
Detectable Sequential Specifications for
Recoverable Shared Objects
Nan Li #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Wojciech Golab #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Abstract
The recent commercial release of persistent main memory by Intel has sparked intense interest
in recoverable concurrent objects. Such objects maintain state in persistent memory, and can be
recovered directly following a system-wide crash failure, as opposed to being painstakingly rebuilt
using recovery state saved in slower secondary storage. Specifying and implementing recoverable
objects is technically challenging on current generation hardware precisely because the top layers of
the memory hierarchy (CPU registers and cache) remain volatile, which causes application threads
to lose critical execution state during a failure. For example, a thread that completes an operation
on a shared object and then crashes may have difficulty determining whether this operation took
effect, and if so, what response it returned. Friedman, Herlihy, Marathe, and Petrank (DISC’17)
recently proposed that this difficulty can be alleviated by making the recoverable objects detectable,
meaning that during recovery, they can resolve the status of an operation that was interrupted by a
failure. In this paper, we formalize this important concept using a detectable sequential specification
(DSS), which augments an object’s interface with auxiliary methods that threads use to first declare
their need for detectability, and then perform detection if needed after a failure. Our contribution
is closely related to the nesting-safe recoverable linearizability (NRL) framework of Attiya, Ben-
Baruch, and Hendler (PODC’18), which follows an orthogonal approach based on ordinary sequential
specifications combined with a novel correctness condition. Compared to NRL, our DSS-based
approach is more portable across different models of distributed computation, compatible with
several existing linearizability-like correctness conditions, less reliant on assumptions regarding the
system, and more flexible in the sense that it allows applications to request detectability on demand.
On the other hand, application code assumes full responsibility for nesting DSS-based objects. As a
proof of concept, we demonstrate the DSS in action by presenting a detectable recoverable lock-free
queue algorithm and evaluating its performance on a multiprocessor equipped with Intel Optane
persistent memory.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Computer
systems organization → Reliability

Keywords and phrases persistent memory, concurrency, fault tolerance, correctness, detectability

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.29

Funding Wojciech Golab: Author supported by an Ontario Early Researcher Award, a Google
Faculty Research Award, as well as the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

1 Introduction

The past several years have witnessed an eruption of research into software techniques
for harnessing the power of persistent memory, a byte-addressable medium that combines
the performance of conventional DRAM with the data durability of secondary storage
devices. Prior to the emergence of persistent memory, traditional memory hierarchies forced
applications to maintain state redundantly using both in-memory structures for performance
and on-disk structures for durability, which imposes a performance overhead during failure-

© Nan Li and Wojciech Golab;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 29; pp. 29:1–29:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nan.li@uwaterloo.ca
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
https://doi.org/10.4230/LIPIcs.DISC.2021.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Detectable Sequential Specifications for Recoverable Shared Objects

free operation, and also slows down recovery after a failure. The convergence of primary and
secondary storage in persistent memory creates a new avenue for eliminating the inefficiency of
rebuilding in-memory state from zero after each system-wide failure, and calls for thoughtful
reconsideration of established software design principles.

Harnessing the performance of persistent memory while maintaining correctness to preserve
application data integrity poses a number of technical challenges. To begin with, well-studied
legacy techniques based on database-style recovery logging provide insufficient parallelism
when applied to high-performance concurrent data structures. Novel techniques are needed
to remove this bottleneck, and these often intertwine tightly with concurrency control
and memory management mechanisms. The implementation task is further complicated
on current generation hardware by volatile caching, which necessitates the use of explicit
persistence instructions to flush updates to the persistent medium, and by the lack of support
in the processor’s instruction set for multi-word failure-atomic writes [13, 41]. Hardware
transactional memory (HTM) [28] does not solve the latter problem on current generation
multiprocessors because flushing instructions abort transactions before they can be committed.

Rising eagerly to the new challenge, researchers have devised a variety of techniques
and idioms for both implementing persistent data structures and specifying their correct
behavior. Early practical contributions in this space include a variety of low-level durability
mechanisms and APIs for building fault-tolerant applications [10, 12, 29, 40, 44]. This
work eventually spurred a wave of theoretical research on concurrent objects for persistent
memory, starting with different perspectives on formalizing the behavior of such objects
under concurrent access, and continuing with provably correct implementation techniques
[4, 5, 6, 7, 8, 11, 20, 23, 30]. One of the fundamental scientific questions arising from this
work is how to imbue persistent data structures with detectability – the ability to resolve
the outcome of operations that were interrupted by a failure [19, 20]. This type of forensic
capability is especially important in systems that lack transactions, because the application
is directly responsible for deciding the correct redo and undo actions.

Friedman et al.’s practitioner-oriented definition of detectability [20] conveys clearly
the high-level intention, and also explains some of the implementation details, in a model
of computation where crash failures are system-wide and recovery actions occur during a
recovery phase that is initiated by the system and precedes resumption of ordinary activity
by application threads. Specifically, threads announce their intent to apply an operation by
writing special shared variables, and the (single-threaded) recovery code analyzes the state
of announced operations carefully after a failure to resolve their status. The outcome of this
analysis indicates whether an operation took effect, including the operation’s response if
available, and is delivered back to the application also through shared variables. Since the
application identifies each operation using a unique numerical ID, it is possible to ensure
“exactly once” semantics of execution by retrying an operation, if needed, after a failure.

One of the open questions arising from [20] is how to formalize detectability as a correctness
property of concurrent objects – a critical foundation for studying the complexity and
computability of algorithmic problems related to such objects. We propose that a formal
definition of detectability should address several desiderata: (D1) Detectability should be
supported through the object’s abstract interface, for example through specialized procedures.
(D2) The definition should be independent of any particular model of computation or
implementation style. (D3) In the context of shared memory, the definition should admit
implementations on current generation hardware, which uses coherent but volatile caches
(see shared cache model in [7]). The nesting-safe recoverable linearizability (NRL) framework
of Attiya, Ben-Baruch, and Hendler [5], which we consider the current state of the art in

N. Li and W. Golab 29:3

this area of research, meets these goals only partially. In terms of properties (D1) and (D2),
NRL mandates the use of concrete program variables for certain types of interaction with a
detectable object, for example to receive helpful auxiliary state [6] from the system during
recovery, and to record the response returned by a detectable operation. Thus, the object’s
interface is not entirely abstract, and NRL is somewhat specific to shared memory. Regarding
property (D3), the modelling assumptions of the NRL framework do not account for the
volatile cache, and impose the stringent requirement that a system recovering from failure
can determine “the inner-most recoverable operation that was pending” for each process [5].
We are not aware of any practical implementation of NRL that realizes the latter behaviour.

The main contribution of this paper is a novel formal definition of detectability. Concretely,
we introduce the detectable sequential specification (DSS), which augments the traditional
method of specifying typed objects under sequential access with auxiliary procedures by
which an application announces its intent to execute an operation that requires detectability,
and resolves the outcome of this operation. The relationship between the DSS and prior work,
specifically NRL [5] and its alternative definition (herein referred to as NRL+) proposed by
Ben-David, Blelloch, Friedman and Wei in [7], can be summarized as follows:
1. The DSS specifies the behavior of detectable objects under sequential access only, and is

used in tandem with an off-the-shelf correctness condition for concurrent objects (e.g.,
[2, 8, 24]). NRL instead uses conventional sequential specifications, and defines correct
behavior under concurrent access in a unique way to simplify correct nesting of objects.
Overall, our DSS-based approach comes closer to achieving properties (D1) and (D2),
but delegates responsibility for nesting objects correctly to the application.

2. Although all three techniques use specialized recovery procedures to resolve the status of
operations that may have been interrupted by failures, the semantics of these procedures
are shaped by different goals. In DSS and NRL+, the recovery procedure allows a thread
to determine whether or not an operation it intended to invoke prior to a failure took
effect, and if so, what response it returned. In NRL, the purpose of the recovery procedure
is to ensure that an invoked operation took effect, and determine its response.

3. Detectability in DSS is declarative in that the application calls a special prepare procedure
to indicate which operations on a concurrent object must be detectable. Later on, an
application may exercise its right to detectability by calling the recovery procedure, or
not. In both NRL and NRL+, all operations are detectable. Furthermore, the recovery
procedure in NRL is always invoked for an operation that was interrupted by a failure.

4. DSS-based objects require minimal system assumptions, and can be implemented using
standard software tools on a current generation multiprocessor with persistent main
memory and a volatile cache, thus achieving property (D3). NRL is based on a simplified
private cache model [7] and relies fundamentally on auxiliary state [6]. NRL+ is similar
to DSS in terms of system assumptions, but is formalized using unbounded sequence
numbers to identify different operations, which complicates implementation.1

In summary, our DSS-based approach embeds detectability in a sequential specification,
is implementable on today’s multiprocessors without relying on a persistent call stack or
multi-word failure-atomic writes, gives applications the unique ability to request detectability
on demand, and leaves correct nesting of objects up to application code.

1 In practice, sequence numbers are embedded in program variables, which reduces the number of bits
available to store other state (e.g., a process ID and a data value in Algorithm 1 of [7]). This is especially
problematic on current generation hardware, which supports only 64-bit failure-atomic writes [13, 41].

DISC 2021

29:4 Detectable Sequential Specifications for Recoverable Shared Objects

In addition to formalizing detectability, we also propose a novel detectable queue algorithm
called the DSS queue. Our algorithm builds on the Michael and Scott queue [36] and its
recoverable but non-detectable extension, the durable queue of Friedman, Herlihy, Marathe,
and Petrank [20]. We compare the DSS queue experimentally (see Section 4) against several
alternatives using a 20-core Intel multiprocessor with Optane persistent memory.

2 Detectable Sequential Specifications

Specifying and implementing detectability for shared objects is difficult in most models of
computation precisely because modern computing systems store state using a combination
of volatile and persistent media. As a result, a recovering process suffers from a mild case
of amnesia that hinders forensic analysis – it cannot in general determine exactly what
step it was about to perform at the point of failure, or what value was returned by its last
operation on a given object. In the specific case of shared memory models with persistent
memory, the use of explicit persistence instructions does not cure this ailment because the
processor cannot both update a memory location and flush the new value to the “persistence
domain” [41] in one atomic step. Following the approach of [5, 7], we treat the amnesia by
prescribing the addition of specialized operations to the object’s abstract interface.

Our goal in formalizing detectability in this section is to establish rigor, which is necessary
for analyzing the complexity and computability of detectable shared objects, while defining
the interface to such objects in an implementation-independent manner. We approach this
task by extending the traditional approach of composing a sequential specification for an
object’s type T , which defines the object’s correct behaviour under sequential access using
data structure semantics (i.e., it prescribes a set of abstract states and state transitions),
with a correctness property that describes correct behaviour under concurrent access [26].
The core idea is to augment a given type T with auxiliary operations by which processes
declare their intent to execute a detectable operation, and then optionally resolve the status
of this operation. This yields a detectable embodiment of T , which we denote as D⟨T ⟩. The
sequential specification of type D⟨T ⟩, called the detectable sequential specification (DSS) of
type T , is obtained automatically by a transformation of the original sequential specification
of T , as explained shortly in Section 2.1. Finally, the correct behavior of a detectable object
under concurrent access is formalized by composing D⟨T ⟩ with a correctness property suitable
for a given model of computation (e.g., [2, 8, 24] in the shared memory context).

We present the formal definition of the DSS without a specific model of computation to
emphasize that the DSS is largely model-agnostic. Sequential specifications in general are
compatible with message passing, shared memory, and “m&m” [1] models. They accommo-
date both system-wide and individual process failure assumptions, and are orthogonal to
assumptions regarding the volatility or persistence of storage media. The main modelling
assumption required at this stage is the existence of a set Π of processes (or threads), where
each process pi has a distinct ID i. We assume implicitly that a process recovers under the
same ID so that it can refer to its earlier actions that may have been interrupted by a failure.

2.1 Formal Definition
Consider an arbitrary object type T . Formally, T is a sequential specification denoted by
a tuple (S, s0, OP, R, δ, ρ) where S is a set of abstract states, s0 ∈ S is an initial state, OP

is a set of operations (e.g., read(), write(1)), R is a set of possible operation responses,
δ : S × OP × Π → S is a state transition function indicating the effect of each operation
by a process on the abstract state, and ρ : S × OP × Π → R is a response function

N. Li and W. Golab 29:5

indicating the operation’s correct response.2 A detectable sequential specification (DSS) for
type T = (S, s0, OP, R, δ, ρ), denoted D⟨T ⟩, is a sequential specification (S̄, s̄0, ŌP , R̄, δ̄, ρ̄)
obtained from T by the following transformation:

Each state s̄ ∈ S̄ is a tuple (s, A, R) where s ∈ S, A is a mapping Π → OP ∪ {⊥}, and
R is a mapping Π → R ∪ {⊥}, where ⊥ ̸∈ OP ∪ R.
The initial state s̄o is a tuple (s0, A, R) where A and R map each element of Π to ⊥.
ŌP comprises all the operations of OP , as well as new auxiliary operations: prep-op and
exec-op for each op ∈ OP , as well as resolve.
R̄ = R ∪ {(op, r) | op ∈ OP ∪ {⊥} ∧ r ∈ R ∪ {⊥}}
The state transition function δ̄ and response function ρ̄ for each operation ōp ∈ ŌP

are presented in Figure 1 using an axiomatic style modeled after [25, 26]. Each axiom
indicates a pre-condition (first line), an operation / process ID / response (middle line),
and a side-effect (third line). The latter indicates the new state using primed symbols;
any component of the abstract state that is not explicitly referenced remains unchanged
(e.g., Axiom 1 implies s′ = s). Three of four axioms are parameterized by an operation
op ∈ OP of T , and yield a distinct operation ōp ∈ ŌP of D⟨T ⟩ for each op ∈ OP .

{true}
prep-op / pi / ⊥

{A′[pi] = op ∧ R′[pi] = ⊥}
(1)

{A[pi] = op ∧ R[pi] = ⊥}
exec-op / pi / ρ(s, op, pi)

{s′ = δ(s, op, pi) ∧ R′[pi] = ρ(s, op, pi)}
(2)

{true}
resolve / pi / (A[pi], R[pi])

{}
(3)

{true}
op / pi / ρ(s, op, pi)

{s′ = δ(s, op, pi)}
(4)

Figure 1 Detectable sequential specification (DSS) of type T , also denoted D⟨T ⟩.

In practical terms, the operations described axiomatically in Figure 1 behave as follows.
For each op ∈ OP of type T , prep-op (Axiom 1) and exec-op (Axiom 2) are used to declare
the intention of a process pi to apply op in a detectable way, and then apply it, respectively.
Operation prep-op “remembers” op, and defines the context for a future call to resolve

(Axiom 3), which determines the status of the most recently prepared operation. This
resolve operation is somewhat similar to the recovery function introduced in NRL [5], but
serves a different purpose: resolve is used to analyze the status of an operation that may
have been left pending by a crash, whereas the recovery function always completes such an
operation and returns its response. Finally, operation op (Axiom 4) simply applies the state
transition prescribed by op in a non-detectable way with no other side-effects.

The DSS supports detectability in the following sense: after a call to prep-op, if exec-op

took effect then resolve returns (op, r) where r is the response of op, otherwise it returns
(op, ⊥). Since we assume that ⊥ ̸∈ R, the response of resolve indicates to a process whether
or not its execution of op via exec-op took effect. The prep-op and resolve operations are
total, meaning that they can be called from any state, and idempotent, meaning that they
can be called repeatedly (e.g., for example when their executions are interrupted by failures).
If prep-op was never called for any op, then resolve returns (⊥, ⊥).

2 The inclusion of the process ID in the arguments of δ and ρ is necessary since a detectable type encodes
special recovery state for each process, and some of the operations query this state directly.

DISC 2021

29:6 Detectable Sequential Specifications for Recoverable Shared Objects

prep-write(1) exec-write(1) resolve() returns (write(1), OK)

crash

(a)

prep-write(1) exec-write(1) resolve() returns (write(1),)
or (write(1), OK)(b)

crash

prep-write(1) resolve() returns (write(1),)
(c)

crash

prep-write(1) resolve() returns (write(1),)
or (,)(d)

crash

Figure 2 Informal examples of executions over an object that implements the DSS of a read/write
register. The initial value of the register is 0, and time increases from left to right. Barbell symbols
represent the time intervals of operation executions.

The state transitions of the DSS are illustrated in Figure 2, which presents four possible
executions that can be generated by a detectable read/write register object. In example (a),
a process pi prepares a write(1) operation, executes it, crashes, and resolves the operation as
completed upon recovering. The mapping A records write(1) as the prepared operation for
the calling process pi after prep-write(1) takes effect, and R records OK as the response after
exec-write(1) takes effect. In (b), the crash occurs during exec-write(1), and so the write(1)
state transition may or may not take effect. Thus, resolve returns either (write(1), ⊥) or
(write(1), OK), and in both cases A[pi] records write(1) as the prepared operation. In
(c), the crash occurs before the process invokes exec-write, and hence resolve must return
(write(1), ⊥). In (d), the crash occurs during prep-write(1), and hence resolve must return
either (⊥, ⊥) to indicate that no operation was prepared, or (write(1), ⊥).

One special case deserving further attention occurs when a process pi applies the same
operation op repeatedly via prep-op and exec-op, which makes the response of resolve

ambiguous. This problem can be remedied by augmenting the signature of op with an
auxiliary argument that is saved in the state component A[pi] but ignored in the computation
of the state transition δ(s, op, pi). For example, if the application is using a monotonic
counter to record the number of detectable operations executed on the DSS-based object,
then a single bit (i.e., the parity of the counter) is sufficient.

2.2 Discussion

The DSS-based approach marries the practical quality of Friedman, Herlihy, Marathe and
Petrank’s work [20] with the rigorous tone introduced by Attiya, Ben-Baruch, and Hendler’s
formalism [5]. More concretely, the DSS defines a purely object-oriented interface by which
processes detect that status of past operations. Instead of relying explicitly on system
support (as in NRL [5]) or on sequence numbers (as in NRL+ [7]) to identify an operation
that may have been interrupted by a failure, the DSS internally records state regarding the
last operation of each process via the auxiliary operation prep-op. The detection operation
resolve helps a recovering process identify the approximate position within its program

N. Li and W. Golab 29:7

where it crashed, for example distinguishing between cases (a) and (c) in Figure 2, and can
replace the checkpointing mechanisms used in [5, 6] to some extent. A process may call
the idempotent resolve operation arbitrarily many times to recover an earlier operation’s
response if its recovery efforts are hampered by additional crash failures. Such flexibility
avoids having to save the response in a concrete program variable, which is how NRL deals
with the problematic situation where a crash occurs immediately after an operation returns
and before its response can be persisted.

For shared objects, the DSS must be combined with a suitable linearizability-like [26]
correctness condition, and is compatible with several such conditions. In order from strongest
to weakest, these include strict linearizability [2], persistent atomicity [24], and recoverable
linearizability [8]. Note that the “program order inversion” anomaly in [8] only applies to
operations on distinct objects, and cannot for example reorder an exec-op with a resolve

on the same object. Our approach is inherently incompatible with the model underlying
durable linearizability [30] because a crashed process in our framework must recover under
the same ID to obtain meaningful output from operation resolve.3 An analogous assumption
is present in [5, 7].

A common misconception surrounding our work is that the DSS “does not support
nesting.” Indeed we do not prescribe a specific manner of recovering operations on nested
objects (i.e., there is no “N” in DSS) because the DSS merely defines the abstract states and
state transitions for a single object, but DSS-based objects can be nested, especially when
they provide strict linearizability [2]. As an example, Section 3 of this paper describes an
implementation of a DSS-based detectable queue from read/write register and Compare-And-
Swap base objects in a shared memory model with persistent memory and volatile cache.
Any base object of type T in this algorithm can be replaced with a strictly linearizable
implementation of either T or D⟨T ⟩, since D⟨T ⟩ provides all the non-detectable operations of
T . Thus, D⟨queue⟩ can be constructed using implementations of D⟨read/write register⟩ and
D⟨CAS⟩, and this demonstrates application-managed nesting of DSS-based objects. Finally,
we point out that NRL [5] does not quite solve the problem of recovering nested objects
either because much of the complexity associated with invoking recovery operations in the
correct order is encapsulated in a crucial and difficult to implement system assumption.4

In terms of computability, the DSS-based approach is conveniently compatible with
existing universal constructions of shared objects. For example, a wait-free recoverable
implementation of D⟨T ⟩ for any conventional type T can be obtained in the shared memory
model using Herlihy’s universal construction [27], which was shown by Berryhill, Golab, and
Tripunitara to yield recoverable linearizability in the presence of crash-recovery failures [8].
We believe that this construction can be extended easily from the “private cache” [7] model
of persistent memory, where memory operations are assumed to persist immediately, to the
more general model with volatile cache and explicit persistence instructions.

Little is known at this point regarding the complexity of DSS-based recoverable objects,
but it is straightforward to show that such objects require linear space. Intuitively, this result
holds across a variety of concrete models because the abstract state space of a DSS-based object
encodes recovery information (via A and R) for each process. NRL-like implementations
also require linear space in some cases, as proved recently by Ben-Baruch, Hendler, and

3 Durable linearizability [30] permits reuse of process IDs once the pending operations of crashed threads
have “completed.” We interpret this restriction to mean that both the pending operation and any
detectability actions applied in connection with the operation have concluded.

4 Section 2 of [5] states that “the system may eventually resurrect process p by invoking the recovery
function of the inner-most recoverable operation that was pending when p failed.”

DISC 2021

29:8 Detectable Sequential Specifications for Recoverable Shared Objects

Rusanovsky [6] for obstruction-free Compare-And-Swap. On the other hand, DSS-based
objects behave very differently from NRL-like objects with respect to “auxiliary state,”
which some NRL-like objects receive from the application or from the system via specialized
operation arguments (e.g., sequence numbers) or special shared variables. Whereas [6]
proves that such external state must be provided to any NRL-like implementation of a
“doubly-perturbing” type (which includes the FIFO queue), even with very weak non-blocking
progress guarantees, one variation of the lock-free DSS queue algorithm presented in Section 3
requires no such state at all. Intuitively, this contrast follows from the fundamentally different
semantics of recovery in DSS-based and NRL-like objects, where the former recover the
most recently prepared (via a call to prep-op) operation and the latter recover the most
recently invoked operation. Identifying the most recently invoked operation is inherently
more difficult, and auxiliary state in NRL compensates for this difficulty.

3 A lock-free strictly linearizable detectable queue

As a proof of concept, we present in this section a DSS-based detectable queue implementation,
called DSS queue, for the asynchronous shared memory model with persistent memory, volatile
cache, and system-wide crash failures. The algorithm is based on Michael and Scott’s venerable
lock-free queue (called the MS queue) [36], as well as its recoverable variant for persistent
memory (called the durable queue) published recently by Friedman, Herlihy, Marathe, and
Petrank [20]. The original MS Queue uses a singly-linked list of nodes, referenced by head
and tail pointers, to implement a FIFO queue, and is used heavily in practice (e.g., in the
Java package java.util.concurrent). The durable queue adds the necessary flush instructions
to cope with the volatile cache, and also augments the queue node structure by adding
a deqThreadID field, initially −1, to identify the thread who dequeues the value stored
in the node. A queue node for which deqThreadID ̸= −1 is called a marked node. The
implementation assumes that a centralized recovery procedure is executed after each crash
to complete pending operations and report their status to application threads using an array
of shared variables called returnedValues.

We transform the n-thread durable queue into a DSS-based data structure by removing
the returnedValues array, adding an array X[1..n] to represent the state components A and
R of D⟨queue⟩, and adding the auxiliary operations described in Section 2: prep-op and
exec-op for each op ∈ {enqueue, dequeue}, as well as resolve. In the initial state, the head
and tail pointers refer to the same sentinel node that is not marked, all entries of X are NULL,
and every queue node has next = NULL and deqThreadID = −1. The access procedures
for the operations of D⟨queue⟩ are presented using a syntax similar to C++, where & and
→ denote the usual reference and dereference operators. The keyword TID represents the
identifier i of the calling thread ti, where 1 ≤ i ≤ n. Logical and bitwise AND, OR, and
XOR are denoted exactly as in C++.

3.1 Enqueue and supporting operations
Enqueuing operations, presented in Figure 3, generally follow the code of durable queue [20],
with the addition of operations to update the array X, which stores a pointer to a queue
node. We borrow the most significant bits of this pointer to record tags that indicate whether
or not the detectable enqueue operation was prepared and then took effect.5

5 Modern x86-64 processors implement 48 address bits, which leaves 16 bits available for special tags.

N. Li and W. Golab 29:9

Procedure prep-enqueue(val: value to be enqueued).

1 Node* node := new Node(val) // init: next = NULL, deqThreadID = −1
2 FLUSH (node)
3 X[TID] := node | ENQ_PREP_TAG
4 FLUSH (&X[TID])

Procedure exec-enqueue().

5 Node* node := X[TID]
6 while true do
7 Node* last := tail

8 Node* next := last→next

9 if last == tail then
10 if next == NULL then // at tail
11 if CompareAndSwap(&last→next, NULL, node) then
12 FLUSH (&last→next)
13 X[TID] := X[TID] | ENQ_COMPL_TAG
14 FLUSH (&X[TID])
15 CompareAndSwap (&tail, last, node)
16 return

17 else // help another enqueuing thread
18 FLUSH (&last→next)
19 CAS(&tail, last, next)

Procedure resolve.

20 if X[TID] & ENQ_PREP_TAG then
21 (arg, ret) := resolve-enqueue()
22 return (⟨enqueue, arg⟩ , ret)
23 else if X[TID] & DEQ_PREP_TAG then
24 ret := resolve-dequeue()
25 return (⟨dequeue, NO_ARG⟩ , ret)
26 else // no operation was prepared
27 return (⊥, ⊥)

Procedure resolve-enqueue().

28 if X[TID] & ENQ_COMPL_TAG then
// enqueue was prepared and took effect

29 return ((X[TID] ˆ ENQ_PREP_TAG ˆ ENQ_COMPL_TAG)→value, OK)
30 else

// enqueue was prepared and did not take effect
31 return ((X[TID] ˆ ENQ_PREP_TAG)→value, ⊥)

Figure 3 The prep-enqueue, exec-enqueue, resolve, and resolve-enqueue operations of DSS
queue.

DISC 2021

29:10 Detectable Sequential Specifications for Recoverable Shared Objects

The prep-enqueue operation creates a queue node that holds the value to be enqueued,
and saves a pointer to the node along with a tag in X. The exec-enqueue operation follows
closely the durable queue [20] algorithm by locating the tail of the linked list and swinging
the next pointer of the tail node at line 11. The code at lines 13–14 updates the node pointer
saved previously in X by setting the ENQ_COMPL_TAG and flushing the updated value,
and is needed for detectability. The tail pointer is then updated at line 15. The code at
lines 18–19 is a helping mechanism required for lock-freedom. The non-detectable enqueue

operation is equivalent to calling prep-enqueue followed by exec-enqueue, except that any
lines accessing X (3–4 and 13–14) are omitted.

The detection function resolve checks whether an enqueue was prepared at line 20, then
calls a helper routine resolve-enqueue that considers two cases based on the presence of the
ENQ_COMPL_TAG in X, which is added by exec-enqueue at lines 13–14, and also by the
recovery procedure described later on. If the enqueue operation was prepared with value
val and took effect, (enqueue(val), OK) is returned via lines 29 and 22. If the enqueue

operation was prepared with value val and did not take effect, (enqueue(val), ⊥) is returned
via lines 31 and 22. Finally, if the enqueue operation was never prepared then either (⊥, ⊥)
is returned at line 27 or a dequeue is resolved at lines 23–25.

3.2 Dequeue and supporting operations
The implementation of dequeuing operations is presented in Figure 4. Similarly to enqueuing
operations, the code generally follows [20] with the addition of operations to update the
array X, which stores a tagged pointer to a queue node. Two of the most significant bits of
this pointer are repurposed to record a DEQ_PREP_TAG, which indicates whether or not
the detectable dequeue was prepared, and an EMPTY_TAG, which indicates that a dequeue

took effect on an empty queue.
The prep-dequeue operation initializes X using NULL tagged with DEQ_PREP_TAG.

The exec-dequeue operation proceeds in two cases, the first of which follows closely the
durable queue [20] algorithm. If the queue is found to be empty, meaning that the head and
tail point to the same sentinel node where the next pointer is NULL at lines 38–40, then
EMPTY_TAG is added to X at lines 41–42 and a special EMPTY value is returned at line 43.
Otherwise the queue is not empty, and the correct return value is stored in the successor of
the sentinel node at the head of the linked list. As in the durable queue, a thread tries to
claim this value by using CompareAndSwap to write its ID into the next node at line 49, and if
it succeeds, the updated deqThreadID field is then flushed at line 50. Next, the head pointer
is advanced at line 51. On the other hand, if a competing thread causes the CompareAndSwap
to fail, a helping mechanism is executed at lines 54–55 to persist the updated deqThreadID
variable, and the code repeats. The main differences from the durable queue algorithm
are two-fold. First, instead of returning the dequeued value using a dynamically allocated
object, DSS queue returns it directly at line 52. Second, for detectability, the pointer to
the head node is written to X with DEQ_PREP_TAG and flushed at lines 47–48. Overall,
DSS queue performs one less flush in the helping mechanism due to the simplified method of
returning the dequeued value, one more flush prior to each CompareAndSwap at line 48 due
to detectability, and one less memory allocation.

The non-detectable dequeue operation is equivalent to calling prep-dequeue followed
by exec-dequeue, with two differences. First, any lines accessing X (32–33, 41–42, and
47–48) are omitted. Second, to avoid confusion between a partially executed exec-dequeue

and a dequeue during subsequent detection, the analog of line 49 in dequeue marks the
deqThreadID field in a slightly different way: instead of using the caller’s TID directly, it
combines the TID with another special tag. Details are omitted due to lack of space.

N. Li and W. Golab 29:11

Procedure prep-dequeue().

32 X[TID] := DEQ_PREP_TAG
33 FLUSH (&X[TID])

Procedure exec-dequeue().

34 while true do
35 Node* first := head

36 Node* last := tail

37 Node* next := first→next

38 if first == head then
39 if first == last then // empty queue
40 if next == NULL then // nothing new appended at tail
41 X[TID] := X[TID] | EMPTY_TAG
42 FLUSH (&X[TID])
43 return EMPTY
44 FLUSH (&last→next)
45 CompareAndSwap (&tail, last, next)
46 else // non-empty queue
47 X[TID] = first | DEQ_PREP_TAG // save predecessor of node to

be dequeued
48 FLUSH (&X[TID])
49 if CompareAndSwap (&next→deqThreadID, −1, TID) then
50 FLUSH (&next→deqThreadID)
51 CompareAndSwap (&head, first, next)
52 return next→value

53 else if head == first then // help another dequeuing thread
54 FLUSH (&next→deqThreadID)
55 CompareAndSwap (&head, first, next)

Procedure resolve-dequeue().

56 if X[TID] == DEQ_PREP_TAG then
// dequeue was prepared but did not take effect

57 return ⊥
58 else if X[TID] == (DEQ_PREP_TAG | EMPTY_TAG) then

// empty queue
59 return EMPTY
60 else if (X[TID] ˆ DEQ_PREP_TAG)→next→deqThreadID == TID then

// non-empty queue
61 return (X[TID] ˆ DEQ_PREP_TAG)→next→value

62 else
// X holds a node pointer, crashed before completing dequeue

63 return ⊥

Figure 4 The prep-dequeue, exec-dequeue, and resolve-dequeue operations of DSS queue.

DISC 2021

29:12 Detectable Sequential Specifications for Recoverable Shared Objects

The detection function resolve checks whether a dequeue was prepared at line 23, then
calls a helper routine resolve-dequeue that determines the correct response by considering four
cases based in part on the presence of a node pointer, DEQ_PREP_TAG and EMPTY_TAG
in X. The latter is updated by exec-dequeue at lines 41–42, and 47–48, and also by the
recovery procedure described later on. If X holds a NULL pointer with PREPARED_TAG
only (line 56), this indicates that a dequeue was prepared but did not take effect, and so ⊥
is returned at line 57. A NULL pointer with DEQ_PREP_TAG and EMPTY_TAG (line 58)
indicates that a dequeue was prepared and took effect on an empty queue, and so EMPTY is
returned at line 59. Otherwise, X stores a non-NULL node pointer with DEQ_PREP_TAG. If
the deqThreadID field of the successor node matches the caller’s TID (line 60), this indicates
that a dequeue was prepared and took effect on a non-empty queue, and so val is returned
at line 61 where val is the dequeued value obtained from the successor node. The final case
(line 62) indicates a crash between line 47 and a successful CompareAndSwap at line 49, and
so ⊥ is returned at line 63 since no value was dequeued. In this case the successor node
could have been marked by the same thread but in a non-detectable dequeue, by a different
thread, or by no one.

3.3 Recovery

Discussion of recovery following a system crash is deferred to Appendix A due to lack of
space. In summary, a single-threaded recovery procedure in the style of [20] adjusts X[ti] for
each thread ti after scanning the linked list of queue nodes to identify pending operations.
The algorithm can be adapted straightforwardly to allow threads to recover independently,
without relying on a centralized recovery phase, and this transformation eliminates the last
trace of auxiliary state [6] from the DSS queue.

3.4 Analysis

The correctness properties of the DSS queue algorithm are stated formally in Theorem 1.
The analysis, including a detailed description of the model, is omitted due to lack of space.

▶ Theorem 1. The DSS queue is lock-free and strictly linearizable with respect to D⟨queue⟩.

4 Evaluation

In this section, we present an empirical evaluation of the DSS queue algorithm from Section 3.
The experiments are conduced using a 20-core 2.1GHz Intel Xeon processor equipped with
genuine Intel Optane Data Center Persistent Memory Modules (DCPMM) provisioned in
App Direct mode. Turbo boost is disabled to reduce variation in running times. The
software environment includes Ubuntu Linux 20.04, g++ 9.3.0, and version 1.8 of the
Intel Persistent Memory Development Kit (PMDK) library [42]. The code is compiled in
debug mode with optimization level O0. The Optane memory is accessed using standard
C++ atomic operations configured with sequentially consistent ordering. We flush data
from the volatile cache to the Optane device using the PMDK pmem_persist function,
which internally uses Intel’s cache line write back (CLWB) instruction and also includes a
store fence. For memory management, each thread pre-allocates a fixed size pool of queue
nodes at initialization, and dequeued nodes are returned to the free pool using epoch-based
reclamation (EBR) [17]. The EBR code is borrowed from the open-source implementation

N. Li and W. Golab 29:13

(https://github.com/microsoft/pmwcas) of Wang et al.’s Persistent Multi-word Compare-
And-Swap (PMwCAS) [45]. The recovery procedure described in Appendix A is extended
straightforwardly to prevent memory leaks, such as due to a crash in prep-enqueue.

Our experiments, presented in Figure 5, evaluate the scalability of different queue
implementations in failure-free runs with up to 20 threads. In each experiment, the queue is
initialized with 16 queue nodes, and each thread executes alternating pairs of enqueue and
dequeue operations for 30 seconds. Each point plotted in the graphs is the mean throughput
value (millions of operations per second) computed over a sample of ten runs, and in all cases
the sample standard deviation is less than 2% of the sample mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
op

s/
s

number of threads

MS queue
DSS queue non-detectable

DSS queue detectable

(a) Different levels of detectability and persistence

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
op

s/
s

number of threads

DSS queue detectable
Log queue

Fast CASWithEffect queue
General CASWithEffect queue

(b) Different detectable queue implementations

Figure 5 Scalability experiments.

Figure 5a investigates the cost of detectability, which threads can request on demand
in our flexible DSS-based approach. The three points of comparison in Figure 5a are the
following queue implementations:

DSS queue detectable: the DSS queue algorithm as described in Section 3, where enqueue

and dequeue are applied in a detectable manner via calls to prep-enqueue/exec-enqueue

and prep-dequeue/exec-dequeue. Procedures resolve and resolve are not invoked since
we consider only failure-free runs.
DSS queue non-detectable: the DSS queue algorithm where enqueue and dequeue are
applied in a non-detectable manner.
MS queue: an implementation of the classic MS queue [36] obtained from the non-
detectable DSS queue by removing flushes in enqueue and dequeue.

The scalability plot shows that non-detectable implementation is measurably faster than
detectable, offering nearly 3× higher throughput at low levels of parallelism. This is primarily
due to the cost of the memory operations at lines 3-4, 13–14, 32–33, and 47–48 in the
detectable execution path. The additional latency due to these operations has a smaller
effect on throughput at higher levels of parallelism, and performance is ultimately limited by
the synchronization bottleneck at the head and tail of the queue. The MS queue has the best
performance overall and beats DSS non-detectable by up to 1.5× at 2 threads, and similarly
suffers from contention at higher levels of parallelism. Indeed, all three scalability curves
nearly converge at 20 threads.

Figure 5b compares the DSS queue with several other detectable queue algorithms:
DSS queue: our DSS queue algorithm, identical to “DSS queue detectable” in Figure 5a.
General CASWithEffect queue: a simple queue algorithm where the linked list and
detectability state (analogous to X in DSS queue) are manipulated using the Persistent
Multi-word Compare-And-Swap (PMwCAS) algorithm of Wang et al. [45].

DISC 2021

https://github.com/microsoft/pmwcas

29:14 Detectable Sequential Specifications for Recoverable Shared Objects

Fast CASWithEffect queue: similar to General CASWithEffect queue, except that PMw-
CAS is optimized for multi-word operations that access a combination of shared variables
(queue head, tail, and next pointers) and private variables (detectability state).
Log queue: our own implementation of Friedman et al.’s detectable log queue algorithm [20],
which uses per-thread logs. Operation arguments and return values are stored directly in
the logs, and are accessed by other threads via helping mechanisms.

The results show that DSS queue provides superior scalability to the two algorithms based on
powerful PMwCAS, which simplifies the implementation greatly but becomes a performance
bottleneck as contention rises. Furthermore, Fast CASWithEffect queue outperforms General
CASWithEffect queue by up to 1.5×, showing the benefit of optimizing multi-word operations
that access private variables atomically with shared variables. Our implementation of the
log queue also outperforms both Fast and General CASWithEffect queue, but trails behind
DSS queue by up to 1.7×. One reason why DSS queue is faster is that it stores detectability
state (array X) using variables that are statically allocated and effectively private as they
are shared only with the single-threaded recovery procedure. In comparison, the log queue
dynamically allocates log objects in addition to queue nodes, and these objects are shared
during concurrent execution of dequeue. We plan in future work to compare DSS queue
against a more heavily optimized implementation of the log queue, which may narrow the
observed performance gap.

5 Related Work

Research on software techniques for persistent memory, also known as non-volatile RAM
(NVRAM), erupted roughly a decade ago as solid-state secondary storage devices began
to flood the market and hardware vendors began to plan for production of high-capacity
byte-addressable persistent main memory modules. Several software frameworks were
proposed around that time to provide low-level access to persistent state through file
systems, persistent heaps, and lightweight transactions based on redo and undo logging
[10, 12, 44]. In parallel with these efforts, early designs of durable data structures for
persistent memory began to emerge (e.g., [43]). Subsequent practical work introduced a
variety of performance optimizations based on judicious use of memory fences, persistence
instructions, and hybrid memory hierarchies that combine both volatile and non-volatile
main memories [9, 14, 15, 29, 31, 35, 37, 40].

More recent publications describe the design of specific in-memory data structures and
synchronization objects for persistent memory, and give up the convenience of transaction-
based implementations for the sake of better performance through specialized concurrency
control and persistence mechanisms. Much of this work focuses on practical scalable index
structures for databases, such as hash maps and search trees, some of which exploit hybrid
memory hierarchies [3, 16, 34, 38, 39, 45, 46]. Due to the inherent difficulty of designing
and verifying the correctness such structures, researchers have also sought efficient (i.e.,
non-transactional) transformations of conventional in-memory data structures to durable
structures for persistent memory [18, 33], which are applicable only when the original
structure follows certain common design patterns, and hence not universal. In terms of
synchronization objects, several non-blocking implementations of queues, read/write registers,
Compare-And-Swap, and consensus objects are known [5, 6, 7, 8, 20, 21]. Wait-free [8] and
lock-free [11] universal constructions have also been proposed for such objects.

Several attempts have been made to formalize the correctness properties of concurrent
objects for persistent memory through variations on Herlihy and Wing’s widely-adopted
linearizability property [26] and Lamport’s atomic register [32]. In one line of work, which

N. Li and W. Golab 29:15

assumes that processes or threads recover after a crash and continue execution under the same
identifier, the problem was already solved earlier in the context of message passing systems
by the strict linearizability property of Aguilera and Frølund [2] and persistent atomicity
property of Guerraoui and Levy [24]. Berryhill, Tripunitara, and Golab [8] later relaxed
these conditions by proposing recoverable linearizability, and formalized recoverable objects
in the shared memory model. Izraelevitz, Mendes and Scott proposed an alternative model
where thread identifiers are not reused (at least not immediately) after a crash, which makes
persistent atomicity, recoverable linearizability, and ordinary linearizability indistinguishable,
and defined durable linearizability as a synonym for this merged correctness condition [30].
They also introduce an innovative property called buffered durable linearizability that allows
applications to trade durability guarantees for better performance due to reduced use of
costly persistence instructions.

The question of whether process or thread identifiers are reused across crashes has been
debated in the community. On one hand, it is true that from the point of view of the operating
system, a thread resurrected after a crash is distinct from any thread that ran prior to the
failure. On the other hand, applications tend to number their threads internally using simple
schemes (e.g., 1 to n), and this establishes a secondary identity that survives crash failures.
Such internal identifiers are used extensively in the implementations of synchronization
objects, for example to index arrays. Curiously, we observe this pattern even in some durably
linearizable implementations [6, 20].

Detectability was introduced informally by Friedman, Herlihy, Marathe and Petrank [19,
20], and formalized by Attiya, Ben-Baruch, and Hendler as nesting-safe recoverable lineariz-
ability (NRL) [5]. NRL is stronger than our DSS (Section 2) in the sense that it specifies
precisely how to recover nested implementations, whereas DSS embodies detectability only.
DSS-based objects can be nested in principle, and strictly linearizable implementations of
such objects can be used in place of atomic base objects if preservation of probabilistic
properties [22] is not a concern. Both NRL and the DSS augment the interface of concurrent
objects with special recovery procedures, which allows a recovering thread to resolve its own
pending operation after a failure, and in that sense implies the reuse of thread identifiers in
the spirit of [2, 8, 24]. In contrast, pending operations are resolved by a separate recovery
process in [20], which makes their approach to detectability compatible with the durable
linearizability.

In terms of complexity, prior work has established bounds on the number of persistent fence
instructions required by deterministic lock-free durably linearizable implementations [11],
and the space required by NRL-like implementations [6]. It is also known that NRL-like
implementations require some form of auxiliary state from the system [6]. Our DSS queue
algorithm is exempt from the latter impossibility result, but one of its variations relies on
auxiliary state in the sense that the system must initiate the centralized recovery phase (as
in [20]), which updates some of the queue’s base objects. Another variation of the DSS queue
avoids the centralized recovery phase and has no dependence at all on auxiliary state.

6 Conclusion

In this paper, we introduced the detectable sequential specification (DSS) as a formal
definition of detectability for recoverable objects. As a proof of concept, we presented a
DSS-based recoverable queue algorithm, and evaluated its performance on a multiprocessor
with Intel Optane persistent memory. We hope that the DSS opens a new avenue for both
rigorous analysis and practical implementation of recoverable concurrent objects.

DISC 2021

29:16 Detectable Sequential Specifications for Recoverable Shared Objects

References
1 Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank, and

Sam Toueg. Passing messages while sharing memory. In Proc. of the 37th ACM Symposium
on Principles of Distributed Computing (PODC), pages 51–60, 2018.

2 Marcos K. Aguilera and S. Frølund. Strict linearizability and the power of aborting. Technical
Report HPL-2003-241, Hewlett-Packard Labs, 2003.

3 Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson. BzTree:
A high-performance latch-free range index for non-volatile memory. Proc. VLDB Endow.,
11(5):553–565, 2018.

4 Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas.
Tracking in order to recover: Recoverable lock-free data structures. CoRR, abs/1905.13600,
2019. arXiv:1905.13600.

5 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizability:
Modular constructions for non-volatile memory. In Proc. of the 37th ACM Symposium on
Principles of Distributed Computing (PODC), pages 7–16, 2018.

6 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the
space complexity of detectable objects. In Proc. of the 39th ACM Symposium on Principles of
Distributed Computing (PODC), pages 11–20, 2020.

7 Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-
rency on faulty persistent memory. In Proc. of the 31st ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 253–264, 2019.

8 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In Proc. of the 19th International Conference on Principles of Distributed
Systems (OPODIS), pages 20:1–20:17, 2016.

9 Trevor Brown and Hillel Avni. Phytm: Persistent hybrid transactional memory. Proc. VLDB
Endow., 10(4):409–420, 2016.

10 Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ran-
jit Jhala, and Steven Swanson. Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories. In Proc. of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages
105–118, 2011.

11 Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. The inherent cost of remembering
consistently. In Proc. of the 30th on Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 259–269, 2018.

12 Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin C. Lee,
Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent memory.
In Proc. of the 22nd ACM Symposium on Operating Systems Principles (SOSP), pages 133–146,
2009.

13 Intel Corporation. Persistent memory faq, 2020. [last accessed 2/17/2021]. URL: https:
//software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.
html.

14 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Efficient algorithms for
persistent transactional memory. In Proc. of the 30th on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 271–282, 2018.

15 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and the rise of
universal constructions. In Proc. of the 15th EuroSys Conference, pages 5:1–5:15, 2020.

16 Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-free concur-
rent data structures. In Proc. of the USENIX Annual Technical Conference (USENIX ATC),
pages 373–386, 2018.

17 Keir Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2004. Computer
Laboratory.

http://arxiv.org/abs/1905.13600
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html

N. Li and W. Golab 29:17

18 Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Petrank.
Nvtraverse: in NVRAM data structures, the destination is more important than the journey.
In Proc. of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI), pages 377–392, 2020.

19 Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. Brief announce-
ment: A persistent lock-free queue for non-volatile memory. In Proc. of the 31st International
Symposium on Distributed Computing (DISC), volume 91, pages 50:1–50:4, 2017.

20 Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. A persistent
lock-free queue for non-volatile memory. In Proc. of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 28–40, 2018.

21 Wojciech Golab. The recoverable consensus hierarchy. In Proc. of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 281–291, 2020.

22 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In In Proc. of the 43rd ACM Symposium on
Theory of Computing (STOC), pages 373–382, 2011.

23 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In Proc. of the 35th
ACM Symposium on Principles of Distributed Computing (PODC), pages 65–74, 2016.

24 Rachid Guerraoui and Ron R. Levy. Robust emulations of shared memory in a crash-recovery
model. In Proc. of the 24th International Conference on Distributed Computing Systems
(ICDCS), pages 400–407, 2004.

25 John V. Guttag, James J. Horning, and Jeannette M. Wing. The larch family of specification
languages. IEEE Software, 2(5):24–36, 1985.

26 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

27 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

28 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proc. of the 20th Annual International Symposium on Computer
Architecture (ISCA), pages 289–300, 1993.

29 Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via JUSTDO logging. In Proc. of the 21s International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 427–442, 2016.

30 Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Proc. of the 30th International
Symposium on Distributed Computing (DISC), pages 313–327, 2016.

31 Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won. Nvwal:
Exploiting nvram in write-ahead logging. ACM SIGPLAN Notices, 51(4):385–398, 2016.

32 L. Lamport. On interprocess communication, Part I: Basic formalism and Part II: Algorithms.
Distributed Computing, 1(2):77–101, June 1986.

33 Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram.
Recipe: converting concurrent DRAM indexes to persistent-memory indexes. In Proc. of the
27th ACM Symposium on Operating Systems Principles (SOSP), pages 462–477, 2019.

34 Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm. Evalu-
ating persistent memory range indexes. Proc. VLDB Endow., 13(4):574–587, 2019.

35 Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin Zheng, and
Jinglei Ren. Dudetm: Building durable transactions with decoupling for persistent memory.
ACM SIGPLAN Notices, 52(4):329–343, 2017.

36 Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proc. of the 15th ACM Symposium on Principles of Distributed
Computing (PODC), pages 267–275, 1996.

37 Faisal Nawab, Dhruva R. Chakrabarti, Terence Kelly, and Charles B. Morrey III. Procrastina-
tion beats prevention: Timely sufficient persistence for efficient crash resilience. In Proc. of
the 18th International Conference on Extending Database Technology (EDBT), pages 689–694,
2015.

DISC 2021

29:18 Detectable Sequential Specifications for Recoverable Shared Objects

38 Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R. Chakrabarti,
and Michael L. Scott. Dalí: A periodically persistent hash map. In Proc. of the 31st
International Symposium on Distributed Computing (DISC), pages 37:1–37:16, 2017.

39 Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. Fptree:
A hybrid SCM-DRAM persistent and concurrent b-tree for storage class memory. In Proc. of
the 2016 International Conference on Management of Data (SIGMOD), pages 371–386. ACM,
2016.

40 Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency: Semantics for
byte-addressable nonvolatile memory technologies. IEEE Micro, 35(3):125–131, 2015.

41 Andy Rudoff. Persistent memory programming. login Usenix Mag., 42(2), 2017.
42 Andy Rudoff and the Intel PMDK Team. Persistent memory development kit, 2020. [last

accessed 2/11/2021]. URL: https://pmem.io/pmdk/.
43 Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H Campbell.

Consistent and durable data structures for non-volatile byte-addressable memory. In FAST,
volume 11, pages 61–75, 2011.

44 Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: lightweight persistent mem-
ory. In Proc. of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 91–104, 2011.

45 Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. Easy lock-free indexing in
non-volatile memory. In Proc. of the 34th IEEE International Conference on Data Engineering
(ICDE), pages 461–472, 2018.

46 Jun Yang, Qingsong Wei, Chundong Wang, Cheng Chen, Khai Leong Yong, and Bingsheng He.
Nv-tree: A consistent and workload-adaptive tree structure for non-volatile memory. IEEE
Trans. Computers, 65(7):2169–2183, 2016.

A Recovery of DSS queue

Following [20], we assume that a recovery phase is executed after each crash, before the
application threads are revived. This is an implementation detail, and is not required in
general for correctness of a DSS-based implementation. In practical terms, the recovery
phase is the execution of a recovery procedure by the main thread of the application. As
in [20], the recovery code scans the linked list of queue nodes from the head pointer and
checks the value of the deqThreadID field. For any marked node, the original algorithm
ensures completion of the dequeue operation by recording the dequeued value in a special
array of shared variables, but this is not required in our algorithm. This is because we do
not use shared variables to return dequeued values, and the state required for detectability
is already established at lines 47–48 of exec-dequeue prior to calling CompareAndSwap at
line 49. Next, the recovery code advances the head pointer, if needed, to point to the last
marked node reachable from the current head pointer, and sets the tail pointer to the last
node in the linked list. Finally, we extend the recovery algorithm to detect any pending
enqueue operations that took effect in the sense of persisting an updated next pointer at
line 12, but did not record this state change for detectability (in our case at lines 13–14).
During the traversal of the linked list, if a node is encountered that is referenced by some
element of X and where the pointer is tagged with ENQ_PREP_TAG, the code tags the
pointer with ENQ_COMPL_TAG as well; this takes care of nodes that were enqueued and
had not yet been dequeueud at the point of failure. For nodes that were first enqeued and
then dequeued, the code checks the pointers in X that are tagged with ENQ_PREP_TAG,
and sets ENQ_COMPL_TAG for any marked node. The complete algorithm is presented in
Figure 6.

https://pmem.io/pmdk/

N. Li and W. Golab 29:19

Procedure recovery().

64 AllNodes := set of queue nodes reachable from head

65 tail := last queue node reachable from head

66 FLUSH (&tail)
67 oldHead := head

68 head := last marked node reachable from oldHead

69 FLUSH (&head)
70 for i ∈ 1..n do
71 if X[i] is a pointer to a node d ∈ AllNodes and is tagged with ENQ_PREP_TAG

but not ENQ_COMPL_TAG then
// enqueued and still in the linked list

72 X[i] := X[i] | ENQ_COMPL_TAG
73 FLUSH (&X[i])
74 else if X[i] is a pointer to a node d ̸∈ AllNodes and is tagged with

ENQ_PREP_TAG but not ENQ_COMPL_TAG, and d→deqThreadID ̸= −1
then

// enqueued and no longer in the linked list, already marked
75 X[i] := X[i] | ENQ_COMPL_TAG
76 FLUSH (&X[i])

Figure 6 Recovery procedure of DSS queue.

DISC 2021

	1 Introduction
	2 Detectable Sequential Specifications
	2.1 Formal Definition
	2.2 Discussion

	3 A lock-free strictly linearizable detectable queue
	3.1 Enqueue and supporting operations
	3.2 Dequeue and supporting operations
	3.3 Recovery
	3.4 Analysis

	4 Evaluation
	5 Related Work
	6 Conclusion
	A Recovery of DSS queue

