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Abstract
The periodic event scheduling problem (PESP) is a well researched problem used for finding good
periodic timetables in public transport. While it is based on a periodic network consisting of events
and activities which are repeated every period, we propose a new periodic timetabling model using
a non-periodic network. This is a first step towards the goal of integrating periodic timetabling
with other planning steps taking place in the aperiodic network, e.g. passenger assignment or delay
management. In this paper, we develop the new model, show how we can reduce its size and prove its
equivalence to PESP. We also conduct computational experiments on close-to real-world data from
Lower Saxony, a region in northern Germany, and see that the model can be solved in a reasonable
amount of time.
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1 Introduction

An important aspect of optimising public transport is finding a good periodic timetable.
From the passengers’ point of view, short travelling times are desirable, which can be achieved
by making the timetable as tight as possible. This problem is known as the Periodic event
Scheduling Problem (PESP) and is well researched. It uses a periodic event-activity network
in which each node represents many arrivals or departures, namely one per period. In this
paper we develop a new model for the PESP in a (larger) aperiodic network. We first give
our motivation why such a model is needed.

Tight periodic timetables minimise travelling times, but are very prone to delays which
are inevitable in reality and highly dissatisfactory for the passengers. Hence, apart from short
travelling times, a good timetable should also have some degree of delay resistance. Many
concepts and ideas on how to increase robustness of a timetable against delays exist, see [15].
However, none of these approaches uses the promising concept of recoverable robustness
introduced by [13]. The aim is to find a periodic timetable with small travelling times such
that in every delay scenario from a given set it is possible to find a disposition timetable
which fulfils some quality criteria. To this end, we have to integrate timetabling and delay
management. Timetables are determined in a periodic network, but delay management is
done in an aperiodic network, since in general delays do not occur periodically. In order to
integrate delay management into timetabling, we hence have to find a way to solve both
problems in the same network. The same holds for integrating passengers’ assignment since
also the demand does not occur periodically.

One way for such an integration is to develop a timetabling model which computes a
periodic timetable in an aperiodic network, which is the goal of this paper. We call the new
model Periodic Timetabling in Aperiodic Network (PTTA).
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9:2 Solving PESP: An Assignment Approach in Non-Periodic Networks

Periodic timetabling is well studied in the literature. The PESP was first introduced
in [27]. It aims at finding a feasible periodic timetable. Instead of only considering the
feasibility problem, one can also consider different objective functions. In [17] this was done
by minimising the waiting times of the transferring passengers. An alternative formulation
which can be solved much faster uses cycle bases, see, e.g. [17, 9, 21]. The problem was
solved with a branch-and-bound approach in [16] and with a genetic algorithm in [19]. The
modulo simplex [18, 7] and a fast matching approach [20] are more recent heuristics for
solving PESP. An approach running several solution methods in parallel was presented in [2].
Computing a periodic timetable in an aperiodic network was already considered in [28]. As
opposed to our model, in [28] the decision on which transfer activities are needed is not part
of the optimisation process but is fixed before by a simple heuristic rule. In [1] the problem
is considered only for a single train line between two stations. A model putting an emphasis
on passenger satisfaction and including the passenger routing is proposed in [22]. It uses
the assumption that all drive and dwell times are fixed and does not consider track safety
constraints. For a survey on timetabling we refer to [3, 6].

The remainder of this paper is structured as follows: The PESP is briefly reviewed
in Section 2. In Section 3 we introduce the new timetabling model and make several
modifications to the model such that it better meets our needs. In Section 4 we compare
the new model PTTA2 to the established model PESP and show that they are equivalent.
We present some computational results in Section 5 and conclude the paper with some final
remarks and suggestions for further research in Section 6.

2 The Periodic Event Scheduling Problem

A model often used for periodic timetabling is the Periodic Event Scheduling Problem (PESP),
which was introduced in [27]. In the PESP we are given a period T together with a set of
events E , which either correspond to the arrival or the departure of a traffic line at some
station. Furthermore, we have activities A, which represent processes between the events.
Together, we obtain an event-activity-network (EAN) N = (E , A) in which the events are
represented as nodes and the activities as arcs. We distinguish several different types of
activities. Driving activities model a train line driving from one station to another, while
waiting activities represent a line waiting at a station. Passengers have the possibility to
transfer between different lines, which is included by the transfer activities. If a line has a
frequency higher than one, i.e. the line is served several times in one period, we want to
spread the rides equally over the period. This is done by synchronisation activities. Headway
activities are used to model safety regulations requiring a minimal distance between two
consecutive departures or arrivals, or the safety restriction on single-track lines. They usually
come in pairs, since it is not clear beforehand in which order the two departures will take
place. Given an EAN N = (E , A), we want to find a periodic timetable with period T , which
is a mapping π : E → {0, . . . , T − 1} assigning a time to every event. To simplify notation
we set πi := π(i) for i ∈ E . For every activity a ∈ A a lower bound La ∈ N and an upper
bound Ua ∈ N are given. La is the minimal time necessary to perform the activity a, while
Ua is the maximal time allowed for a. A timetable is feasible if it respects the bounds on the
activities, i.e. for every activity a = (i, j) ∈ A we require πj − πi + zaT ∈ [La, Ua] for some
za ∈ Z. The modulo parameter za takes the periodicity into account.
The PESP asks for a feasible timetable. In timetabling we additionally want to minimise the
total travelling time summed over all passengers. For a ∈ A let wa ∈ N be the number of
passengers using activity a. The following is the basic IP formulation for PESP:
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min
∑

a=(i,j)∈A

wa · (πj − πi + zaT ) (PESP)

πj − πi + zaT ≤ Ua a = (i, j) ∈ A (1)
πj − πi + zaT ≥ La a = (i, j) ∈ A (2)
πi ∈ {0, . . . , T − 1} i ∈ E (3)
za ∈ Z a ∈ A. (4)

Details about periodic timetabling can be found in the literature on PESP, a good introduction
is given in [12, 17].

3 A New Timetabling Model

As mentioned before, we want to compute a timetable in an aperiodic EAN. While in a
periodic EAN the events represent the arrivals or departures of a line at some station (for
unit line frequencies), in an aperiodic EAN they model the arrival or departure of a single
trip. A trip is the journey of a vehicle from the beginning of a line to its end, i.e. one line
can yield several trips (based on the number of periods and the frequency of the line). Hence,
instead of only considering the lines, we consider all trips of the lines separately. This means
we have to “roll out” the periodic EAN to an aperiodic one in a time interval [tmin, tmax], a
procedure which is also used in delay management, where a timetable is given and used for
rolling out. Since we want to determine the timetable, we cannot use this roll-out procedure.
Nevertheless, we first repeat how the roll-out is done for a given timetable (based on [14])
and then explain our procedure which leaves the timetable open.

Rolling out with a given timetable. For every i ∈ E set

πfirst(i) := min{πi + kT : πi + kT ≥ tmin, k ∈ Z},

πlast(i) := max{πi + kT : πi + kT ≤ tmax, k ∈ Z}.

These are the first respectively last times the event i occurs in the considered time horizon.
The roll-out process then works as follows:

For every i ∈ E and 1 ≤ s ≤ Ki :=
⌊

πlast(i)−πfirst(i)
T

⌋
+ 1 construct an aperiodic event is

with πis
= πfirst(i) + (s − 1)T . Let E(i) := {is : 1 ≤ s ≤ Ki} be the set of aperiodic events

corresponding to the periodic event i.
For every a = (i, j) ∈ A\Ahead (where Ahead is the set of headway activities) and is ∈ E(i)
determine jt ∈ E(j) (if it exists) such that La ≤ πjt

− πis
≤ Ua. We create an aperiodic

activity ast = (is, jt) and set Last
= La, Uast

= Ua and wast
= wa. For each pair

a = (i, j), a′ = (j, i) ∈ Ahead of headway activities and s ∈ E(i), t ∈ E(j) create two
aperiodic activities ast = (is, jt), ats = (jt, is) with Last

= La and Lats
= T − Ua. If jt

does not exist we are at the end of [tmin, tmax] and nothing has to be done.

Note that in [14] the activities in the rolled out network do not have upper bounds,
since these are ignored in delay management. Since we do timetabling, we want to respect
the upper bounds and add them also in the rolled out EAN. Another particularity are the
headway activities which ensure a security distance between two consecutive departures.
Since it is not clear which of the two events will take place first, they come in pairs. For
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9:4 Solving PESP: An Assignment Approach in Non-Periodic Networks

every pair of these headway arcs ast, ats exactly one of them is chosen for which the lower
bound has to be respected, i.e. the pair a = (i, j), a′ = (j, i) ∈ Ahead yields the following
constraints:

For all 1 ≤ s ≤ Ki, 1 ≤ t ≤ Kj either πjt − πis ≥ Hij or πis − πjt ≥ Hji,

where Hij = La, Hji = La′ . For further details, we refer to [14]. (Note that the problem can
be interpreted as a resource-constrained machine scheduling problem, see, e.g., [4, 26]). A
common assumption is that

0 ≤ La ≤ T − 1 and La ≤ Ua ≤ La + T − 1 for all a ∈ A. (5)

In this case, the jt in the roll-out process is uniquely determined, if it exists. If we do not use
this assumption, we may have to choose one of several possible jt. We will later introduce a
rule how to make this choice, but for now it is enough to choose an arbitrary one.

The goal of this paper is to compute the timetable in the rolled out EAN. Hence, we
cannot use the timetable when rolling out. However, the timetable information is important
for determining the activities between the correct arrival and departure events. This is shown
in Figure 1 where in (c) and (d) two different timetables are used for the roll-out leading to
two different aperiodic networks. Since we do not know beforehand which activities will be
needed for the optimal timetable, we allow all possibilities (see part (b) of Figure 1) and leave
it to the optimization to choose the correct activities together with the optimal timetable.

We hence adapt the procedure in the following way.

Rolling out without knowing the timetable.
For every periodic event i ∈ E and 1 ≤ s ≤ K := ⌊ tmax−tmin

T ⌋ + 1 create an aperiodic event
is. Let E(i) := {is : 1 ≤ s ≤ K} be the set of all aperiodic events corresponding to i. The
set of all events is E := ∪i∈EE(i).
For every periodic activity a = (i, j) ∈ A\Ahead, for exactly one arc a = (i, j) of every
pair of headway activities and for every 1 ≤ s, t ≤ K create a possible (aperiodic) activity
ast with Last

= La, Uast
= Ua and wast

= wa. Let A(a) := {ast = (is, jt) : 1 ≤ s, t ≤ K}
be the set of possible activities corresponding to a. The set of all possible activities is

A :=
⋃

a∈A
A(a). (6)

The final network (E , A) is called the rolled out network.

We remark that when rolling out with a timetable, the number Ki of aperiodic events
corresponding to a periodic event i depends on i. This is not the case when rolling out
without knowing the timetable, where we have a constant K. However, this only makes a
difference if our planning horizon [tmin, tmax] covers a fractional number of periods. E.g. if
we consider 3.5 periods, some events will take place three times and some four times. Since
this depends on the timetable, we cannot make this distinction when rolling out without
knowing the timetable, where we have to consider each event four times. If we assume that
we only consider whole periods, Ki is constant for all i ∈ E and thus both procedures yield
the same number of events.

The rolled out network contains not only the actual activities, but all possibilities for the
activities. Thus, when fixing the timetable we have to simultaneously solve an assignment
problem: for each periodic activity we have to choose exactly one of the corresponding arcs
in every considered period. In order to do so we introduce a binary variable

ua =
{

1 if a is chosen,
0 otherwise.
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(a) Periodic EAN with [La, Ua] given below the
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(b) EAN rolled out with all possible activities.
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(c) Rolled out EAN after choosing a feasible
timetable and the corresponding activities. The
dashed arcs indicate the connections entering or
leaving the planning horizon.
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(d) Rolled out EAN with another feasible timetable,
which results in different activities.

Figure 1 Rolling out a periodic EAN without knowing the timetable for the time interval
[8:00,10:59] with T = 60, i.e. K = 3.

Furthermore, for a ∈ A we set ba :=
⌈

Ua

T

⌉
and Ka := K − ba. It will become clear later why

we need this notation. Below we give the first idea of the constraints we need. The first
correct formulation will be given in PTTA1.

min
∑

a=(is,jt)∈A

wa · ua(πjt − πis ) (7)

s.t. πjt − πis + M(ua − 1) ≤ Ua a = (is, jt) ∈ A (8)
πjt − πis + M(1 − ua) ≥ La a = (is, jt) ∈ A (9)
πis − πis−1 = T is ∈ E , 2 ≤ s ≤ K (10)∑
t:a′=(is,jt)∈A

ua′ = 1 a = (i, j) ∈ A, 1 ≤ s ≤ Ka (11)

πi ≥ tmin i ∈ E (12)
πi1 ≤ tmin + T − 1 i ∈ E (13)
πi ∈ N i ∈ E (14)
ua ∈ {0, 1} a ∈ A. (15)

ATMOS 2021



9:6 Solving PESP: An Assignment Approach in Non-Periodic Networks

The objective function minimises the total travelling time over all passengers. In the
case that an activity a is chosen, i.e. ua = 1, constraints (8) and (9) ensure that the
upper and lower bounds for this activity are respected. If a is not selected, the constraints
become redundant for appropriately chosen M . Constraints (10) are called synchronisation
constraints and ensure that the timetable has period T . For every periodic activity the
assignment constraint (11) chooses exactly one of the corresponding aperiodic activities in
every period in such a way that it fits to the timetable constraints (8) and (9). For the last
ba periods it is possible that no feasible choice exists and hence, we omit the constraints for
these periods. We will later explain why this problem cannot occur for the other periods.
Constraints (12) and (13) enforce that no event is scheduled earlier than tmin and that the
first event takes place in the first period we consider. Finally, to ensure that at least one
period is considered in constraints (11) we assume ba < K for all a ∈ A, i.e. the planning
horizon is sufficiently large.

Can we disregard s > Ka in the assignment constraints?

As mentioned above, if we have a timetable π and an s > Ka there may be no t such that
πjt − πis ∈ [La, Ua], since the time of the event we would theoretically have to choose exceeds
the planning horizon, as already seen in Figure 1 for the dashed arcs. Hence, we disregard
the last ba periods for the assignment. We will show in Lemma 3 that this indeed does not
exclude optimal solutions.

However, disregarding the last ba periods causes a problem with the objective function.
Since setting ua = 1 increases the objective value and we minimise, for every a = (i, j) ∈
A, s > Ka we will always have u(is,jt) = 0 for every t in an optimal solution. Hence, the
passengers in the last ba periods are (falsely) not considered. Fortunately, we can use the
following trick to overcome this problem: Due to periodicity the contribution to the objective
function of these passengers is the same as in all other periods. This means that we can
correct this mistake in the objective function by replacing it by

min
∑

a=(i1,jt)∈A

wa · ua(πjt
− πi1) · K.

We obtain the following formulation:

min
∑

a=(i1,jt)∈A

wa · ua(πjt − πi1) · K (PTTA1)

s.t. (8) − (15)

Analysis of the headway constraints

Note that when rolling out with a timetable we handled the headway activities differently
than when rolling out without knowing a timetable. For the PESP it is known that even
without knowing the order of the events, one headway constraint suffices to cover a pair of
headway activities. This is also true in our case, i.e. both ways of handling the headways are
equivalent. The proof can be found in the appendix.

▶ Lemma 1. Let a = (i, j), a′ = (j, i) ∈ Ahead. The following statements are equivalent:
(a) For all 1 ≤ s, t ≤ K we have either πjt − πis ≥ La = Hij or πis − πjt ≥ La′ = Hji.
(b) For all 1 ≤ s ≤ Ka there is some 1 ≤ t ≤ K such that πjt

−πis
∈ [La, Ua] = [Hij , T −Hji].
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In the following, for simplicity, we will always handle the headways as given by the
constraints in (b), regardless whether we roll out with or without using a given timetable. In
the following we analyse and strengthen PTTA1.

Can we linearise the quadratic objective function?

This can be done using standard techniques. We introduce a new variable Fa for a = (i1, jt) ∈
A to obtain the following equivalent formulation:

min
∑

a=(i1,jt)∈A

waFa · K (PTTA2)

s.t. (8) − (15)
Fa ≥ M(ua − 1) + πjt

− πi1 a = (i1, jt) ∈ A (16)
Fa ∈ N a = (i1, jt) ∈ A. (17)

It is straightforward to prove that the linearisation is correct, i.e. PTTA1 and PTTA2
are equivalent.

How to choose M?

▶ Lemma 2. M := tmax + T − 1 + maxa∈A La is sufficiently large.

Proof. We have to show that for every a = (is, jt) ∈ A the following inequalities hold:
M ≥ πis

− πjt
+ La

M ≥ πjt
− πis

− Ua

M ≥ πjt − πis − Fa

In order to see this we use the following observations. First, using constraints (10) inductively
yields πis

= πi1 + (s − 1)T . Second, by constraints (13) we know that πi1 ≤ tmin + T − 1.
And finally, by choice of K we have KT ≤ tmax − tmin + T . Putting all this together we
obtain

πis = πi1 + (s − 1)T ≤ πi1 + (K − 1)T ≤ tmin + KT − 1 ≤ tmax + T − 1.

Thus, we have πis
− πjt

+ La ≤ πis
+ La ≤ M , which shows the first inequality. Similarly,

we obtain the other two. ◀

Reducing the number of variables and constraints

So far, we have considered every combination (is, jt) for (i, j) ∈ A and 1 ≤ s, t ≤ K. However,
for some of these we can show that they cannot be selected in a feasible solution.

▶ Lemma 3. Let (i, j) ∈ A and 1 ≤ s ≤ K. Then for a = (is, jt) with t ≥ s + 1 + ba or
t ≤ s − 1 we have ua = 0 in any feasible solution.

Proof. We have tmin ≤ πi1 , πj1 ≤ tmin + T − 1, which implies 1 − T ≤ πj1 − πi1 ≤ T − 1. By
periodicity we obtain for t ≥ s + 1 + ba:

πjt
− πis

= (πj1 + (t − 1)T ) − (πi1 + (s − 1)T ) ≥ 1 − T + (t − s)T
≥ 1 − T + (1 + ba)T ≥ 1 + Ua > Ua.

ATMOS 2021



9:8 Solving PESP: An Assignment Approach in Non-Periodic Networks

Similarly, for t ≤ s − 1 we have:

πjt
− πis

= (πj1 + (t − 1)T ) − (πi1 + (s − 1)T )
≤ T − 1 + (t − s)T ≤ T − 1 − T = −1 < La

By constraints (8) and (9) it follows ua = 0. ◀

Hence, we only have to consider (is, jt) for s ≤ t ≤ s + ba. In particular, for s ≤ Ka we
only have to consider t ≤ K, i.e. all relevant jt are in the planning horizon. We adapt A(a)
in (6) and now use the smaller sets

A(a) := {ast = (is, jt) : 1 ≤ s ≤ K, s ≤ t ≤ min{s + ba, K}}. (18)

Note that this may be a significant reduction, e.g. under the assumption (5) we have
Ua ≤ La + T − 1 ≤ 2(T − 1) and hence ba ≤ 2.

We can reduce the activities we have to consider even further with the following reasoning:
Because of the periodicity of the timetable, the choice of u(i1,jt) already determines the
value of u for later periods. Hence, we only need to consider variables u(i1,jt) ∈ A with i1
being the event in the first period instead of u(is,jt) ∈ A for all is with (is, it) ∈ A. This
affects constraints (8), (9), (11), and (15) in PTTA2 and reduces the number of variables
and constraints in our formulation considerably leading to the following IP. Note that we
also use the reduced set A resulting from (18).

min
∑

a=(i1,jt)∈A

waFa · K (PTTA3)

πjt
− πi1 + M(ua − 1) ≤ Ua a = (i1, jt) ∈ A (19)

πjt
− πi1 + M(1 − ua) ≥ La a = (i1, jt) ∈ A (20)

πis
− πis−1 = T is ∈ E , 2 ≤ s ≤ K (21)∑

t:a=(i1,jt)∈A

ua = 1 (i, j) ∈ A (22)

Fa ≥ M(ua − 1) + πjt
− πi1 a = (i1, jt) ∈ A (23)

πi ≥ tmin i ∈ E (24)
πi1 ≤ tmin + T − 1 i ∈ E (25)
πi ∈ N i ∈ E (26)
ua ∈ {0, 1} a = (i1, jt) ∈ A (27)
Fa ∈ N a = (i1, jt) ∈ A. (28)

▶ Lemma 4. PTTA2 and PTTA3 are equivalent.

The proof is in the appendix.

4 Comparison of PTTA2 and PESP

We now want to compare the new assignment-based model with the established model PESP.
We consider the version PTTA2. Let an instance of PESP be given. We roll out the EAN
without knowing a timetable. Suppose we can solve either PESP or PTTA2 quickly. Does
this help to find a solution of the other problem? More precisely, we are interested in the
following questions:
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(a) Let (π̃, z) be a feasible (optimal) solution for PESP. Can we use it to construct a feasible
(optimal) solution for PTTA2?

(b) Let (π, u, F ) be a feasible solution for PTTA2. Can we use it to construct a feasible
(optimal) solution for PESP?

We start with (a). Let a periodic timetable be given. As an intermediate step we consider
the roll-out w.r.t this timetable. The following lemma ensures that for any realization is of
event i (except for those at the end of the planning horizon) we can choose a corresponding
realization jt feasible for the rolled out constraint (is, jt).

▶ Lemma 5. Let (π̃, z) be a feasible solution for PESP and π the solution constructed
in the roll-out process. Let a = (i, j) ∈ A and k, l ∈ Z such that πfirst(i) = π̃i + kT and
πfirst(j) = π̃j + lT . For any choice of 1 ≤ s ≤ K and t := za + k − l + s with t ≤ K, the
bounds on activity (is, jt) are fulfilled, i.e. πjt

− πis
∈ [La, Ua].

Proof. By definition of π we have πis
= πfirst(i) + (s − 1)T = π̃i + (k + s − 1)T and

πjt = πfirst(j) + (t − 1)T = π̃j + (l + t − 1)T . Hence, it follows

πjt
− πis

= π̃j − π̃i + (l − k − s + t)T = π̃j − π̃i + zaT ∈ [La, Ua]. ◀

▶ Corollary 6. In the situation of Lemma 5 for 1 ≤ s ≤ Ka there exists an s ≤ t ≤ s + ba

with πjt − πis ∈ [La, Ua].

Proof. We remark that by Lemma 3 it follows that for t as chosen in Lemma 5 we have
s ≤ t ≤ s + ba. Since s ≤ Ka, this implies t ≤ s + ba ≤ Ka + ba = K, so by Lemma 5 we
obtain πjt − πis ∈ [La, Ua]. ◀

As mentioned already for the roll-out process for a given timetable, the choice of t has
not to be unique in the general case and we could choose one of the possibilities arbitrarily.
From now on, we will choose t as in Lemma 5.

We can use these results to construct a solution for the rolled out network. Let an
instance of PESP (E , A) be given and (E , A) be the EAN received by rolling out without
knowing a solution. Let (π̃, z) be a solution for PESP. We define π as in the roll-out process
with the timetable given, i.e. πis

= πfirst(i) + (s − 1)T . Furthermore, for a = (is, jt) ∈ A we
choose k, l as in Lemma 5 and set

ua =
{

1 if t = za + k − l + s,

0 otherwise,

and for a = (i1, jt) we set

Fa =
{

πjt
− πi1 if ua = 1,

0 otherwise.

This construction gives us a feasible solution for PTTA2 in the rolled out network as the
following lemma shows. The proof can be found in the appendix.

▶ Lemma 7. Let (π̃, z) be a solution for PESP with objective value f̃ . Then (π, u, F ) as
defined above is a feasible solution for PTTA2 and the corresponding objective value is
f = Kf̃ .

ATMOS 2021
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We now turn to (b). Again, let an instance of PESP (E , A) be given and (E , A) be the
EAN received by rolling out without knowing a solution. Let (π, u, F ) be a feasible solution
to PTTA2. For i ∈ E we set

π̃i := πi1 mod T,

i.e. there is some ri ∈ Z such that πi1 = π̃i + riT . For a = (i, j) ∈ A there is some t such
that u(i1,jt) = 1. Set

za := rj − ri + t − 1.

Also this construction works, i.e. we get a feasible solution for PESP with bounded
objective function value. Again, the proof can be found in the appendix.

▶ Lemma 8. Let (π, u, F ) be a feasible solution to PTTA2 with objective value f . Then
(π̃, z) as defined above is a feasible solution for PESP and for its objective value f̃ we have
f̃ ≤ f · 1

K .

Putting the two constructions together, we finally conclude that we can in fact construct
an optimal solution for PESP if we know an optimal solution for PTTA2 and vice versa. In
particular, it makes no difference whether one computes a solution with PTTA2 or rolls out
a solution obtained with PESP, i.e. in this sense, PTTA2 and PESP are equivalent. The
proof directly follows from Lemma 7 and Lemma 8 (see appendix).

▶ Corollary 9. If (π̃, z) is an optimal solution for PESP, the solution (π, u, F ) constructed
in Lemma 7 is optimal for PTTA2. On the other hand, if (π, u, F ) is an optimal solution for
PTTA2, the solution (π̃, z) constructed in Lemma 8 is optimal for PESP.

5 Computational Experiments

In this section, we test the performance of the new models when solving the IP formulations
with Gurobi and compare them to PESP. We use data of the regional railway network in a
region of Lower Saxony in northern Germany, since they have a size for which our integer
programs can still be solved in reasonable time. The dataset is part of the open-source
software framework LinTim, see [24, 23]. We use LinTim to generate different line concepts
and the resulting EANs. An overview of the number of lines |L| and the size of the EANs
is given in Table 1. We solve PTTA2 and PTTA3 for different time horizons (we vary the
number of periods from K = 3, 4, . . . , 15), observe the run time and compare it to the run
time when solving PESP. We implemented the IP models in Python and ran them on an
Lenovo laptop with Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz, 2.21 GHz and 16 GB
RAM using the solver Gurobi 9.1.1 ([10]). The results are shown in Figure 2.

Table 1 Size of the periodic EAN for the used line concepts.

Line concept |L| |E| |A|

line concept 1 5 180 262
line concept 2 6 196 314
line concept 3 6 212 372
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Figure 2 Average run time for different line concepts with varying K.

We first note that, as expected due to the higher number of variables and the additional
assignment constraints, for all versions of PTTA the solver takes much longer than for PESP.
However, recall that our motivation was to integrate delay management – a task the PESP
is not suited for – so we do not have the aspiration to beat the PESP when doing pure
timetabling. Since PTTA3 only solves the assignment for the first period, while PTTA2
does this for all periods, one would expect it to be faster solvable than PTTA2. Indeed, we
can see this behaviour in the instance line concept 3. For line concept 2 both models
perform quite similar. In the instance line concept 1 we can observe that for larger K

the run time of PTTA2 increases more than for PTTA3, which can again be explained with
PTTA3 only solving the assignment in the first period. An exception is the peak of PTTA3
at K = 11. However, inspecting the progress of the solver shows that the optimal solution
was actually found much earlier and the most part of the run time was dedicated to proving
optimality, so we treat this as an random outlier. The instance line concept 3, which is
the largest one, shows the largest variance. Investigating the solving process shows that
also here the solver often has difficulties to determine that the incumbent solution is indeed
optimal, a well known phenomenon for many integer problems. Thus, providing dual bounds
has the potential to speed up the solving process significantly.

ATMOS 2021
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6 Conclusion

We have developed a new model for periodic timetabling which uses a non-periodic network
as basis. We have shown that the new model is equivalent to PESP and that – although
this was not our main focus – the achieved run times are acceptable. We also derived a
streamlined version which uses significantly less variables and constraints.

The new model opens many possibilities for future research. An obvious line of research is
to strengthen its IP formulation, e.g. by using dual bounds, to speed up the solving process.
A possible extension of our model could be to allow more flexibility in the synchronisation
constraints, e.g. to allow that the differences between repetitions of events are not exactly
T but in some interval [T − ϵ, T + ϵ]. Our main interest, however, is to use the model for
integration purposes. Here, the following topics are of particular interest.

First, we plan to use the new aperiodic model for integrating timetabling and delay
management in a two-stage model. This is necessary if the practically relevant concept
of recovery robustness [13, 8] is to be used in which we look for a timetable that can be
recovered by a suitable delay management strategy (see [11, 5] for an overview on delay
management). Note that the reduced model PTTA3 cannot be used in this context since
for delay management all periods need to be considered separately. Second, the new model
can also be used for dealing with timetabling problems with different line frequencies. This
topic is only scarcely treated in the literature on PESP, its main difficulty being to distribute
passengers on the different possible transfer activities before knowing the timetable. We
currently use PTTA to get an optimal distribution of passengers even if the frequencies
between incoming and outgoing trains differ from each other.

Finally, we suppose that the model can also be used to integrate timetabling and passenger
routing as done in [25].
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A Proofs

Proof of Lemma 1
Proof. First, note that Ua = T −Hji ≤ T for a = (i, j) ∈ Ahead, i.e. Ka = K−

⌈
Ua

T

⌉
= K−1.

“(a) ⇒ (b)” Let 1 ≤ s ≤ K − 1. We consider the event jK in the last period. Since the event
is takes place in the s-th period, we have πis

< πjK
. In particular, πis

− πjK
< 0 ≤ Hji and

hence, by (a), we have πjK
−πis ≥ Hij . Let now t be minimal such that πjt −πis ≥ Hij = La.

It remains to show that πjt
− πis

≤ T − Hji = Ua.
First case: t > 1. By minimality of t we have πjt−1 − πis

< Hij and hence, πis
− πjt−1 ≥ Hji.

This yields πjt − πis = πjt−1 + T − πis ≤ T − Hji = Ua.
Second case: t = 1. Assume πj1 − πis

> T − Hji. Then πj1 − πis+1 = πj1 − πis
− T > −Hji,

i.e. πis+1 − πj1 < Hji. Hence, we must have πj1 − πis+1 ≥ Hij , which in particular means
that πj1 ≥ πis+1 . Since j1 takes place in the first period and is+1 in the s + 1-th period, this
is a contradiction. Thus, our assumption was false and we have πj1 − πis ≤ T − Hji = Ua.
“(b) ⇒ (a)” We first consider 1 ≤ s ≤ K − 1. By assumption there is some t′ such that
πjt′ − πis

∈ [Hij , T − Hji]. For t ≥ t′ we have πjt
− πis

≥ πjt′ − πis
≥ Hij . On the other

hand, for t < t′ we have πjt
≤ πjt′ − T and hence πis

− πjt
≥ πis

− πjt′ + T ≥ Hji. Thus,
for every t one of the conditions is fulfilled.
It remains to show the claim for s = K. Using the assumption for s′ = K − 1 yields the
existence of some t′ such that πjt′ − πiK−1 ∈ [Hij , T − Hji]. In particular, πjt′ ≥ πiK−1 ,
which implies t′ ≥ K − 1.
First case: t′ = K −1. We have πjK

−πiK
= (πjK−1 +T )−(πiK−1 +T ) = πjK−1 −πiK−1 ≥ Hij .

Furthermore, for t ≤ K − 1 it follows πiK
− πjt

= πiK−1 + T − πjt
≥ πiK−1 + T − πjK−1 ≥ Hji,

where the last inequality follows from πjK−1 − πiK−1 ≤ T − Hji.
Second case: t′ = K. For every t ≤ K we have πjt

− πiK
≤ πjK

− πiK
= πjK

− πiK−1 − T ≤
−Hji, which implies πiK

− πjt ≥ Hji. ◀

Proof of Lemma 4
Proof. “⇒” Let (π, u, F ) be a solution for PTTA2. For a = (i1, jt) set u′

a := ua. Clearly,
(π, u′, F ) is a feasible solution for PTTA3 and the objective values coincide. “⇐” Let (π, u′, F )
be a solution for PTTA3. For a = (is, jt) ∈ A set ua := u′

(i1,jt−s+1). Note that since a ∈ A
we have s ≤ t ≤ s + ba and therefore 1 ≤ t − s + 1 ≤ 1 + ba, which implies that also
(i1, jt−s+1) ∈ A. We show that (π, u, F ) is a feasible solution for PTTA2:

Let a = (is, jt) ∈ A. We have

πjt
− πis

+ M(ua − 1) = (πjt−s+1 + (s − 1)T ) − (πi1 + (s − 1)T ) + M(ua − 1)
=πjt−s+1 − πi1 + M(u′

(i1,jt−s+1) − 1) ≤ U(i1,jt−s+1) = Ua,

which shows constraints (8). Analogously be obtain (9).
Let (i, j) ∈ A, 1 ≤ s ≤ K. We have∑

t:a=(is,jt)∈A

ua =
∑

t:a=(i1,jt−s+1)∈A

u′
a = 1

and hence, (11) holds.
Constraints (10) and (12) to (17) follow immediately.

Consequently, (π, u, F ) is a feasible solution for PTTA2 with the same objective value as
(π, u′, F ). ◀
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Proof of Lemma 7
Proof. We check that (π, u, F ) fulfils all constraints:

(8) and (9) are fulfilled by choice of u and Lemma 5.
Let is ∈ E , 2 ≤ s ≤ K. By definition of π it follows

πis
− πis−1 = (πfirst(i) + (s − 1)T ) − (πfirst(i) + (s − 2)T ) = T,

which proves (10).
Let a = (i, j) ∈ A, 1 ≤ s ≤ Ka. By Lemma 5 we have πjt

− πis
∈ [La, Ua] for

t = za + k − l + s, which by Lemma 3 implies t ≤ s + ba. In particular, (is, jt) ∈ A. By
choice of u it follows

∑
t:a=(is,jt)∈A ua = 1, i.e. constraints (11) are fulfilled.

Constraints (12) to (15) are obviously fulfilled.
Let a = (i1, jt) ∈ A.
First case: ua = 1. Fa = πjt

− πi1 = M(ua − 1) + πjt
− πi1 .

Second case: ua = 0. Fa = 0 > −M + πjt − πi1 = M(ua − 1) + πjt − πi1 .
Hence, constraints (16) are fulfilled.
For (17), Fa ∈ Z is clear. Note that by (9) ua = 1 is only possible if πjt ≥ πi1 , which in
particular means that Fa ≥ 0 and therefore Fa ∈ N.

Hence, (π, u, F ) is indeed a feasible solution. For the objective value we obtain:

f = K · (
∑

a=(i1,jt)∈A

waFa) = K · (
∑

a=(i1,jt)∈A:ua=1

wa(πjt
− πi1))

(∗)= K · (
∑

a=(i,j)∈A

wa(π̃j − π̃i + zaT )) = K · f̃ ,

where (∗) follows from the proof of Lemma 5. ◀

Proof of Lemma 8
Proof. Let a = (i, j) ∈ A. The following holds:

π̃j − π̃i + zaT = (πj1 − rjT ) − (πi1 − riT ) + zaT

= (πjt
− (t − 1)T − rjT ) − (πi1 − riT ) + zaT

= πjt
− πi1 − (rj − ri + t − 1)T + zaT

= πjt − πi1 ∈ [La, Ua].

Hence, (π̃, z) is a feasible solution to PESP. For the objective value we have:

f̃ =
∑

a=(i,j)∈A

wa(π̃j − π̃i + zaT )

=
∑

a=(i1,jt)∈A:ua=1

wa(πjt − πi1)

(∗)
≤

∑
a=(i1,jt)∈A:ua=1

waFa

(∗∗)
≤

∑
a=(i1,jt)∈A

waFa = f · 1
K

.

Here, (∗) follows from (16) and (∗∗) from Fa ≥ 0. ◀
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Proof of Corollary 9
Proof. Let (π̃, z) be an optimal solution for PESP with objective value f̃ . By Lemma 7 we
obtain a feasible solution (π, u, F ) for PTTA with objective value f = Kf̃ . Assume this is
not optimal, i.e. there is a solution (π′, u′, F ′) with objective value f ′ < f . By Lemma 8
we get a solution (π̄, z̄) for PESP with objective value f̄ ≤ f ′ · 1

K < f · 1
K = f̃ , which is a

contradiction to (π̃, z) being an optimal solution.
On the other hand, let (π, u, F ) be an optimal solution to PTTA with objective value f .
Lemma 8 yields a feasible solution (π̃, z) for PESP with objective value f̃ ≤ f · 1

K . Assume
(π̃, z) is not optimal, i.e. there is a solution (π̄, z̄) with objective value f̄ < f̃ . By Lemma 7
we receive a solution (π′, u′, F ′) for PTTA with objective value f ′ = Kf̄ < Kf̃ ≤ f , a
contradiction. ◀
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