
Constant RMR Group Mutual Exclusion for
Arbitrarily Many Processes and Sessions
Liat Maor #

The Interdisciplinary Center, Herzliya, Israel

Gadi Taubenfeld #

The Interdisciplinary Center, Herzliya, Israel

Abstract
Group mutual exclusion (GME), introduced by Joung in 1998, is a natural synchronization problem
that generalizes the classical mutual exclusion and readers and writers problems. In GME a process
requests a session before entering its critical section; processes are allowed to be in their critical
sections simultaneously provided they have requested the same session.

We present a GME algorithm that (1) is the first to achieve a constant Remote Memory Reference
(RMR) complexity for both cache coherent and distributed shared memory machines; and (2) is the
first that can be accessed by arbitrarily many dynamically allocated processes and with arbitrarily
many session names. Neither of the existing GME algorithms satisfies either of these two important
properties. In addition, our algorithm has constant space complexity per process and satisfies the
two strong fairness properties, first-come-first-served and first-in-first-enabled. Our algorithm uses
an atomic instruction set supported by most modern processor architectures, namely: read, write,
fetch-and-store and compare-and-swap.

2012 ACM Subject Classification Theory of computation; Theory of computation → Distributed
computing models; Theory of computation → Shared memory algorithms; Theory of computation
→ Distributed algorithms

Keywords and phrases Group mutual exclusion, RMR complexity, unbounded number of processes,
fetch&store (FAS), compare&swap (CAS)

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.30

Acknowledgements We thank the anonymous referees for their constructive suggestions.

1 Introduction

1.1 Motivation and results
In the group mutual exclusion (GME) problem n processes repeatedly attend m sessions.
Processes that have requested to attend the same session may do it concurrently. However,
processes that have requested to attend different sessions may not attend their sessions
simultaneously. The GME problem is a natural generalization of the classical mutual
exclusion (ME) and readers/writers problems [9, 12]. To see this, observe that given a GME
algorithm, ME can be solved by having each process uses its unique identifier as a session
number. Readers/writers can be solved by having each writer requests a different session,
and having all readers request the same special session. This allows readers to attend the
session concurrently while ensuring that each writer attends in isolation. The GME problem
has been studied extensively since it was introduced by Yuh-Jzer Joung in 1998 [21, 22].

A simple example has to do with the design of a concurrent queue or stack [6]. Using
a GME algorithm, we can guarantee that no two users will ever simultaneously be in the
enqueue.session or dequeue.session, so the enqueue and dequeue operations will never be
interleaved. However, it will allow any number of users to be in either the enqueue or

© Liat Maor and Gadi Taubenfeld;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leliatmaor@gmail.com
mailto:tgadi@idc.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2021.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Constant RMR Group Mutual Exclusion

dequeue session simultaneously. Doing so simplifies the design of a concurrent queue as our
only concern now is to implement concurrent enqueue operations and concurrent dequeue
operations.

In this paper, we present a GME algorithm that is the first to satisfy several desired
properties (the first two properties are satisfied only by our algorithm).
1. Suitability for dynamic systems: All the existing GME algorithms are designed with the

assumption that either the number of processes or the number of sessions is a priori
known. Our algorithm is the first that does not make such an assumption:

it can be accessed by an arbitrary number of processes; that is, processes may appear
or disappear intermittently, and
the number and names of the sessions are not limited in any way.

2. O(1) RMR complexity: An operation that a process performs on a memory location is
considered a remote memory reference (RMR) if the process cannot perform the operation
locally on its cache or memory and must transact over the multiprocessor’s interconnection
network in order to complete the operation. RMRs are undesirable because they take
long to execute and increase the interconnection traffic. Our algorithm

achieves the ideal RMR complexity of O(1) for Cache Coherent (CC) machines; and
is the first to achieve the ideal RMR complexity of O(1) for Distributed Shared Memory
(DSM) machines. (In Subsection 1.3, we explain why this result does not contradict
the lower bound from [11].)

This means that a process incurs only a constant number of RMRs to satisfy a request
(i.e, to enter and exit the critical section once), regardless of how many other processes
execute the algorithm concurrently.

3. O(1) space per process: A small constant number of memory locations are allocated for
each process. On DSM machines, these memory locations reside in the process local
memory; on CC machines, these locations reside in the shared memory.

4. Strong fairness: Requests are satisfied in the order of their arrival. That is, our algorithm
satisfies the first-come-first-served and first-in-first-enabled properties, defined later.

5. Hardware support: Atomic instruction set that is supported by most modern processor
architectures is used, namely: read, write, fetch-and-store and compare-and-swap.

We point out that when using a GME as a ME algorithm, the number of processes is the
same as the number of sessions (each process uses its identifier as its session number). Thus,
in GME algorithms, in which the number of sessions is a priori known also the number of
processes must be known, at least when these GME algorithms are used as ME algorithms
or readers and writers locks.

Our GME algorithm is inspired by J. M. Mellor-Crummey and M. L. Scott MCS queue-
based ME algorithm [28]. The idea of our GME algorithm is to employ a queue, where
processes insert their requests for attending a session. The condition when a process p may
attend its session depends on whether p’s session is the same as that of all its predecessors.
Otherwise, p waits until p is notified (by one of its predecessors) that all its predecessors
which have requested different sessions completed attending their sessions.

A drawback of the MCS ME algorithm is that releasing a lock requires spinning – a
process p releasing the lock may need to wait for a process that is trying to acquire the lock
(and hence is behind p in the queue) to take a step before p can proceed. The ME algorithms
in [13] overcome this drawback while preserving the simplicity, elegance, and properties of
the MCS algorithm. We use a key idea inspired by [13] in our GME algorithm to ensure that
a process releasing the GME lock will never have to wait for a process that has not attended
its session yet.

L. Maor and G. Taubenfeld 30:3

Another key idea of our algorithm is to count down completed requests for attending a
session by moving a pointer by one node (in the queue) for each such request and to ensure
the integrity of this scheme by gating the processes that have completed attending a session
(and are now trying to move the pointer) through a mutual exclusion lock.

1.2 The GME problem
More formally, the GME problem is defined as follows: it is assumed that each process
executes a sequence of instructions in an infinite loop. The instructions are divided into four
continuous sections of code: the remainder, entry, critical section (CS), and exit.

A process starts by executing its remainder section. At some point, it might need to
attend some session, say s. To attend session s, a process has to go through an entry code
that guarantees that while it is attending this session, no other process is allowed to attend
another session. In addition, once a process completes attending a session, the process
executes its exit section in which it notifies other processes that it is no longer attending the
session. After executing its exit section, the process returns to its remainder.

The group mutual exclusion problem is to write the code for the entry section and the
exit section so that the following requirements are satisfied.

Mutual exclusion: Two processes can be in their CS at the same time, only if they request
the same session.
Starvation-freedom: If a process is trying to enter its CS, then this process must eventually
enter its CS.
Group concurrent entering (GCE): If a process p requests a session s while no process is
requesting a conflicting session, then (1) some process with session s can complete its
entry section within a bounded number of its own steps, and (2) p eventually completes
its entry section, even if other processes do not leave their CS.
Group bounded exit (GBE): If a process p is in its exit section, then (1) some process can
complete its exit section within a bounded number of its own steps, and (2) p eventually
completes its exit section.

GCE precludes using a given mutual exclusion algorithm as a solution for the GME problem
since GCE enables processes to attend the same session concurrently.

Our algorithm also satisfies the following strong fairness requirements. To formalize this,
we assume that the entry code starts with a bounded section of code (i.e., one that contains
no unbounded loops), called the doorway; the rest of the entry code is called the waiting
room. The fairness requirements, satisfied by our algorithm, can now be stated as follows:

First-come-first-served (FCFS): If a process p completes its doorway before a process q

enters its doorway and the two processes request different sessions, then q does not enter
its CS before p enters its CS [16, 26].
First-in-first-enabled (FIFE): If a process p completes its doorway before a process q

enters its doorway, the two processes request the same session, and q enters its CS before
p, then p enters its CS in a bounded number of its own steps [20].

We notice that FCFS and FIFE do not imply starvation-freedom or group concurrent entering.

1.3 Further explanations
To illustrate the various GME requirements, imagine the critical section as a lecture hall
that different professors can share for their lectures. Furthermore, assume that the lecture
hall has one entrance door and one exit door. When solving the GME problem, the property
of mutual exclusion guarantees that two different lectures cannot be arranged in the lecture
hall simultaneously, while starvation-freedom guarantees that the lecture hall will eventually
be reserved for every scheduled lecture.

DISC 2021

30:4 Constant RMR Group Mutual Exclusion

Assuming that only one lecture is scheduled, group concurrent entering ensures that all
the students who want to attend this lecture can enter the lecture hall through the entrance
door, possibly one after the other, and attend the lecture. Furthermore, at any given time,
when there are students who want to attend the lecture, at least one of them can always
enter the lecture hall without any delay. Similarly, group bounded exit ensures that all the
students who want to leave a lecture can do so through the exit door, possibly one after the
other. Furthermore, at any given time, at least one of them can exit the lecture hall without
delay.

Group concurrent entering and group bounded exit are first introduced and formally
defined in this paper. They are slightly weakened versions of two known requirements
(formally defined below) called concurrent entering and bounded exit. Using the lecture hall
metaphor, assuming that only one lecture is scheduled, concurrent entering ensures that all
the students who want to attend this lecture can enter the lecture hall together. Similarly,
bounded exit ensures that all the students who want to leave a lecture can do so together.
So, why have we not used these two stronger requirements?

Danek and Hadzilacos lower bound. Let n denotes the total number of processes. In [11],
it is proven that Ω(n) RMRs are required for any GME algorithm that satisfies mutual
exclusion, starvation-freedom, concurrent entering, and bounded exit, in the DSM model,
using basic primitives of any strength. This result holds even when the number of sessions
is only two. (Concurrent entering and bounded exit are as defined below [16].) Since we
are aiming at finding a solution that has O(1) RMR complexity, we had to weaken either
concurrent entering, bounded exit, or both. (GME would not be interesting if the mutual
exclusion or starvation-freedom properties are weakened.)

Group concurrent entering. To avoid an inefficient solution to the GME problem using a
traditional ME algorithm and forcing processes to be in their CS one-at-a-time, even if all
processes are requesting the same session, Joung required that a GME algorithm satisfies
the following property (which he called concurrent entering):

If some processes request a session and no process requests a different session, then the
processes can concurrently enter the CS [21].

The phrase “can concurrently enter,” although suggestive, is not precise. In [24, 25], Keane
and Moir were the first to give a precise definition that captures their interpretation of
Joung’s requirement (which they also called concurrent entering):

Concurrent occupancy: If a process p requests a session and no process requests a different
session, then p eventually enters its CS, even if other processes do not leave their CS.
(The name “concurrent occupancy” is from [16].)

In [16], Hadzilacos gave the following interpretation, which is stronger than that of Keane
and Moir.

Concurrent entering: If some process, say p, is trying to attend a session s while no
process is requesting a conflicting session, then p completes its entry section in a bounded
number of its own steps.

To circumvent the Danek and Hadzilacos Ω(n) lower bound, we looked for a slightly weaker
version of concurrent entering that would still capture the property that Joung intended to
specify. We believe that group concurrent entering, which is strictly stronger than concurrent
occupancy, is such a property. We point out that our algorithm actually satisfies the following
stronger version of group concurrent entering,

L. Maor and G. Taubenfeld 30:5

Strong group concurrent entering: If a process p requests a session s, and p completes its
doorway before any conflicting process starts its doorway, then (1) some process with
session s can complete its entry section within a bounded number of its own steps, and
(2) p eventually completes its entry section, even if other processes do not leave their CS.

Strong group concurrent entering (SGCE) is a slightly weakened version of a known property
called strong concurrent entering [20].

Group bounded exit. Our group bounded exit property is replaced by the following two
(weaker and stronger) properties in previously published papers.

Terminating exit: If a process p enters its exit section, then p eventually completes it [24].
Bounded exit: If a process p enters its exit section, then p eventually completes it within
a bounded number of its own steps [16].

Again, to circumvent the Danek and Hadzilacos Ω(n) lower bound, we have defined group
bounded exit, which is slightly weaker than bounded exit and is strictly stronger than
terminating exit.

Open question. We have modified both concurrent entering and bounded exit. Is this
necessary? With minor modifications to the Danek and Hadzilacos lower bound proof, it is
possible to prove that their lower bound still holds when replacing only bounded exit with
group bounded exit. Thus, to circumvent the lower bound, the weakening of concurrent
entering is necessary. However, the question of whether it is possible to circumvent the lower
bound by replacing only concurrent entering with group concurrent entering, and leaving
bounded exit as is, is open.

1.4 Related work
Table 1 summarizes some of the (more relevant) GME algorithms mentioned below and their
properties. The group mutual exclusion problem was first stated and solved by Yuh-Jzer
Joung in [21, 22], using atomic read/write registers. The problem is a generalization of the
mutual exclusion problem [12] and the readers and writers problem [9] and can be seen as a
special case of the drinking philosophers problem [8].

Group mutual exclusion is similar to the room synchronization problem [6]. The room
synchronization problem involves supporting a set of m mutually exclusive “rooms” where
any number of users can execute code simultaneously in any one of the rooms, but no two
users can simultaneously execute code in separate rooms. In [6], room synchronization is
defined using a set of properties that is different than that in [21], a solution is presented,
and it is shown how it can be used to efficiently implement concurrent queues and stacks.

In [24, 25], a technique of converting any solution for the mutual exclusion problem to
solve the group mutual exclusion problem was introduced. The algorithms from [24, 25]
do not satisfy group concurrent entering and group bounded exit and have O(n) RMR
complexity, where n is the number of processes. (By a mistake, in some of the tables
in [24, 25], smaller RMR complexity measures are mentioned.) In [16], a simple formulation
of concurrent entering is proposed which is stronger than the one from [24], and an algorithm
is presented that satisfies this property.

In [20], the first FCFS GME algorithm is presented that uses only O(n) bounded shared
registers, while satisfying concurrent entering and bounded exit. Also, it is demonstrated
that the FCFS property does not fully capture the intuitive notion of fairness, and additional
fairness property, called first-in-first-enabled (FIFE) was presented. Finally, the authors
presented a reduction that transforms any abortable FCFS mutual exclusion algorithm, into
a GME algorithm, and used it to obtained GME algorithm satisfying both FCFS and FIFE.

DISC 2021

30:6 Constant RMR Group Mutual Exclusion

A GME algorithm is presented in [11] with O(n) RMR complexity in the DSM model,
and it is proved that this is asymptotically optimal. Another algorithm in [11] requires only
O(log n) RMR complexity in the CC model, but can be used just for two sessions.

Our algorithm satisfies FCFS fairness. That is, if the requests in the queue are for
sessions 1, 2, 1, 2, 1, 2 and so on, those requests would be granted in that order. Yet, for
practical considerations, one may want to batch all requests for session 1 (and, separately,
for session 2) and run them concurrently. Our algorithm does not support “batching” of
pending requests for the same session, as FCFS fairness and “batching” of pending requests
for the same session are contradicting (incompatible) requirements. This idea was explored
in [5], where a GME algorithm is presented that satisfies two “batching” requirements call
pulling and relaxed-FCFS, and requiring only O(log n) RMR complexity in the CC model.
Reader-Writer Locks were studied in [7], which trade fairness between readers and writers
for higher concurrency among readers and better back-to-back batching of writers.

An algorithm is presented in [14] in which a process can enter its critical section within a
constant number of its own steps in the absence of any other requests (which is typically
referred to as contention-free step complexity). In the presence of contention, the RMR
complexity of the algorithm is O(min(k, n)), where k denotes the interval contention. The
algorithm requires O(n2) space and does not satisfy fairness property like FCFS or FIFE.

In [2], a GME algorithm with a constant RMR complexity in the CC model is presented.
This algorithm does not satisfy group concurrent entering (or even concurrent occupancy)
and FCFS. However, it satisfies two other interesting properties (defined by the authors)
called simultaneous acceptance and forum-FCFS.

In [17], the first GME algorithm with both linear RMR complexity (in the CC model) and
linear space was presented, which satisfies concurrent entering and bounded exit, and uses
only read/write registers. A combined problem of ℓ-exclusion and group mutual exclusion,
called the group ℓ-exclusion problem, is considered in [29, 32].

Besides the algorithms mentioned above, for the shared-memory model, there are al-
gorithms that solve the GME problem under the message-passing model. Several types of
the network’s structure were considered, for example, tree networks [4], ring networks [33],
and fully connected networks [3]. In [3, 23, 31], quorum-based message-passing algorithms
are suggested in which a process that is interested in entering its CS has to ask permission
from a pre-defined quorum.

2 Preliminaries

2.1 Computational model
Our model of computation consists of an asynchronous collection of n deterministic processes
that communicate via shared registers (i.e., shared memory locations). Asynchrony means
that there is no assumption on the relative speeds of the processes. Access to a register is
done by applying operations to the register. Each operation is defined as a function that
gets as arguments one or more values and registers names (shared and local), updates the
value of the registers, and may return a value. Only one of the arguments may be a name of
a shared register. The execution of the function is assumed to be atomic. Call by reference
is used when passing registers as arguments. The operations used by our algorithm are:

Read: takes a shared register r and simply returns its value.
Write: takes a shared register r and a value val. The value val is assigned to r.
Fetch-and-store (FAS): takes a shared register r and a local register ℓ, and atomically
assigns the value of ℓ to r and returns the previous value of r. (The fetch-and-store
operation is also called swap in the literature.)

L. Maor and G. Taubenfeld 30:7

Table 1 Comparing the properties of our algorithm with those of several GME algorithms.

GME Group Group Fairness Unknown Shared RMR RMR Hardware
Algorithms bounded concurrent number of space in CC in DSM used

exit entering FCFS/ processes for all
BE/GBE CE/GCE FIFE & sessions processes

Joung BE CE ✗ ✗ O(n) ∞ ∞ read/write
1988
Keane & ✗ ✗ ✗ ✗ O(n) O(n) O(n) read/write
Moir 1999
Hadzilacos BE CE FCFS ✗ O(n2) O(n2) ∞ read/write
2001
Jayanti et.al. BE CE FCFS ✗ O(n) O(n2) ∞ read/write
2003 FIFE
Danek&Had- BE CE FCFS ✗ O(n2) O(n) O(n) CAS
zilacos 2004 FIFE fetch&add
Bhatt & BE CE ✗ ✗ O(mn) O(min(∞ LL/SC
Huang 2010 k, log n))
He et. al. BE CE FCFS ✗ O(n) O(n) ∞ read/write
2018
Aravid&He- BE ✗ ✗ O(L) O(1) ∞ fetch&inc
sselink 2019 FIFE
Gokhale & BE CE ✗ ✗ O(n2) O(min(O(n) CAS
Mittal 2019 c, n)) fetch&add

Our GBE GCE FCFS ✓ O(n) O(1) O(1) CAS
algorithm FIFE fetch&store

✓ - satisfies the property k - point contention BE - bounded exit
✗ - does not satisfy the property c - interval contention GBE - group bounded exit
n - number of processes L - a constant number CE - concurrent entring
m - number of sessions s.t. L > min(n, m) GCE - group concurrent entring

Compare-and-swap (CAS): takes a shared register r, and two values: new and old. If the
current value of the register r is equal to old, then the value of r is set to new and the
value true is returned; otherwise, r is left unchanged and the value false is returned.

Most modern processor architectures support the above operations.

2.2 The CC and DSM machine architectures
We consider two machine architecture models: (1) Cache coherent (CC) systems, where each
process (or processor) has its own private cache. When a process accesses a shared memory
location, a copy of it migrates to a local cache line and becomes locally accessible until some
other process updates this shared memory location and the local copy is invalidated; (2)
Distributed shared memory (DSM) systems, where instead of having the “shared memory”
in one central location, each process “owns” part of the shared memory and keeps it in its
own local memory. These different shared memory models are illustrated in Figure 1.

A shared memory location is locally accessible to some process if it is in the part of the
shared memory that physically resides on that process’ local memory. Spinning on a remote
memory location while its value does not change, is counted only as one remote operation
that causes communication in the CC model, while it is counted as many operations that
cause communication in the DSM model. An algorithm satisfies local spinning (in the CC or
DSM models) if the only type of spinning required is local spinning.

DISC 2021

30:8 Constant RMR Group Mutual Exclusion

. . .

M

. . .

M M

(a)

C

. . .

M

(b)

C

(c)

P P P P P P

Figure 1 Shared memory models. (a) Central shared memory. (b) Cache Coherent (CC). (c)
Distributed Shared Memory (DSM). P denotes processor, C denotes cache, M denotes shared
memory.

2.3 RMR complexity: counting remote memory references
We define a remote reference by process p as an attempt to reference (access) a memory
location that does not physically reside in p’s local memory or cache. The remote memory
location can either reside in a central shared memory or in some other process’ memory.

Next, we define when remote reference causes communication. (1) In the DSM model,
any remote reference causes communication; (2) in the CC model, a remote reference to
register r causes communication if (the value of) r is not (the same as the value) in the
cache. That is, communication is caused only by a remote write access that overwrites a
different value or by the first remote read access by a process that detects a value written by
a different process.

Finally, we define time complexity when counting only remote memory references. This
complexity measure, called RMR complexity, is defined with respect to either the DSM model
or the CC model, and whenever it is used, we will say explicitly which model is assumed.

The RMR complexity in the CC model (resp. DSM model) is the maximum number of
remote memory references which cause communication in the CC model (resp. DSM
model) that a process, say p, may need to perform in its entry and exit sections in order
to enter and exit its critical section since the last time p started executing the code of its
entry section.

3 The GME Algorithm

Our algorithm has the following properties: (1) it has constant RMR complexity in both the
CC and the DSM models, (2) it does not require to assume that the number of participating
processes or the number of sessions is a priori known, (3) it uses constant space per process,
(4) it satisfies FCFS and FIFE fairness, (5) it satisfies the properties: mutual exclusion,
starvation-freedom, SGCE, and GBE, (6) it uses an atomic instruction set supported by
most modern processor architectures (i.e., read, write, FAS and CAS).

3.1 An informal description
The algorithm maintains a queue of nodes which is implemented as a linked list with two
shared objects, Head and Tail, that point to the first and the last nodes, respectively. Each
node represents a request of a process to attend a specific session. A node is an object with
a pointer field called next, a boolean field called go, an integer field called session, and two

L. Maor and G. Taubenfeld 30:9

status fields called status and active. Each process p has its own two nodes, called Nodesp[0]
and Nodesp[1], which can be assumed to be stored in the process p’s local memory in a DSM
machine, and in the shared memory in a CC machine. Each time p wants to enter its CS
section, p uses alternately one of its two nodes. We say that a process p is enabled if p can
enter its CS in a bounded number of its own steps.

In its doorway, process p initializes the fields of its node as follows:
session is set to the session p wants to attend, letting other processes know the session p

is requesting (line 2).
next is a pointer to the successor’s node and is initially set to null. This field is being
updated later by p’s successor (line 11).
go is set to false. Later, if p is not enabled, p would spin on its go bit until the value is
changed to true. The go bit is the only memory location a process may spin on.
status is set to WAIT. This field is being used to determine if a process is enabled. When
a process becomes enabled, it sets this field to ENABLED (line 26). When process p sees
that its predecessor is not enabled (line 13), p spins on its go bit (line 14). Otherwise, p

informs its predecessor that p has seen that the predecessor is enabled (and hence p does
not need help), by setting its predecessor’s status field to NO_HELP . When a process p

sees that its status is ENABLED (line 30), p tries to help its successor to become enabled
and notifies the successor by setting p’s own status to TRY _HELP .
active is set to YES. This field is being used to determine whether p’s node is active or
not. A node is active if there is a process p that is currently using the node in an attempt
to enter p’s critical section.

At the end of its doorway, process p threads its node to the end of the queue (line 7).
Afterward, p checks what its state is. The state can be one of the following:
1. its node is the first in the queue,
2. its predecessor requests the same session, or
3. its predecessor requests a different session.

In the first case, p can safely become enabled and enters its CS. In the second case, p becomes
enabled only if its predecessor is enabled. In the third case, p eventually becomes enabled,
once all the processes it follows completed their CSs. We observe that in the exit section,
each process causes Head to be advanced by exactly one step. So, if p’s predecessor’s node is
inactive, it implies that all the processes that p follows completed their CSs, and thus, p can
become enabled and enters its CS.

In the last two cases, once p is enabled, p checks whether it should help its predecessor
advance Head, by checking if p’s predecessor’s node is inactive. If the predecessor’s node
is inactive, then Head should point to the node after this inactive node, which is p’s node.
Therefore, in such a case, p advances Head to point to its node.

Once p is enabled to enter its CS, p notifies its successor by setting p’s status to ENABLED.
Next, p checks if it has a successor that requests the same session and needs help also to
become enabled. If so, p tries to help its successor to become enabled. Only then p enters its
CS. The processes that may enter their CS simultaneously are: the process, say p, that Head
points to its node, and every process q that (1) requests the same session as p, and (2) no
conflicting process entered its node between p’s node and q’s node.

Most of the exit code is wrapped by a mutual exclusion lock. This ensures that each
process can cause Head to be advanced by a single step every time a process completes its
CS. A process that completes its CS and succeeds in acquiring the ME lock tries to advance

DISC 2021

30:10 Constant RMR Group Mutual Exclusion

Head. If the process succeeds in advancing Head, then Head value is either null or points to
the next node in the queue. If Head is not null, the process changes the go bit to true in the
node that Head points to. By doing so, the process lets the next process becoming enabled.

If p fails to advance Head, this means that some other process either,
1. enters the queue after p sets Tail to null (line 38),
2. enters the queue but has not notified its predecessor yet (line 11), or
3. has not entered the queue yet (line 7).
In the first case, the process, say q, in its entry section overrides Head to point to q’s node
(line 9) because q’s predecessor is null, and so q “advances” Head for p. In the latter cases, q

in its entry section overrides Head to point to q’s own node because it sees q’s predecessor’s
node is inactive, and so q “advances” Head for p. Afterward, p releases the ME lock, changes
the index of its current node (for the next attempt to enter p’s critical section), and completes
its exit section.

To guarantee that our GME algorithm satisfies group bounded exit, the mutual exclusion
used in the exit section (lines 36 and 49) must satisfy three properties, (1) starvation-freedom,
(2) bounded exit, and (3) a property that we call bounded entry. Bounded entry is defined as
follows: If a process p is in its entry section, while no other process is in its critical section
or exit section, some process can complete its entry section within a bounded number of
its own steps.1 While the important and highly influential MCS lock [28] does not satisfy
bounded exit, there are variants of it, like the mutual exclusion algorithms from [10, 13, 19],
that satisfy all the above three properties.

We will use one of the mutual exclusion algorithms from [13, 19], since (in addition to
satisfying the above three properties) each one of these algorithms satisfies the following
properties which match those of our GME algorithm: (1) it has constant RMR complexity
in both the CC and the DSM models, (2) it does not require to assume that the number
of participating processes is a priori known, (3) it uses constant space per process, (4) it
satisfies FCFS, (5) it uses the same atomic instruction set as our algorithm, (6) it makes no
assumptions on what and how memory is allocated (in [10] it is assumed that all allocated
pointers must point to even addresses).

3.2 The algorithm
Two memory records (nodes) are allocated for each process. On DSM machines, these two
records reside in the process local memory; on CC machines, these two records reside in the
shared memory. In the algorithm, the following symbols are used:
& – this symbol is used to obtain an object’s memory location address (and not the value

in this address). For example, &var is the memory location address of variable var.
→ – this symbol is used to indicate a pointer to data of a field in a specific memory location.

For example, assume var is a variable that is a struct with a field called number. We
now define another variable loc := &var s.t. loc points to var. Using loc → number we
would get the value of var.number.

Q – the queue in the algorithm is denoted by Q. Q is only used for explanations and does
not appear in the algorithm’s code.

1 It is interesting to notice that the bounded entry property cannot be satisfied by a ME algorithm that
uses only read/write atomic registers [1], [30] (page 119).

L. Maor and G. Taubenfeld 30:11

Algorithm 1 The GME algorithm: Code for process p.

Type: QNode: { session: int, go: bool, next: QNode*,
active: ∈ {YES, NO, HELP}
status: ∈ {ENABLED, WAIT, TRY_HELP, NO_HELP} }

Shared: Head: type QNode*, initially null ▷ pointer to the first node in Q
T ail: type QNode*, initially null ▷ pointer to the last node in Q
Lock: type ME lock ▷ mutual exclusion lock
Nodesp[0, 1]: each of type QNode, initial value immaterial ▷ nodes local to p in DSM

Local: s: int ▷ the session of p

nodep: type QNode*, initial value immaterial ▷ pointer to p’s currently used node
predp: type QNode*, initial value immaterial ▷ pointer to p’s predecessor node
nextp: type QNode*, initial value immaterial ▷ pointer to p’s successor node
temp_headp: type QNode*, initial value immaterial ▷ temporarily save the head
currentp: ∈ {0, 1}, initial value immaterial ▷ the index for p’s current node

procedure Thread(s: int) ▷ s is the session p wants to attend
▷ Begin Doorway

1: nodep := &Nodesp[currentp] ▷ pointer to current node for this attempt to enter p’s CS
2: nodep → session := s ▷ p’s current session
3: nodep → go := false ▷ may spin locally on it later
4: nodep → next := null ▷ pointer to successor
5: nodep → status := WAIT ▷ p isn’t enabled
6: nodep → active := YES ▷ p’s node is active

7: predp := FAS(Tail, nodep) ▷ p enters its current node to Q
▷ End Doorway

8: if predp = null then ▷ was Q empty before p entered?
9: Head := nodep ▷ nodep is the first in Q

10: else ▷ p has pred
11: predp → next := nodep ▷ notify pred
12: if predp → session = s then ▷ do we have the same session?
13: if not CAS(predp → status, ENABLED, NO_HELP) then

▷ should wait for help from pred?
14: await nodep → go = true ▷ wait until released by pred with the same session
15: else if not CAS(predp → active, YES, HELP) then ▷ should help advance Head?
16: Head := nodep ▷ help advance Head
17: end if
18: else ▷ we have different sessions
19: if CAS(predp → active, YES, HELP) then ▷ pred’s node is still active?
20: await nodep → go = true

▷ wait until release by a process with a different session
21: else ▷ pred’s node is inactive in Q thus p is enabled
22: Head := nodep

23: end if
24: end if
25: end if

26: nodep → status := ENABLED ▷ can enter the CS
▷ Try helping the successor

27: nextp := nodep → next ▷ save next pointer locally
28: if nextp ̸= null then ▷ has successor?
29: if nextp → session = s then ▷ we have the same session
30: if CAS(nodep → status, ENABLED, TRY_HELP) then

DISC 2021

30:12 Constant RMR Group Mutual Exclusion

31: nextp → go := true ▷ make your successor enabled
32: end if
33: end if
34: end if

35: critical section

36: Acquire(Lock) ▷ Mutual exclusion entry section

37: temp_headp := Head ▷ save current head locally
38: if CAS(Tail, temp_headp, null) then ▷ remove node from tail if it is the only node in Q
39: CAS(Head, temp_headp, null) ▷ try removing it from the head
40: else if temp_headp → next ̸= null then ▷ head has successor
41: temp_headp := temp_headp → next ▷ advance the temp head
42: Head := temp_headp ▷ advance the head
43: temp_headp → go := true ▷ enable the new head
44: else if not CAS(temp_headp → active, YES, NO) then

▷ someone in Tail but hasn’t notified to its predecessor in time
45: temp_headp := temp_headp → next ▷ advance the temp head
46: Head := temp_headp ▷ advance the head
47: temp_headp → go := true ▷ enable the new head
48: end if

49: Release(Lock) ▷ Mutual exclusion exit section

50: currentp := 1 − currentp ▷ toggle for further use
end procedure

3.3 Further explanations

To better understand the algorithm, we explain below several delicate design issues which
are crucial for the correctness of the algorithm.

1. Why does each process p need two nodes Nodesp[0] and Nodesp[1]? This is done to avoid
a deadlock. Assume each process has a single node instead of two, and consider the
following execution. Suppose p is in its CS, and q completed its doorway. p resumes
and executes its exit section. p completes its exit section while q is in the queue but has
not notified p that q is p’s successor (line 11). p leaves its status field as ENABLED
and changes its active field to NO (line 44), so q should be able to enter its CS, no
matter what session q requests. p starts another attempt to enter its CS, before q resumes
and executes either line 13 or line 19 (depends on which session p requests). p uses its
single node and sets status to WAIT and active to YES in its doorway (lines 5 and 6,
respectively). Now, q continues and (by executing either line 13 or line 19) sees that p is
not enabled and p’s node is active, so q spins on its go bit. Also, p (by executing either
line 13 or line 19) sees that q is not enabled and its node is active, so p also spins on its
go bit. No process will release q, and a deadlock occurs. This problem is resolved by
having each process owns two nodes.

2. Why do we need the CAS operations at lines 13 and 30? The CAS operations at these
lines prevent a potential race condition that may violate the mutual exclusion property.
Assume we replace the CAS operations at lines 13 and 30, as follows:

L. Maor and G. Taubenfeld 30:13

At line 13, p checks if predp → status ̸= ENABLED. If so, p waits at line 14.
Otherwise, at line 14.5, p executes predp → status = NO_HELP .
At line 30, p checks if nodep → status = ENABLED. If so, at line 30.5, p executes
nodep → status = TRY _HELP and then continues to line 31 and helps p’s successor.

Suppose p is the predecessor of q, and they both request the same session s. p executes
line 30, sees that p’s status is ENABLED, and continues to line 30.5 but does not execute
this statement yet. Then, q executes line 13, sees that p’s status is ENABLED, executes
line 14.5, changes p’s status to NO_HELP and continues to q’s CS. q completes its CS,
executes q’s exit section, and starts the algorithm again using q’s second node. q requests
the same session as before, s, and continues to q’s CS since q’s predecessor is enabled. q

completes its exit code and enters the entry code again using q’s first node, but now q

requests a different session s′ ̸= s. Notice, q’s first node is the same node that p has seen
as its successor. q continues to line 20 (because it does not request the same session as its
predecessor). And so, q waits until its go bit is set to true. Now, p executes line 30.5 that
changes p’s status to TRY _HELP , continues to line 31 that sets q’s first node’s go bit
to true and enters its CS. q sees that its go bit is true and also enters its CS. Therefore,
both p and q, which request different sessions, are in their CSs at the same time.

3. Why do we need the CAS operations at lines 15, 19, and 44? The CAS operations at
these lines are used to prevent a potential race condition that may cause a deadlock.
Assume we replace the CAS operations are at lines 15, 19, and 44, as follow:

At line 15, p checks if predp → active ̸= Y ES. If so, p sets Head to its node at line 16.
Otherwise, at line 16.5, p executes predp → active = HELP .
At line 19, p checks if predp → active = Y ES. If so, at line 19.5, p executes
predp → active = HELP .
At line 44, p checks if temp_headp → active = Y ES. If so, p executes lines 45-47
and advances Head. Otherwise, p continues to line 47.5 and executes temp_headp →
active = NO.

Suppose p is at line 44 while its successor q is at line 15. q executes line 15 and sees
its predecessor’s node’s active equals to YES. So q continues to line 16.5 but does not
execute it yet. Now, p continues and sees that the active field of the first node in the
queue is YES, so p continues to line 47.5. Then, p sets this node’s active field to NO,
while q sets it to HELP. Next, p completes its exit section and q enters its CS. Since no
process advanced Head, Head still points to the same node. Assume another process, r,
wants to enter its CS and requests a different session than q. r starts the algorithm and
gets q’s node as its predecessor’s node (at line 7). r continues to line 19, as r requests a
different session than its predecessor q, and sees that its predecessor’s node’s active field is
set to YES. Then, r continues to line 19.5, notifying that it did not help to advance Head,
and waits at line 20 for the go bit to be set to true. q completes its CS, advances Head
at line 42, sets the new first node’s go bit to true (line 43), and completes its exit code.
But the new first node is q’s node, since no process advanced Head when p completed its
CS. All the new processes will wait until r becomes enabled, but no process can help r

becoming enabled and a deadlock occurs.
4. Why don’t we use a dummy node? The head is being set for the first time at line 9 by

the first process that executes the algorithm. The head can be set in line 9 only by one
process, the first process, because of the use of the FAS operation at line 7. Only the
first process returns null from this operation. The other times that a process may set
the head at line 9 is when another process, say q, sets the tail to null in q’s exit section,
and then q should set the head to null and clear the queue. That means the algorithm is
returned to its initial state.

DISC 2021

30:14 Constant RMR Group Mutual Exclusion

5. Why have we added line 39, although the algorithm is correct without line 39? We can
remove line 39, and the algorithm would still be correct, as we would override Head at
line 9 with the next process that executes the algorithm. We have added this line for
semantics reasons, as we do not want to get into a situation where Head points to a node
that is no longer active while there are no processes that want to execute the algorithm.
That is, when no processes are executing the algorithm, Head and Tail should be null.

6. Is it essential to include lines 43 and 47 within the ME critical section? We can move
lines 43 and 47 outside the ME critical section (CS), and the algorithm would still be
correct. At these lines, we use a local variable temp_head, which no other process can
change. We placed these lines inside the ME CS for better readability. If we move these
lines outside the ME CS, we would need to check if we executed line 38, line 40, or line
44, and only if we executed lines 40 or 44, we then should set go.

7. Who can set process p’s go bit to true when p waits at line 20? By inspecting the code,
we can see that p’s go bit can be changed to true either in the entry section (line 31) or
in the exit section (lines 43 and 47). Assume p spins on its go bit at line 20. p would
stop spinning when its go bit changed to true by another process. Since p is at line
20, p has already tested the condition at line 12 and got false. This means that p has
requested a different session than its predecessor. Thus, p’s predecessor will not reach
line 31 because the predecessor will see (line 29) that its successor requests a different
session. Each process that acquires the ME lock causes Head to be advanced by exactly
one step. Therefore, the process that will change p’s go bit to true is the last process
that acquires the ME lock and requests the same session as p’s predecessor.

8. The algorithm might become simpler if one can obviate the use of Head. Is the use of
Head necessary? We have tried to simplify the algorithm by not using Head, as done for
mutual exclusion in the implementation of the MCS lock [28]. Solving the GME problem
is more complex than solving ME. There are more possible race conditions that should
be avoided, and using Head helped us in the design of the algorithm. In particular, in
the exit code, in lines 43 & 47 the new process at the head of the queue is enabled, by a
process that is exiting. We do not see how to implement this in constant time without
using Head.

4 Correctness Proof

In this section, we prove that the algorithm satisfies the following properties.

▶ Theorem 1. The GME algorithm has the following properties:
1. it satisfies mutual exclusion, starvation-freedom, strong group concurrent entering, and

group bounded exit;
2. it satisfies FCFS and FIFE fairness;
3. it has constant RMR complexity in both the CC and the DSM models;
4. it does not require to assume that the number of participating processes or the number of

sessions is a priori known;
5. it uses constant space per process;
6. it uses an atomic instruction set supported by most modern processor architectures, namely,

read, write, fetch&store (FAS) and compare&swap (CAS).
For the lack of space, the proof is omitted. A very detailed proof of Theorem 1 appears
in [27].

L. Maor and G. Taubenfeld 30:15

5 Discussion

With the wide availability of multi-core systems, synchronization algorithms like GME are
becoming more important for programming such systems. In concurrent programming,
processes (or threads) are often sharing data structures and databases. The GME problem
deals with coordinating access to such shared data structures and shared databases.

We have presented a new GME algorithm that is the first to satisfy several desired
properties. Based on our algorithm, it would be interesting to design other GME algorithms,
such as abortable GME [18] and recoverable GME [15], which will preserve the properties of
our algorithm.

References
1 R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Proceedings of the 13th

IEEE Real-Time Systems Symposium, pages 12–21, 1992.
2 A. Aravind and W.H. Hesselink. Group mutual exclusion by fetch-and-increment. ACM Trans.

Parallel Comput., 5(4), 2019.
3 R. Atreya, N. Mittal, and S. Peri. A quorum-based group mutual exclusion algorithm for a

distributed system with dynamic group set. IEEE Transactions on Parallel and Distributed
Systems, 18(10), 2007.

4 J. Beauquier, S. Cantarell, A. K. Datta, and F. Petit. Group mutual exclusion in tree networks.
In Proc. of the 9th International Conference on Parallel and Distributed Systems, pages
111–116, 2002.

5 V. Bhatt and C.C. Huang. Group mutual exclusion in O(log n) RMR. In Proc. 29th ACM
Symp. on Principles of Distributed Computing, pages 45–54, 2010.

6 G. E. Blelloch, P. Cheng, and P. B. Gibbons. Room synchronization. In Proc. of the 13th
Annual Symposium on Parallel Algorithms and Architectures, pages 122–133, 2001.

7 I. Calciu, D. Dice, Y. Lev, V. Luchangco, V.J. Marathe, and N. Shavit. Numa-aware reader-
writer locks. In Proceedings of the 18th ACM symposium on Principles and practice of parallel
programming, PPoPP ’13, page 157–166, February 2013.

8 K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6:632–646, 1984.

9 P.L. Courtois, F. Heyman, and D.L Parnas. Concurrent control with Readers and Writers.
Communications of the ACM, 14(10):667–668, 1971.

10 T.S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical
Report TR-93-02-02, Dept. of Computer Science, Univ. of Washington, 1993.

11 R. Danek and V. Hadzilacos. Local-spin group mutual exclusion algorithms. In 18th in-
ternational symposium on distributed computing, 2004. LNCS 3274 Springer Verlag 2004,
71–85.

12 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

13 R. Dvir and G. Taubenfeld. Mutual exclusion algorithms with constant rmr complexity and
wait-free exit code. In Proc. of the 21st international conference on principles of distributed
systems (OPODIS 2017), October 2017.

14 S. Gokhale and N. Mittal. Fast and scalable group mutual exclusion, 2019. arXiv:1805.04819.
15 W. Golab and A. Ramaraju. Recoverable mutual exclusion. In Proc. 2016 ACM Symposium

on Principles of Distributed Computing, pages 65–74, 2016.
16 V. Hadzilacos. A note on group mutual exclusion. In Proc. 20th symp. on Principles of

distributed computing, pages 100–106, 2001.
17 Y. He, K. Gopalakrishnan, and E. Gafni. Group mutual exclusion in linear time and space.

Theoretical Computer Science, 709:31–47, 2018.

DISC 2021

http://arxiv.org/abs/1805.04819

30:16 Constant RMR Group Mutual Exclusion

18 P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proc. 22nd ACM Symp. on
Principles of Distributed Computing, pages 295–304, 2003.

19 P. Jayanti, S. Jayanti, and S. Jayanti. Towards an ideal queue lock. In Proc. 21st International
Conference on Distributed Computing and Networking, ICDCN 2020, pages 1–10, 2020.

20 P. Jayanti, S. Petrovic, and K. Tan. Fair group mutual exclusion. In Proc. 22th ACM Symp.
on Principles of Distributed Computing, pages 275–284, July 2003.

21 Yuh-Jzer Joung. Asynchronous group mutual exclusion. In Proc. 17th ACM Symp. on
Principles of Distributed Computing, pages 51–60, 1998.

22 Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed Computing, 13(4):189–206,
2000.

23 H. Kakugawa, S. Kamei, and T. Masuzawa. A token-based distributed group mutual exclusion
algorithm with quorums. IEEE Transactions on Parallel and Distributed Systems, 19(9):1153–
1166, 2008.

24 P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm. In Proc. 18th
ACM Symp. on Principles of Distributed Computing, pages 23–32, 1999.

25 P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm. IEEE
Transactions on Parallel and Distributed Systems, 12(7), 2001.

26 L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM, 17(8):453–455, 1974.

27 L. Maor. Constant RMR group mutual exclusion for arbitrarily many processes and sessions.
Master’s thesis, The Interdisciplinary Center, Herzliya, Israel, August 2021.

28 J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991.

29 M. Takamura, T. Altman, and Y. Igarashi. Speedup of Vidyasankar’s algorithm for the group
k-exclusion problem. Inf. Process. Lett., 91(2):85–91, 2004.

30 G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson / Prentice-
Hall, 2006. ISBN 0-131-97259-6, 423 pages.

31 M. Toyomura, S. Kamei, and H. Kakugawa. A quorum-based distributed algorithm for group
mutual exclusion. In Proc. of the 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies, pages 742–746, 2003.

32 K. Vidyasankar. A simple group mutual ℓ-exclusion algorithm. Inf. Process. Lett., 85(2):79–85,
2003.

33 Kuen-Pin Wu and Yuh-Jzer Joung. Asynchronous group mutual exclusion in ring networks. In
Proc. 13th Inter. Parallel Processing Symposium and 10th Symp. on Parallel and Distributed
Processing, pages 539–543, 1999.

	1 Introduction
	1.1 Motivation and results
	1.2 The GME problem
	1.3 Further explanations
	1.4 Related work

	2 Preliminaries
	2.1 Computational model
	2.2 The CC and DSM machine architectures
	2.3 RMR complexity: counting remote memory references

	3 The GME Algorithm
	3.1 An informal description
	3.2 The algorithm
	3.3 Further explanations

	4 Correctness Proof
	5 Discussion

