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—— Abstract

We study last-mile delivery with the option of crowd shipping, where a company makes use of
occasional drivers to complement its vehicle’s fleet in the activity of delivering products to its
customers. We model it as a data-driven distributionally robust optimization approach to the
capacitated vehicle routing problem. We assume the marginals of the defined uncertainty vector are
known, but the joint distribution is difficult to estimate. The presence of customers and available
occasional drivers can be random. We adopt a strategic planning perspective, where an optimal
a priori solution is calculated before the uncertainty is revealed. Therefore, without the need for
online resolution performance, we can experiment with exact solutions. Solving the problem defined
above is challenging: not only the first-stage problem is already NP-Hard, but also the uncertainty
and potentially the second-stage decisions are binary of high dimension, leading to non-convex
optimization formulations that are complex to solve. We propose a branch-price-and-cut algorithm
taking into consideration measures that exploit the intrinsic characteristics of our problem and
reduce the complexity to solve it.
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1 Introduction

Last-mile delivery is defined as the movement of goods from a transportation depot to the
final delivery destination, which is typically a personal residence. Due to its importance and
competitive value, last-mile delivery has prompted many companies to seek creative and
innovative solutions.
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In this paper, we consider a setting in which a company not only has a fleet of capacitated
vehicles and drivers available to make deliveries, but may also use the services of occasional
drivers (ODs) who are willing to make deliveries using their vehicle in return for a small
compensation. Under such business model, a.k.a crowd shipping, the company seeks to make
all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles and
drivers plus the compensation paid to the ODs.

The advantages of crowd-shipping are numerous and are not only related to economic
issues, since the compensation for the ODs is generally less than the cost associated with
delivering using its own capacitated vehicles. If relying on the idea of individuals sharing
their potentially under-utilized property, sharing vehicles can lead to a reduction in polluting
emissions, energy consumption, noise and traffic congestion.

The application of crowd shipping alluded to above gives rise to new and interesting
variants of the routing problem. It has been addressed as an extension of the classical vehicle
routing problem (VRP) or the traveling salesman problem, being modeled under different
deterministic, stochastic and/or dynamic optimization approaches.

In this work we adopt a data-driven stochastic approach where we model uncertainty
as the probability of each customer to be delivered by an OD, a.k.a outsourced, or to
be absent. We name them skipped customers. This probability, modeled as a Bernoulli
distribution, should be easy to compute from historical data. Different from other crowd
shipping last-mile delivery works in the literature, we do not assume that the uncertain
events are independent ([8, 10, 13, 22]). Furthermore, because estimating correlations from
potentially high dimensional uncertainty historical data can be very difficult (as is our
case with many customers), we propose a worst-case probability approach where the joint
probability of customers uncertainty is not known. We are interested in analyzing the effect
of this assumption in the results when compared to the independent uncertainty assumption.

We consider a two-stage model with recourse. In the first stage, only the ordering in
which the customers will be visited is defined. The company’s vehicle routes are set only
in the second stage after the uncertainty is revealed. Furthermore, we assume that each
company’s vehicle can serve a limited number of customers. A route is defined by starting
at the depot, then following the order defined in the first stage, but skipping outsourced or
absent customers and returning to the depot if the maximum number of customers have
been delivered or if there are no more customers to be delivered. A new route is started from
the depot going to the next not outsourced customer and following the same scheme as in
the previous route. Potentially, many vehicle routes are set.

We are also interested in analyzing the potential cost savings associated with this recourse
when compared to the case of reoptimization, when a different optimal decision is made for
each scenario of uncertainty.

The main contributions and results of this work are:

A novel data-driven worst-case probability paradigm for crowd shipping last-mile delivery,
advancing the state-of-the-art in this topic. We model uncertainty in a way that it can
capture customers that are absent or outsourced to ODs.

A mixed-integer linear optimization formulation based on a distributionally robust
formulation solved with a branch-price-and-cut algorithm approach, where we can capture
characteristics of the problem to reduce the complexity to solve it.

Computational evidence on the capability of the proposed model, that reflects a more
realistic assumption of correlated marginals, to obtain solutions that can improve those
provided using more simplified assumptions.
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In what follows, in Section 2 we review relevant approaches to solve variants of the
problem and contextualize our approach. In Section 3 we elaborate on the literature on
distributionally robust optimization that we leverage to formulate our problem. In Section 4
we formally present our problem, the model and the formulation we have defined, exploiting
the problem’s characteristics to reduce the complexity of the algorithms proposed to solve
it. Section 5 details the algorithm developed to be able to solve larger instances. Next, in
Section 6 we present and discuss the computational results. Finally, in Section 7 we present
the conclusion of the work done.

2 Literature review

Here we focus on the literature most relevant to compare to our approach. We are interested
not only in crowd shipped last-mile related publications, but also in works that deal with
similar problems under the concept of customer uncertainty.

2.1 Crowd shipping routing

A seminal work on last-mile delivery with crowd shipping is proposed in [4]. The authors
study a deterministic approach where the customers’ locations and the ODs parameters are
input data. The model proposed is a combination of an assignment problem, where ODs
are assigned to customers based on pre-defined assignment rules, with a capacitated VRP
where routes are defined for vehicles passing through customers not served by ODs. For
each OD and customer combination, a compensation fee to be paid for the outsourcing is
also defined. Furthermore, each OD always accepts deliveries assigned to her/him. Under

these assumptions, a customer is only outsourced to an OD if the overall solution is optimal.

The pricing mechanism, meaning how compensation fees are defined, undertakes a critical
part of the algorithm and is discussed in more detail by the authors. The authors develop a
multi-start heuristic to handle instances with more than 25 customers.

Differently, in [5] the authors develop a dynamic solution alternative, where the solution
is adjusted every time new information is available. They consider a service platform that
automatically creates matches between parcel delivery tasks and ODs. The matching of
tasks, drivers, and dedicated vehicles in real-time gives rise to a new variant of the dynamic
pickup and delivery problem. They propose a rolling horizon framework and develop an
exact solution approach to solve the matching problem each time new information becomes
available.

The authors in [10] introduce a dynamic and stochastic routing problem in which the
demand, arrives over time, as also does part of the delivery capacity, in the form of in-store
customers willing to make deliveries. They develop two rolling horizon dispatching approaches
to the problem: one that considers only the state of the system when making decisions, and
one that also incorporates probabilistic information about future online orders and in-store
customer arrivals.

In [9], the authors consider stochastic ODs and define routes for the company vehicles and
the ODs based on their destination. They consider time windows when the ODs may appear
and use a two-stage model in which partial routes of the company vehicles are defined in
the first stage and, after the ODs are revealed, they adjust deliveries in the second stage. A
penalty is paid for non served customers. They develop a Mixed Integer Linear formulation
for the problem and special techniques to expedite the resolution. The stochastic solution is
based on a scenario approach and they assume a uniform distribution of scenarios. Results
are reported on instances with up to 20 customers and 3 ODs.
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In [13] the authors consider that customers can be offered or not to potential ODs and
that there is a known probability of them being accepted. They develop a heuristic to identify
which customers will be offered to ODs and what will be the exact expected value of the
associated solution by scenario enumeration. The probabilities of acceptance are considered
independent. Computational experiments are conducted on randomly generated instances of
15 customers.

2.2 Routing with customer uncertainty

One of the first works addressing routing with customer uncertainty was presented in [17]
that defines a problem of routing through a set of customers where only a random subset of
them needs to be visited: The Probabilistic Traveling Salesman Problem. Assuming that the
probability distribution is known and that it is equal to all customers and independent, the
authors derive closed-form expressions for computing efficiently the expected length of any
given tour.

In [6] the authors extend the previous work by considering a probabilistic variant of the
classical VRP, in which demands and/or customer presence are stochastic. They introduce a
recourse strategy where, in the second stage, not only absent customers are skipped, but also
the route is broken and a detour happens every time the capacity of the vehicle is reached.
Another contribution of the work is to elaborate on the need that many times arises of
looking for strategic planning solutions, where an a priori sequence among all customers
of minimal expected length is calculated, rather than solving the problem only when the
demand becomes known. Assuming that the probability distribution is known, different to
each customer and independent, they find closed-form expressions and algorithms to compute
the expected length of an a priori sequence.

To solve the two previous models, integer L-Shaped branch-and-cut algorithms were
proposed in [19] and in [14]. The authors could solve instances with up to 9 uncertain
customers.

A specialized branch-and-bound algorithm is presented in [2] for the probabilistic traveling
salesman problem under the a priori strategy. They adapt existing algorithms for the
deterministic traveling salesman problem using the closed expected value evaluation expression
defined in [17] and present numerical results for instances of up to 18 customers. The same
authors present in [3] another branch-and-bound approach, this time using parallelization
techniques, solving instances of up to 30 customers.

An approximation algorithm is presented in [18], for the VRP with probabilistic customers.
They propose a two-stage stochastic optimization set-partitioning formulation where, in the
first stage, a dispatcher determines a set of vehicle routes serving all potential customer
locations, before actual requests for service realize. In the second stage, vehicles are dispatched
after observing the subset of customers requiring service; a customer not requiring service is
skipped from its planned route at execution. A column generation framework that allows
for solving the problem to a given optimality tolerance is proposed. For a time limit of six
hours, instances of up to 40 customers were solved.

The works presented so far assume that uncertain variables are independent. Neverthe-
less, in many planning problems, the correlations among individual events contain crucial
information. The underlying correlations, possibly caused by some common trigger factors
(e.g., weather, holidays, geographic location), are often difficult to predict or analyze, which
makes the planning problem complicated. Estimating the correlations is hard, particularly
when this includes the huge sample size required to characterize joint distribution since they
are potentially high-dimensional. This can be our case, even when the estimation of their
one-dimensional marginals is rather accurate.
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Focusing on this issue from a general perspective, the authors in [1] study the possible
loss incurred by ignoring these correlations, and propose a new concept called Price of
Correlations (POC) to quantify that loss. They show that the POC has a small upper bound
for a wide class of cost functions, including uncapacitated facility location, Steiner tree
and submodular functions, suggesting that the intuitive approach of assuming independent
distribution may work well for these stochastic optimization problems. On the other hand,
they demonstrate that for some cost functions, POC can be particularly large.

Alternatives to the VRP with the assumption of independent uncertainty can be found
in the works of [12] and [15], where the authors model using concepts from distributionally
robust optimization (DRO), where it is assumed that probability distributions are not
completely known and a worst-case probability distribution formulation is optimized.

3 Distributionally robust optimization (DRO)

Distributionally robust optimization is a robust formulation for stochastic programming
problems and dates back to the work of [23], exploiting the concept of a worst-case probability
distribution (see, e.g., [7, 11, 16]).

In this modeling approach, after defining a set P of feasible probability distributions that
is assumed to include the true distribution P, the objective function is reformulated with
respect to the worst-case expected cost over the choice of a distribution in this set. This
leads to solving the Distributionally Robust Optimization Problem

i E DROP
min max plh(z, &), (DROP)

where h(z,£) is a cost function in z that depends on some vector of random parameters &,
and Ep is the expectation taken with respect to the random vector £ given that it follows
the probability distribution P. The set P is called the ambiguity set.

The ambiguity set P is a key ingredient of any distributionally robust optimization
model. It is a natural alternative when the question of how should one make decisions in
the presence of a large amount of uncertain data arises and the correlations are not known.
Since an ambiguity set only characterizes certain properties of the unknown true probability
distribution, its estimation requires fewer data and can often be done using historical records,
being suitable for data-driven approaches.

Since the introduction of distributionally robust optimization, several ambiguity sets have
been proposed (e.g., [11, 21, 24]). It is shown that under specific assumptions over these
ambiguity sets, many problems can be reformulated as convex optimization problems that
can be efficiently solved by commercial solvers.

4 Stochastic crowd shipping last-mile delivery with correlated
marginals

The two-stage approach defined in Section 1 is suitable under an a priori strategic planning
process. The first stage decision will minimize the average total cost considering all scenarios
under a worst-case probability paradigm. The total cost is given not only by the vehicle’s
routes cost but also by the total compensation fee paid to ODs.

ATMOS 2021
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A vital modeling decision of our approach is that uncertainty is customer-related. We
can express not only the customer absence, but also uncertainty related to outsourcing the
delivery service to an OD. It is different from the current crowd shipping last-mile delivery
models, where uncertainty is related to the OD (e.g. [9, 10]). It is suitable for planning
purposes and has the advantage that we can reduce the complexity of the problem to be solved
by not having to introduce explicit OD’s constraints, such as their quantity, capacity and
routes, in the problem formulation. In our model, this reflects intrinsically in the customer’s
Bernoulli probability distribution that can be estimated from available historical data.

We define a compensation fee to be paid to the OD for each customer. In our model,
it pays for only a small detour around each customer. It is equivalent to the idea that the
customer will only be crowd shipped if there is an OD located very near him. It is compatible
with the case where a delivery company would utilize crowd shipping with an emphasis on
reducing environmental impacts, like traffic and gas emissions, and not on transforming
it into an opportunity for professional services. Potential ODs are offered to outsource
customers against the defined compensation fee. If they are available, and therefore accept,
in the second stage the compensation fee is paid and the outsourcing is done.

A typical setting would be the use of in-store shoppers, who are willing to drop off
packages for online customers on their route back home. In return, these in-store shoppers
are offered a small compensation to reimburse their travel costs partially. As the participants
are usually free to use any means of transportation to perform the delivery, we refer to them
using ODs.

4.1 Problem formulation

Let G = (V,A) be a directed graph, where V = {0,...,N} is the set of vertices and
A = {(i,7)]i,j € V} is the set of arcs. Set V consists of a depot (vertex 0) and a subset
C' of customers’ represented by locations (C' = {1,...,N}). We assume that the graph is
symmetric, meaning that the cost or distance to transverse between two customers is the
same regardless of the direction. Such feature is exploited in the algorithms developed to
solve the problem. With each arc is associated a non-negative cost or distance c;;. This cost
or distance satisfies triangular inequalities. We also assume that the vehicles to be used as
the company fleet are identical and can serve up to ) customers.

Vector £ = (&1,...,&n) defines an uncertain scenario, §; = 1 iff ¢ € C is skipped, 0
otherwise. The support of the joint distribution, =, includes all possible combinations of the
scenario’s components. We index scenarios using indicator w € W. For each scenario with
customer i being skipped there is a marginal probability, m;, and a compensation fee, f;,
associated. As a remark, note that f; is the compensation fee paid to the OD, weighted by
the probability of the customer being outsourced. We assume that the uncertain components
are not independent and the joint distribution is unknown.

We initially formulate our problem as in (DROP), where now h(z, £) is the cost of delivery
of the second stage routes and z defines the first-stage ordering.

To reduce complexity of the algorithm, we reformulate the problem exploiting some of its
characteristics, as follows. We define our ambiguity set as

P ={P|P{¢ € E} = 1; marginals m; for & =1, i € C},

and since our uncertainty is binary, we reformulate DROP as in Proposition 1.
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» Proposition 1. Formulation DROP applied to our ambiguity set can be reformulated as

min S—E m;u;
z€EZ

ieC
st s— Zﬁ:”ul > h(z,w) YweW (DROR)
ieC
s>0,u; >0 VieC

where s, u;, i € C are dual variables defined in our reformulation. We abuse notation
and express the second-stage cost function now in terms of the first stage variables and the
uncertainty index, h(z,w).

Proof. We defer a step by step reformulation to Appendix A. |

The next step is to define the first and second stage formulations, including the cost

function h(z,&). The first stage is defined solely by a ordering for serving the customers.

The following variables are used:
First-stage main variable
z;j = 1 iff customer i is served before customer j.

First-stage auxiliary variables
1

z; ;. = 1 iff customer r is served in between customers ¢ and j
22 ;- = L1iff customer r is served before customers ¢ and j

s
23 ;- = Liff customer r is served after customers i and j

Js

The second stage is defined in a way that we can calculate the cost of a route given the
ordering of the first stage and the scenario to be considered. We define the following sets of
main and auxiliary second-stage variables, where now we include the depot in the ordering
as it will be always the first and last to be served in each route:

Main variables

Yw,i,; = 1 iff, for scenario £*, depot or customer j is served right after depot or customer

1. This means that all customers r in between 7 and j are outsourced in this scenario.

Vy,i,; = 1 iff, for scenario £", vehicle capacity, @, is reached at customer ¢ and j is the
next not skipped customer. This means that before customer i, in scenario £, there
are k@ — 1 customers, where k € {1,..., [%J} and that all customers r in between i

and j are outsourced in this scenario.

Auxiliary variables

yl ., = 1iff, for scenario £€¥ and given a ordering of customers, there are ¢ customers

before i, t € {0,...,|C| — 1}. It indicates the position of a customer for each scenario.

We can now define the cost function h(z,&). The cost function sums up the cost of each
arc transpassed considering all routes plus the cost of the outsourced customers. We have
already stated that each variable ¥, ;; = 1 defines an arc that is transpassed and each
variable v, ; ; = 1 defines a detour to the depot. This way we define the cost function as

h(z,w) = Zfi'fiw + Z CijYw,ij t Z (ci0 +Coj — Cij)Vw,igs (1)
i€C i,jEV i,jEC
i#] i#]
where we index uncertainty with indicator w.
With all variables and cost function defined we reformulate DROR as in Proposition 2.
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» Proposition 2. With variables and cost function defined, Formulation DROR can be
reformulated as

min s+ Z miu; (DROC)
ieC

s.t. s+ w€ =Y fill Y Cigyuig+ D (G0 oy — Cig)vuiy
icC ieC i,jeEV i,5€C

Zij+ 25 =1

Zig + Zjr + 2 <2
1

Zi,j,’l’ Z Z’i,']' + ZT‘,j — 1
2
Zijr 2 Zrg T 25— 1

3
Zijo 2 Zig 2 — 1

Yw,i,j Z 1- gzu +1- é-;u + Zi,j + Z( ;Uzil,j,r + Zi2,j,'r + Z’ij,r) - |C|

reC
Yo 21— &+ (62 +25) —[Cl+1
jeC
Yui0o 2 1= &+ Y (EFzi5+2:) — O] +1
jeC
Vew,i,j = Yw,ig T Z y}u,i,kal -1
kefl,.., [ 18}
Zy'i)zt =1-¢"
te{0,...,|C|—1}
Dotyhie < 1=z
te{0,...,|C|-1}  jeC
Zy}u,i,t S 1
ieC
s>0,u; <0
zilyj’r, Zz'Q,j.,r’ zf’jm €1[0,1], z,; € {0,1}

1
Yuw istr Yw.irjs Yw,0,ir s Yw,i,05 Vw,inj € [0,1]

where the constraints and variables are valid Yw € W, Vi,j,r € C,i # j # r, and Vt €
{0,...,]|C| — 1}, when not stated otherwise.

Proof. We defer a step by step reformulation to Appendix B. |

5 Algorithm

Formulation (DROC) is challenging to solve. Not only it englobes an NP-Hard linear ordering
problem based on binary z; ; variables with a weak linear relaxation, as evidence by our
experiments, but also, it is defined by an exponential number of constraints and variables
indexed by uncertain scenarios. To solve it we propose a branch-price-and-cut algorithm
(BPC). Algorithm 1 summarizes the main steps undertaken to perform BPC'. The directives
of the implementation of the algorithm are:
A customized branching rule based on the incremental ordering of the sequence of the
visit of the customers. This branching rule permits that we fix many binary variables
simultaneously to their lower or upper bounds at a node while producing feasible regions
of equitable sizes after branching.
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A symmetry breaking strategy to limit the number of branchings. This is a way to
eliminate partial orderings of customers that will not contribute to arriving at an optimal
solution and therefore gain greater computational efficiency by eliminating nodes of our
branching tree.

At each node solve a relaxed restricted version of the formulation. The restricted version
is composed of a finite number of scenarios.

Initial tests indicate that the node relaxation is weak and may consume significant time.
On the other hand, the independent marginal distribution version of the formulation
provides a lower bound that is easy to calculate at each node. We then use this alternative
as a lower bound to prune the nodes before proceeding with the calculation of the relaxed
restricted version of our problem.

Each node is solved to optimality and is pruned by its lower bound.

Each node’s integer solution is validated against new scenarios. A separation subproblem
with a column and row generation approach is used to separate invalid integer solutions.
New scenarios inserted re-initiate the process of solving the node relaxed problem.
Valid integer solutions are tested against the incumbent solution and the correspondent
node is pruned afterwards.

Fractional solutions are branched.

The algorithm runs until no more nodes are available to test or when a time limit is
reached

Algorithm 1 Branch-price-and-cut (BPC) algorithm.

Input > Q, set C, vectors ¢, f,m
Initialize

//Nodes list +— root node, Incumbent solution <+ Heuristic, Lower bound + —oo

while There are still nodes to be branched in the Nodes list do

Node Select > Select node based on search criteria
Initialize scenarios > Add scenarios from parents node
Prune > by Independent lower bound
while There are still scenarios to be added do
Solve
Prune > by Node solution-lower bound
Scenario Separation subproblem > If integer
end while
Update if new Incumbent solution > Prune if better value
Branch node
Prune > by symmetry
Update Nodes List
end while

Return optimal solution - order of customers to visit and expected cost

Appendix C details the implementation of each feature of the algorithm.

6 Experiments and Computational Results

For this Section, the objective of our experiments is two-fold: we want to analyze the effect
of considering dependent marginals from a solution perspective and we are interested in
analyzing the effect of the recourse strategy defined for our problem. To pursue this objective,

ATMOS 2021
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we implement additional algorithms to compare the solution of the different approaches.
All algorithms are coded in Julia ([20]) using JuMP package and Cplex 12.7 and run in an
Intel Xeon Cluster. A limit of 25200 seconds (7 hours) of computing time is given for each
instance.

6.1 Instances

As test instances, we adapt the ones in [22], generated from instances in the TSPLIB by
truncating them to the first n + 1 vertices (one depot and n customers) for different values of
n and assigning values to m; and f; according to different criteria. The number of customers
used is |C| € {6, 10,14, 18}. Five instances for each number of customers are generated.
The compensation fee f; for each customer 7 is set to a fixed small value, to avoid zero
compensation fees, plus a value proportional to the minimal detour considering all pairs
of customers r,j € C,i # j # r and given by jnrlie%cj’i + ¢ — ¢jr. We assume that the

pairs (m;, f;) generated are coherent, meaning that the compensation paid will reflect the
associated probability to skip customers.
. , o _ el
The professional fleet vehicle capacity is defined by Q = {T .
With the instances generated from TSPLIB, we create 4 different sets of instances based
on specific probability assignment rules as described below, arriving at 80 instances. All

results presented by the number of customers is an average of all of their respective instances.

Instance Set A- Probability m; is linearly proportional to the vertex’s distance from the
depot, with m; = 0.95 for the farthest delivery point.

Instance Set B- As in set A, but we assigned probabilities with inverse proportionality to
their distance from the depot. The rationale is that, in real applications, far delivery
points might be inaccessible and harder to crowdsource.

Instance Set C- Here we assume that all probabilities are equal, having m; = 0.3.
Instance Set D- In this case, we select probabilities at random.

6.2 Additional algorithms

We present in Table 1 a general description of different variations of Algorithm BPC. These
variants were developed to run exact solutions to similar problems found in the literature,
but using the same algorithmic approach that we have established for BPC. We want to
compare solutions and time performance of these different problems and algorithms.

Table 1 Algorithms variants.

Algorithm Code Description
INDPCAP Independent Marginals
DETM Deterministic version
REOPT Reoptimization strategy

6.3 Price of correlation

In this section, we analyze the effect of considering dependent marginals. For doing so, we
run a set of instances against our algorithm but also against algorithm INDPCAP that
implements the same recourse but considers marginals independent. For a particular problem
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Table 2 Price of Correlation.
Indep is the % savings average when compared to deterministic solution for INDPCAP.
Dep is the % savings average when compared to deterministic solution for BPC.
CG is the correlation gap average, as defined in Section 6.3.
We use the best solution provided by the algorithm under the time limit.

Set A Set B Set C Set D

|C| Dep Indep CcG Dep Indep CcG Dep Indep CcG Dep Indep CcG
6 44.26 51.92 1.31 14.12 37.72 1.38 13.54 34.75 1.32 30.08 40.82 1.33
10 49.98 59.00 1.40 26.08 50.53 1.63 18.90 45.58 1.49 30.75 52.11 1.44
14 48.04 54.34 1.44 23.69 45.96 1.52 18.05 38.74 1.33 27.81 42.99 1.33
18 44.55 52.02 1.44 26.82 47.76 1.44 17.28 40.19 1.43 25.84 44.19 1.34

instance, let z; be the optimal decision assuming independent marginals distribution. [1]
define an indicator called correlation gap (CG) as an upper bound to the price of correlation
(POC), that is given by

o E[PD(ZI) [h(zla 6)]
CC= TR hGre)]

where P! is the independent Bernoulli distribution with marginals m;, and PP(1) is the
worst-case distribution for decision z;.

We use the same indicator as a measure of the effectiveness of using a worst-case
distribution formulation. A small C'G indicates that the decision-maker can take the
independent marginal distribution solution as an approximation of the worst-case distribution
without involving much risk.

Table 2 presents, for each set of instances, the percentage of savings achieved by algorithms
INDPCAP (Indep) and BPC (Dep) solutions. It also shows the correlation gap (CGQ)
calculated for these solutions. We note that the absolute saving values of each algorithm are
not as important - as that depends strongly on the compensation fees - as the relationship
between them. We can see that the correlation gap (C'G) indicates variations in the range
of 31 % up to 74%. There is not a determinant difference between the C'G indicator for
different sets of instances. For many applications, this gap can be already beyond what
would be acceptable as an approximation. We can observe that savings of the Indep solution
are always larger than savings of the Dep solution which is coherent with the fact that the
independent marginals solution is a lower bound to the correlated marginals solution. We
can observe also that the savings associated with Set A are always greater than the savings
for all the other sets of instances. Set A is constructed in a way that the probability of
outsourcing for customers that are distant from the Depot is higher.

6.4 Quality of recourse solution

In Table 3 we compare the solution of our recourse strategy, BPC, to solutions provided
by the algorithm that implements reoptimization strategy, REOPT. The two solutions are
given as a percentage of savings when compared to the deterministic approach, DET M, and
were run for small instances only to be able to calculate exact reoptimization solutions.

For the instances that were run, the gaps between BPC and REOPT solutions are very
small. There is even no gap for the very small instances. We observe gaps larger than zero
for the larger instance. Intuitively, we can see that for larger instances there is even more
flexibility to rearrange the ordering of customers in a reoptimization strategy which can
result in larger gaps.
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Table 3 Quality of recourse solution.
SolREOPT is the % savings average comparing to deterministic solution for REOPT.
SolBPC is the % savings average comparing to deterministic solution for BPC.

Set A Set B Set C Set D

|C] SolREOPT  SolBPC  SolREOPT  SolBPC  SolREOPT  SolBPC  SolREOPT  SolBPC

6 44.26 44.26 14.12 14.12 13.54 13.54 30.08 30.08
10 49.98 49.98 26.08 26.08 19.37 18.09 30.97 30.75
14 50.89 48.04 26.72 23.69 21.25 18.58 28.66 27.81

Based on the instances run, we conclude that our recourse strategy works as a good
alternative to the more flexible reoptimization strategy.

7 Conclusion

We present a novel exact solution approach for the stochastic crowd shipping last-mile delivery
problem where marginals are correlated, advancing the current state-of-the-art in this topic.
In our approach, it is possible to capture customers that are absent or outsourced to ODs,
providing a good tool to be used for a priori strategy planning solutions. We consider a
worst-case joint uncertainty distribution.

We have analyzed under what conditions this approach can be relevant using the concept
of the price of correlation and show that, in many cases of the instances, studied, the defined
correlation gap is higher than what would be tolerated as an approximation of the problem.

Overall, we compare the solutions of the developed algorithm BPC against different
exact solution algorithms using the same branch-and-bound method (e.g., one algorithm
assuming independent marginals and another with an uncapacitated one vehicle with only
one route). This comparison shows that the obtained solutions improve over the others,
where more simplified assumptions are considered, and can help decision-makers in their
work to obtain more competitive solutions.
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A  Proof of Proposition 1

Our objective is to reformulate the inner maximization problem of our initial formulation

min max Ep[h(z,§)], (2)

given that our ambiguity set is defined as

P ={P|P{¢ € E} = 1; marginals m; for §; =1, i € C}, (3)

Based on the definitions (2) and (3) we can formulate the inner maximization problem of
(2) as

max Ep[h(2,¢)] (4)

s.t. P{ceE} =1 (5)

P has marginals m; for components & = 1,1 € C (6)

We now index the uncertainties ¢ with indicators w and introduce variable p,, > 0 as the
probability associated with each scenario in P. We can then reformulate our inner problem as

max Z Puwh(z,w) (7)

weW

s.t. Z pw =1 (s) (8)
weW
> pw = mi VieC (us) (9)
weW

where we introduce dual variables s and u;. Note that we use sign >, instead of =, for
constraints (9). It can be done since the solution to our problem will satisfy these constraints
at equality. We then restrict to non positive dual variables u;.

Since the formulation above is always feasible (the independent marginals joint distribution
will always be a possible solution to this problem), we dualize and arrive to

min s+ Zmlu, (10)
i€C

s.t. s+ Zfz’”ul > h(z,w) Yw e W (11)
i€C

s>0,u;<0,VieC (12)

where we can restrict s > 0 because the right side of (11) is always non negative and variables
u; are non positive.

We then merge our inner reformulation to the outer minimization problem. We arrive to
the formulation of Proposition 1:

min 5 — Zmiui (13)

z€Z
ieC
s.t. s — Zﬁ,’”uz > h(z,w) Yw e W (14)
ieC
s>0,u;>0,VieC (15)

We note that one can easily verify that, at optimality, the duals of constraints (14)
correspond to the worst-case probability associated to each scenario, since they reflect the
probability of each scenario in the original formulation.
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B Development of complete reformulation in DROC

With first-stage variables defined, the constraints associated with the first stage are,

zij+z=1 (16)
Zig+ Zjgr+ 2ps <2 (17)
zilw < Ziy (18)
% < 2rj (19)
Zil,j,y- > Zigp+zry—1 (20)
Pir < 7 (21)
225 < 2 (22)
P22tz —1 (23)
3w < Zig (24)
S < Zir (25)
2250 > zip + 2jp — 1 (26)

where all constraints are valid Vi, j,r € C, i # j # r.
Constraints (16) and (17) define the ordering feasible region for the first-stage binary

variables z; j. Constraints (16) state that either customer i is served before j or the contrary.

Constraints (17) are the so called 3-dicycle inequalities. They state that if customer i is
served before j, and j is served before r, r cannot be served before i. Constraints (18) to
(26) position customer r with relation to customer ¢ and j. For example, constraints (18)
to (20) state that customer r will only be served in between ¢ and j if it is served after i,
before j and only if these two conditions happen simultaneously. The other constraints have
analogous purpose. Since we are concerned with a minimization problem, constraints (18),

(19),(21),(22),(24) and (25) are redundant and can be eliminated from the final formulation.

Also, variables z} o 22 ;- and 23 ;- are naturally integer and integrality requirements for

these can be relaxed.

T

The second-stage is defined in a way that we can calculate the cost of a route given
the ordering of the first stage and the scenario to be considered. Due to the format of the
resultant feasible second-stage region, where uncertainty parameters appear not only at
the right hand side of constraints, but also as bilinear coefficients with first stage variables,
we opt for equivalently defining the second stage with first-stage variables indexed by the
indicator w € W = {1,...,|E|}, meaning there is one variable for each possible scenario.

With the sets of main and auxiliary second-stage variables defined, we first define
constraints relative to the auxiliary variables, valid Vi € C, Vw € W and Vt € {0, ..., |C|—1},
when not stated otherwise:

Z y'tlvzt =1- 52’” (27)

te{0,...,|C|—1}

Dty <Y (1892 (28)

te{o,...,|C|-1}  jeC

qulmt <1 (29)

i€C

Constraints (27) state that a customer i can only be associated to one and only position
t, if customer 4 is not outsourced in the referenced scenario. Otherwise there is no assigned
position. Constraints (28) assigns of a position to each customer ¢ based on the expression
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> jec(l —&}")zj,i, that counts the number of customers before i in the referenced scenario
(note the < sign of the constraint to accommodate the case when ¢ is outsourced). For this
reason we add constraints (29) that assure a maximum of 1 customer for each position ¢ and
guarantee together with the other constraints a natural binary solution. We can therefore
relax integrality requirement for y}mi’t.

We next define constraints for the variables y,, ; ;. Note that ¥, ; ; = 1 means that there is
an arc linking customers or depot 7 and j in scenario £ and this arc is part of a route defined
in the second stage. The constraints below are valid Vw € W and Vi, j,r € C, i # j # r.

30
31
32
33

Yw,ij <1 =&

Ywij <1 =&

Yw,ig < Zij

Yw,ig < f:jzil,jﬂ. + sz,,. + zf’,jﬂ.
Yuij = (1=&") + 1 =&) + 2

(30)
(31)
(32)
(33)

+ Z( :’Uzil,j,r + ZiQ,j,r + Z?,j,r) - |C‘ (34)
Yw,0i <1 =& (35)
Yw,0,i < &' 250+ 2ij (36)
Yu0i 21—+ Y (20 +25) —|C|+1 (37)

J
Yw,io <1 =& (38)
Yw,io <& zig + 25 (39)
Yuio =1 =&+ (€025 +2.) — IC|+1 (40)

J

Constraints (30) to (34) determine the condition for an arc (4, j) to exist in a second
stage, if ¢ and j are not the depot. Variable y,,; ; = 1 only if 1) ¢ is not outsourced (30),
2) if j is not outsourced (31), 3) if ¢ is served before j (32) and, 4) for all other customers
r,  is positioned before i and j (z7,, = 1) or after i and j (z;, = 1) or, if positioned in
between i and j (z};, = 1), it is outsourced (£ = 1). This is guaranteed by constraints
(33). Constraints (34) guarantee that all these conditions have to happen simultaneously.
Constraints (35) to (37) and constraints (38) to (40) work in an analogous form when one of
the nodes of the arc is the depot (0). Because this is a minimization problem, constraints
(30), (31), (32), (33), (35), (36), (38) and (39) are redundant and can be eliminated in the
final formulation. Variables ¥, ; ; are naturally binary and the integrality requirement for
these variables can be relaxed.

Constraints for variable v, ; ; are defined below. If variable v, ;; = 1, it means that
the capacity of a vehicle is reached at customer i and, so, a detour should be performed
by returning to the depot and coming back to customer j. This way, variable v,,; ; defines
when one vehicle route reaches its ends and another vehicle route should be initiated. The
constraints below are valid Vw € W and Vi, j € C, i # j.
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Vuw,ij < Z Y kQ—1 (41)
ke{l,...,L%J}
Vw,ij < Yuw,i,j (42)
Vuig 2 Ywig+ D, Ywikgo1— 1 (43)
kel | 1G]}

Constraints (41) guarantee that capacity is reached at customer ¢ only if it occupies special
positions in the ordering of customers relative to the scenario in reference. These positions
are given by kQ — 1, where k € {1,..., L%‘J }. Constraints (42) determine that the return is
made to the next not outsourced customer, if it exists. Constraints (43) determine that all
conditions should happen simultaneously. Again, because this is a minimization problem,

constraints (41) and (42) are redundant and can be eliminated in the final formulation.

Variables v, ; ; are naturally binary and the integrality requirement of these variables can be
relaxed.

C Detailed implementation of algorithm BPC

In the next subsections we detail the implementation of each feature of the Algorithm 1.

C.1 Branching

We create a search tree with no customers pre positioned at the root node. From the root
node, |C| branches lead to |C| nodes on the first level, each of which corresponds to a
particular customer being positioned in the first position. Generally, each node at level [

in a tree corresponds to a set J; C {1,...,|C|} filling the first [ positions in a given order.

By successively placing each customer j (j € C\J;) in the (|J;] + 1)-th position, |C\J;| new
nodes are created.

A node selection is done by use of a depth-first search strategy, i.e. the node selected is
the one, among unprocessed nodes with maximum depth in the search tree. This way we
navigate the tree prioritizing the search of new incumbent values. The scenarios accumulated
in the solution of a parent node are transmitted to all downward children of the tree.

C.2 Independent marginals lower bound

The authors in [6, Theorem 1 Strategy b] present a closed expression to, given an ordered
route, calculate the a priori expected cost under the recourse strategy we have defined for our
problem, when marginals are independent. It can be calculated in polynomial time. Since
an independent marginal distribution provides a lower bound to our case, we can use it as
a means to prune the nodes of the branch-and-bound tree. Each node of our tree defines
a partial ordering of the routes to undertake. To approximate the independent marginal
expected cost from below we assume that all remaining customers not sequenced in the node

ordering have same costs and probability, given by the best or minimum values among them.

Since we run under a depth-first search strategy, each iteration of a same branch of the tree
provides a better lower bound. Also, we do not have to recalculate the lower bound from the
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beginning at each node, and can reuse partially the lower bound calculations of the parent’s
node. The last level of the tree provides an exact independent marginal expected cost for
the respective route.

Let r be a route defined by an ordered sequence of visited customers, C, and let r(7)
represent the i-th planned visit in r (with ¢ = 0,47 = N + 1 meaning the Depot and
M0y = Mp(n+1) = 0, ¢r(0),r(N+1) = 0). For completeness, and adapting to our case with
compensation fees to be payed to ODs, the expression for the a priori independent marginals
expected cost for a given route, E(r), is given by

N N+l j—1
E(r) = Zfzmﬂrz > <1—mm )1 —my) ] mra)) Cr(i)(j)

1=0 j=i+1 l=i+1

(44)
N N
+D D (i) + Cr0) ) — Erti)r()) ey (1 H My
i=1 j=i+1 l=i+1

1]

where v,y = 0,4 € {1,...,Q — 1}, vri) = (1 — my() Zs 1 —1,kQ —1),7 > Q, and
k=1

s(b,r) expresses the probability of exactly r customers among the first b customers being

not outsourced and is computed by recursion: For b = 1,...,N,r = 1,...,b, s(b,r) =
b
(1 —=my@y)s(b— 1,7 — 1) +my)s(b — 1,7), with initial conditions s(b,b) = H(l — M),

=1
s(b,0) = [T0_, mes).

C.3 Scenario separation problem

Formulation (DROC) can be understood as a two-stage robust optimization problem with
exponential number of scenarios and second stage variables. To solve it, we adopt the
algorithm developed in [26] where the authors present a constraint-and-column generation
algorithm to solve two-stage robust optimization problems. They argue that enumerating
all the possible uncertain scenarios is not feasible, but that not all scenarios (and their
corresponding variables and constraints) are necessary in defining the optimal value. Probably
only a few important scenarios play the significant role in the formulation. The authors
emphasize that it is different from the 2-stage stochastic optimization model where every
single scenario in the scenario set actually contributes to the optimal value through its
realization probability. They also show that the algorithm converges in a finite number of
iterations.

Let 3, @, 2, 21, 22, 23 represent the values of variables s, u, z, 2!, 22, 23, respectively,

after solving a node restricted problem with integer solution for these variables. The
separation problem is given by
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min 5+ Z Wi — Z fi&i — Z CijYirj — Z(Ci,o +co,j = €i,j)Vij
&,y,0,yt

ieC ieC hjEV i
Yijg > 1—=&+1 =&+ 2,
+ Z(&rrzﬁi,j,r + ZA2i,j,'r +2350) — |C]
”
Yij S1—6&
Yig < (L—&5)2,
Yij < Erzlijir + 2250 + 2% 0
Yo >1—& + Z(fjfm +2ij) — [Cl+1
j
Yo, <1 =&
Yo,i < &iZji+ Zig

yio>1—&+ Z(fjfi,j +254) —|Cl+1

J
Yi0 <1-& (SEP)
Yi,0 S &§5Zij + 25

1
Vij 2 Yijt+ Z Yik@-1—1

ke{1, L%‘J}
Vi,j < Z Yikg-1
ke{1 I_%J}
Vi, j < Yi,j
vie =1-&

te{0,....|C|-1}

ol <D (-2

te{0,...,|C|—-1} jec
S uli<t
ieC
Yi,js Y0,i> Yi,0, Vi,j € [Oa 1]’& € {05 1}7
where the constraints below are valid Vi, j,r € C, i # j # r, when not stated otherwise.

If the objective value of problem (SEP) is greater than a given tolerance value we insert
the respective value of the scenario solution into our restricted node formulation, together
with the respective new variables v, y' and v and new associated constraints of problem
(DROC), and restart the node solving step of the algorithm .

C.4 Symmetry breaking implementation

The recourse strategy is composed by two components. The first one is defined by skipping
the absent customers. The second one is defined by adding detours when a vehicle achieves
its capacity at a customer position.

For the first component, there is clearly symmetry since, for any scenario, traversing the
route in one direction and skipping absent customers has the same cost as traversing the
route in opposite direction. If the recourse is to be defined only by the first component, we
can implement a symmetry breaking strategy by ordering the customers lexicographically
and filtering all branch nodes where first and last customer in the node ordering cannot
be crescent (or decrescent). Since this is valid for all scenarios, it can be used by both the
independent marginals and dependent marginals cases.
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For the second component there is no symmetry, since the order of traversing the route will
define different nodes where the vehicle will achieve capacity and, therefore, different detour
costs. There is a lexicographical order of the customers that will lead to a better solution,
but identifying that order while solving each branch-and-bound node of our algorithm can
be time costly. On the other hand, there are calculations that can be shared by both
lexicographical orders during the execution of the algorithm. For instance, calculations for
the first component of the recourse, skipping absent customers, can be made only once since
this cost is the same for both lexigraphical orders. To profit from the time saving incurred
by sharing these calculations we adopt the lexicographical ordering branching filter also for
the recourse with the two components. We use the same node to calculate lower bounds for
the two orderings, by sharing possible calculations, and consider the minimum lower bound
or feasible solution as a result for this node. Note that this adds to the possibility of sharing
calculations between a parent and child in the depth-first branching strategy.

C.5 Initial Incumbent solution

For an initial incumbent solution we leverage the work done on heuristics for the probabilistic
traveling salesman problem. We refer to the work of [25] where the authors consider different
heuristic approaches for this problem. In particular, we adapt the Almost Nearest Neighbor
Heuristic ([25]) to our case. By doing this, we attempt to find a solution with a maximum
lower bound. Considering independent marginals, we search for an ordering of customers
where we append the customer with the lowest change of expected length from the last
inserted customer to the tour. For a given set T of customers already inserted in a tour, the
cost of inserting customer j can be computed as

T |T|
i 1— m )1 —m.)es H ,
Jgg{lT ‘ ( m;)( mj)ci,j ' Mk,
=1 k=i+1

We solve problem (DROC) using the heuristic solution above and use its value as our
first incumbent.
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