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Abstract
The periodic event scheduling problem (PESP) with various applications in timetabling or traffic
light scheduling is known to be challenging to solve. In general, it is already NP-hard to find a
feasible solution. However, depending on the structure of the underlying network and the values of
lower and upper bounds on activities, this might also be an easy task.

In this paper we make use of this property and suggest phase I approaches (similar to the
well-known phase I of the simplex algorithm) to find a feasible solution to PESP. Given an instance
of PESP, we define an auxiliary instance for which a feasible solution can easily be constructed, and
whose solution determines a feasible solution of the original instance or proves that the original
instance is not feasible. We investigate different possibilities on how such an auxiliary instance can
be defined theoretically and experimentally. Furthermore, in our experiments we compare different
solution approaches for PESP and their behavior in the phase I approach. The results show that
this approach can be especially helpful if the instance admits a feasible solution, while it is generally
outperformed by classic mixed-integer programming formulations when the instance is infeasible.
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1 Introduction

Railways play an important role in public transportation planning and form an essential
component for green logistics and traveling in the future. Timetabling is a key element for
planning public passenger transportation. In particular, periodic timetables, e.g., hourly
repeated, are of interest from the passengers’ perspective because they are easy to remember.

Periodic timetables have been extensively studied in the literature since their introduction
by Serafini and Ukovich in 1989 as the periodic event scheduling problem (PESP) [20]. Works
on PESP are not only of theoretical interest, as they are already used to optimize timetables
in practice. In 2008, Liebchen successfully implemented an optimized timetable for the Berlin
Underground [13]. While providing shorter passenger waiting times, it was also possible to
reduce the number of trains. In 2006, Kroon et al. optimized the Dutch Railway System [10].
Their timetable was adapted to current and future needs, improving the service significantly
and at the same resulting in approximately 40 million Euro additional annual profit.
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6:2 A Phase I Simplex Method for Finding Feasible Periodic Timetables

In real-world applications, safety conditions must be considered which further complicate
the problem. For example, trains have to maintain a safety distance when sharing the
same rail. This is usually modeled by enforcing a time gap between the departures of two
consecutive trains. The added complexity of safety constraints makes it more difficult to find
feasible timetables for big instances.

Determining optimal timetables is a complex task. Even finding a feasible timetable is
known to be NP-hard [20]. Recently, also the parameterized problem complexity has been
studied [14]. The authors show that deciding the feasibility of PESP is W[1]-hard when
parameterized by the vertex color number. However, it is easy to see that finding an optimal
solution is possible in polynomial time on trees.

Solving large-scale problems to optimality remains out of reach for current families of
algorithms, such as the modulo simplex method [7, 15], a matching-based heuristic [17], or
methods based on SAT solving [8]. Recent papers [1, 2, 4, 9] provide further progress towards
this long-term goal.

In this paper, we provide a new approach for finding feasible timetables. This approach is
inspired by the phase I of the classic simplex method for linear programming. A timetabling
instance is extended by adding virtual edges to the underlying network, which makes it
simple to find a feasible solution in the thus extended network. By minimizing its objective
function, a feasible solution to the original problem instance can be found, or a certificate of
infeasibility is given.

The remainder of this paper is structured as follows. In Section 2, we briefly recall the
formal problem definition and basic properties. We then introduce the phase I approach
for finding feasible timetables in Section 3. Using instances from the LinTim-library, we
evaluate advantages and disadvantages of this method in Section 4, before concluding the
paper in Section 5.

2 The Periodic Event Scheduling Problem

In this section, the main definitions of the periodic event scheduling problem (PESP) and
two mixed-integer formulations are briefly revisited. For more details, we refer to [11, 12, 16].

An event-activity network (EAN) N = (E , A) is a directed graph where nodes represent
events (such as the departure or arrival of trains of a directed line) and arcs represent activities
(such as drive, wait, transfer and security headway activities). Without loss of generality, we
assume the event-activity network N to be connected. If not, all considerations could be
applied to each connected component separately. We also assume that |E| ≤ |A|, i.e., there are
at least as many activities as events. This assumption holds for all connected event-activity
networks unless the event-activity network is a tree. In this case, all considerations of the
PESP are trivial.

For each activity a ∈ A the minimal and maximal allowed duration are denoted by La

and Ua with 0 ≤ La ≤ Ua and La, Ua ∈ N. Together, ∆a = [La, Ua] is called the time span of
a. A periodic timetable π ∈ Z|E|, where πi ∈ [0, T − 1] for all i ∈ E with a time period T , is
called feasible if for all a = (i, j) ∈ A there exist so-called modulo parameters z ∈ Z such that
πj − πi + zT ∈ ∆a. The PESP in the context of timetabling then consists of finding a feasible
periodic timetable that minimizes the weighted travel time

∑
a=(i,j)∈A wa(πj − πi + zaT ) for

given (passenger) weights wa for each a ∈ A. An instance of the problem is thus defined by
the tuple I = ((E , A), w, L, U). A well-known mixed-integer programming (MIP) formulation
for PESP is the following.
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(NodeIP) min
∑

a=(i,j)∈A

wa(πj − πi + zaT ) (1)

s.t. La ≤ πj − πi + zaT ≤ Ua ∀a = (i, j) ∈ A (2)
πi ∈ Z ∀i ∈ E (3)
za ∈ Z ∀a ∈ A (4)

We briefly revisit another model that depends on cycles. Any cycle C ⊆ A is described by
the incidence vector Γ(C) ⊆ {−1, 0, 1}|A| with components Γ(C)a = 1, if a ∈ C in forward
direction, Γ(C)a = −1, if a ∈ C in backward direction, and Γ(C)a = 0 else. Using these
incidence vectors as row vectors, we describe a set of cycles C by a matrix Γ ∈ {−1, 0, 1}|C|,|A|,
that is, it contains Γ(Ca)t in row a for each cycle Ca ∈ C. Given a spanning tree T , let
Γ ∈ {−1, 0, 1}|A|−|E|+1,|A| be the matrix corresponding to its fundamental cycles. Then, Γ is
called cycle matrix of N with respect to T . A vector ξ ∈ Z|A| is a periodic tension w.r.t.
π if there exists z ∈ Z|A| such that πj − πi + zaT = ξa for all a = (i, j) ∈ A. Note that
ξ ∈ Z|A| is a tension in N if and only if Γξ = 0. This results in the following cycle-based
mixed-integer program for the PESP:

(CBIP) min wtξ (5)
s.t. Γξ = T z̃ (6)

L ≤ ξ ≤ U (7)
ξa ∈ Z ∀a ∈ A (8)
z̃a ∈ Z ∀a ∈ A \ T (9)

3 A Phase I Approach to PESP

The general idea of phase I approaches can best be recalled looking at the classical simplex
algorithm in which a linear program min{cT x : Ax = b, x ≥ 0} with costs c ∈ Rn, a right-
hand side b ∈ Rm (w.l.o.g. b ≥ 0) and a matrix A ∈ Rm,n is given and we look for an
optimal solution x ∈ Rn. The simplex algorithm needs a feasible solution to get started.
If this is not available, the well-known phase I of the simplex algorithm starts: by adding
additional columns to the coefficient matrix A, it is extended to (A|I), where I denotes
the identity matrix. For the new linear program, the columns of I are chosen as basis,
such that x := (0, . . . , 0︸ ︷︷ ︸

∈Rn

, bt︸︷︷︸
∈Rm

)t is a feasible starting solution. The auxiliary problem asks to

minimize the unit costs of the new variables as auxiliary objective function and is solved by
the simplex algorithm (which is now possible since a starting solution is known). If and only
if the auxiliary problem has objective value of zero, the original instance is feasible. In this
case, a feasible solution to the original instance can be constructed by pivoting the auxiliary
variables out of the basis. The generalized scheme of this process is depicted in Figure 1.

For the PESP we now proceed analogously: Given an instance of PESP I =
((E , A), w, L, U) we construct an auxiliary instance by extending the given instance to

Iext = ((Eext, Aext), wext, Lext, U ext).

We show that for Iext a feasible solution can be easily constructed and that the original
instance I has a feasible solution if and only if the optimal objective value of Iext is zero.

ATMOS 2021
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Instance I:

Instance I ′:

Instance I with
no feasible

solution given

Instance I ′

with feasible
solution x′ given

Instance I ′

with optimal
solution x̃′

Instance I with
feasible solution x

Instance I
with optimal
solution x̃

transformation
I → I ′

algorithm A

transformation
x̃′ → x

algorithm A

Figure 1 Schematic process of the phase I Approach with the original instance I, the extended
instance I ′ and an algorithm A.

Recall that cycles make the PESP a hard problem. We hence want to make sure that
each cycle contains a flexible activity, i.e., an activity with bounds ∆a = [0, T − 1]. Such an
activity can collect all slack needed to ensure that the timetable satisfies the constraint of
the respective cycle in constraint (6).

To this end, let the original instance I = ((E , A), w, L, U) be given. We fix a set A ⊆ A
(we will discuss later how this set can be chosen), and define the extended instance as follows.
Each activity a = (i, j) ∈ A of the original instance is replaced by two activities, namely
by aold = (i, ia) and avirt = (ia, j) which are linked by one new event ia, see Figure 2.
The first activity carries the old lower and upper bounds, i.e., La and Ua from the original
instance are now the bounds of aold. The second activity is a flexible activity which receives
∆avirt = [0, T − 1] as lower and upper bounds.

i j iorg ivirta jorg;a

[La, Ua]

aold

[La, Ua]

avirt

[0, T − 1]

Figure 2 Extending an activity a = (i, j) ∈ A with span ∆a = [La, Ua] to two activities
aold = (iorg, ivirt

a ) ∈ Aold with span ∆old
a = [Lold

a , Uold
a ] := [La, Ua] and avirt = (ivirt

a , jorg) with
span ∆virt

a := [0, T − 1].

Formally, we define Eext = E ∪ {ia : a ∈ A} and Aext = (A \ A) ∪ Aold ∪ Avirt, where
Aold = {(i, ia) : a = (i, j) ∈ A} and Avirt = {(ia, j) : a = (i, j) ∈ A}. As parameters we set:

Lext
a :=


La if a ∈ A \ A

La′ if a = (i, ia′) ∈ Aold, a′ ∈ A

0 if a ∈ Avirt
(10)

U ext
a :=


Ua if a ∈ A \ A

Ua′ if a = (i, ia′) ∈ Aold, a′ ∈ A

T − 1 if a ∈ Avirt
(11)

wext
a :=


0 if a ∈ A \ A

0 if a ∈ Aold

1 if a ∈ Avirt
(12)

Given an original instance I and a set A we denote the new instance as Iext(A) where we
leave out A if the context is clear. Clearly, this is again a PESP instance which can hence be
formulated by the integer programs provided in Section 2. Note that the objective function
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of Iext only includes the virtual activities Avirt. This is in line with the phase I approach for
the classic simplex algorithm, in which also only the newly added columns are part of the
auxiliary objective function.

Before we discuss how to choose A ⊆ A and how to find feasible solutions for instances
Iext(A), we provide a basic theorem which states the relation between feasibility of the
original instance I and the optimal objective of the extended instance Iext(A). Note that
this statement is independent of the choice of A.

▶ Theorem 1. Let I be an instance of PESP and A ⊆ A be a set of activities. Then, I is
feasible if and only if the objective value v(Iext(A)) of the extended instance is zero.

Proof. First, let π be a feasible solution for I. Set

πext
i :=

{
πi if i ∈ E
πj′ if i = ia′ with a′ = (i′, j′) ∈ A

,

i.e., on the original events i ∈ E we leave the timetable as it is while a virtual event ia′ on the
edge a′ = (i′, j′) obtains the timetable of the end-node j′ of a′. To see that πext is feasible
for Iext we have to look at the three types of activities:

For a = (i, j) ∈ A \ A, both i and j are in E and feasibility of πext for Iext follows from
feasibility of π for I.
For a = (i, ia′) ∈ Aold with a′ = (i, j) ∈ A, πext

ia′ − πext
i + zTa ∈ ∆a holds since due to

πext
ia′ = πj this is the constraint for the original activity a′ ∈ A which is satisfied, because

the timetable π is feasible for I.
Finally, for a ∈ Avirt feasibility is always satisfied since a is a flexible activity with
∆a = [0, T − 1].

Note that the objective value of this solution is zero.
For the reverse direction, we start with a feasible timetable π for Iext with objective

v(Iext) =
∑

avirt=(ia,j)∈Avirt

(πext
j − πext

ia
+ zavirtT ) = 0.

Due to the constraints we know that πext
j − πext

ia
+ zavirtT ≥ Lavirt = 0 for all avirt = (ia, j) ∈

Avirt, hence we conclude that

πext
j − πext

ia
+ zavirtT = 0 (13)

for some zavirt ∈ Z.
Given the timetable πext for Iext we define the timetable π for I by projection, i.e., we

just leave the values πi, i ∈ E as they have been in Iext. We now show that this timetable is
feasible for the original instance I, i.e., that there exist modulo parameters za such that

πj − πa + zaT ∈ ∆a

for all a = (i, j) ∈ A. To this end, we consider the activities in A \ A and in A separately.
For a ∈ A \ A feasibility of π for I follows from feasibility of πext for Iext.
Now let a′ = (i, j) ∈ A. We know that for aold = (i, ia′) ∈ Aold we have

La ≤ πext
ia′ − πext

i + zaoldT ≤ Ua (14)

where we used that La = Laold and Ua = Uaold according to (10) and (11). Adding (13)
and (14) we receive

La ≤ πj − πi + (zaold + zavirt)T ≤ Ua.

Hence, za := zaold + zavirt ∈ Z is the required modulo parameter for a′ ∈ A and the claim
is shown. ◀

ATMOS 2021
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We can directly conclude that looking at a lower bound while solving Iext may suffice to
decide non-feasibility of I.

▶ Corollary 2. Let γ be a lower bound on the objective value of Iext, i.e., γ ≤ v(Iext). If
γ > 0, I is not feasible.

We now analyze possibilities how the set A ⊆ A can be chosen. Keep in mind that we
want to find a feasible solution of Iext efficiently. We use a result for a special case, namely,
if the event-activity network N is a tree, the solution of PESP is easy: In the cycle-based
formulation, the cycle matrix vanishes and ξ = L is an optimal solution. Based on this
result, the general idea to construct an instance with easy-to-find feasible solution is to add
the flexible activities to the original activities A ∈ A in such a way that Aext without the
flexible activities is a forest for which a timetable can be found easily for each of its connected
components. The following result is easy to verify and therefore given without proof.

▶ Lemma 3. Let N = (E , A) be an event-activity network with a spanning tree T . Let
A1 = A \ T , A2 ⊆ T and A = A1 ∪ A2 the set for which virtual activities should be added.
Finally, let N ext = (Eext, Aext) the extended event-activity network where Aext

1 ⊆ Aext

corresponds to the activities in A1 and Aext
2 ⊆ Aext corresponds to the activities in A2. Then,

(A \ A) ∪ Aold
1 ∪ Aold

2 ∪ Avirt
2 defines a spanning tree of the extended event-activity network.

This means that we can solve PESP on the tree and obtain a feasible solution since all
activities which are not in the tree are flexible activities. Specific choices for set A are as
follows.

full: Add a virtual activity for each activity in the original-event-activity network.
cycle_base: Add a virtual activity for each fundemental circuit for a given spanning tree.
minimal: Add a virtual activity for each fundamental circuit for a given spanning tree if
this circuit does not already contain a flexible activity.

We also mention that the complexity of PESP does not increase when we turn from I to
Iext, since the number of cycles in a cycle basis stays the same.

▶ Lemma 4. Let the original event-activity network N = (E , A) with a spanning tree T ,
the set A ⊆ A for which virtual activities should be added, and the corresponding extended
event-activity network N ext = (Eext, Aext) with a spanning tree T ext be given. Then, the
number of fundamental circuits is the same.

Proof. The number of fundamental circuits of the original event-activity network is |A| − |T |
and for the extended network |Aext| − |T ext|. Then, by definition of the sizes of the extended
sets of events and activities, it follows that

|Aext| − |T ext| = |Aext| − (|Eext| − 1) = (|A| + |A|) − ((|E| + |A|) − 1)
= |A| − |E| + 1 = |A| − (|E| − 1) = |A| − |T |. ◀

4 Experiments

4.1 Computational setup
We use the scientific software toolbox LinTim2 [19, 5]. All algorithms except for the phase I
approach are already implemented in LinTim. The code of the phase I approach is written
in Python 3. If required, the mathematical optimization solver Gurobi3 in Version 9 is used
and the Python package networkx4 for calculating spanning trees.

2 See https://www.lintim.net/
3 See https://www.gurobi.com/
4 See https://networkx.github.io/

https://www.lintim.net/
https://www.gurobi.com/
https://networkx.github.io/
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All experiments were conducted on a server with 12 Intel(R) Xeon(R) CPU X5675
processors (each at 3.07GHz) and 128 GB RAM. All algorithms have a time limit of 30
minutes and are limited to using one kernel.

The instances that are used for the computational experiments are also part of the LinTim
toolbox, namely the data sets toy, grid (bus), lowersaxony (rail), athens (metro), bahn-01,
bahn-02, bahn-03, and bahn-04 (German high-speed network). On the basis of a given public
transportation network with its stops, edges, and line concept, the event-activity network is
created. Since the standard event-activity networks are all feasible, headway constraints are
added to the event-activity network to complicate the problem and also potentially create
infeasible instances. For each event-activity network there are ten different versions with
headway times from 1 to 10 minutes.

Table 1 shows the number of events, the number of activities, especially the number of
headway activities, and the number of fundamental circuits of the event-activity network for
each data set.

Table 1 Size of the event-activity networks of the used LinTim data sets. The number of activities
includes the number of headway activities.

data set events activities headway fundamental
activities circuits

toy 156 304 116 149
grid 448 901 264 454
lowersaxony 536 1077 388 542
athens 1388 3892 1576 2505
bahn-01 5036 16543 6766 11508
bahn-02 5468 19726 7774 14259
bahn-03 3592 10041 2734 6450
bahn-04 5356 19136 6192 13781

We test nine variations of the described phase I approach, where we use the three different
extension methods minimal, cycle_base, and full from Section 3 and the following three
algorithms to solve the extended PESP instance Iext:

NodeIP: Solving the node-based MIP (1)-(4)
CBIP: Solving the cycle-based MIP (5)-(9)
MNS : Using the modulo network simplex [15, 7]

NodeIP and CBIP are chosen because they are in principle able to solve the PESP
optimally, and because they also update the lower bound of the objective function. We use a
stopping criterion when reaching a lower bound of the objective value greater than 0. MNS is
chosen as a heuristic approach that performs well for the PESP. For a detailed description of
these methods please refer to [19] and [7]. In the following, the phase I and its combinations
are denoted as phase I (<extending method>, <algorithm>). All methods are provided
with the same starting solution.

To benchmark the phase I approach, we choose three other algorithms that are already
implemented in LinTim, i.e., they do not use an extended network. The node-based integer
formulation and the cycle-based formulation are chosen because they are straightforward
approaches and may also be good for showing infeasibility. We slightly adapt them to make
them comparable to the phase I by stopping them when they find the first feasible solution.
In the following these variants are denoted as NodeIP-Feas and CBIP-Feas. The third
algorithm is the Constraint Propagation, denoted as ConProp, because this algorithm is
often used to find feasible solutions, see [6] and [19].

ATMOS 2021
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Table 2 Size of the extended event-activity networks for the different extending methods.

data set original minimal cycle_base full

toy events 156 296 305 460
activities 304 434 453 608

grid events 448 741 902 1349
activities 901 1033 1355 1802

lowersaxony events 536 1023 1078 1613
activities 1077 1509 1619 2154

athens events 1388 3320 3893 5280
activities 3892 5244 6397 7784

bahn-01 events 5036 12405 16544 21579
activities 16543 19773 28051 33086

bahn-02 events 5468 13751 19727 25194
activities 19726 22031 33985 39452

bahn-03 events 3592 6211 10042 13633
activities 10041 8827 16491 20082

bahn-04 events 5356 11555 19137 24492
activities 19136 17751 32917 38272

In the following, we briefly explain how the run times are determined. For both solvers of
the MIP formulations that use Gurobi, only the real optimization time is taken as computation
time, i.e., without the time for reading the input data or calculating the spanning tree in case
of the cycle-based MIP. For the other two algorithms the complete run time is considered,
e.g., with reading input, because they could not be integrated in the existing algorithms.
However, read-in routines take only a few seconds for the largest instances. Regarding the
run times of the phase I, only the run time of the algorithms are taken into account, i.e.,
without the time that is needed to build the extended event-activity network.

4.2 Results
In the following, we analyze and compare all instances of all data sets together. We have 80
different instances (10 instances for each of the 8 data sets) in total and 120 experiments for
each data set (employing each of the 12 algorithms for each of the 10 instances). For all but
one instance, namely bahn-04, headway=3, we could decide whether they are feasible or not
by at least one method. Due to the heuristic nature of MNS, it may happen that it stops
without reaching an objective value of zero on the extended instance in phase I and before
reaching the time limit. In this case, the run is counted as reaching the time limit.

Table 2 shows the number of events and activities for each way of extending the event-
activity network. For the full method it is clear that the number of activities is doubled and
hence also the number of events is more than doubled. We observe a similar behavior for
the cycle_base method, although not as prominent as in the full case. The minimal method
results in very similar numbers of events and activities as the cycle_base method for the
smaller instances. Both methods noticeably differ only for the data sets bahn-03 and bahn-04
since many full span activities are removed before adding the virtual activities.

Due to the time limit and the heuristic nature of the modulo simplex, not all problems
were solved correctly. If MNS did not reach the time limit, but found a solution with objective
value greater than zero for a feasible instance, it is counted as time limit. On the other hand,
if it reached an objective value greater than zero for an infeasible instance and stopped before
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Figure 3 Correctness of all algorithms over all data sets split into feasible and infeasible instances.

the time limit, it is counted as a correct identification (however, the method is not able to
prove this correctness). Figure 3 shows the correctness of the algorithms split in feasible
and infeasible instances. We note that NodeIP-Feas is best in proving infeasibility. Also
CBIP-Feas and phase I with CBIP perform well in proving infeasibility. ConProp and other
phase I algorithms perform poorly in comparison. On the other hand, phase I with minimal
or cycle_base and NodeIP finds a feasible solution more often than all other algorithms.
ConProp and phase I with minimal or cycle_base and CBIP belong to the algorithms that
find a feasible solution for most of the instances. Phase I with the full method and MNS
does not find a correct feasible solution at all.

In Figure 4, the run times of the algorithms for each instance are ranked, i.e., how often
an algorithm was the fastest, second fastest, . . . and how often the algorithm was not correct.
For clarity reasons, there is no bar for the time limit. For the feasible instances, NodeIP-Feas
and phase I with minimal and cycle_base as extending methods and NodeIP and CBIP as
algorithms are the fastest algorithms over all. For the infeasible instances, CBIP-Feas is the
fastest algorithm for most instances. Also NodeIP-Feas belongs to the group of the fastest
algorithm, followed by phase I with CBIP.

Figure 5 shows a performance profile [3] over all 80 data sets. It shows the ratio of
how many instances were solved within the time factor τ of the fastest algorithms for each
instance. This means that at τ = 1 the distribution of the fastest algorithms is shown, while
at τ ≈ 106 the percent of solved instances is shown. We see that NodeIP-Feas and CBIP-Feas
perform best with regards to the number of correctly solved instances. They are followed
by phase I with the minimal and cycle_base method which has similar values. As already
observed in previous figures, phase I with MNS and the full method performs worst.

4.3 Discussion
We first discuss the behavior of the algorithms on the different data sets. On the smallest
data set toy, all algorithms consistently solve the instances correctly. Only phase I with
MNS fails to determine the optimal solution within the time limit for some instances. The
CBIP-Feas algorithm outperforms all other algorithms for all instances of toy with respect
to the run time.

ATMOS 2021
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Figure 4 Ranking of run times of all algorithms over all data sets split into feasible and infeasible
instances.

For the middle-sized data sets grid and lowersaxony, classic MIP solvers NodeIP-Feas
and CBIP-Feas excel. They solve all instances correctly and within the time limit. The
remaining algorithms are not able to solve all instances within the time limit.

The athens data set is slightly larger than grid and lowersaxony, however, the main
difference is that the underlying public transportation network has only a few cycles – a
characteristic that benefits MNS. All but one algorithm are always correct.

Finally, due to the size of the bahn data sets, the time limit is often exceeded. On feasible
instances, phase I with NodeIP outperforms all other algorithms. On infeasible instances,
NodeIP-Feas is best, followed by CBIP-Feas and phase I with CBIP. NodeIP-Feas is correct
for all but one instances.
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Figure 5 Performance profile of the run time of all algorithms over all data sets.

We now consider the different variants of the phase I approach. We observe that the
algorithms can solve more instances correctly when we extend the event-activity network
using the minimal method compared to the cycle_base method. When employing the CBIP
algorithm the difference between the minimal method and cycle_base method are small. The
difference is more prominent for the other two algorithms. Using the extending method full
leads to fewer correctly solved instances within the time limit. We observe a similar pattern
when analyzing the run times. The phase I algorithms solve phase I faster on average when
the event-activity network is extended with the minimal method compared to the cycle_base
method. We observe that phase I with the MIP solvers NodeIP and CBIP are correct more
often and faster than phase I with MNS. The only data set where phase I with MNS is faster
is athens.

We distinguish between feasible and infeasible instances to compare phase I with NodeIP
to phase I with CBIP. While phase I with NodeIP solves more feasible instances correctly,
phase I with CBIP solves more infeasible instances correctly. Phase I with NodeIP outperforms
all other phase I approaches for the large and feasible instances; solving all but one instance
correctly. To do so, it requires less run time than all other phase I algorithms.

In the next step, we compare the phase I to the established algorithms ConProp, NodeIP-
Feas and CBIP-Feas. A direct comparison of the methods is difficult due to their heterogeneous
performance on the instances. For that reason, we analyze them in-depth. We focus on the
extending methods minimal and cycle_base combined with the algorithms NodeIP and CBIP.
phase I with MNS is excluded from the analysis as it only performs well on athens. Likewise,
the extending method full is excluded as it is outperformed by the other extending methods.
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Comparing ConProp to the phase I approach, we observe that the phase I approach
outperforms ConProp on multiple instances, with regards to number of correctly solved
instances and run time. On feasible instances, phase I with NodeIP performs better. On
infeasible instances, phase I with CBIP performs better. Comparing phase I to the MIP
solvers, we should distinguish between feasible and infeasible instances. On feasible instances
of the large data sets, classic MIP solvers fail to determine a feasible solution. In such
scenarios, phase I is a better choice. For the middle-sized data sets no exact statement can
be made. On infeasible instances and almost all cases, the NodeIP-Feas and CBIP-Feas
perform best.

To conclude, on the studied infeasible instances the phase I approach cannot compete
with the classic MIP solvers NodeIP-Feas and CBIP-Feas. On feasible instances, the phase I
approach outperforms ConProp, in particular on large data sets. On these instances, classic
MIP solvers often fail in determining a feasible solution within the time limit. Finally, we
emphasize that the phase I approach outperforms all other algorithms on the data set athens
with its special structure.

5 Conclusion

Finding periodic timetables is a well-known challenge when designing public transport
systems. While finding a timetable with minimum travel time is notoriously difficult, already
finding a feasible timetable is NP-hard. Often, such starting solutions are required as part of
a local improvement method, such as the modulo network simplex.

In this paper, we developed a new method to find feasible timetables that is inspired by
the phase I of the classic simplex method for linear programs. By adding virtual activities
to a given event-activity network, we construct an alternative PESP instance for which a
feasible solution is trivial to provide. We then solve this extended instance to find a solution
that is feasible for the original problem.

We discussed different possibilities of adding virtual activities and conducted an extensive
analysis of all combinations of extending methods and PESP algorithms on a set of problems
taken from the LinTim library. Our results suggest that it is important to differentiate
between feasible and infeasible instances when comparing algorithmic performances. While
the new phase I approach has a higher success rate on feasible instance, the classic MIP
solvers are noticeably better on infeasible instances. For best results, two algorithms may
be started in parallel, as proposed in [2]: One to find a feasible solution and one to prove
infeasibility.

Future research could focus on developing new extending methods, on the algorithms used
for the phase I, and their combination. Furthermore, the behavior of a phase II should be
further studied: how does the structure of starting solutions derived from different algorithms
impact the subsequent optimization step? Finally, it would be interesting to use the starting
solutions also for improving approaches (as in [18]) for integrating timetabling and routing.
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