] .

CP 2021

47:6 Evaluating the Hardness of SAT Instances

Proof. Due to the assumptions on A, the random variable ξB has a finite expected value
E[ξB] > 0 and finite variance V ar(ξB). If V ar(ξB) = 0 then S(ξB) = {a}, where a is some
constant: a > 0. In this case the claim of the theorem is trivially satisfied. Below let us
assume that V ar(ξB) > 0. Next we use the Chebyshev’s inequality [28]:

Pr
[
|ζ − E[ζ]| ≤ k ·

√
V ar(ζ)

]
≥ 1 − 1

k2 (5)

which holds for any k > 0 and any arbitrary random variable ζ such that V ar(ζ) > 0. Fix an
arbitrary ε > 0 and select k such that k ·

√
V ar(ζ) = ε · E[ξ]. With this in mind, transform

(5) to the following form:

Pr [|ζ − E[ζ]| ≤ ε · E[ζ]] ≥ 1 − V ar(ζ)
ε2 · E2[ζ] . (6)

Due to considering N independent observations of ξB as a single observation of N independent
random variables with the same distribution the following holds: E[ξ1] = . . . = E[ξN] = E[ξB],
V ar(ξ1) = . . . = V ar(ξN) = V ar(ξB). Consider the random variable ζ =

∑N
j=1 ξj . If we

apply inequality (6) to it we get (taking into account elementary transformations):

Pr
[
(1 − ε) · E[ξB] ≤ 1

N ·
∑N

j=1 ξj ≤ (1 + ε) · E[ξB]
]

≥ 1 − V ar(ξB)
ε2·N ·E2[ξB] . (7)

With respect to (2) and (4), the last inequality may be rewritten as:

Pr [(1 − ε) · µB,A(C) ≤ µ̃B,A(C) ≤ (1 + ε) · µB,A(C)] ≥ 1 − V ar(ξB)
ε2·N ·E2[ξB] . (8)

The validity of Theorem 1 directly follows from (8). ◀

4 Estimation of d-Hardness via Evolutionary Optimization Algorithms

As follows from the results of the previous section, for exact calculation of d-hardness of an
arbitrary CNF formula C it is required to find the set B with the minimum value of µB,A(C)
over all B ∈ 2X . For any B, instead of trying out all vectors β ∈ {0, 1}|B| as is necessary
when we work with the b-hardness concept, we may compute the estimation µ̃B,A(C) using
the following Monte Carlo scheme:

let us carry out N independent observations of random variable ξB : ξ1, . . . , ξN ;
calculate the value µ̃B,A(C) specified by (4).

Due to Theorem 1, µ̃B,A(C) is an (ε, δ)-approximation of µB,A(C) for a proper value of N .

4.1 (ε, δ)-approximation algorithm for d-hardness estimation
In theory, since E[ξB] and V ar(ξB) are finite, we can estimate µB,A(C) with any accuracy
specified beforehand. However, it may be not achievable for real cases: for example, when
V ar(ξB) is too large. Therefore, in experiments when selecting N to achieve the required
values of ε and δ we have to replace E[ξB] and V ar(ξB) with their statistical counterparts.
This practice is generally accepted in mathematical statistics. In the experimental part we
will give a number of examples when the estimates obtained in this way are accurate enough.

Following e.g. [58] we use for estimating E[ξB] the sample mean ξB, constructed for a

concrete random sample ξ1, . . . , ξN : ξB = 1
N ·

N∑
j=1

ξj . The unbiased sample variance is used

to estimate V ar(ξB): s2(ξB) = 1
N−1 ·

N∑
j=1

(ξj − ξB)2. Taking into account Theorem 1, for

some fixed ε and δ, we select any such N that the following condition holds:

N >
s2(ξB)

ε2 · δ · (ξB)2
. (9)

A. Semenov et al. 47:7

More concretely, we use the following variant of this approach. At the starting point we
choose some relatively small N (say, N = 100), construct a random sample and calculate ξB

and s2(ξB). Using fixed values of ε and δ (say, ε = 0.1, δ = 0.05) we check if condition (9) is
satisfied. If not, we augment our current random sample by N new observations of ξB , thus
doubling the random sample size; after this we recalculate ξB and s2(ξB). These steps are
repeated until condition (9) is satisfied.

Note that in the general case we cannot efficiently calculate the value of ξB (and,
accordingly, µ̃B,A(C)): for example, for B of a small cardinality this problem may be
comparable in complexity with solving SAT for the initial CNF formula C. However, most
importantly, there always exists such a set B that for any β ∈ {0, 1}|B| the corresponding
value of ξB is calculated efficiently, e.g. in the case when B = X. Another example in
this context is when B is some Strong Unit Propagation Backdoor Set (SUPBS): a type of
backdoor in which the unit propagation rule is used as the polynomial algorithm P [59].

The next important point is that unlike the algorithm from [59] or the Beam-Pitassi
algorithm, we apply computational schemes used in metaheuristic optimization [41] to find a
set B with a good value of µ̃B,A(C). In such schemes, the objective function (fitness function)
is calculated efficiently at some starting point, and then attempts are made to consistently
improve the values of this function in other points of the search space w.r.t. some general
search strategy, e.g. local search [14] or evolutionary algorithms [41].

So, in the context of all the concepts introduced above, let B0 = {x0
1, . . . , x0

n}, B0 ⊆ X

be an initial subset for which µ̃B0,A(C) can be calculated efficiently (e.g. B0 = X or B0 is
some SUPBS). We will look for B with a good value of µ̃B,A(C) as some B ∈ 2B0 . Define B

using a Boolean vector λB ∈ {0, 1}n, assuming that λi = 1 if x0
i ∈ B and λi = 0 if x0

i /∈ B,
λB = (λ1, . . . , λn). Fix N and consider the multivalued function

FA,C,N : {0, 1}n → R+ (10)

defined as follows: for vector λB ∈ {0, 1}n we build the set B, then we generate (in accordance
with a uniform distribution on {0, 1}|B|) vectors βj ∈ {0, 1}|B|, j ∈ {1, . . . , N} and, using
these vectors as a random sample, construct corresponding values of ξB: ξ1, . . . , ξN . Then
the value of function (10) for λB is 2|B|

N

∑N
j=1 ξj . Note that in the general case for different

random samples the values of (10) can differ, thus this function is multivalued.

4.2 Used evolutionary optimization algorithms
In the experimental part of the article we use evolutionary algorithms for optimizing func-
tion (10): in more detail, we apply an algorithm from the family of (1 + 1) Fast Evolutionary
Algorithms, (1 + 1) FEA [23] with parameter β, and one special modification of a genetic
algorithm. Below we give a brief description of these algorithms.

First, consider the ordinary (1 + 1) Evolutionary Algorithm (EA) [44]. It uses the
simplest implementation of the concept of random mutation: one random mutation of an
arbitrary α ∈ {0, 1}n is implemented by a series of n independent Bernoulli trials with
success probability p = 1/n. If i ∈ {1, . . . , n} is the index of a successful trial, then the
i-th bit in α is flipped. The (1 + 1) EA has an extremely high worst-case complexity [25],
but demonstrates good results in many practical cases. As mentioned in [57], this is mostly
because on average (1 + 1) EA behaves similarly to the Hill Climbing algorithm [49] (for a
single random mutation, the expected value of the number of flipped bits equals one), but
with a non-zero probability can move from α to any point in {0, 1}n.

There are ways of reducing the worst-case estimation of (1 + 1) EA if we imply the
complexity measure proposed in [25]. One of these ways is changing the mutation rate in
the original (1 + 1) EA. The (1 + 1) FEAβ described in [23] is a good example. The core of

CP 2021

47:8 Evaluating the Hardness of SAT Instances

this algorithm is the so-called heavy-tailed mutation operator: it flips bits of the considered
Boolean vector with probability Λ/n (instead of 1/n in standard (1 + 1) EA), where Λ is the
value of a random variable with Power-law distribution Dβ

n/2 with parameter β [23]. The
worst-case estimation of this algorithm is O(nβ · 2n) instead of nn for the original (1 + 1)
EA. In computational experiments we used the (1 + 1) FEAβ with parameter β = 3, because
it is the minimal integer value of this parameter for which the expected value of the number
of flipped bits tends to some constant with the increase of n: according to [23], this constant
is approximately 1.3685.

We also experimented with generating a new vector λB on the basis of several existing
vectors, using a special variant of a genetic algorithm which was used in [47]. Several vectors
λB with already calculated values of the considered objective function (10) form a population
in terms of the genetic algorithm [41]. In one iteration, the new population (offspring) is
formed from the current one.

Denote the current population as Pcur and the new population as Pnew, |Pcur| = |Pnew| = R

for some fixed R. Let Pcur = {λB1 , . . . , λBR
}. Pcur is associated with a distribution

Dcur = {p1, . . . , pR}, where

pi = 1/FA,C,N (λBi
)

R∑
j=1

(
1/FA,C,N (λBj

)
) , i ∈ {1, . . . , R}.

To form the new population Pnew, we first select G individuals from Pcur w.r.t. the distribution
Dcur, and apply the standard two-point crossover [41]. Second, we select H individuals
from Pcur with respect to the distribution Dcur without changes. Finally, we apply to each
G + H selected individuals the standard (1 + 1) random mutation, flipping each bit with
probability 1/n. We ensure G + H = R and compute the value of the objective function
for new individuals in Pnew. Then, we choose R best individuals from Pcur ∪ Pnew, and the
resulting set becomes Pcur for the next iteration. In the experiments, we used R = 8 and
G = 4.

5 Experimental Evaluation

Here we demonstrate that the proposed approach allows practically estimating the d-hardness
of unsatisfiable CNF formulas with sufficiently high precision. As concrete examples, we
consider equivalence checking encodings and crafted tests. For the value of tA(C[β/B]) we
select the number of unit propagations made by algorithm A while solving CNF formula
C[β/B]. This choice, in contrast with using solving time, together with fixing the random
seed of the solver, facilitates reproducibility of our results. We also show that sometimes
our approach discovers sets B that may be used to solve SAT formulas in parallel with
super-linear speedup.

5.1 Benchmarks
We consider two classes of CNF formulas or tests. The first class is comprised of so-called
crafted tests. These are synthetic tests, constructed with the aim to generate formulas that
are as hard as possible with as few variables as possible.

Quite a few generators of such tests are available. In this work we used the sgen
generator [54] version 6. Only unsatisfiable instances were generated using sgen, instances
are denoted sgenseed

#variables, describing the number of variables in the CNF formula and the
random seed used to generate it, e.g. sgen101

150. Search for the set B with the minimal value
of function (10) was done on the entire set of variables of the CNF formula.

A. Semenov et al. 47:9

We also considered a class of tests related to equivalence checking [39]. Consider two
Boolean circuits S1 and S2 over any complete basis, e.g. {¬, ∧}. We assume that each circuit
has n inputs and m outputs. Thus, circuits S1 and S2 define functions

f1 : {0, 1}n → {0, 1}m, f2 : {0, 1}n → {0, 1}m

respectively. We need to prove that f1 ∼= f2 (pointwise equality), in this case the circuits S1
and S2 are equivalent (S1 ∼= S2). It is known [38] that this problem can be efficiently (in
time linear of the number of elements in S1 and S2) reduced to SAT for a CNF formula C:
S1 ∼= S2 if and only if C is unsatisfiable. CNF formula C is constructed from circuits S1 and
S2 using Tseitin transformations [55]. Bits of vectors from {0, 1}n are encoded with variables
forming the set X in = {x1, . . . , xn}, associated with inputs of S1 and S2.

The CNF formula constructed in this way exhibits the following important property. For
a Boolean variable x and an arbitrary α ∈ {0, 1} let us denote by lα(x) the literal ¬x if α = 0
and literal x if α = 1. Consider an arbitrary α = (α1, . . . , αn), αi ∈ {0, 1}, i ∈ {1, . . . , n}
and the following CNF formula:

lα1(x1) ∧ . . . ∧ lαn(xn) ∧ C. (11)

It is known (see e.g. [8]) that (un)satisfiability of formula C can be determined by solely
applying exhaustive unit propagation to CNF formulas (11) obtained across all possible
assignments α ∈ {0, 1}|Xin|. In other words, set X in is a SUPBS for C. Then from the above
it follows that we can search for B with a good value of µB,A(C) among the subsets of X in.
For this purpose we will launch a methaheuristic search minimizing the function (10) on the
Boolean hypercube {0, 1}|Xin|.

We applied the described approach to equivalence checking of circuits S1, S2 representing
two different algorithms which perform sorting of any d l-bit natural numbers. We con-
sidered the following sorting algorithms: bubble sorting, selection sorting [20], and pancake
sorting [29]. Corresponding SAT encodings can be constructed using any software applied in
symbolic verification, e.g. CBMC [17]; in this work we use Transalg [46, 51], which better
suits our purposes. We conducted a substantial amount of experiments where equivalence
of such circuits was checked. Below we present a few of these results. The SAT instances
are denoted by BvSl,d, BvPl,d, and PvSl,d for Bubble vs Selection, Bubble vs Pancake, and
Pancake vs Selection, respectively.

5.2 Experimental setup and implementation details
The proposed approach has been implemented in Python, using PySAT [35] for SAT solving
with backend solvers Glucose 3 [3] and CaDiCaL [9], referred to as g3 and cd respectively. The
implementation of black-box optimization makes use of distributed computation. Experiments
were run on a computing cluster using up to 5 nodes, each node includes two 18-core Intel
Xeon E5-2695 2.1 GHz processors and 128 GB of RAM. Each experiment consisted of
estimation optimization phase (looking for a set B with minimal estimation value µ̃B,A(C))
and estimation checking phase (exact calculation of µB,A(C)). We used the evolutionary
algorithms described above for traversing across the search space. We denote the (1+1) FEA3
algorithm as “FEA”, and the Genetic Algorithm from [47] as “GA”. For calculating the value
µ̃B,A(C) the adaptive probabilistic (ε, δ)-algorithm presented above was applied. For each B

such that |B| ≤ 9 we directly calculated µB,A(C) instead of its estimation µ̃B,A(C). In each
case the optimization process of function (10) was run with a time limit of 12 hours, using
confidence level 1 − δ = 0.95. Depending on the concrete CNF formula, we used different
values of N ranging from 500 to 40000.

CP 2021

47:10 Evaluating the Hardness of SAT Instances

The goal of estimation checking was to assess the efficiency of the decomposition using
the found set B. To achieve this we solved instances C[β/B] for all β ∈ {0, 1}|B| for several
described benchmarks (in cases when |B| ≤ 17), and thus calculated the exact value µB,A(C).

5.3 Main experimental results on d-hardness estimation
As mentioned above, we have performed a substantial amount of experiments on different
SAT formulas. Here we only report on experiments with tests whose dimensionality allows
explicitly checking the precision of resulting d-hardness estimations by exact calculation
of µB,A(C). In the experiments with formula PvS4,7 we found with our algorithm sets B

consisting of three and fewer variables. In order to evaluate the quality of the corresponding
decompositions we traversed through all possible sets B of sizes 1, 2, and 3. The corresponding
problems are relatively simple, however, to solve them all we used about 3 days of runtime
of a single cluster node (36 cores of Intel Xeon E5-2695) in total. Note that finding a set
via solving an optimization problem for function (10) took up to 12 hours. The results are
presented in Fig. 1 in the form of boxplot diagrams (whiskers span is 1.5 of interquartile
range). The lower bound (in the number of propagations) of the diagrams corresponds to the
best (smallest) value of function µB,A(C) over all possible B: |B| ∈ {1, 2, 3}. For several sets
with the best values of µB,A(C) found by the proposed approach, these values are represented
in the diagram: red dots correspond to sets found by FEA and blue crosses to the ones
found by GA. Note that in every case our algorithms managed to find a set B for which the
value of µB,A(C) is between the zeroth and first quartiles of the distribution depicted by the
diagram. This proves that our algorithms can find good sets B.

1 2 3

|B|

1010

2×109

3×109
4×109

6×109

P
ro
p
a
g
a
ti
o
n
s

Glucose 3

FEA

GA

1 2 3

|B|

109

6×108

2×109

3×109

P
ro
p
a
g
a
ti
o
n
s

CaDiCaL

FEA

GA

Figure 1 Boxplots for µB,A(C) of all sets B for CNF formula PvS4,7, |B| ≤ 3 and solvers g3 (top)
and cd (bottom), and examples of found estimations: our approach allows finding sets B allowing
near-optimal hardness estimations.

Table 1 shows experimental results for several SAT instances. For each instance, SAT
solver, and evolutionary algorithm, the table shows the cardinality of the found set B, the
value µB,A(C), and the decomposition rate rB,A(C) calculated as µB,A(C)/tA(C). Note that
in most cases rB,A(C) is smaller than one, and thus, in these cases the corresponding slicing
of formula C using the found set B yields a super-linear speedup when weakened formulas
are solved in parallel. Also note that for equivalence checking tests PvS4,7, BvS4,7, BvP4,7
search was done over SUPBSes consisting of 4 × 7 = 28 variables. For sgen search was done

A. Semenov et al. 47:11

Table 1 d-hardness estimations for different CNF formulas: most of the found sets B have
decomposition rate rB,A(C) = µB,A(C)/tA(C) < 1, making it possible to solve the 2|B| weakened
CNF formulas in parallel with super-linear speedup.

Instance |X| Solver A Algorithm |B| µB,A/103 rB,A

PvS4,7 3244

g3 FEA 3 2,190,213 0.792
g3 FEA 4 2,250,504 0.814
g3 GA 5 3,319,314 1.201
g3 GA 6 3,333,915 1.206
cd FEA 3 595,695 1.043

sgen1001
150 150

g3 FEA 5 101,371 0.424
cd FEA 6 244,191 0.763
g3 GA 6 114,821 0.480
cd GA 7 247,947 0.775

sgen101
150 150 g3 FEA 8 122,796 0.438

cd GA 7 131,557 0.470

sgen200
150 150 g3 GA 7 151,275 0.569

cd GA 6 229,705 0.541

BvS4,7 2134 g3 GA 3 460,944 1.140
g3 FEA 3 449,325 1.112

BvP4,7 2060 g3 FEA 3 726,080 1.049
g3 GA 3 771,521 1.115

over the entire set X. Overall, we see that FEA performs slightly better than GA in terms
of resulting rB,A(C) values. We can partially explain this by the fact that the GA uses more
computational resources in one iteration in comparison with FEA.

We also performed experiments on searching for non-trivial SUPBSes in the sense of [59]
among subsets of X in for the PvS4,7 example. Essentially, we implemented a variant of
the algorithm from [59], enumerating subsets of X in (|X in| = 28) of gradually increasing
cardinality. If for some B ∈ 2Xin the algorithm found such an assignment β ∈ {0, 1}|B|

that the application of the unit propagation rule to C[β/B] was not enough to decide the
satisfiability of C[β/B], we concluded that B is not a SUPBS, and switched to the next
candidate set B. As a result of these experiments, we have confirmed that for PvS4,7 there is
no such SUPBS B that B ⊂ X in (except X in itself).

In all experiments we used the technique of dynamic adaptation of sample size described
in Section 4.1. The plots in Fig. 2 show the dependence of ε on the iteration number for the
instance sgen1001

150 : the purple plot does not adapt N (the initial value of N is 5000), while
the blue, yellow, and green plots may increase N by up to a factor of two, four, and eight
respectively. One may notice that the described strategy allows keeping ε below 0.1 most of
the time, until finally the set B becomes small enough for switching to direct computation of
µB,A(C), thus reducing ε to zero.

We also studied the accuracy of our estimation µ̃B,A(C) with respect to its exact value
µB,A(C). For this purpose we considered several intermediate sets B found by our approach
for the PvS4,7 formula and SAT solver g3. For each B we first calculated µB,A(C) by
solving all 2|B| weakened CNF formulas. Second, we calculated µ̃B,A(C) using a sample
size N = 1

1002|B|, and repeated this calculation 100 times with different random samples.
The result is a distribution of values of µ̃B,A(C). In Fig. 3 we depict these distributions

CP 2021

47:12 Evaluating the Hardness of SAT Instances

0 50 100 150 200 250 300 350 400
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
p
s
il
o
n

no increase of N

increase N by a factor of two

increase N up to a factor of four

increase N up to a factor of eight

Figure 2 Dependence of ε from iteration number for sgen1001
150 and g3: when N may be increased

up to a factor of eight, the value of ε is below 0.1 most of the time.

11121314151617
|B|

3 × 1010

1011

1.8 × 1011

4 × 1010

6 × 1010

P
ro

p
a
g

a
ti

o
n
s

Exact + 10%

Exact value

Exact - 10%

Figure 3 Accuracy of µ̃B,A(C) for PvS4,7 and g3: distributions of estimation values µ̃B,A(C)
remain within 10% of the exact value µB,A(C).

by boxplots for sets with |B| ∈ {17, 16, . . . , 11}, in the order they were discovered by the
evolutionary algorithm. Fig. 3 also shows with the dotted line the exact value µB,A(C) for
each backdoor, and the +/- 10% interval around the exact value with dashed lines. As we
can see, the distributions of µ̃B,A(C) values remain within 10% of the exact value µB,A(C).
Also, most importantly, the median value of µ̃B,A(C) for each set B is almost exactly equal
to the exact value µB,A(C) (the dotted line goes through horizontal lines in boxplots that
depict the medians). This indicates that the approximation is quite accurate: if for set B

the value of µ̃B,A(C) is calculated once (as done during the optimization process), there is a
high chance that the result will be very close to µB,A(C).

5.4 Hardness deviation of weakened CNF formulas

If hardness of weakened formulas differs drastically, one cannot achieve good speedup when
solving them in parallel: if, e.g., solving one weakened formula requires, say, 95% of all
propagations, then it would not be possible to get even a speedup that is linear in the number
of used parallel threads. Thus, in order to use the sets B found by the proposed approach
for parallel SAT solving, the corresponding sub-problems (weakened CNF formulas) need to
be roughly equally hard. To check if the found sets B have this desired property, we have
performed an experimental study regarding the variation of hardness of sub-problems.

More specifically, we measured the relative standard deviation of hardness of all 2|B|

sub-problems for each set B considered in Fig. 3 for CNF formula PvS4,7 and SAT solver g3,
and also for sets B of sizes from 12 to 20 for CNF formula sgen200

150 and solver g3. Results
are presented in Fig. 4 and Fig. 5 respectively.

As seen from the plots, for PvS4,7 the relative standard deviation of sub-problem hardness
does not exceed 0.003%, and for sgen200

150 it is within 0.3%. This indicates that for these
instances the weakened CNF formulas derived from the corresponding sets B are more or
less of equal hardness, so there would be no issues during parallel solving.

A. Semenov et al. 47:13

11121314151617
|B|

0.00250

0.00255

0.00260

0.00265

0.00270

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
* 1

00
%

Figure 4 Relative standard deviation of sub-problem hardness for several sets B found for PvS4,7

and g3.

121314151617181920
|B|

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
* 1

00
%

Figure 5 Relative standard deviation of sub-problem hardness for several sets B found for sgen200
150

and g3.

5.5 Speedup in parallel solving
Here we show some results on solving the original CNF formulas in parallel by means of
solving all 2|B| weakened formulas derived from the set B generated by our approach. Table 2
shows values of speedup for several CNF formulas and sets B measured for 1..36 parallel
threads. The speedup was evaluated as follows. In case of a single thread the speedup
is 1/rB,A(C), where rB,A(C) is the decomposition rate defined above. In case of q, q ≥ 2
threads we first accumulated the total number of propagations made by A at each thread.
Then we took the maximum value of the number of propagations across all threads and
divide tA(C) by this value to compute the speedup. Thus, in the latter case we take into
account the situation, when some threads have finished their work earlier than the others.
Note that in the majority of cases, the speedup is indeed super-linear.

Of course, our approach does not and cannot guarantee that the speedup will be super-
linear or even linear: apart from the set B itself, it depends on the properties of the CNF
formula, the used strategy of parallel task distribution. However, practical results illustrated
in Table 2 give reason to be optimistic.

5.6 Correspondence between the number of unit propagations and
solving time

As noted above, in this paper for the value of tA(C[β/B]) we select the number of unit
propagations made by algorithm A while solving CNF formula C[β/B]. The reason for
choosing this metric instead of just the running time (in seconds) is that the propagations
metric is independent of the hardware platform, and the results can be replicated easily.

CP 2021

47:14 Evaluating the Hardness of SAT Instances

Table 2 Speedup when using set B to solve weakened CNF formulas on a single core and in
parallel (using 2..36 threads).

Instance |B| Solver 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 36 threads

sgen101
150

8 g3 2.3 4.6 8.8 16.8 31.3 37.0 37.0
13 cd 1.9 3.9 7.7 14.9 29.4 56.9 62.6

sgen200
150 8 g3 1.6 3.3 6.2 12.2 22.3 29.9 29.9

sgen200
150

8 g3 1.8 3.6 7.1 13.3 25.5 36.2 36.2
7 g3 2.2 4.4 8.5 15.8 28.0 28.8 28.8
8 cd 1.3 2.6 5.0 9.6 19.1 22.8 22.8

11121314151617
|B|

2 × 104

3 × 104

4 × 104

Ti
m

e,
 s.

Exact + 10%
Exact value
Exact - 10%

Figure 6 Accuracy of µ̃B,A(C) for PvS4,7 and g3, where tA(C[β/B]) is the running time of the
SAT solver in seconds: values of time and unit propagations are sufficiently, though not ideally,
correlated.

However, in a practical application we would be interested in sets B that provide a
speedup not only in the number of propagations, but also in terms of the running time.
Therefore, we replicated results depicted in Fig. 3, measuring tA(C) and tA(C[β/B]) in
seconds (for a single thread).

Results are depicted in Fig. 6. Let us compare this plot with Fig. 3. Ideally (if the
number of unit propagations exactly correlates with solving time), these plots should be
quite the same, except for absolute values of propagations and time. Here, instead, we
see that sometimes a decreased value of µ̃B,A(C) (and also µB,A(C) for that matter) when
tA(C[β/B]) is measured in propagations corresponds to slightly increased values of µ̃B,A(C)
and µB,A(C) when tA(C[β/B]) is measured in seconds: for example, this is the case for pairs
(|B| = 16, |B| = 15) and (|B| = 12, |B| = 11). Despite this, the main trends of both plots
are the same, indicating that when estimating the decomposition hardness the number of
unit propagations can be considered as an adequate deterministic analog of a SAT solver
running time.

6 Related Work

There have been a number of attempts to define hardness measures of Boolean formulas.
Some of them are purely theoretical, others can be used in practical applications. For the
most part, existing works appeal to the peculiarities of specific algorithms and do not consider
the SAT solver as a black-box function, as it is done in our approach.

The relationship between the various measures of hardness is demonstrated in [2]. The
key motivation for our work was the idea from [2] to determine the hardness of a Boolean
formula, starting from the concept of the Backdoor Set introduced in [59]. This measure

A. Semenov et al. 47:15

(b-hardness) is determined only for Strong Backdoor Sets (SBS) of the function. The value
of b-hardness on a particular SBS is equal to the total time required to solve all formulas
obtained from the original CNF formula when partitioning it according to this SBS. Also
recall that the b-hardness definition implies that weakened formulas are solved in polynomial
time.

In our case, unlike [2] and [59], we use an arbitrary set of Boolean variables and an
arbitrary (not necessarily polynomial) complete algorithm for solving SAT. In all other aspects
our definition of decomposition hardness is similar to the definition of backdoor hardness.
Actually, similar ideas have been used to evaluate the effectiveness of SAT Partitionings,
mainly as applied to formulas arising in algebraic cryptanalysis: see e.g. [21, 26, 37, 50, 53, 60],
etc. However, we emphasize that we are not aware of any works in which these ideas would be
used to specify and estimate hardness of CNF formulas in general. Also, none of mentioned
papers consider accuracy of obtained estimates or ways of improving this accuracy (such as
our (ε, δ)-algorithm).

7 Discussion & Conclusion

Let us emphasize again that for any CNF formula there always exists such a set B that
µ̃B,A(C) can be calculated efficiently. Thus, for any extremely hard CNF formula we can
always obtain some d-hardness estimation. It can be useful in cases when it is necessary to
understand whether there is any practical sense in trying to solve the corresponding problem.
One can argue that the accuracy of such estimates is questionable (e.g. due to transition from
expectation and variance to their statistical counterparts), but our computational results
show that they quite often turn to be accurate in practice. Sometimes, obtained preliminary
estimates are not precise, but the resulting set B can give a very efficient decomposition
(with rate rB,A < 1).

As shown above, the cases when rB,A < 1 are quite frequent in the studied classes of
tests. In such a situation solving all CNF formulas C[β/B] is cheaper than solving the
original CNF formula without decomposition. Thus, if B has reasonable size, we may use a
distributed computational platform to solve all weakened CNF formulas in parallel, and the
corresponding speedup will be super-linear.

Recall that in this paper we only addressed hardness estimation for unsatisfiable CNF
formulas. In the case of satisfiable formulas our estimation measure does not provide good
accuracy guarantees: if a formula has many satisfying assignments, the SAT solving algorithm
can get “lucky” or “unlucky”, which would require other estimation measures, e.g. such as
the one proposed in [52].

In conclusion, in this paper we have proposed a novel approach to evaluating the hardness
of unsatisfiable SAT formulas w.r.t. a deterministic SAT solver. The new hardness measure,
d-hardness, is computed w.r.t. a subset B of formula’s variables, and corresponds to the
minimal total computation effort needed to solve 2|B| weakened CNF formulas across all
possible subsets B. To illustrate the practical applicability of the new measure we proposed
and developed an adaptive probabilistic (ε, δ)-approximation algorithm based on evolutionary
optimization and demonstrated its effectiveness on tests from several families of SAT formulas.

We believe that the concept which lies in the base of the decomposition hardness can be
useful in SAT solving strategies aimed at hard SAT instances. In the future, we plan to use
the ideas which are close to the ones considered above to estimate the usefulness of cubes in
the context of the Cube and Conquer approach [32].

CP 2021

47:16 Evaluating the Hardness of SAT Instances

Finally, although the paper argues that decomposition hardness can be effectively es-
timated with respect to any complete deterministic SAT solving algorithm, the presented
experimental study focuses solely on a few SAT solvers based on conflict-driven clause
learning (CDCL) [42]. As a result and given that the proof system of CDCL is known to be
as strong as general resolution [4, 48], an interesting line of future work will be to extend the
proposed ideas to existing algorithms that build on the proof systems strictly stronger than
resolution, including cutting planes [19,45] and dual-rail based MaxSAT [12], among others.

References
1 Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential

separation between regular and general resolution. In STOC, pages 448–456, 2002.
2 Carlos Ansótegui, Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Measuring the hardness

of SAT instances. In AAAI, pages 222–228, 2008.
3 Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving Glucose for incremental

SAT solving with assumptions: Application to MUS extraction. In SAT, pages 309–317, 2013.
4 Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing

the potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004.
5 Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In FOCS,

pages 274–282, 1996.
6 Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like

and general resolution. Comb., 24(4):585–603, 2004.
7 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J.

ACM, 48(2):149–169, 2001.
8 Christian Bessiere, George Katsirelos, Nina Narodytska, and Toby Walsh. Circuit complexity

and decompositions of global constraints. In IJCAI, pages 412–418, 2009.
9 Armin Biere. CaDiCaL at the SAT Race 2019. In SAT Race, pages 8–9, 2019.

10 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability (Second Edition), 2021.

11 Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv., 35(3):268–308, 2003.

12 Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva.
Propositional proof systems based on maximum satisfiability. Artif. Intell., 300:pages to
appear, 2021.

13 Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. Exponential
separations between restricted resolution and cutting planes proof systems. In FOCS, pages
638–647, 1998.

14 Edmund Burke and Graham Kendall. Search Methodologies. Springer, 2014.
15 Samuel R. Buss and György Turán. Resolution proofs of generalized pigeonhole principles.

Theor. Comput. Sci., 62(3):311–317, 1988.
16 Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem

Proving. Academic Press, Inc., 1973.
17 Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.

In TACAS, pages 168–176, 2004.
18 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. J. Symb. Log., 44(1):36–50, 1979.
19 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-plane

proofs. Discret. Appl. Math., 18(1):25–38, 1987.
20 Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. MIT

Press, 1990.
21 Nicolas T. Courtois and Gregory V. Bard. Algebraic cryptanalysis of the data encryption

standard. In IMACC, pages 152–169, 2007.

A. Semenov et al. 47:17

22 Guoli Ding, Robert F. Lax, Jianhua Chen, Peter P. Chen, and Brian D. Marx. Transforms of
pseudo-boolean random variables. Discret. Appl. Math., 158(1):13–24, 2010.

23 Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms.
In GECCO, pages 777–784, 2017.

24 William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

25 Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci., 276(1-2):51–81, 2002.

26 Tobias Eibach, Enrico Pilz, and Gunnar Völkel. Attacking bivium using SAT solvers. In SAT,
pages 63–76, 2008.

27 Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Inf. Comput., 171(1):84–97,
2001.

28 William Feller. An Introduction to probability theory and its applications, volume 2. John
Wiley & Sons, Inc., 2 edition, 1971.

29 William H. Gates and Christos H. Papadimitriou. Bounds for sorting by prefix reversal.
Discret. Math., 27(1):47–57, 1979.

30 Carla P. Gomes and Ashish Sabharwal. Exploiting runtime variation in complete solvers. In
Handbook of Satisfiability (Second Edition), pages 463–480. IOS Press, 2021.

31 Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
32 Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: Guiding

CDCL SAT solvers by lookaheads. In HVC, pages 50–65, 2011.
33 Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: An

automatic algorithm configuration framework. J. Artif. Intell. Res., 36:267–306, 2009.
34 Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos, and Kevin

Leyton-Brown. The configurable SAT solver challenge (CSSC). Artif. Intell., 243:1–25, 2017.
35 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for

prototyping with SAT oracles. In SAT, pages 428–437, 2018.
36 Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo approximation algorithms for

enumeration problems. J. Algorithms, 10(3):429–448, 1989.
37 Stepan Kochemazov and Oleg Zaikin. ALIAS: A modular tool for finding backdoors for SAT.

In SAT, pages 419–427, 2018.
38 Daniel Kroening. Software verification. In Handbook of Satisfiability (Second Edition), pages

791–818, 2021.
39 Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts and heaps. In DAC,

pages 263–268, 1997.
40 Oliver Kullmann. Upper and lower bounds on the complexity of generalised resolution and

generalised constraint satisfaction problems. Ann. Math. Artif. Intell., 40(3-4):303–352, 2004.
41 Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013.
42 Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.

In Handbook of Satisfiability (Second Edition), pages 133–182. IOS Press, 2021.
43 Nicholas Metropolis and S. Ulam. The Monte Carlo Method. J. Amer. Statistical Assoc.,

44(247):335–341, 1949.
44 Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In PPSN,

pages 15–26, 1992.
45 Jakob Nordström. On the interplay between proof complexity and SAT solving. SIGLOG

News, 2(3):19–44, 2015.
46 Ilya V. Otpuschennikov, Alexander A. Semenov, Irina Gribanova, Oleg Zaikin, and Stepan

Kochemazov. Encoding cryptographic functions to SAT using TRANSALG system. In ECAI,
pages 1594–1595, 2016.

47 Artem Pavlenko, Alexander A. Semenov, and Vladimir Ulyantsev. Evolutionary computation
techniques for constructing SAT-based attacks in algebraic cryptanalysis. In EvoApplications,
pages 237–253, 2019.

CP 2021

47:18 Evaluating the Hardness of SAT Instances

48 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011.

49 Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020.

50 Alexander Semenov and Oleg Zaikin. Algorithm for finding partitionings of hard variants of
boolean satisfiability problem with application to inversion of some cryptographic functions.
SpringerPlus, 5(1), 2006. Article no. 554.

51 Alexander A. Semenov, Ilya V. Otpuschennikov, Irina Gribanova, Oleg Zaikin, and Stepan
Kochemazov. Translation of algorithmic descriptions of discrete functions to SAT with
applications to cryptanalysis problems. Log. Methods Comput. Sci., 16(1), 2020.

52 Alexander A. Semenov, Oleg Zaikin, Ilya V. Otpuschennikov, Stepan Kochemazov, and Alexey
Ignatiev. On cryptographic attacks using backdoors for SAT. In AAAI, pages 6641–6648,
2018.

53 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In SAT, pages 244–257, 2009.

54 Ivor T. A. Spence. Weakening cardinality constraints creates harder satisfiability benchmarks.
ACM J. Exp. Algorithmics, 20:1.4:1–1.4:14, 2015.

55 Grigoriy Tseitin. On the complexity of derivation in propositional calculus. Studies in Constr.
Math. and Math. Logic, pages 115–125, 1970.

56 Alasdair Urquhart. The complexity of propositional proofs. Bull. Symb. Log., 1(4):425–467,
1995.

57 Ingo Wegener. Theoretical aspects of evolutionary algorithms. In ICALP, pages 64–78, 2001.
58 Samuel S. Wilks. Mathematical statistics. John Wiley and Sons, 1962.
59 Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complexity. In

IJCAI, pages 1173–1178, 2003.
60 Oleg S. Zaikin and Stepan E. Kochemazov. On black-box optimization in divide-and-conquer

SAT solving. Optimization Methods and Software, pages 1–25, 2019.

	1 Introduction
	2 Preliminaries
	3 d-hardness: Decomposition Hardness of CNF Formula
	4 Estimation of d-Hardness via Evolutionary Optimization Algorithms
	4.1 (epsilon, delta)-approximation algorithm for d-hardness estimation
	4.2 Used evolutionary optimization algorithms

	5 Experimental Evaluation
	5.1 Benchmarks
	5.2 Experimental setup and implementation details
	5.3 Main experimental results on d-hardness estimation
	5.4 Hardness deviation of weakened CNF formulas
	5.5 Speedup in parallel solving
	5.6 Correspondence between the number of unit propagations and solving time

	6 Related Work
	7 Discussion & Conclusion

