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Abstract
It is increasingly recognized that automated decision making systems cannot be black boxes: users
require insight into the reasons that decisions are made. Explainable AI (XAI) has developed a
number of approaches to this challenge, including the framework of counterfactual explanations
where an explanation takes the form of the minimal change to the world required for a user’s
desired decisions to be made. Building on recent work, we show that for a user query specifying
an assignment to a subset of variables, a counterfactual explanation can be found using inverse
optimization. Thus, we develop inverse constraint programming (CP): to our knowledge, the first
definition and treatment of inverse optimization in constraint programming. We modify a cutting
plane algorithm for inverse mixed-integer programming (MIP), resulting in both pure and hybrid
inverse CP algorithms. We evaluate the performance of these algorithms in generating counterfactual
explanations for two combinatorial optimization problems: the 0-1 knapsack problem and single
machine scheduling with release dates. Our numerical experiments show that a MIP-CP hybrid
approach extended with a novel early stopping criteria can substantially out-perform a MIP approach
particularly when CP is the state of the art for the underlying optimization problem.
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1 Introduction

As automated decision making systems continue to make high-impact decisions [9], the
need to provide insight into why decisions were made has become crucial. Black box
solvers are becoming less and less acceptable. In fact, recent EU legislation [19] argues
that users substantially affected by an automated decision have a right to an explanation.
As a consequence, there has been a surge of research aimed at explaining algorithmic
decisions to users, particularly in machine learning (ML) [3]. In contrast, in constraint
programming (CP) and mathematical programming, work on explaining decisions has been
more limited, with the majority of explainability research focused on explaining infeasibility
through the identification of minimal sets of infeasible constraints [11, 5]. We introduce
new techniques based on counterfactual explanations to explain optimal decisions made by
discrete constraint-based optimization systems.

For example, consider a manufacturer placing several orders for part deliveries, specifying
priority values on each order. After seeing the initial schedule, the manufacturer wants an
explanation. They ask “Why was the schedule not different? Why is order A not delivered
in two days, and B in five days?”
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We address such questions using counterfactual explanations, which present the questioner
with the minimal change to the world required for the hypothetical situation described in their
query to have occurred. In previous work [16], we formalized a counterfactual explanation as
an optimization problem, which we showed to be a generalization of inverse optimization [13].
We then developed solution methods for single variable questions and explanations.

In this paper, we present the first multi-variate counterfactual explanation approach for
discrete optimization systems with linear objectives, showing that we can harness inverse
optimization algorithms when the questioner is interested in a partial assignment of decision
variables, such as in the delivery example above. In Section 3, we formulate this kind of
explanation as a Partial Assignment Nearest Counterfactual Explanation (PA-NCE) problem.
In Section 4, we prove that the PA-NCE can be solved in two steps by first finding an optimal
solution to the original decision problem with the addition of the user’s assignments and
then solving an inverse optimization problem.

We then turn our attention to discrete inverse optimization algorithms, used for the
second stage of generating explanations but also applicable to other inverse problems. In
Section 5 we develop three new inverse algorithms by modifying an existing mixed integer
programming (MIP) cutting plane algorithm [26] to use CP. This results in one pure inverse
CP algorithm and two MIP-CP hybrids. To our knowledge, this marks the first use of CP
for inverse optimization. We also introduce a novel early stopping criteria, showing it is
beneficial for inverse CP. We then show through numerical experiments in Sections 6 – 8
that a hybrid MIP-CP approach extended with our early stopping criteria can outperform
alternatives when CP is state-of-the-art for the initial problem. The final sections discuss
limitations and related work.

2 Background

2.1 Counterfactual Explanations

In a counterfactual explanation [25], a user would like to know why a set of facts c led to
a decision x. They first ask a contrastive question “Why was the decision x and not x̄?”
A counterfactual explanation presents the user with an alternative set of facts d, typically
minimally different from the initial facts c, which would have resulted in decision x̄. The term
counterfactual (meaning contrary to the facts) refers to the observation that neither x̄ nor d
were present in the initial (or, factual) context, and originates in studies of counterfactual
reasoning [8]. An advantage of using counterfactual explanations for automated decision
making systems is that the user is not required to understand the inner workings of the
algorithm; a significant benefit for interacting with complex solvers. Further, explicitly
presenting a user with a set of facts that would have led to a different outcome not only helps
them understand the decision, but also empowers them to contest or act to change it [25].

As in the Explainable AI (XAI) literature [18], we refer to a counterfactual decision x̄

specified by a user as a foil. In the formulation developed in our previous work [16], the user
is interested in multiple counterfactual decisions, implicitly described by a foil set, a feasible
set, Xψ. We studied the question “Why was the decision x and not one of the decisions in
Xψ?”, and defined the problem of generating explanations to such questions as the Nearest
Counterfactual Explanation (NCE) problem.
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2.2 Nearest Counterfactual Explanation (NCE)
In a standard (or forward) optimization problem ⟨c, f,X⟩, the purpose is to find values for
decision vector x ∈ X ⊆ Rn given a parameter vector c ∈ C ⊆ Rn which optimize an objective
function f : C × X −→ R. For a minimization objective, the goal is to find an optimal x∗

so that f(c, x∗) = minx{f(c, x) : x ∈ X}. In this paper, we focus on problems with linear
objectives and either binary decision variables, x ∈ {0, 1}n, or integer decision variables,
x ∈ Nn0 . If f is omitted from a forward problem ⟨c,X⟩, it is assumed that f(c, x) = cTx.

The Nearest Counterfactual Explanation (NCE) problem [16] starts with x∗, an optimal
solution to the forward problem ⟨c, f,X⟩ for which the user requires an explanation. Spe-
cifically, the user wants an explanation of why the solution did not also satisfy an additional
set of constraints, not initially captured in X. Let these additional constraints describe a
feasible set ψ ⊆ Rn and be called foil constraints, and assume that x∗ /∈ ψ. For example, if a
user asks “Why was I not scheduled to receive my COVID-19 vaccine in April rather than
June?”, the foil constraints restrict the vaccination appointment to be in April.

The user is interested in those solutions in the intersection of X and ψ and described by
the foil set: Xψ = X ∩ ψ. The counterfactual question asked by the user is then “Why is the
solution x∗ and not one of the foils in Xψ?”

The explanation problem is to find the minimal change to the initial parameter vector c
which would make a foil in Xψ optimal for the forward problem. If d ∈ C is the modified
parameter vector, where C can be used to express any restrictions on the feasible values of d,
and || · || is some norm, the NCE problem ⟨c, C, f, ψ,X, || · ||⟩ [16] is

min
d∈C

||d− c|| (1)

s.t. min
x∈Xψ

f(d, x) = min
x∈X

f(d, x). (2)

Throughout this paper, we use an L1 norm, and assume that none of the parameters in c
are present in the constraints that define the feasible set X, meaning that our explanations
only involve changes to objective parameters, and not constraint parameters.

We previously showed that the NCE is a generalization of inverse optimization, proposing
that, for many problems, inverse optimization algorithms may applied [16]. However, we did
not develop inverse optimization approaches, instead considering a restricted set of problems
where only one parameter is allowed to change and inverse optimization is unnecessary. Our
work here lifts this single variable restriction and develops a method to generate multi-variate
explanations using full inverse optimization.

2.3 Inverse Optimization
While forward optimization seeks a variable assignment that satisfies a set of constraints and
optimizes an objective function, inverse optimization tries to find the minimal change in the
objective function such that a given feasible variable assignment is optimal. Given a forward
problem ⟨c, f,X⟩, and a feasible solution xd ∈ X, the inverse optimization problem is to find
the minimal modification to the parameter vector c so that xd becomes optimal [6].

As in the NCE, if d ∈ C is the modified parameter vector, then the inverse optimization
problem ⟨c, C, f, xd, X, || · ||1⟩ is

min
d∈C

||d− c||1 (3)

s.t. f(d, xd) = min
x∈X

f(d, x). (4)

CP 2021
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The NCE is a generalization of the inverse optimization problem. In the latter, we find
the values of d which make a single given solution optimal, while in the former, we find a d
such that a set of solutions contains an optimal one.

Inverse Mixed Integer Programming. Much of the work in inverse optimization has focused
on inverse linear optimization, where the forward problem is a linear program [13]. The work
on inverse mixed integer optimization is relatively sparse with a cutting plane algorithm,
InvLP-MIP, being the standard solution technique [26]. In Section 5, we modify this algorithm
to use CP and an early stopping criteria. InvLP-MIP is an iterative, two-level approach
where a master problem searches for a d that minimizes ||d− c||1 such that xd is at least as
good as all currently known forward solutions. Then, the subproblem attempts to generate
a new forward solution that is better than xd for the current d vector. If no such forward
solution exists, the current d vector is optimal. Otherwise, the improving solution is added
to the known forward solution set and the master is re-solved in the next iteration.

Formally, based on Wang [26], we are given a forward mixed-integer program ⟨c,X⟩
where X = {x ∈ R+ : Ax ≤ b, xI ∈ N0} with A ∈ Rk×n, b ∈ Rk, and I ⊆ {1, ..., n}, a known
solution xd, and feasible set C for parameter values. The L1 norm objective of the inverse
problem is linearized using g, h ∈ Rn+, such that c− d = g − h. Intuitively, the magnitude of
the change to the parameter ci is represented by gi if it is negative and hi if it is positive.
Any d for which the forward problem ⟨d,X⟩ is unbounded can be avoided by adding the
constraint AT y ≥ d, y ∈ Rk, ensuring that d results in a feasible dual. Let S0 be the, initially
empty, set of known feasible solutions to the forward problem. The master problem MP is:

min
y,g,h

g + h (5)

s.t AT y ≥ c− g + h (6)
(c− g + h)Txd ≤ (c− g + h)Tx0 ∀x0 ∈ S0 (7)
g, h ∈ Rn, y ∈ Rk, (c− g + h) ∈ C (8)

Constraint (7) forces the objective value of xd to be at least as good as any known solution.
The optimal solution from the master problem d∗ = (c− g∗ + h∗) is used to construct the
subproblem SP ⟨d∗, X⟩: minx{d∗Tx : x ∈ X}. The complete algorithm is:

▶ Definition 1 (Algorithm: InvLP-MIP [26]).
1. Initialize S0 = ∅.
2. Solve MP to obtain d∗ = (c− g∗ + h∗).
3. Solve SP ⟨d∗, X⟩ to get optimal solution x0. If d∗Txd ≤ d∗Tx0, stop: d∗ is optimal for

the inverse problem. Otherwise, update S0 = S0 ∪ {x0} and return to step 2.

3 Problem Formulation

We now formulate a class of counterfactual explanation problems that can be solved with the
help of inverse optimization. In particular, we explore the case when the user’s contrastive
question specifies a set of assignments to a subset of decision variables.

3.1 Example: Explaining a Delivery Schedule
Recall our delivery example where clients place a set of orders, specifying a priority level for
each order. Expressed as an optimization problem, let the decision variables x ∈ X ⊆ Nn0
represent the delivery dates for each order, and the objective coefficients c ∈ C ∈ Nn0 represent
order priorities. Let the scheduling problem ⟨c,X⟩ be to minimize the priority weighted
delivery dates, that is, to find minx∈X c

Tx.
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Upon seeing the initial optimal schedule x∗, one of the clients asks “Why was order A
not scheduled to arrive in two days, and B in five days?” As we did in the NCE, we use this
question to formulate a set of foil constraints, in this case giving ψ = {x : xA = 2, xB = 5}.
Observe that these foil constraints take the form of assignments to a subset of variables.

In an NCE, the explanation takes the form of changes to objective parameters c; in this
example, the order priorities. However, an explanation that could include changes to any
order priority ci, i ∈ {1, ..., n}, might not be very useful to our client. While our client is
able to increase the priorities of their own orders by paying more, they have no control or
knowledge of orders from other clients. Furthermore, it may be important to protect the
privacy of other clients. Finally, our client may only want an explanation for a subset of
their own orders. For these reasons, we assume that our client is primarily interested in an
explanation involving changes only to the order priorities associated with the deliveries in
their question, cA and cB . Such an explanation might look like: “If you increase the delivery
priorities of part A from a Level 1 to a Level 3 (for $50 extra), and part B from a Level 1 to
a Level 4 ($30 extra), the parts will be delivered on the dates you specified.”

3.2 The Partial Assignment NCE
We now formulate a specific NCE problem to model cases such as our delivery example. We
begin with a contrastive question from a user who is interested in a subset of m variables
xi, i ∈ M ⊆ {1, ..., n}, m = |M|, and desires to know why they were not assigned to specific
values, xpi , i ∈ M. We use this question to formulate the partial assignment foil constraints,
giving ψ = {x : xi = xpi ∀ i ∈ M}.

The user desires an explanation in terms of only changes to the parameters ci, i ∈ M
associated with the variables in the subset M. The motivation for this is similar to the
delivery example: explanations containing parameters associated with other users may not be
useful or secure, and, additionally, this restriction allows the questioner to isolate a specific
subset of variables. In an NCE, the feasible values for the modified parameters d are defined
by the feasible set C, so we can require any parameters not in M to retain their initial values
by setting C = {d : dj = cj ∀ j ∈ MC}, where MC = {1, ..., n} \ M.

▶ Definition 2 (Partial Assignment Nearest Counterfactual Explanation (PA-NCE)). The Partial
Assignment NCE is an NCE ⟨f, c, C, X, || · ||, ψ⟩ in which ψ = {x : xi = xpi ∀ i ∈ M} where
M ⊆ {1, ..., n}, xp ∈ Rm, m = |M|, C = {d : di = ci ∀ i ∈ MC}, and MC = {1, ..., n} \ M.

4 Theoretical Results

Both the NCE and inverse optimization aim to find a minimally perturbed d ∈ C; the former
such that a set of solutions Xψ contains an optimal solution and the latter such that a
particular solution xd is optimal. For a PA-NCE with a linear objective, we show that there
exists an xψ ∈ Xψ which is optimal for any feasible d ∈ C. In particular, we prove that such
an xψ is given by an optimal solution to the initial forward problem plus the foil constraints,
⟨c,Xψ⟩. This result implies that we can solve a PA-NCE in two steps: first, solving ⟨c,Xψ⟩
to find xψ, and then solving the analogous inverse optimization problem with xd = xψ.

▶ Theorem 3. The Partial Assignment NCE ⟨c, C, cTx,X, || · ||1, ψ⟩ is equivalent to the
Inverse Optimization Problem ⟨c, C, cTx, xd, X, || · ||1⟩ with xd ∈ arg min{cTx : x ∈ Xψ}.

Proof. Observe that the NCE and Inverse Optimization problems differ only by the left-hand
sides of Constraints (2) and (4). To show the two problems are equivalent, it is sufficient to
show that

CP 2021
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f(d, xd) = dTxd = min
x

{dTx : x ∈ Xψ}, ∀d ∈ C. (9)

From the optimality of xd to the problem ⟨c,Xψ⟩ and by separating the objective into the
contributions from the variables i ∈ M and the variables j ∈ MC ,

cTxd =
∑
i∈M

cix
d
i +

∑
j∈MC

cjx
d
j ≤

∑
i∈M

cixi +
∑
j∈MC

cjxj , ∀x ∈ Xψ. (10)

The form of the foil constraint set ψ requires that xpi = xdi = xi for all i ∈ M, so∑
i∈MC

cjx
d
j ≤

∑
i∈MC

cjxj , ∀x ∈ Xψ. (11)

Due to the constraints in C from Definition 2, dj = cj for j ∈ MC , so the above inequality is
valid for all values of d ∈ C. Further, because the values of xi, i ∈ M, are identical in all
foils, the contributions from the components in M are also equivalent given a value of d.
Adding this contribution to both sides, we get∑

i∈M
dix

d
i +

∑
i∈MC

cjx
d
j ≤

∑
i∈M

dixi +
∑
i∈MC

cjxj , ∀x ∈ Xψ, ∀d ∈ C. (12)

Thus dTxd ≤ dTx for all x ∈ Xψ and all d ∈ C, satisfying (9) and completing the proof. ◀

All our results continue to hold if the user specifies a full assignment of variables xp ∈ Rn
instead of a partial one, so that MC = ∅. In this case, the foil set is a singleton, Xψ = {xp},
so we can skip the first step of finding the optimal foil and proceed directly to the inverse
problem with xd = xp.

5 Inverse Constraint Programming

In order to generate counterfactual explanations for constraint programs, we are interested
in solving the PA-NCE for problems in which the forward problem is a constraint program.
Given the connection shown above between the PA-NCE and inverse optimization, we can
solve the PA-NCE by solving the forward problem using CP to find an optimal foil and then
by formulating the inverse optimization problem as a constraint program. For the latter, we
adopt the InvLP-MIP [26] approach, generalizing it to CP.

Due to the discrete nature of CP, we are primarily interested in problems where the
objective coefficients are integral, c, d ∈ Nn0 , which are also more difficult for MIP based
inverse optimization than problems with continuous cost coefficients. Let MPd∈Nn0 be an
MP with the constraint g, h ∈ Rn+ in (8) replaced with g, h ∈ Nn0 . Such a master problem
can no longer use LP, but can be formulated and solved using MIP. We call the variation of
InvLP-MIP which uses MIP for the master problem InvMIP-MIP.

We can also formulate both the master and subproblems with CP. Let an MPd∈Nn0 model
defined using CP be called MPCP and an SP model ⟨d∗, X⟩ defined using CP be called
SPCP . Examples for specific problems are provided in Section 6. We call InvCP-CP the
algorithm which solves these models using CP and follows the cutting plane approach of
InvLP-MIP. To our knowledge, this is the first use of CP for inverse optimization.

▶ Definition 4 (InvCP-CP). Follow steps 1-3 in InvLP-MIP, using CP to solve MPCP and
SPCP , instead of using LP and MIP to solve MP and SP, respectively.
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Algorithm 1 InvMIP-MIP(ESC).

1 Inputs : c, C, γ, xd, X

2 Step 1: Initialize S0 ← ∅
3 Step 2: Solve MPd∈Nn0 to get optimal solution d∗

4 Step 3: while TRUE:
5 get next feasible solution xi to SP ⟨d∗, X⟩
6 if d∗T xi ≤ d∗T xd:
7 if xi optimal :
8 if d∗T xi == d∗T xd:
9 Stop. d∗ is optimal to the inverse problem .

10 else:
11 Update S0 ← S0 ∪ {xi}
12 go to step 2
13 else:
14 if d∗T xi < d∗T xd:
15 if cumulative time spent in SP ≥ γ:
16 Update S0 ← S0 ∪ {xi}
17 go to step 2

Duality. A general consideration of duality and unbounded objectives is beyond our scope,
however most constraint programs involve finite domains and therefore have bounded ob-
jectives. In such cases, the dual constraints (6) in the master problem are unnecessary.
If unbounded objectives could exist, it may not always be possible to formulate the dual
constraints using CP; we have not yet developed a way to deal with this case. We show in
Section 6 that the problems in our experiments are guaranteed to have bounded objectives.

5.1 Hybrid Approaches
In addition to a pure inverse CP algorithm, we also define hybrid inverse algorithms which
use both MIP and CP. Specifically, we define InvMIP-CP as the algorithm that solves
the master problem MPd∈Nn0 with MIP, and the subproblem SPCP with CP. Similarly, we
define InvCP-MIP as the algorithm that solves the master problem MPCP with CP, and the
subproblem SP with MIP.

5.2 Early Stopping Criteria
In each of the above inverse algorithms, the subproblem is solved to optimality at every
iteration and its optimal solution x0 is added to the master. However, if a feasible, but not
necessarily optimal solution xf has been found which gives a better objective value than the
foil, d∗Txf < d∗Txd, then a valid cut can be generated by adding xf to S0. While a better
forward solution may yield a stronger cut in the master, we may wish to balance the strength
and computational expense of a new cut by implementing an early stopping criteria: if a
such a solution xf is found in a given iteration, we can stop solving the SP after γ seconds.

We define our early stopping criteria (ESC) algorithm in Algorithm 1 using InvMIP-MIP
as a base. It can be applied to each of the inverse algorithms discussed above. In line (5) the
solver returns a feasible solution which is not worse than the previous one. The time in the
SP (line 15) refers to the time since the most recent master solution was found.

CP 2021
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6 Models

We test our counterfactual explanation approach for two forward problems: the 0-1 knapsack
(KP) and single machine scheduling with release dates, 1|rj |

∑
wjCj . The KP was selected

because it is NP-complete [20], has a simple structure, and is easy to understand. While it is
of practical importance, including as part of many more complex problems, its simplicity (yet
NP-completeness) allowed us to develop our methods before moving to more complex hard
combinatorial problems. The scheduling problem was selected because CP often performs
well in scheduling, matching a potential use case for CP based explanation techniques
(i.e. explainable scheduling). It is also a relatively simple (though strongly NP-Hard [17])
scheduling problem to test our methods on. Both problems have finite domains and are
therefore guaranteed to have a bounded objective.

6.1 0-1 Knapsack Problem
In the 0-1 KP, we are given a set of n ∈ N items, a profit vector c ∈ Nn0 , a weight vector
w ∈ Nn0 , and a knapsack capacity W ∈ N0. The objective of the 0-1 KP is to maximize the
sum of the profits of the items that are included in the knapsack, without having the sum of
the weights of those items exceed W .

CP Model. The CP model uses a packing global constraint, specifically binPackingCapa
[12]. The first argument of this constraint is a set of bins, with each bin ⟨l,Wl⟩ associated
with an index l ∈ N0 and a capacity Wl ∈ N. The second argument is a set of items, with
each item ⟨xi, wi⟩ corresponding to decision variable xi ∈ N0 identifying which container
the item is placed in and an item weight wi ∈ N. The constraint ensures that all items are
placed in a container such that the sum of item weights in any container does not exceed its
capacity. The CP model for 0-1 KP is

max cTx (13)
s.t. binPackingCapa({⟨0,∞⟩, ⟨1,W ⟩}, {⟨xi, wi⟩|i ∈ {1, ..., n}}) (14)

x ∈ {0, 1}n. (15)

The choice of whether to place an item in container 1 or container 0 is equivalent to the
decision of including or excluding that item in the knapsack, respectively.

MIP Model. Let x ∈ {0, 1}n be a decision vector where xi = 1 if an item is included in the
knapsack and 0 otherwise. The MIP model is

min
x

{cTx : wTx ≤ W,x ∈ {0, 1}n}. (16)

6.2 Single Machine Scheduling with Release Dates, 1|rj| ∑
wjCj

In the 1|rj |
∑
wjCj problem, we are given n ∈ N jobs, with each job i ∈ {1, ..., n} having

a processing time pi ∈ N, a weight1 ci ∈ N, and a release date ri ∈ N. The objective is to
minimize the weighted sum of completion times of all jobs given that no two jobs can be
processed at the same time, no jobs can start before their release dates, and no jobs can be
interrupted (no preemption).

1 This problem is typically defined with w representing the job weights. To be consistent with our notation,
we replace w with c, though we continue to refer to the problem by its typical name, 1|rj |

∑
wjCj .
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CP Model. We represent the jobs with a set of interval variables {Ii} ∀ i ∈ {1, ..., n},
defined with the notation intervalV ar(pi, [si, ei]), where the possible values of Ii are the
intervals {[si, ei) : si, ei ∈ N0, si + pi = ei}. The model is

min
n∑
i=1

ciei (17)

s.t. NoOverlap({I1, ..., In}) ∀ i ∈ {1, ..., n} (18)
si ≥ ri ∀ i ∈ {1, ..., n} (19)
Ii = intervalV ar(pi, [si, ei]) ∀ i ∈ {1, ..., n}. (20)

Constraint (18) is the NoOverlap global constraint that forces jobs to be processed one
at a time. Constraints (19) ensure that jobs do not start before they are released.

Time-Indexed MIP Model. As several MIP formulations exist for 1|rj |
∑
wjCj , we use a

time-indexed formulation due to its strong performance over a variety of instances [15]. Let
xi,t ∈ {0, 1} be a binary decision variable which is 1 if job i is scheduled to start at time t,
and 0 otherwise. With T as the time horizon, an upper bound on latest completion time of
any job, the model is

min
n∑
i=1

T−pi∑
t=0

ci(t+ pi)xi,t (21)

s.t.
T−pi∑
t=0

xi,t = 1 ∀ i ∈ {1, ..., n} (22)

n∑
i=1

t∑
s=max(0,t−pi+1)

xi,s ≤ 1 ∀ t = 0, 1, ..., T − 1 (23)

ri−1∑
t=0

xi,t = 0 ∀ i ∈ {1, ..., n} (24)

xi,t ∈ {0, 1} ∀ i ∈ {1, ..., n}, ∀ t ∈ 1, ..., T − 1. (25)

Constraints (22) force each job to start exactly once. Constraints (23) ensure no two jobs
are processed at the same time. Finally, constraints (24) enforce the release dates.

7 Experimental Setup

The goal of our experiments is to test the generation of counterfactual explanations for the
PA-NCE. We do this by solving an initial forward problem, generating a user query, and
solving the resulting PA-NCE, focusing on the latter.

7.1 Problem Instance Generation
To generate PA-NCE instances, we create and solve a forward problem instance and then
generate a set of foil constraints that form the user query.

0-1 KP Instances. Each forward problem consists of n ∈ {20, 30, 40} items. For all instances,
profit ci and weight wi are both drawn independently from the random uniform distribution
[1, R] with R = 1000. The knapsack capacity is W = max{⌊P

∑n
i=1 wi⌋, R}, with P = 0.5.

Each instance was solved to produce an optimal solution, x∗.

CP 2021
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To generate the user query, m ∈ {5, 10, 15} items were randomly selected from {1, ..., n}
to create the set M. Each user assignment xpi , i ∈ M was set to the opposite value of x∗

i :
0 if x∗

i = 1 and 1 if x∗
i = 0. We obtain Xψ by adding the corresponding set of assignment

constraints xi = xpi , ∀i ∈ M, to the original constraint set X for MIP and CP, respectively.
Recall that in the PA-NCE, any restrictions on the feasible values of the modified parameters
d are expressed through the feasible set C. In addition to specifying that only the parameters
di, i ∈ M, can change, we also add the constraint d ∈ Nn0 . We generated 20 problem instances
for each combination of (n,m).

This instance generation procedure may result in an infeasible query if M forces the
knapsack to contain items that exceed its capacity. In this case, a new random set M was
generated until a non-empty foil set Xψ was found.

1|rj|
∑

wjCj Instances. Forward instances of size n = {5, 10, 15} were generated with the
random uniform distributions pi ∈ [10, 100], ci ∈ [1, 10], and ri ∈ [0, ⌊qP ⌋], where q = 0.4
and P =

∑n
i=1 pi. The time horizon T was calculated as T = ⌊qP ⌋ + P . We generate 20

instances for each value of (n,m), with tuple values given in Section 8.
The generation of a feasible set of foil constraints to assign the start times of a subset of

jobs is non-trivial for this problem. In an optimal solution for a given complete sequence of
jobs, all jobs are left-shifted subject to the release time constraints. Therefore, an arbitrarily
chosen start time for a job will not form part of an optimal solution unless it happens to
be equal to the job’s release date or to the completion time of another job in some optimal
sequence. Following the simple query generation approach used with the knapsack problem
is therefore likely to result in many infeasible explanation problems.

Therefore, to generate instances more likely to have feasible explanations, we follow a
different approach, although the infeasibility of some PA-NCEs remains an issue (see Section
9). We create a random permutation (ai)i∈M of m jobs in a randomly chosen subset M. We
then solve the original forward problem to optimality, constraining the jobs in M to follow
the selected permutation. Finally, we select the start times in the user query to be the start
times of the jobs in M from this solution.

Specifically, the constraints added to the forward problem were, for CP,

endBeforeStart(Ij , Ii) ∀ i, j ∈ M, ai > aj , (26)

which forces the end ej of interval variable Ij to be less than or equal to the start si of
interval variable Ii, ej ≤ si. For MIP, the constraints added were

T−pj∑
t=0

txj,t <

T−pi∑
t=0

txi,t ∀ i, j ∈ M, ai > aj . (27)

Finally, we add d ∈ Nn = {1, 2, ...}n as one of the constraints that define C in the PA-NCE,
restricting the modified weights to be positive integers.

7.2 PA-NCE Solution
Having generated our PA-NCE instances, ⟨cTx, c, C, X, || · ||1, ψ⟩, we solve them using our
two-step approach (Section 4): first finding the optimal foil xψ by solving ⟨c,Xψ⟩, and then
solving the corresponding inverse problem using xψ as the known solution. We test two
groups of algorithms, based on whether the forward problems were solved with CP or with
MIP. Notice that there are multiple forward problems involved in solving each PA-NCE
instance. First, there is the optimal foil problem ⟨c,Xψ⟩. Then, each iteration of the inverse
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(a) 0-1 KP. (b) Single Machine Scheduling.

Figure 1 PA-NCE Mean Solve Times.

algorithm uses a new d to solve a subproblem ⟨d,X⟩. We refer to the algorithms that use
CP for these forward problems as forward CP based, and the algorithms that use MIP for
these forward problems as forward MIP based.

For each of these two algorithm groups, we tested three inverse algorithms. The first
used CP in the master problem, while the second used MIP. The third inverse algorithm
applied the ESC to the subproblem when MIP was used for the master. We name the
complete two-step algorithms by first specifying the technique used to solve the optimal
foil problem (CP or MIP), and then specifying the inverse algorithm. For example, we
call CP/InvMIP-CP the algorithm that uses CP to find the optimal foil (step one) and
InvMIP-CP to solve the inverse problem (step two). We tested six such two-step algorithms
in total.

We also track the performance of CP and MIP for the initial forward problem ⟨c,X⟩.
While this is part of instance generation and not explanation generation, it is a useful proxy
for the performance of the solvers in the subproblem in the inverse algorithms. Additionally,
for all inverse algorithms, we take advantage of having an initial forward solution x∗ to
initialize the set of known solutions as S0 = {x∗}.

7.3 Computational Details
All two-stage algorithms were run for a global time limit tmax of 300 seconds (for both stages
together). If a PA-NCE instance was not solved within the global time limit, then tmax was
recorded as the solve time. For all inverse algorithms that used the ESC, the subproblem
time limit γ was set to 1 second. The MIP solver used was ILOG CPLEX V12.10 and the
CP solver was ILOG CPOptimizer V12.10. Experiments were run on a single core of a 2.5
GHz Intel Core i7-6500U CPU and all reported times are CPU times.

8 Experimental Results

Overall Performance. Figure 1 shows the solution times for the two-stage algorithms
for PA-NCEs and Figure 2 the solution times for the optimal foil problem and the initial
forward problem – note the log-scale on the y-axes. For the 0-1 KP, the MIP/InvMIP-MIP
and MIP/InvMIP-MIP(ESC) algorithms are by far the most effective, likely due to the
strong MIP performance for the forward problem. As mentioned, initial forward problem
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(a) 0-1 KP. (b) Single Machine Scheduling.

Figure 2 Mean Solve Times for Initial Forward and Optimal Foil Problems.

performance, shown in Figure 2a, is a good proxy for subproblem performance. This result
is not surprising given that MIP solvers are typically very good at working with knapsack
constraints.

For single-machine scheduling, the best performing algorithm overall is CP/InvMIP-
CP(ESC), partly due to the superiority of CP over MIP on the forward problem for instances
with n ≤ 10 (Figure 2b). However, for instances with n = 15, the success of CP/InvMIP-
CP(ESC) is due to the ESC modification, as demonstrated by its improvement over the
unmodified CP/InvMIP-CP algorithm in Figure 1b.

Early Stopping Criteria. For both problems, the early stopping criteria was clearly beneficial
for the forward CP based algorithm, InvMIP-CP, when n was sufficiently large. It had no
effect for smaller problems, because when a subproblem is solved to optimality within γ

seconds, the ESC is never met. Interestingly, the ESC did not produce improvements the
forward MIP based algorithm, InvMIP-MIP. Recall that the motivation behind the ESC
was to avoid solving the SP to optimality at each iteration. We speculate that the ESC
improves InvMIP-CP because it prevents CP from spending an excessive amount of time
proving that the subproblem solution is optimal. In contrast, we speculate that much less
time is spent proving subproblem optimality in InvMIP-MIP.

CP for Master Problem. When CP is used to solve the master problem, performance
is very poor: CP/InvCP-CP and MIP/InvCP-MIP both reached the time limit on most
instances (Figure 2a and 2b). The simple linear structure of the master problem lends itself
particularly well to MIP solving. However, we anticipate that CP may be useful in the master
problem for more complex explanation problems, for example to express more complicated
constraints on C, providing more control over how the objective parameters are allowed to
change.

Instance Breakdown. Tables 1 and 2 provide more detailed data on the performance of the
two-stage algorithms in terms of the number of instances solved optimally, proved infeasible,
and timed-out. There were a large number of infeasible PA-NCEs for larger scheduling
instances even with our approach for generating feasible foils. Even though these instances
have feasible foils by construction, there is no guarantee that a cost vector exists that makes
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Table 1 Number of 0-1 KP PA-NCE Solutions Optimal (O) and Timeout (T). Algorithm names
are split into the first (optimal foil) and second (inverse) stage components.

Foil CP MIP
Alg
Inv CP-CP MIP-CP MIP-CP CP-MIP MIP-MIP MIP-MIP
Alg (ESC) (ESC)

n m O T O T O T O T O T O T
20 5 1 19 20 0 20 0 1 19 20 0 20 0

10 0 20 20 0 20 0 0 20 20 0 20 0
15 0 20 20 0 20 0 0 20 20 0 20 0

30 5 0 20 20 0 20 0 0 20 20 0 20 0
10 0 20 19 1 20 0 0 20 20 0 20 0
15 0 20 14 6 20 0 0 20 20 0 20 0

40 5 3 17 11 9 18 2 3 17 20 0 20 0
10 0 20 1 19 15 5 0 20 20 0 20 0
15 0 20 2 18 10 10 0 20 20 0 20 0

Table 2 Number of 1|rj |
∑

wjCj PA-NCE Solutions: Optimal (O), Infeasible (I), Timeout (T).
Algorithm names are split into the first (optimal foil) and second (inverse) stage components.

Foil CP MIP
Alg
Inv CP-CP MIP-CP MIP-CP CP-MIP MIP-MIP MIP-MIP
Alg (ESC) (ESC)

n m O I T O I T O I T O I T O I T O I T
5 2 19 0 1 19 1 0 19 1 0 19 0 1 19 1 0 19 1 0

3 12 0 8 18 2 0 18 2 0 12 0 8 18 2 0 18 2 0
4 9 0 11 15 5 0 15 5 0 9 0 11 15 5 0 15 5 0

10 4 5 0 15 12 8 0 12 8 0 5 0 15 12 8 0 12 8 0
6 0 0 20 5 15 0 5 15 0 0 0 20 5 15 0 5 15 0
8 0 0 20 4 16 0 4 16 0 0 0 20 4 16 0 4 16 0

15 4 3 0 17 6 8 6 7 12 1 4 0 16 8 12 0 8 12 0
6 0 0 20 0 11 9 3 15 2 0 0 20 4 15 1 5 14 1
8 0 0 20 1 12 7 1 18 1 0 0 20 2 16 2 2 17 1

the foil optimal. This issue is discussed further in Section 9. In contrast, no instances were
infeasible for the inverse knapsack problems as any inverse 0-1 KP has a feasible solution in
which any items which are not included in the knapsack by xd have their profits set to 0.

Optimal Foil Problem. Results for finding the optimal foil are included in Figures 2a and
2b. Similar to most initial problems, MIP performed better for KP while CP performed
better for scheduling.

9 Discussion and Limitations

This paper develops methods to find nearest counterfactual explanations for a class of
optimization problems and user queries and introduces inverse constraint programming as
part of the solution methodology. Here we address the limitations of our approaches.

Counterfactual explanations are independent of the algorithmic decision making process
as they identify changes in the problem that would result in the user’s specifications being
met. However, they require that the changeable parameters are meaningful to the user. If
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this is not the case, then the user requires a higher level explanation of why those parameters
are used and how their factual values were derived: questions that touch on ethics, fairness,
and the broader human system surrounding the optimization problem [16].

Our approach cannot generate nearest counterfactual explanations for foil sets described
by more expressive constraints, as defined in the general NCE. The core challenge is that
the constraints admit a set of solutions and the NCE seeks a cost vector such that any one
of those solutions is optimal. As far as we are aware, there exist no inverse optimization
approaches to such generalizations. We were able to solve the PA-NCE because Theorem 3
guarantees the existence of an optimal foil and so standard inverse optimization can be used.
As the NCE is a bi-level optimization problem, one direction for future work on the more
general problem is to investigate techniques from discrete bi-level optimization [22].

Similarly, the NCE definition and our approach are limited to counterfactual values for
parameters in the objective function. Clearly, a user may want explanations in terms of
changes to constraints. The challenge is that such changes modify the feasible set of the
forward problem, complicating the inverse optimization formulation. We are not aware of any
general inverse combinatorial optimization approaches that can handle changes to constraint
parameters, though formulations have been investigated for specific inverse problems [27].
One direction for work on such problems may be to combine the approach here with existing
work in CP on explaining infeasibilities (Section 10). In continuous optimization, inverse
methods allowing changes to constraint parameters exist for linear programs [4].

In our formulation, a counterfactual query is an assignment of a subset of variables. How-
ever, we required that an explanation consist only of changes to the parameters corresponding
to the variables in the user query. While we argued above that such a restriction is often
useful due to parameter relevance and privacy, without it Theorem 3 does not hold and our
solution approach does not work. The challenge, as above, is that without this restriction, the
NCE requires finding a parameter vector such that any one of a set of solutions is optimal.

Finally, as described in Section 7.1 and shown in Table 2, the restrictions of PA-NCE may
make it difficult to generate queries with a feasible explanation. From a user’s perspective,
just as with forward optimization, a result that says that there is no world in which the
user’s decisions are possible is not particularly helpful. As far as we are aware this issue
has not been addressed in the broader literature of counterfactual explanations. However,
the generalization noted above of allowing constraint coefficients to change may be worth
pursuing for this challenge as well.

In spite of these limitations, the work in this paper substantially extends the scope of
counterfactual explanations for optimization-based decisions from a counterfactual query
on a single variable to queries on some or all variables, albeit with a restricted query form.
Furthermore, for the first time we have defined inverse constraint programming and solved
such problems through an adaptation and extension of work in inverse integer programming.

10 Related Work

We build directly on our previous work [16], which formulates the NCE and proposes the
connection to inverse combinatorial optimization. However, that work does not develop
an inverse optimization based solution approach, relying on the restriction that the query
must be a linear constraint over a single variable. This restriction allows NCEs with binary
decision variables to be solved in closed form given the solution to a modified problem, and
with binary search over a series of modified problems when the decision variables are integers.
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In ML, there has been a significant amount of research on counterfactual explanations for
classifiers [24], with highly influential work by Wachter et al. [25]. Although still nascent,
the work has already developed more advanced concepts such as diverse counterfactual
explanations [21] which could be extended to counterfactual explanations for optimization.

In AI Planning, a counterfactual explanation approach has been adopted in a number of
contexts, for instance to enumerate the shared properties of all possible counterfactual plans [7]
and to identify the differences between counterfactual plans and factual plans [10]. Further,
Brandao and Maggazzeni [2] recently used inverse optimization to generate explanations for
path planning, for which there exists a polynomial inverse algorithm.

In CP, the majority of work on explanations has focused on explaining infeasibility with
work on optimality being sparse [11]. To our knowledge there have been no attempts to explain
optimality using counterfactual explanations. For constraint satisfaction problems which are
solveable with inference only (no search), Sqalli and Freuder [23] generated explanations by
tracing the inference steps, and observed that, for the logic puzzles used in their experiments,
these explanations were very similar to those generated by humans. Subsequent research has
built on this approach [1] while acknowledging the limitation that, for problems that also
require search, tracing solver steps does not currently provide understandable explanations.

Explanation of infeasibility in CP has largely dealt with finding minimal sets of unsatis-
fiable constraints [14], and a parallel literature exists in mathematical programming [5]. We
have previously proposed [16] that such explanations could also be viewed as counterfactuals
(i.e., a set of constraints that must change) but this connection has not been developed.
Freuder [11] provides a recent discussion and overview of explainability in CP.

11 Conclusion

Counterfactual explanations answer a user query asking why, given a set of facts, an initial
decision did not satisfy some desired characteristics. The explanation is a hypothetical set of
facts that would have satisfied the user’s characteristics. Because they do not require the user
to understand the inner workings of increasingly complex and uninterpretable algorithms,
counterfactual explanations are drawing considerable research attention in AI. We build
on recent work on counterfactual explanations for discrete optimization by introducing
multi-variate explanation problems and solving them with the help of inverse optimization.

When a user is interested in an alternative, partial set of variable assignments, we show
how to generate an explanation in terms of changes to the objective parameters associated
with those variables. A counterfactual explanation can be found by first solving the original
problem with the addition of the user’s partial assignment constraints, and then solving a
corresponding inverse optimization problem. We solve the inverse problem with constraint
programming through a modification of an existing MIP cutting plane algorithm to develop
both pure and hybrid inverse constraint programming algorithms. In addition, we develop
a novel early stopping criteria that significantly improves inverse CP on larger problem
instances. Finally, through numerical experiments we demonstrate our solution approaches
for the 0-1 knapsack problem and a single machine scheduling problem, and show that
a hybrid MIP-CP approach can achieve superior performance compared to a pure MIP
approach, particularly when CP is state of the art for the underlying optimization problem.
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