Wait-Free CAS-Based Algorithms: The Burden of
the Past

Denis Bédin
Université de Nantes, France
Francois Lépine
Université de Nantes, France

Achour Mostéfaoui =
LS2N, Université de Nantes, France

Damien Perez
Université de Nantes, France

Matthieu Perrin &
LS2N, Université de Nantes, France

—— Abstract
Herlihy proved that CAS is universal in the classical computing system model composed of an a priori
known number of processes. This means that CAS can implement, together with reads and writes,
any object with a sequential specification. For this, he proposed the first universal construction
capable of emulating any data structure. It has recently been proved that CAS is still universal in
the infinite arrival computing model, a model where any number of processes can be created on the
fly (e.g. multi-threaded systems). In this paper, we prove that CAS does not allow to implement
wait-free and linearizable visible objects in the infinite model with a space complexity bounded by
the number of active processes (i.e. ones that have operations in progress on this object). This paper
also shows that this lower bound is tight, in the sense that this dependency can be made as low as
desired (e.g. logarithmic) by proposing a wait-free and linearizable universal construction, using the
compare-and-swap operation, whose space complexity in the number of ever issued operations is
defined by a parameter that can be linked to any unbounded function.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Software
and its engineering — Process synchronization; Computer systems organization — Multicore
architectures; Computer systems organization — Dependable and fault-tolerant systems and networks

Keywords and phrases Compare-And-Swap, Concurrent Object, Infinite arrival model, Linearizabil-
ity, Memory complexity, Multi-Threaded Systems, Shared-Memory, Universality, Wait-freedom

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.11

Funding This work was partially supported by the French ANR project 16-CE25-0005 O’Browser
(http://obrowser.univ-nantes.fr/) devoted to the study of decentralized applications on Web

browsers.

1 Introduction

Synchronization appeared with the concurrency brought by the first parallel programs in
the early sixties. Concurrent accesses to shared data or any physical or logical resource
by multiple processes can lead to inconsistencies. Dijkstra introduced the famous mutual-
exclusion problem and proposed to solve it using locks [7]. Since then it is still one of the
most popular mechanisms for inter-process synchronisation due to its supposed simplicity.
The simplest way to implement mutual exclusion on uni-processor systems is by interruption
disabling. Interestingly, it turns out that locks can also be implemented using read and
write operations on shared variables [8]. However, these implementations have a space
? Denis Bédin, F‘ran(%ois Lépine, Ach.our Mostéfaoui, Damien Perez, and Matthieu Perrin;
37 icensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 11; pp. 11:1-11:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:achour.mostefaoui@univ-nantes.fr
mailto:matthieu.perrin@univ-nantes.fr
https://doi.org/10.4230/LIPIcs.DISC.2021.11
http://obrowser.univ-nantes.fr/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Wait-Free CAS-Based Algorithms: The Burden of the Past

complexity linear with the number of processes [4]. This drawback has been overcome
with the introduction of hardware special instructions like compare-and-set, test-and-set,
fetch-and-add, etc. These instructions, referred to as read-modify-write instructions, aim to
avoid certain interleavings in the execution of the processes by making it possible to read and
update a memory location in one atomic operation. They represent, in some sense, a seed
of atomicity. The compare-and-set instruction (CAS) is certainly one of the most popular
(a.k.a. compare_exchange_strong in C++ and compareAndSet in Java). It is supported by most
modern multiprocessor and multi-core architectures. Informally, the CAS operation has three
arguments: the address of a memory location and two values. The memory location is set
to the second value if, and only if, the first value is equal to the one stored by the memory
location, and a Boolean result (success or failure) is returned to the calling process.

However, locks don’t compose and do not tolerate process crashes. If a process holding
a lock fails, the whole computation will stuck. Prohibiting the use of locks led to several
progress conditions, among which wait-freedom [10] and lock-freedom [12]'. While wait-
freedom guarantees that every operation invoked by a non crashed process terminates after a
finite time, lock-freedom guarantees that, if a computation runs for long enough, at least
one process makes progress (this may lead some other processes to starve). Wait-freedom
is thus stronger than lock-freedom: while lock-freedom is a system-wide progress condition,
wait-freedom is a per-process progress condition.

Coordination between processes that access shared resources can be captured as concurrent
data structures [2, 6, 11]. The design of the most popular concurrent data structures
such as counters, queues, stacks, logs, etc. has been very active these last three decades.
Unfortunately, not all data structures admit linearizable wait-free implementations in an
asynchronous crash-prone concurrent system that only offers read and write basic operations
on variables. This is due to the impossibility to solve the Consensus problem deterministically
in this model [13]. The formulation of the Consensus problem is particularly simple. Each
process proposes a value and all non-faulty processes decide on the same value among those
which are proposed. In contrast, consensus was proved universal in [10]. Namely, any object
having a sequential specification has a wait-free linearizable implementation using only
read/write basic operations and some number of consensus objects. Moreover, some — but
not all — special instructions, such as compare-and-set (CAS) or load-link/store-conditional
(LL/SC), are universal as well. Therefore, while special hardware instructions provide
efficiency in lock-based computing, they are necessary for lock-free and wait-free computing.

In order to prove the universality of consensus, Herlihy introduced the notion of universal
construction. It is a generic algorithm that can emulate any object from its sequential
specification. Since then, several universal constructions have been proposed for different
special hardware instructions such as CAS and LL/SC [16]. Those are usually designed by
first introducing a lock-free universal construction, which is then made wait-free with the use
of helping: when a process invokes an operation, it first announces it in a dedicated single-
writer variable, and then helps all other announced operations to terminate. Valency-based
Helping has recently been proved to be unavoidable for CAS-based implementations of several
data structures [5]. Hence, similarly to the space complexity drawbacks described above
for the implementations of locks using only read and write operations on shared variables,
many wait-free universal constructions have a space complexity linear in the number of
potential participating processes. This inefficiency concerns both lock-free and wait-free
implementations and is related to the use of historyless objects such as registers, LL/SC, CAS,

! Tn [12] lock-freedom is called non-blocking.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

and TAS for example. It has been proved in [9] that the minimal space complexity of the
implementations that use only historyless objects is linear with the number of participating
processes.

In 2000, Merritt and Taubenfeld [14] introduced the infinite arrival model to deal with
computing systems composed of an unbounded number of processes unlike the classical model
composed of a fixed and a priori known number of processes. This model includes among
others the multi-threaded model where any number of threads can be created and started at
run-time and may leave or crash. So although the number of processes at each time instant
is finite, it is not a priori known and there is no bound on the total number of threads that
can participate in long-running executions. Recently, the universality of consensus and CAS
has been extended to the infinite arrival model [15] by proposing a universal construction.
In the proposed construction, helping is managed by an announcement data structure in
which newly arrived processes can safely insert their operation. Unfortunately, terminated
operations cannot be removed, resulting in an ever-growing data structure whose size depends
on the total number of ever issued operations.

Problem Statement. This paper explores the performance aspect of the synchronization
based on the CAS hardware special instruction. More precisely, we ask the following question:
Is it possible to design a wait-free universal construction whose space complexity only depends
on the number of operations in progress?.

Contribution 1: We prove that the answer is negative when only read, write and compare-
and-set operations are available. This means that the space complexity depends on the total
number of processes that ever issued operations, and that complex data structures must be
maintained, and traversed, to implement helping mechanisms.

Contribution 2: Conversely, we show that our lower bound is tight, in the sense that this
dependency can be made as low as desired (e.g. logarithmic), as long as it remains unbounded.
We present a wait-free and linearizable universal construction, using the compare-and-set
operation, whose space complexity in the number of ever issued operations is defined by
a parameter that can be linked to any unbounded function. Obviously, this low spatial
complexity is obtained to the detriment of the time complexity.

Let us note that lock-free linearizable implementations can trivially have a constant space
complexity when no operation is in progress by simply having a CAS in a loop.

Organization of the paper. The remainder of this paper is organized as follows. In Section 2,
we present the computing model that we consider and we define some notions that will be
used afterwards. Then, Sections 3 and 4 respectively present the lower and upper bounds on
the space complexity of wait-free and linearizable CAS-based algorithms. Finally, Section 5
concludes the paper.

2 Model

This paper considers the infinite arrival model [14] composed of a countable set II of
asynchronous sequential processes pg, p1, . - . that have access to a shared memory. The set
IT is the set of potential processes that may join, get started and crash or leave during a
given execution. At any time, the number of processes that have already joined the system
is finite, but can be infinitely growing in long-running executions. Each process p; has a
unique identifier ¢ that may appear in its code.

11:3

DISC 2021

11:4

Wait-Free CAS-Based Algorithms: The Burden of the Past

2.1 Communication between processes

Processes have access to local memory for local computations and have also access to a
shared memory to communicate and synchronize. The shared memory is composed of an
infinite number of unbounded locations, called registers 2. Processes have access to a dynamic
memory allocation mechanism accessible through the syntax new 7', that instantiates an
object of type T' (T' may be Reg to allocate a single register, as well as a record datatype or
an array) and returns its reference, i.e. it allocates the memory locations needed to manage
the object and initializes them by calling a constructor. Processes are not limited in the
number of locations they can access, nor by the number of times they can use the allocation
mechanism, during an execution. However, they can only access memory locations that
either 1) have been allocated at the system set up, or 2) are returned by the allocation
mechanism, or 3) are accessible by following references stored (as integer values) in some
accessible memory location. In other words, when a process p; allocates memory locations
at runtime, they can initially only be accessed by p; until it manages to share a reference
pointing to these new memory locations. We say that a memory location is reachable when it
can be accessed by a newly arrived process. When a memory location becomes inaccessible by
any process in the system, it is automatically de-allocated by a garbage collector mechanism.

Processes can read the value of a shared register x by invoking z.read(), and can write
a value v in x by invoking z.write(v). Moreover, as some objects cannot be implemented
using only read/write operations, the system is enriched with the special atomic instruction
CAS. Reads, writes and CAS are atomic in the sense that the different executions of the calls
to these operations are totally ordered.

The compare-and-set instruction can be invoked on a register « with the expression
x.CAS(expect, update), which returns a Boolean value. In the execution, the value stored in x
is first compared to expect. If they are equal, then update is written in the register and true
is returned. Otherwise, the state is left unchanged and false is returned.

2.2 Concurrent executions

An execution « is a (finite or infinite) sequence of steps, each taken by a process of II. A
step of a process corresponds to the execution of a read, a write, or CAS. Processes are
asynchronous, in the sense that there is no constraint on which process takes each step: a
process may take an unbounded number of consecutive steps, or wait an unbounded but
finite number of other processes’ steps between two of its own steps. This makes it possible
to abstract from the difference in load of the different processors (cores) and from the fact
that access to a processor is controlled by a scheduler. Moreover, it is possible that a process
stops taking steps at some point in the execution, in which case we say this process has
crashed, or even that a process takes no step during a whole execution (II is only a set of
potential participants). We say that a process p; arrives in an execution at the time of
its first step during this execution. Remark that, although the number of processes in an
execution may be infinite in the infinite arrival model, the number of processes that have
already arrived into the system at any step is finite.

2 The assumption of an infinite memory, also made in the definition of Turing Machines, abstracts the
fact that modern memories are large enough for all applications we consider in this paper and allows for
simpler reasoning. The assumption of unbounded memory locations is then necessary to store references
as memory addresses of an infinite memory are unbounded. The reader can check that we do not use
these assumptions in any unpractical way.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

A configuration C' is composed of the local state of each process in II and the value
of each location in the shared memory. For a finite execution «, we denote by C(«) the
configuration obtained at the end of . An empty execution is denoted . An execution [is
an extension of « if « is a prefix of f.

2.3 Implementation of shared objects

An implementation of a shared object is an algorithm divided into a set of sub-algorithms,
one for the initialization (a.k.a. the constructor of the object), and one for each operation of
the object, that produces wait-free and linearizable executions.

» Definition 1 (Linearizability). An ezecution « is linearizable if all operations have the
same effect and return the same value as if they occurred instantly at some point of the
timeline, called the linearization point, between their invocation and their response, possibly
after removing some non-terminated operations.

» Definition 2 (Wait-freedom). An ezecution « is wait-free if no operation takes an infinite
number of steps in .

In this paper, we are interested in the space complexity of implementations. We distinguish
the space complexity necessary to processes during the execution of their operations (e.g.
their local memory and the memory locations that will be garbage-collected at the end of
their execution), and the long-lasting space requirements of the data structures necessary to
store the metadata of the algorithm, and that remains allocated even after all processes have
terminated their operations. More precisely, we aim at minimizing the quiescent complexity,
that measures the memory space required to store the state of a shared object when no
process is executing an operation on it. This is to make sure we do not count the local
storage of processes, which is not meaningful since the number of processes is unbounded.

» Definition 3 (Quiescent complexity). Let A be an algorithm. A finite execution a of A
s said to be n-quiescent if exactly n operations of A were invoked, and all of them are
completed, in C(a).

The quiescent complezity of A is the function QC : N — N U {oc}, where QC(n) is the
maximal number of memory locations reachable in some configuration C(«) obtained at the
end of any n-quiescent execution o, if this maximum exists, and oo otherwise.

As explained in the Introduction, a universal construction is a generic algorithm, para-
metrized by the specification of a shared object, called a state machine, and that emulates
a wait-free, linearizable shared version of the state machine. In this paper, the sequential
specification of a state machine is defined as a transition system, whose initial state is
the constant initialState, and whose transitions are defined by a function execute that
takes as arguments a state of the object and an operation, and returns a pair formed by
the resulting state and the return value obtained when the input operation is executed
sequentially on the input state. For example, the fact that the dequeue operation on a
non-empty queue deletes the first element from the queue and returns it is specified as
execute([zg, Z1,. .., Zy,], dequene) = ([x1,..., %], Zo)-

3 Lower Bound on Universal constructions using Compare-And-Swap

This section explores the limitations of wait-free linearizable universal constructions based on
compare-and-set. More precisely, Theorem 11 proves that there is no such construction with
constant quiescent complexity, i.e. any such construction must maintain a data structure that

11:5

DISC 2021

11:6

Wait-Free CAS-Based Algorithms: The Burden of the Past

may grow over time. Let us first introduce the notions of mute process and visible object.
We call mute process (Definition 4) a process that lost all its attempts at compare-and-set,
and all the values it wrote in shared variables were overwritten before they could be read by
another process. The class of visible objects, as defined in [9], is “a class that includes all
objects that support some operation that must perform a visible write before it terminates.
This class includes many useful objects (counters, stacks, queues, swap, fetch-and-add, and

single-writer snapshot objects)”.

Intuitively, any update operation on any visible object
(Lemma 5 considers a linearizable counter for this matter) must modify the global state
of the system, in order to have an impact on the value returned by subsequent reads. For
CAS-based algorithms, it implies that the presence of mute processes cannot be known by
any other process, so they cannot complete their update operations on their own, nor can

they be helped by others.

» Definition 4 (mutism). Let « be a finite execution, and let p be a process. We say that
p is mute in « if there exists an execution o such that p did not participate in o' and, for
all processes p' # p, all shared variables and the local state of p' are the same in C(a) and
C(), i.e. C(a) and C(a!) are indistinguishable® to p'.

A finite execution « is said to be mute if there exists a mute process p that terminated its
execution in C(a).

» Lemma 5. Let A be a wait-free linearizable implementation of a counter (i.e. containing
one operation, increment, that returns the number of previous invocations to increment).
Then A does not have a mute execution.

Proof. Let A be a wait-free linearizable implementation of a counter. Suppose (by contradic-
tion) that A has a mute execution «, and let n be the number of processes that participate
in a.

By definition, there exists a process p and an execution o’ such that p terminated its
execution in C(a), p did not participate in o’ and, for all processes p’ # p, C(«a) and C(a/)
are indistinguishable to p'.

Let us consider the extension afv of a such that in 3, all processes p’ that took steps in
« terminate their invocation, and in 7y, some process ¢ that did not participate in « joined
and completed an invocation of increment in isolation, getting n as a result (8 and 7 exist
because A is wait-free). As a and ' are indistinguishable to all processes p’ and to ¢, /B~
is also a valid execution, in which ¢ also gets n as a result. However, only n — 1 invocations
of increment were started before ¢ terminated, so A is not linearizable. <

In an algorithm A with a constant quiescent complexity, a bounded number of memory
locations may remain reachable forever after a certain point in time (Definition 6 calls them
static), and other memory locations may be allocated by some operations, and later be made
unreachable by the same or another operation (Definition 6 calls them dynamic). Lemma 10
builds an execution in which some process p remains mute forever because, whenever p covers
a static location z (i.e. p is about to write in z, see Definition 7), some other process also
covers x and wins the competition, and whenever p covers a dynamic location, this location
is made unreachable, so p;’s write remains unnoticed.

3 This means that process p has no way to distinguish the two configurations. As said in [1] “Lack of
knowledge about other components can formally be captured through the concept of indistinguishability,
namely inability to tell apart different behaviors or states of the environment. Indistinguishability is
therefore a consequence of the fact that computer systems are built of individual components, each
with its own perspective of the system”.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

» Definition 6 (static vs dynamic locations). Let « be a finite execution, and x be a shared
memory location that is reachable in C(a). We say that x is dynamic in « if there exists
an extension af of a such that 1) x is unreachable in C(afB), 2) no process that is mute in
« takes steps in 8, and 3) all processes are either mute in C(a) or have terminated their
execution in C(af). We say that x is static in « if it is not dynamic in a.

» Definition 7 (covering). Let « be a finite execution, p a process and x a shared variable.
We say that p write-covers (resp. CAS-covers) z in C(«) if the next step of p in C(«) is a
write (resp an invocation of CAS(e,u) with e # u) on x. We say that p covers x in C(«) if p
write-covers or CAS-covers x in C(a).

In order to simplify the proofs, we only consider, in Lemma 10, algorithms that follow
a normal form, defined in Definition 8. This assumption is done without loss of generality,
since the proof of Lemma 9 discusses how to normalize any algorithm.

» Definition 8 (Normal form). An algorithm A is said to be in normal form if it satisfies the

following properties.

1. There exists a location last such that the last step of any process is a write in last, that is
never accessed otherwise.

2. Each time a process p invokes x.CAS(e, u), its previous step is a read of x that returned e.

3. All values written, or proposed as the second argument of compare-and-set, are different.

» Lemma 9. Any wait-free linearizable implementation A of a counter in the infinite arrival
model, with a constant quiescent complexity and that only uses read, write and compare-and-
set operations can be converted into a wait-free linearizable implementation A’ of a counter
in normal form with a constant quiescent complexity.

Proof. We transform A into an algorithm A’ in normal form as follows. First, we add an
integer shared variable last initialized to 0 (if A already contains a variable named last, this
variable is renamed in A’). We also add a concluding step in which all processes write their
identifier in last.

Then, we replace all shared registers by a modified register whose type is defined by
Algorithm 1, keeping the same invocations to read, write and compare-and-set. To comply
with the third property of the definition of a normal form, Algorithm 1 associates a unique
timestamp with each value proposed to write and CAS operations, consisting of a sequence
number time and a process identifier pid. For that, each process locally numbers its
different write and CAS operations using a local variable cl; and, since the different processes
have unique identifiers, no confusion can occur between the timestamps forged by different
processes. During a read operation, the timestamp is removed and only the value relevant
to the object is returned by the read. Hence, Algorithm 1 uses one shared register, storing
values from a structured type containing three fields: a field value storing the value relevant
to A, an integer field time and an integer field pid.

Remark that Algorithm 1 is itself a wait-free and linearizable implementation of a shared
register (using each time the last operation on internal as linearization point), so the algorithm
A’ verifies all liveness and safety properties proved on A. In particular, A’ is also a wait-
free linearizable implementation of a counter. Moreover, A’ also has a constant quiescent
complexity since we only added one static memory location last, and Algorithm 1 multiplies
the size of all used memory locations by a constant factor. |

» Lemma 10. All wait-free algorithms in normal form with constant quiescent complexity
have a mute execution.

11:7

DISC 2021

11:8 Wait-Free CAS-Based Algorithms: The Burden of the Past

Algorithm 1 Normalisation of shared registers : code for p;.

1 constructor (initial) is
2 L internal <— new Reg({value < initial, time <+ 0,pid < 0});

3 operation read() is

4 L return internal.read().value;

5 operation write(v) is

6 v’ < {value + v, time + cl;,pid + i};
7 Cli — Cli +].,

8 internal.write(v’);

9 operation CAS(e,u) is

10 e’ « internal.read();

11 if ¢’.value # e then return false;

12 u’ + {value + u,time + cl;,pid + i};
13 cli +cl; +1;

14 return internal.CAS(e’, u);

Proof. Let A be a wait-free algorithm in normal form, and let us suppose there is a tight
bound & on the quiescent complexity of A. We prove, by induction on 4, the following claim
for all i € {0,...,k}.

» Predicate 1 (Pi(i)). For all finite executions o, there exists an extension af of a in
which no process participates in both o and 3, at least i static locations are covered by mute
processes in C(af) that didn’t participate in «, and all non-mute processes that took part in
B have terminated their execution.

Proof. The empty execution works for P;(0), as it concerns no location and no process.
Suppose we have proved P (i) for some i < k. We now prove, by induction on j, the following
claim for all j € {0,...,i+ 1}.

» Predicate 2 (Px(i,j)). For all finite executions «, there exists an extension aff of a in
which in which no process participates in both a and B, and either (1) at least i + 1 static
locations are covered in C(af) by mute processes that did not participate in «, or (2) at least
J static locations are write-covered in C(«af) by mute processes that did not participate in c,
and all non-mute processes that took part in B have terminated their execution.

Proof. Predicate P,(4,0) is implied by P; (7). Suppose we have proved Ps(i, j) for some j < i.
We suppose (by contradiction), that P»(i,j + 1) does not hold.

Let p € II be a process that did not take any step in a. We build, inductively, a sequence
(0t)men of executions such that ag = «, for all m € N, p is mute in i, Q1 = QB YmOm
is an extension of «,, and if m > 0, p takes at least one step in 5, Vmdm, a different set of
processes participate in each extension (,,7m0m, and all processes ¢ # p that take a step in
BmYmOm are terminated immediately after taking their step. Suppose we have built «,, for
some m € N. In 3,,, p takes steps in isolation until it covers some reachable location xz. As
A is wait-free, either such a situation is bound to happen or p is mute, which concludes the
proof of Ps(i,j). Three cases are to be distinguished.

Suppose z is a dynamic location in «,,S,,. There exists an extension ., BmYm of amBm

in which x is not reachable, and only mute processes or processes that have terminated

their execution know the existence of x. Let au, BmYmdm be the extension of v, BmYm in
which p takes one step.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

Otherwise, x is a static location. Suppose p write-covers x in C(u,Bm). Let aupnBimYm be
the extension of a,, S, provided by Predicate P5(i, 7). As we supposed that Py(4,j + 1)
does not hold, the only possibility is that at most j static locations are write-covered in
C(amBmym), by mute processes that did not participate in 5y, including z, that is
write-covered by some process ¢q. In §,,, p first takes one step, writing in z, and then ¢
completes its execution, overwriting p’s write. Therefore p is mute in ;11 = W B YmOm,
and p took one step in d,,.
Otherwise, x is a static location and p’s next step in C(y,5m) is 2.CAS(e, u), with e # u
since A is in normal form. Let au, Bmym be the extension of ., 8,, provided by Predicate
Py (). As we supposed that Py(7,j + 1) does not hold, the only possibility is that at least
i static locations are covered in C(&nBmYm), by mute processes that did not participate
in @y, Bm, including x, that is covered by some process g. If ¢ writes-covers x, we build §,,
as previously. Otherwise, ¢’s next step in C(cu,Bmym) is ©.CAS(e’,u'), with ' # u' # e,
by property (3) of the normal form, since A is in normal form.
Let & be the value stored in z in Configuration C(amBmYm). If T = €, in d,,, ¢ first
takes one step, writing in ' in x, then p takes one step, that does not change the value of
2 and returns false (v’ # e), and finally ¢ terminates its execution. Therefore p is mute
N Wmt1 = WmBmYmOm, and p took one step in d,,.
Otherwise, as A is in normal form, was written in x after ¢ read €’ during v,,,, which
occurred after p read e during (,,, so e # z. In §,,, then p takes one step, that does not
change the value of x and returns false. Therefore p is mute in ;11 = QB YmOm,
and p took one step in &yy,.

Finally, p takes an infinite number of steps in «/31y101 827205 ... without terminating, which

contradicts the fact that A is wait-free. This terminates the proof of P»(i,j) for all j €

{0,...,i+1}. |

Let us come back to the proof of Predicate Py(i+1). By P2(¢,7+1), there exists an extension

af of o in which at least ¢ + 1 static locations are covered in C'(af), i.e. Pi(i+ 1) is true.

This terminates the proof of P;(7) for all i € {0, k}. <

Finally, by invoking P; (k) twice, there exists an extension « of the empty execution ¢ in
which k static locations are covered in C'(«), and an extension «f of « in which k static
locations are covered in C'(«f) by processes that did not participate in «.

Let p be a process that did not participate in «/3. As all processes that participate in
af} are either mute or have terminated their execution in C(«/3), there exists an execution
v such that C(af) and C(vy) are indistinguishable to p, and no process is executing A in
C(). By definition of k, at most k locations are reachable in C(v), so at most k locations
are reachable in C'(a3) as well. By items items 2 and 3 of Definition 6, all k are static.

Therefore, all k locations are covered at least twice by mute processes in C'(af). In
particular, there are two mute processes ¢ and r that are about to write in last. Let us pose
¢ the sequence of steps in which ¢ writes in last and then completes its invocation, and then
p writes in last. Process ¢ is mute in /3§ and ¢ terminates its execution, so a3J is a mute
execution of A. <

» Theorem 11. There is no wait-free linearizable implementation of a counter with a
constant quiescent complexity in the infinite arrival model, that only uses read, write and
compare-and-set operations.

Proof. Suppose there is a wait-free linearizable implementation A of a counter with a constant
quiescent complexity. In particular, by Lemma 9, we can suppose without loss of generality
that it is in normal form. By Lemma 10, A has a mute execution, and by Lemma 5, A does
not have a mute execution. This is a contradiction, so A does not exist. |

11:9

DISC 2021

11:10

Wait-Free CAS-Based Algorithms: The Burden of the Past

4 Upper Bound on Universal constructions using Compare-And-Swap

From Theorem 11, we can derive that the quiescent complexity of any wait-free linearizable
universal construction is in w(1). Differently, [3] presents such a construction with a quiescent
complexity in O(n). The present section closes the gap thanks to Algorithm 2, a wait-
free and linearizable universal construction that is parametrized by any unbounded and
monotonically increasing function f : N — R (e.g. log or log*), and whose quiescent
consistency is QC(n) = O(f(n)). In the remainder of this section, let us fix an unbounded
and monotonically increasing function f, and let us define its inverse f~! as follows: for all
r €N, f~1(z) is the smallest y € N such that f(y) > =.

In Algorithm 2, a new operation is linearized each time a compare-and-set is won on a
shared register linearization. In order to require the help from other processes, each operation
starts by installing itself into a memory location that was at the head of a linked list announces
when it started the algorithm. Once a process has failed too many times (depending on f)
to install its operation, it changes the head of the linked list, which guarantees it not to lose
again against any new operation.

Algorithm 2 maintains a data structure depicted on Figure 1, and composed of three
kinds of nodes, described thereafter as structured data types.

The first kind of nodes, called operation node and of type ONode, represents an ongoing

operation. An operation node o is composed of three fields: o.oper is an operation of the

state machine, o.result is a register storing either L or a value that can be returned by
o.oper, and o.done is a Boolean register. An operation node o is created when an operation
o.oper is invoked by a process p; on the state machine, initially with o.result = 1 and
o.done = false (Line 8). After the operation has been linearized, o.done is set to true by
some process p; (possibly different to p;) (Line 27), which serves as a signal to p; that it

can return o.result (Lines 16-17).

The role of an announce node of type ANode is to expose a memory location in which a

process can install an operation node, so that other processes can help completing the

operation. An announce node a is either the empty node 1, or a structure of two fields:
a.next references another announce node and a.o is a register that references an operation
node. In other words, an announce node is part of a linked list ending with 1,. We
define the rank rank(a) of a node a as the length of the linked list, i.e. rank(l,) =0 and
rank(a) = rank(a.next) + 1 if a # L,. The number of announce nodes accessible at the
end of quiescent executions can only grow, which determines the quiescent complexity of

Algorithm 2.

Finally, a linearization node of type LNode represents a possible state of the state machine,

as well as some information concerning the last operation leading to this state. A

linearization node [is composed of three fields: [.state is a state of the state machine,

l.result is a value returned by an operation of the state machine and s.o references an

operation node. The sequence of states visited during an execution corresponds to a

sequence of successful compare-and-set operations on linearization nodes.

Processes share two variables. The first one, announces, is a register that references
announce nodes and is initialized to an announce node of rank one. The linked list of
announce nodes accessible through announces provides a set of memory locations in which
operation nodes can be placed to allow communication between processes that need helping
and processes willing to help. The second variable, linearization, is a register that references
a linearization node and is initialized to a new linearization node referencing the initial state
of the state machine and a reference to a new dummy operation node. Later, linearization is
composed of the current state of the state machine, as well as the operation node of the last
linearized operation and its return value.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

announces

Announce .
nodes La A J%

Operation
nodes

Linearization
nodes

linearization

Figure 1 An execution of Algorithm 2, with f(1) = 1. The initial state is represented in
black. Processes p1 (in red), p2 (in blue) and ps (in green) attempt to concurrently execute o1,
02 and o3, respectively. Initially, p1 and p2 read the same announce node a, and p; wins the first
compare-and-set, so ps creates a new announce node a’ to prevent concurrency of newly arrived
processes. Indeed, ps reads a’ and writes its own operation node in it, then linearizes 0; and o3 and
terminates. Finally, p2 wins the compare-and-set on a and linearizes os.

When a process p; needs to apply an operation op; on the state machine, it invokes
invoke(op;) on the universal construction. Process p; first creates an operation node o;
containing its operation (Line 8), and then strives at installing o; at the head a; of the list
of announce nodes referenced by announces, using compare-and-set (Line 18), after helping
operation nodes already announced to be linearized by calling help(a;) (Line 14). If p; fails
to write o; into a;.0 f~!(rank(a;) + 1) times, it tries to insert a new announce node at the
head of the announces list (Lines 11 and 13) to prevent newly arrived processes to compete
on a;.0, and ensure its own termination. Remark that p; can only fail if some other process
succeeded in inserting another announce node, providing the same benefits.

When p; executes help(a;) to linearize the operation a;.o.oper of the operation node a;.o,
it first helps recursively all announce nodes reachable from a; (Line 21), and then tries to
replace the linearization node in linearization using compare-and-set, until success (Lines 25
to 31). Remark that the new state of the state machine, as well as the value returned by an
operation, are computed (Line 29), before the linearization node referencing the operation is
created, and the return value is later reported on the operation node (Line 26), possibly by
still a different process.

» Lemma 12. No call to help(a;) in Algorithm 2 takes an infinite number of steps.

Proof. Suppose, by contradiction, that some call to help(a;) by a process p; takes an infinite
number of steps. Without loss of generality, we can suppose that r; = rank(a;) is minimal.
Let o; be the operation node read by p; on Line 22. By Line 28, o;.done is always false, so
no process ever wins the compare-and-set on Line 31 with a linearization node referencing o;
(otherwise, the next process that writes linearization on Line 31 would previously have set
0;.done to true on Line 27), and a;.0 = 0; at all time after some point.

In only a finite number K of invocations of invoke(op;) by some process p;, all done
before the invocation of help(a;) by p;, p; reads an announce node a; with rank(a;) < r;.
All of them terminate because 1) by minimality of r;, help(ay) terminates on Line 15 and 2)

11:11

DISC 2021

11:12 Wait-Free CAS-Based Algorithms: The Burden of the Past

Algorithm 2 Universal construction using compare-and-set.

1 constructor (initialState) is

2 ap < new ANode {next < 1,,0 < new Reg(Ll)};

3 0o < new 0ONode {oper < L, result < new Reg(.L), done <— new Reg(true)};
4 lop <+ new LNode {state «+ initialState,result + 1,0+ op};

5 announces < new Reg(ayp) ;

6 linearization <— new Reg(ly) ;

7 operation invoke(op;) is

8 0; < new 0Node {oper + op;, result + new Reg(L), done +— new Reg(false)};
9 a; < announces.read();

10 for k+0,1,2,... do

11 if k = f~!(rank(a;) + 1) then

12 a; < new ANode {next <+ a;,0 < new Reg(L)};
13 announces.CAS(a;, a});

14 0} < a;.0.read();

15 help(a;);

16 if 0;.done.read() then

17 L return o;.result.read();

18 a;.0.CAS(0}, 0;);

19 function help(a;) is

20 if a; = 1, then return;

21 help(a;.next);

22 0; + a;.0.read();

23 if 0; = L then return;

24 while true do

25 l; + linearization.read();

26 l;.0.result.write(l;.result);

27 l;.0.done.write(true);

28 if 0;.done.read() then return;

29 (s;,1i) < execute(l;.state, 0;.0per);
30 l; < new LNode {state < s;, result <— r;,0 < 0;};
31 linearization.CAS(l;, I});

whenever a process wins a compare-and-set on Line 18, it helps its own operation or a more
recent one to terminate in its next iteration of the loop (Line 15) and then terminates on
Line 17, so p; can only be prevented to terminate K times. After that, a;.o is never writen,
and a;.o.done remains true forever. In particular, no further invocation of help(a;) executes
Line 31, as they terminate on Line 28.

After that point, all new invocations of help(a;) by some process p; on Line 15 are such
that rank(a;) > r;. Thanks to Line 21, and by what preceeds, p;’s first execution of Line 31
is during its recursive call help(a;), in which p; reads a;.0 = 0; on Line 22. As all executions
of Line 31 try to write [; = (s,7,0;) for some s and r, only one of them succeeds. After that
point, some process (possibly p;) reads I; on Line 25 and writes true in o;.done on Line 27,
which is a contradition. <

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

» Lemma 13 (Wait-freedom). Algorithm 2 is wait-free.

Proof. Let us consider an invocation of invoke(op;) by a process p;. By Lemma 12, the
function help terminates, so all iterations of the loop by p; terminate as well. Let K =
f~Y(rank(a;) +1). As f is unbounded, K is well defined.

If p; iterates less than K times, then it terminates its execution. Otherwise, it executes
Line 13 when k& = K, and whether the compare-and-set is successful or not, announces # a;
after that. All processes that arrive later read a different value on Line 9, so only a finite
number of processes compete with p; on Line 18. Each time one of them succeeds, it helps its
own operation or a more recent one to terminate in its next iteration of the loop (Line 15) and
then terminates on Line 17, so an operation can only prevent p; to win its compare-and-set
once. Therefore, p; eventually terminates its execution. |

» Lemma 14 (Linearizability). All executions admitted by Algorithm 2 are linearizable.

Proof. Let a be an execution admissible by Algorithm 2.

Let us first remark that, for any operation invoke(op;) invoked by process p;, at
most one linearization node [; such that [;.0.oper = op; is such that an invocation of
linearization.CAS(!’, ;) returns true on Line 31. Indeed, first remark that all linearization
nodes written in linearization are unique, because they are created on the same line as they are

written, and that only one operation node o;, built on Line 8 by p;, is such that o;.oper = op;.

Suppose (by contradiction) that two linearization nodes I; and [, with /;.0 = l;.0 = 0;, were
successfully written in linearization by p; and py, respectively. Let us consider, without loss
of generality, the first two such linearization nodes, and let us consider the linearization node
I that overwrote [; i.e. such that the invocation linearization.CAS(l;, l,;,) by some process py,
returned true. Process p; read [in linearization on Line 25 before false in o0;.done on Line 28,
before p,, wrote true in o;.done on Line 27, before p,, invoked linearization.CAS(l;,[,,) on
Line 31. Therefore, [is at least as old as [;. It is impossible that [= I; because it would
mean p; = p,, would have executed Line 28 before Line 27, and it is impossible that [is
older than I; because it would have been overwritten by l; or before.

Let us define the linearization point of any operation invoke(op;) as, if it exists, the
unique successful invocation of linearization.CAS(!’, ;) such that [;.0.oper = op;.

We now prove that any operation invoke(op;) done by a terminating process p; has a
linearization point, between its invocation and termination point. As p; terminated, it read
true in o;.done on Line 16, so some process p; wrote true in /;.0.done = o;.done on Line 28,
after having read [; on Line 25, which can only happen after some process p; wrote [; on
Line 31. This is a linearization point for invoke(op;). As we have seen, the linearization
point happened before the p;’s termination. It also happened after p;’s invocation, as o; can
only be created by p; on Line 8.

Finally, let us remark that, thanks to Line 29, the states and result values reached in a
sequential execution E defined by the linearization order are the same as the ones written in
the linearization nodes on Line 31. If Process p; returns r; at the end of the execution of
invoke(op;), it read it in o;.result.read() on Line 17, after reading true in 0;.done on Line 16,
which can only happen if some process wrote true in o;.done on Line 27 after writing [;.result
in o;.result on Line 26, with [;.0 = 0; and [; read in linearization on Line 25. Therefore, the
p; returns the same value as in H.

In conclusion, « is linearizable. <

» Lemma 15 (Complexity). The quiescent complexity of Algorithm 2 is QC(n) = O(f(n)).

11:13

DISC 2021

11:14

Wait-Free CAS-Based Algorithms: The Burden of the Past

Proof. Let « be a finite execution of Algorithm 2 such that n invocations of invoke(op;)
happened in a and all of them are completed in C(«).

Let r be the rank of the announcement node referenced by announces in C(«), and let
us suppose that r > 2. Let us consider last time announces was updated in «, on Line 13,
by a process p;. Remark that whenever a process wins a compare-and-set on Line 18, it
helps its own operation or a more recent one to terminate in its next iteration of the loop
(Line 15) and then terminates on Line 17, so an operation can only prevent p; to win its
compare-and-set once. Therefore, n < k= f~'(r —1+1) = f~!(r). By definition of =1,
we have r < f(n).

One linearization node and at most f(n) announce nodes, referencing at most f(n)
operation nodes, are reachable in C'(«). Therefore, at most O(f(n)) shared memory locations
dedicated to Algorithm 2 are reachable. |

5 Conclusion

This paper investigated the performance of concurrent data structure implementations
(counters, queues, stacks, journals, etc.) in the infinite arrival model where the universal
compare-and-set hardware instruction is available. It proves that the space complexity of a
universal construction cannot be constant in the number of operations ever issued, although
it can be super-constant.

This separation result may seem weak to separate only between constant and super-
constant space, however, note that a low space complexity is obtained to the detriment of
time complexity. This is captured by the function f. This function relates space complexity
to the worst-case step/time complexity (f~!); there is a kind of trade-off. This function can
be seen as a continuum between wait-freedom and lock-freedom. While wait-freedom offers a
finite time complexity and an ever-increasing space complexity, lock-freedom offers a constant
quiescent space complexity and an infinite worst case time complexity (in a real setting and
in the average, lock-free implementations are time efficient). The faster f grows, the closer
we get to wait-freedom, and conversely, the slower the closer we get to lock-freedom. When
parameterized with a slowly growing function, the proposed data structure can be as efficient
as a lock-free data structure while benefiting from wait-freedom (the guarantee of a finite
step complexity). An interesting open question, therefore, is whether other universal special
hardware instructions can avoid this complexity issue.

—— References

1 Hagit Attiya and Sergio Rajsbaum. Indistinguishability. Commun. ACM, 63(5):90-99, 2020.
Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and

advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

3 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin. Wait-free universality of consensus
in the infinite arrival model. In 33rd International Symposium on Distributed Computing,
DISC, Hungary, volume 146 of LIPIcs, pages 38:1-38:3, 2019.

4 James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and Gary L. Peterson.
Data requirements for implementation of n-process mutual exclusion using a single shared
variable. J. ACM, 29(1):183-205, 1982.

5 Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proc. of the ACM Symposium
on Principles of Distributed Computing, pages 241-250, 2015.

6 David Dice, Danny Hendler, and Ilya Mirsky. Lightweight contention management for efficient
compare-and-swap operations. In FEuro-Par 2013 Parallel Processing - 19th International
Conference, Aachen, Germany, August 26-30, 2013. Proceedings, volume 8097 of Lecture Notes
in Computer Science, pages 595-606. Springer, 2013.

D. Bédin, F. Lépine, A. Mostéfaoui, D. Perez, and M. Perrin

10
11

12

13

14

15

16

Edsger Dijkstra. Over de sequentialiteit van procesbeschrijvingen (on the nature of sequential
processes). EW Dijkstra Archive (EWD-35), Center for American History, University of Texas
at Austin (Translation by Martien van der Burgt and Heather Lawrence), 1962.

Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569, 1965.

Faith E. Fich, Danny Hendler, and Nir Shavit. On the inherent weakness of conditional
synchronization primitives. In Soma Chaudhuri and Shay Kutten, editors, Proc. of the 23rd
Symposium on Principles of Distributed Computing, PODC 2004, Canada, pages 80-87. ACM,
2004.

Maurice Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991.

Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM TOPLAS, 12(3):463-492, 1990.

Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Parallel and Distributed Computing, 4(4):163-183, 1987.
Michael Merritt and Gadi Taubenfeld. Computing with infinitely many processes. In Proc. of
International Symposium on Distributed Computing, pages 164—178. Springer, 2000.
Matthieu Perrin, Achour Mostéfaoui, and Grégoire Bonin. Extending the wait-free hierarchy
to multi-threaded systems. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, pages 21-30, 2020.

Michel Raynal. Distributed universal constructions: a guided tour. Bulletin of the EATCS,
121, 2017.

11:15

DISC 2021

	1 Introduction
	2 Model
	2.1 Communication between processes
	2.2 Concurrent executions
	2.3 Implementation of shared objects

	3 Lower Bound on Universal constructions using Compare-And-Swap
	4 Upper Bound on Universal constructions using Compare-And-Swap
	5 Conclusion

