Brief Announcement: Revisiting Signature-Free
Asynchronous Byzantine Consensus

Christian Cachin &

University of Bern, Switzerland

Luca Zanolini &
University of Bern, Switzerland

—— Abstract

Among asynchronous, randomized, and signature-free implementations of consensus, the protocols
of Mostéfaoui et al. (PODC 2014 and JACM 2015) represent a landmark result, which has been
extended later and taken up in practical systems. The protocols achieve optimal resilience and take,

in expectation, only a constant expected number of rounds and have quadratic message complexity.
Randomization is provided through a common-coin primitive. However, the first version of this
simple and appealing protocol suffers from a little-known liveness issue due to asynchrony. The
JACM 2015 version avoids the problem, but is considerably more complex.

This work revisits the original protocol of PODC 2014 and points out in detail why it may not
progress. A fix for the protocol is presented, which does not affect any of its properties, but lets it
regain the original simplicity in asynchronous networks enhanced with a common-coin protocol.

2012 ACM Subject Classification Theory of computation — Cryptographic protocols; Software and
its engineering — Distributed systems organizing principles

Keywords and phrases Randomized consensus
Digital Object Identifier 10.4230/LIPIcs.DISC.2021.51
Related Version Full Version: https://arxiv.org/pdf/2005.08795. pdf

Funding This work has been funded by the Swiss National Science Foundation (SNSF) under grant
agreement Nr. 200021 188443 (Advanced Consensus Protocols).

1 Introduction

Consensus is a fundamental abstraction in distributed systems. It captures the problem
of reaching agreement among multiple processes on a common value, despite unreliable
communication and the presence of faulty processes. Consensus in asynchronous networks
requires randomization.

Mostéfaoui et al. [4] presented a signature-free round-based asynchronous consensus
algorithm for binary values at PODC 2014. It had received considerable attention because it
was the first asynchronous consensus protocol with optimal resilience, tolerating up to f < %
Byzantine processes, that did not use digital signatures. Hence, it needs only authenticated
channels and remains secure against a computationally unbounded adversary. Moreover, it
takes O(n?) constant-sized messages in expectation. (This description excludes the necessary
cost for implementing randomization, for which the protocol relies on an abstract common-
coin primitive, as defined by Rabin [6].) The algorithm represents a landmark result, and
practical systems, such as “Honey Badger BFT” [3], have later taken it up, and many others
have extended it.

However, this protocol, which we call the PODC-1/ version [4] in the following, suffers
from a subtle and little-known problem. It may violate liveness, i.e., an adversary can
prevent progress among the correct processes by controlling the messages between them and
by sending them values in a specific order. This has explicitly pointed out by Tholoniat
? Christian Cachin a.nd Luca Zanolipi;

37 icensed under Creative Commons License CC-BY 4.0
35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 51; pp.51:1-51:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:cachin@inf.unibe.ch
mailto:luca.zanolini@inf.unibe.ch
https://doi.org/10.4230/LIPIcs.DISC.2021.51
https://arxiv.org/pdf/2005.08795.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2

Brief Announcement: Revisiting Signature-Free Asynchronous Byzantine Consensus

and Gramoli [7] in 2019. Indeed, the corresponding journal publication by Mostéfaoui et
al. [5], to which we refer as the JACM-15 version, only touches on the issue and goes on to
present a modified, extended protocol. This fixes the problem, but requires also many more
communication steps and adds considerable complexity.

In this work, we introduce an improved protocol that changes the PODC-14 version in a
simple, but crucial way and thereby regains the simplicity of the original result. The reader
may find detailed descriptions and arguments in the full version [2].

2 The Byzantine consensus algorithm of PODC-14

Let us briefly recall the consensus algorithm from the PODC-14 version (Alg. 1). A correct
process may propose a binary value b by invoking rbe-propose(b); the consensus abstraction
decides for b through an rbe-decide(b) event. The algorithm proceeds in rounds. In each
round, an instance of bv-broadcast is invoked, a primitive introduced in the same paper [4,
Figure 1]. A correct process p; executes bv-broadcast and waits for a value b to be delivered,
identified by a tag characterizing the current round. When such a bit b is received, p; adds b
to values and broadcasts b through an AUX message to all processes. Whenever a process
receives an AUX message containing b from pj, it stores b in a local set auz[j]. Once p; has
received a set B C wvalues of values such that every b € B has been delivered in AUX messages
from at least n — f processes, then p; releases the coin for the round. Subsequently, the
process waits for the coin protocol to output a binary value s through output-coin(s), tagged
with the current round number.

Process p; then checks if there is a single value b in B. If so, and if b = s, then it decides
for value b. The process then proceeds to the next round with proposal b. If there is more
than one value in B, then p; changes its proposal to s. In any case, the process starts another
round and invokes a new instance of bv-broadcast with its proposal.

Algorithm 1 Randomized binary consensus according to Mostéfaoui et al. [4] (code for p;).

1: State

2: round < 0: current round

3: values < {}: set of bv-delivered binary values for the round

4: auz < [{}]™: stores sets of values that have been received in AUX messages in the round
5: upon event rbc-propose(b) do

6: invoke bv-broadcast(b) with tag round

7: upon bv-deliver(b) with tag r such that r = round do

8: values < values U {b}

9: send message [AUX, round, b] to all p; € P
10: upon receiving a message [AUX, 7, b] from p; such that r = round do
11: auzlj] < auzlj] U {b}

12: upon exists B C values such that B # {} and |{p; € P| B = aua[j]}| > n — f do
13: release-coin with tag round

14: wait for output-coin(s) with tag round

15: round <— round + 1

16: if exists b such that B = {b} then // e, |Bl=1
17: if b = s then

18: output rbe-decide(b)

19: invoke bv-broadcast(b) with tag round // propose b for the next round
20: else

21: invoke bv-broadcast(s) with tag round // propose coin value s for the next round

22: values + [L]"; auz < [{}]"

C. Cachin and L. Zanolini

3 The problem and a solution

In the problematic execution [7], the network reorders messages between correct processes

and delays them until the coin value becomes known. Our crucial insight concerns the coin:

In any full implementation, it is not abstract, but implemented by a protocol that exchanges
messages among the processes. Based on this, our solution consists of two parts.

Our first change is to assume FIFO ordering on the reliable point-to-point links, including
the messages exchanged by the coin implementation. FIFO-ordered links are actually a
very common assumption. They are easily implemented by adding sequence numbers to
messages [1]. Our second change is to allow the set B (Alg. 2, line 25) to dynamically
change while the coin protocol executes. Alg. 2 implements these changes. More details and
correctness proofs appear in the full version [2].

Algorithm 2 Randomized binary consensus (code for p;).

: State
round < 0: current round
values < {}: set of bv-delivered binary values for the round
auz < [{}]™: stores sets of values that have been received in AUX messages in the round
decided + [|": stores binary values that have been reported as decided by other processes
sentdecide < FALSE: indicates whether p; has sent a DECIDE message

upon event rbc-propose(b) do
invoke bv-broadcast(b) with tag round

: upon bv-deliver(b) with tag r such that r = round do

values < values U {b}

send message [AUX, round, b] to all p; € P

:upon receiving a message [AUX,r,b] from p; such that r = round do

auzlj] + auzlj] U {b}

:upon receiving a message [DECIDE, b] from p; such that decided[j] = L do

decided[j] = b

:upon exists b # L such that |{p; € P|decided[j] = b}| > f+ 1 do

—
[R A A IR A - > e

= = = =
AN R

17: if —sentdecide then

18: send message [DECIDE, b] to all p; € P

19: sentdecide <— TRUE

20: upon exists b # L such that |{p; € P | decidedj] = b}| > 2f+1 do

21: rbe-decide(b)

22: halt

23: upon exist |Q; = {p; € P| auzlj] C values}| > 2f + 1 do

24: release-coin with tag round

25: upon event output-coin(s) with tag round and 3B # {},V p; € Q; : B = auz[j] do

26: round < round + 1

21 if exists b such that |B| =1A B = {b} then

28: if b = s A —sentdecide then

29: send message [DECIDE, b] to all p; € P

30: sentdecide <— TRUE

31: invoke bv-broadcast(b) with tag round // propose b for the next round
32: else

33: invoke bv-broadcast(s) with tag round // propose coin value s for the next round
34: values < [L]™; auz < [{}]"

51:3

DISC 2021

51:4

Brief Announcement: Revisiting Signature-Free Asynchronous Byzantine Consensus

—— References

1

Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

Christian Cachin and Luca Zanolini. From symmetric to asymmetric asynchronous byzantine
consensus. CoRR, abs/2005.08795v3, 2021. arXiv:2005.08795v3.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Proc. ACM CCS, pages 31-42, 2016.

Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-free asynchronous
byzantine consensus with ¢ < n/3 and O(n?) messages. In Proc. PODC, pages 2-9, 2014.
Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary byzantine consensus with ¢t < n/3, O(n?) messages, and O(1) expected time. J. ACM,
62(4):31:1-31:21, 2015.

Michael O. Rabin. Randomized byzantine generals. In Proc. FOCS, pages 403-409, 1983.
Pierre Tholoniat and Vincent Gramoli. Formal verification of blockchain byzantine fault
tolerance. In 6th Workshop on Formal Reasoning in Distributed Algorithms (FRIDA’19), 2019.

http://arxiv.org/abs/2005.08795v3

	1 Introduction
	2 The Byzantine consensus algorithm of PODC-14
	3 The problem and a solution

