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Abstract
LTL+Past is the extension of Linear Temporal Logic (LTL) supporting past temporal operators. The
addition of the past does not add expressive power, but does increase the usability of the language
both in formal verification and in artificial intelligence, e.g., in the context of multi-agent systems.
In this paper, we add the support of past operators to BLACK, a satisfiability checker for LTL based
on a SAT encoding of a tree-shaped tableau system. We implement two ways of supporting the past
in the tool. The first one is an equisatisfiable translation that removes the past operators, obtaining
a future-only formula that can be solved with the original LTL engine. The second one extends the
SAT encoding of the underlying tableau to directly support the tableau rules that deal with past
operators. We describe both approaches and experimentally compare the two between themselves
and with the nuXmv model checker, obtaining promising results.
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1 Introduction

Linear Temporal Logic (LTL) [20] is the de-facto standard temporal specification language
in many areas including formal verification [8] and artificial intelligence [11]. Satisfiability
checking, that is, deciding whether a given formula admits a model, is a particularly
important problem because of its wide range of applications, and one of the first that
have been studied [23, 26]. Many techniques and tools have been developed to solve it,
ranging from tableau systems [1,17,22,26] to reduction to model checking [5], from temporal
resolution [9, 10,14] to automata-theoretic techniques [16].

The Bounded Ltl sAtisfiability ChecKer, BLACK for short, is a recently developed
tool [12] that solves the satisfiability checking problem for LTL by providing a SAT encoding
of the one-pass and tree-shaped tableau method for LTL proposed by Reynolds [22]. In an
iterative procedure, the tree-shaped tableau is symbolically explored in a breadth-first way
through a SAT encoding of its branches of depth at most k, for increasing values of k. The
tool proved to be competitive with other state-of-the-art approaches [12].
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8:2 Past Matters: Supporting LTL+Past in the BLACK Satisfiability Checker

In this paper, we extend BLACK to support LTL+Past, which enriches LTL with past
operators, i.e. temporal modalities that talk about the past of the current time point.
Although past operators do not add expressive power to the language, interestingly LTL+Past
is exponentially more succinct than LTL, and it is thus able to express some useful properties in
a more compact and natural way [19]. LTL+Past has been investigated from both theoretical
and algorithmic viewpoints [13, 17, 18, 21], in the areas of formal verification [7] and artificial
intelligence, e.g., in the context of multi-agent systems (see [3] and references therein).

We present and compare two different methods to support LTL+Past in BLACK.
The first one is a Tseitin-style [25] translation procedure that, given an LTL+Past formula,

generates an equisatisfiable LTL formula that can be solved by the original LTL engine of
BLACK, or, in principle, by any other tool for LTL satisfiability checking. Since the resulting
formula is equisatisfiable, and not equivalent, to the original one, it can avoid the exponential
blowup (it causes only a linear size increase). The core idea behind the translation is folklore,
but, to the best of our knowledge, this is the first time it is explicitly worked out for LTL,
implemented in a tool, and experimentally compared with other approaches.

The second method extends the SAT encoding [12] of the tableau system for LTL described
in [13,22] with the ability of directly handling past temporal operators. The resulting encoding
successfully supports the claim given in [12,13] that the one-pass and tree-shaped tableau
system for LTL, together with its SAT encoding, can be easily extended to other temporal
logics. Last but not least, our encoding for the support of past operators is much simpler than
similar methods, like, for instance, the one based on virtual unrollings by Latvala et al. [15].

We make a comparison of the two methods, showing that the direct encoding outperforms
the translation, although both methods show comparable performance. This makes the direct
encoding the preferred way of handling the past in BLACK, but shows that the translation can
be a useful and effective preprocessing step to deal with past operators in tools that do not
support them natively. Since there is not a standardized set of benchmarks involving past oper-
ators in the literature, we introduce some novel sets of formulas for the sake of this comparison.

Finally, we compare both solutions with the nuXmv model checker, which is the only
widely available tool, as far as we know, that directly supports past operators. The results
are promising, showing BLACK to be competitive.

The paper is organized as follows. Section 2 introduces LTL+Past and Reynolds’
tableau [22]. Then, Section 3 and Section 4 describe the translation and the direct en-
coding, respectively. Finally, Section 5 describes the results of the experimental comparison,
and Section 6 concludes the paper.

2 Preliminaries

Let Σ be an alphabet of proposition letters. The syntax of an LTL+Past formula ϕ over Σ
can be defined as follows:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Boolean connectives
Xϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2 | future temporal operators
Yϕ | Zϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2 past temporal operators

where p ∈ Σ and ϕ, ϕ1, and ϕ2 are LTL+Past formulas. LTL is the fragment that only
uses Boolean connectives and future operators. We denote by LTL[Σ] and LTL+Past[Σ],
respectively, the sets of LTL and LTL+Past formulas built over the alphabet Σ. Standard
shorthands and derived operators are also available, such as ⊤ ≡ p ∨ ¬p, for some p ∈ Σ,
⊥ ≡ ¬⊤, Fϕ ≡ ⊤ U ϕ, Gϕ ≡ ¬F¬ϕ, Oϕ ≡ ⊤ S ϕ, Hϕ ≡ ¬O¬ϕ.
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LTL+Past is interpreted over infinite state sequences σ ∈ (2Σ)ω. Given a state sequence
σ ∈ (2Σ)ω, the satisfaction of a formula ϕ by σ at a time point i ≥ 0, denoted as σ, i |= ϕ, is
defined as follows:

1. σ, i |= p iff p ∈ σi;
2. σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
3. σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
4. σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
5. σ, i |= Xϕ iff σ, i+ 1 |= ϕ;
6. σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
7. σ, i |= Zϕ iff either i = 0 or σ, i− 1 |= ϕ;
8. σ, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with i ≤ k < j;
9. σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2,

and σ, k |= ϕ1 for all k, with j < k ≤ i;
10. σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all j ≥ i, or there exists

k ≥ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≤ j ≤ k;

11. σ, i |= ϕ1 T ϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there exists
k ≤ i such that σ, k |= ϕ1 and
σ, j |= ϕ2 for all i ≥ j ≥ k

We say that a state sequence σ satisfies ϕ, written σ |= ϕ, if σ, 0 |= ϕ. Observe that
the ∧ connective, the release operator (ϕ1 R ϕ2), the triggered operator (ϕ1 T ϕ2), and the
weak yesterday operator (Zϕ) can be defined in terms of the ∨ connective, the until operator
(ϕ1 U ϕ2), the since operator (ϕ1 S ϕ2), and the yesterday operator (Yϕ), respectively, but
here we consider them as primitive operators since this allows us to put any formula into
negation normal form (NNF), which will be useful later. Moreover, note that state sequences
have a definite starting point, hence the past is bounded, and we need to distinguish between
the yesterday operator (Yϕ, ϕ holds at the previous state) and the weak yesterday operator
(Zϕ, ϕ holds at the previous state, if it exists) as opposed to a single tomorrow operator (Xϕ,
ϕ holds at the next state).

The notion of closure of a formula will be useful later.

▶ Definition 1 (Closure of an LTL+Past formula). Let ψ be an LTL+Past formula built over
Σ. The closure of ψ is the smallest set of formulas C(ψ) satisfying the following properties:
1. ψ ∈ C(ψ);
2. for each sub-formula ψ′ of ψ, ψ′ ∈ C(ψ);
3. for each p ∈ Σ, p ∈ C(ψ) if and only if ¬p ∈ C(ψ);
4. if ψ1 U ϕ2 ∈ C(ψ), then X(ψ1 U ψ2) ∈ C(ψ);
5. if ϕ1 R ψ2 ∈ C(ψ), then X(ψ1 R ϕ2) ∈ C(ψ);
6. if ψ1 S ψ2 ∈ C(ψ), then Y(ψ1 S ψ2) ∈ C(ψ);
7. if ψ1 T ψ2 ∈ C(ψ), then Z(ψ1 T ψ2) ∈ C(ψ).
It is worth pointing out that item 3 of Definition 1 only applies to proposition letters because
formulas are assumed to be in NNF.

The one-pass and tree-shaped tableau for LTL+Past
Let us now briefly describe the tableau system for LTL+Past introduced by Geatti et al. [13],
which will be used as the basis for the direct encoding discussed in Section 4. It extends
the tableau system for LTL by Reynolds [22]. The latter has the distinctive features of being
tree-shaped, as opposed to standard graph-shaped LTL tableaux, e.g., [17], and one-pass, since
a single pass is sufficient to either accept or reject a given branch.

TIME 2021
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Table 1 Tableau expansion rules. When a formula ϕ of one of the types shown in the table is
found in the label Γ of a node u, one or two children u′ and u′′ are created with the same label as u,
but replacing ϕ by the formulas from Γ1(ϕ) and Γ2(ϕ), respectively.

Rule ϕ ∈ Γ Γ1(ϕ) Γ2(ϕ)

DISJUNCTION α ∨ β {α} {β}
CONJUNCTION α ∧ β {α, β}

UNTIL α U β {β} {α,X(α U β)}
SINCE α S β {β} {α,Y(α S β)}

RELEASE αR β {α, β} {β,X(αR β)}
TRIGGERED α T β {α, β} {β,Z(α T β)}

For ease of exposition, w.l.o.g. we assume formulas to be in NNF. A tableau for a formula
ϕ is a tree where each node u is labeled by a set of formulas Γ(u), with the root u0 labeled
with Γ(u0) = {ϕ}. At each step, a set of rules is applied to a leaf, until all branches have been
either accepted or rejected. Each rule either adds one or more children to the current leaf or
either accept or reject the current branch. Given a branch u = ⟨u0, . . . , un⟩, the sequence of
nodes ⟨ui, . . . , uj⟩, for some 0 ≤ i ≤ j ≤ n, is denoted by u[i,j].

At each step, the selected node is subject to a number of expansion rules, that select a
formula of the label and expand it according to its semantics, as reported in Table 1. Each
expansion rule creates one or two children depending on the selected formula. After repeated
applications of the expansion rules, a node that only contains elementary formulas, that is,
propositions, tomorrow, yesterday, or weak yesterday formulas, is obtained (poised node).
Elementary formulas of the form X(ϕ1 U ϕ2) are called X-eventualities. An X-eventuality is
a formula that, intuitively, requests something to be fulfilled later. Given an X-eventuality
ϕ ≡ X(ϕ1 U ϕ2), ϕ is said to be fulfilled in a node u if ϕ2 ∈ Γ(u).

The tableau advances through time by making temporal steps. To do that, the following
rules are applied to poised nodes.

STEP A child un+1 is added to un, with:

Γ(un+1) = {α | Xα ∈ Γ(un)}

FORECAST Let

Gn =
{
α ∈ C(ϕ)

∣∣∣∣ Yα ∈ C(ψ) or
Zα ∈ C(ψ) for some ψ ∈ Γ(un)

}
For each subset G′

n ⊆ Gn (including ∅), a child u′
n is added to un such that Γ(u′

n) =
Γ(un) ∪G′

n. This is done once and only once before every application of the STEP rule.

The STEP rule advances the construction of the current branch to the subsequent temporal
state. The FORECAST is essential to the well-functioning of the rule dealing with past, as it
adds a number of branches that nondeterministically guess formulas that may be needed to
fulfill past requests coming from future states. For details on the FORECAST rule, we refer
the reader to Geatti et al. [13].

Since the STEP rule is not applied to all the poised nodes (to some of which the FORECAST
rule is applied instead), we need the following definition.

▶ Definition 2 (Step node). In a complete tableau for an LTL+Past formula, a poised node un
is a step node if it is either a poised leaf or a poised node to which the STEP rule was applied.
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Given a node u, we define u∗ as the closest ancestor of u that is child of a step node, if any.
Γ∗(u) is the union of the labels of the nodes from u to u∗ or to the root, if u∗ does not exist.

Before applying the STEP rule though, poised nodes are subject to the application of a
few termination rules, that is, rules that decide whether the construction has to continue or
the current branch has to be either rejected or accepted. Given a branch u = ⟨u0, . . . , un⟩,
with un a step node, the termination rules are the following.

CONTRADICTION If {p,¬p} ⊆ Γ(un), for some p ∈ Σ, then u is rejected.
EMPTY If Γ(un) = ∅, then u is accepted.
YESTERDAY If Yα ∈ Γ(un), then the branch u is rejected if either u∗

n does not exist or
Yn ̸⊆ Γ∗(u∗

n), where Yn = {ψ | Yψ ∈ Γ(un)}.
W-YESTERDAY If Zα ∈ Γ(un), then u is rejected if u∗

n exists and Zn ̸⊆ Γ∗(u∗
n), where

Zn={ψ |Zψ∈Γ(un)}.
LOOP If there exists a position i < n such that Γ(ui) = Γ(un) and all the X-eventualities

requested in ui are fulfilled in u[i+1...n], then u is accepted.
PRUNE If there exist two positions i and j such that i < j ≤ n, Γ(ui) = Γ(uj) = Γ(un), and

all the X-eventualities requested in these nodes which are fulfilled in u[j+1...n] are also
fulfilled in u[i+1...j], then u is rejected.

Intuitively, the CONTRADICTION, YESTERDAY, and W-YESTERDAY rules reject
branches that contain some contradiction, either a propositional one or because of some
unfulfilled past request. The EMPTY rule accepts a branch devoid of contradictions where
there is nothing left to do, while the LOOP one accepts a looping branch where all the
X-eventualities are proposed again and fulfilled at every repetition of the loop. Finally, the
PRUNE rule, which was the main novelty of the system when introduced by Reynolds [22],
rejects a branch that, otherwise, is going to be infinitely unrolled because of an X-eventuality
impossible to fulfill.

3 The translation

In this section, we define a procedure which takes as input an LTL+Past formula, and returns
as output an equisatisfiable LTL formula. The increase in size is only linear, thus avoiding the
exponential blowup of the worst-case complexity of the translation of an LTL+Past formula
into an equivalent (and not simply an equisatisfiable) LTL one [19]. The idea behind the
translation is simple, but this is the first time, as far as we know, that it has been actually
implemented and experimentally compared with other approaches to support past operators.

The key idea is to replace past subformulas by fresh proposition letters that are forced to
replicate the semantics of past operators with ad-hoc axioms. Even though the produced
formula is not equivalent to the original one, the proposed translation procedure allows us to
easily recover a model of the original formula, if it is satisfiable in the first place, by simply
discarding the additional proposition letters. Note that we will define the translation without
assuming formulas to be in NNF.

To begin, we define two functions, τ and θ, which are the building blocks of the translation.
The function τ replaces past formulas with the corresponding placeholder proposition letters,
while θ enriches the formula with the axioms to force those letters to behave correctly.

Let Σ be the alphabet of proposition letters of the input formula ϕ. The alphabet of
the output formula is Σ+ = Σ ∪ Σpast, where Σpast is the set of fresh proposition letters
introduced by τ . We recursively define the function τ : LTL+Past[Σ]→ LTL[Σ+] as follows:

TIME 2021
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τ(p) = p where p ∈ Σ
τ(¬ϕ) = ¬τ(ϕ)
τ(Xϕ) = Xτ(ϕ)

τ(ϕ1 ⊗ ϕ2) = τ(ϕ1)⊗ τ(ϕ2) where ⊗ ∈ {∧,∨,U ,R}
τ(Yϕ) = pYτ(ϕ)

τ(Zϕ) = pZτ(ϕ)

τ(ϕ1 S ϕ2) = pτ(ϕ1)Sτ(ϕ2)

τ(ϕ1 T ϕ2) = τ(¬(¬ϕ1 S ¬ϕ2))

The function Θ : LTL[Σ+] → 2LTL[Σ++], where Σ++ = Σ+ ∪ {pYpψ | pψ ∈ Σpast, ψ ≡
ϕ1 S ϕ2}, produces a set of formulas which gives the appropriate semantics to the proposition
letters in Σpast. It is defined as follows:

Θ(p) = ∅ where p ∈ Σ
Θ(⊗ ϕ) = Θ(ϕ) where ⊗ ∈ {¬,X}

Θ(ϕ1 ⊗ ϕ2) = Θ(ϕ1) ∪Θ(ϕ2) where ⊗ ∈ {∧,∨,U ,R}
Θ(pYϕ) = {YpYϕ} ∪Θ(ϕ) where YpYϕ ≡ ¬pYϕ ∧ G(XpYϕ ↔ ϕ)
Θ(pZϕ) = {ZpZϕ} ∪Θ(ϕ) where ZpZϕ ≡ pZϕ ∧ G(XpZϕ ↔ ϕ)
Θ(pψ) = {Spψ , YpYpψ

} ∪Θ(ϕ1) ∪Θ(ϕ2)
where ψ ≡ ϕ1 S ϕ2 and

Sp(ϕ1Sϕ2) ≡ G
(
p(ϕ1Sϕ2) ↔

(
ϕ2 ∨ (ϕ1 ∧ pYp(ϕ1Sϕ2)

))
The first three cases are pretty straightforward. The last three, which are the core of the

whole translation, are, instead, more involved.
As for the yesterday operator, we state that if the argument ϕ of the yesterday operator is

true in a certain state, then in the next state Yϕ is true. Note that we force the proposition
letter pYϕ to be false in the initial state, because Yϕ cannot be true in that state. The weak
yesterday operator behaves almost the same. However, according to its semantics, Zϕ is
always true at the initial state, and thus we constrain the proposition letter pZϕ to hold at
the initial state.

Let us consider now the since operator. By exploiting its semantics and the corresponding
expansion rule defined for the tableau in Table 1, we say – in the scope of the always operator
– that ϕ1 S ϕ2 is true at a certain state if and only if, at that state, either ϕ2 is true, or ϕ1 is
true and ϕ1 S ϕ2 was true at the previous state. However, this is not enough to capture the
intended semantics, because we have introduced a new symbol, that is, pYpψ , and we need to
force the (yesterday) semantics also for it. This can be done exactly as before.

The function θ : LTL[Σ+] → LTL[Σ++] wraps a formula with the semantics of the
additional proposition letters. It is formally defined as follows:

θ(ϕ) = ϕ ∧
∧

ψ ∈ Θ(ϕ)

ψ

The proposed translation procedure is simply the function composition of θ and τ .

▶ Definition 3 (RemovePast). The function RemovePast : LTL+Past[Σ]→ LTL[Σ++] is
defined as follows: RemovePast = θ ◦ τ .
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It is possible to prove that the above translation results in an equisatisfiable formula.

▶ Theorem 4. Let ϕ be an LTL+Past formula. Then, RemovePast(ϕ) is an LTL formula
equisatisfiable with ϕ.

Proof. Since the input formula ϕ is finite, the procedure RemovePast(ϕ) always terminates.
We have to show that RemovePast(ϕ) is satisfiable if and only if ϕ is satisfiable.

(←) Let σ be the model which satisfies ϕ, i.e. σ |= ϕ. Let us show that there exists σ′

such that σ′ |= RemovePast(ϕ), where, for each i ≥ 0 and each sub-formula ψ of ϕ, σ′ is
defined as follows.

1. p ∈ σ′
i iff σ |=i p for p ∈ Σ

2. τ(Yψ) ∈ σ′
i iff i > 0 and σ′ |=i−1 τ(ψ)

3. τ(Zψ) ∈ σ′
i iff either i = 0 or σ′ |=i−1 τ(ψ)

4. τ(ψ1 S ψ2) ∈ σ′
i iff there exists 0 ≤ j ≤ i such that

σ′ |=j τ(ψ2), and σ′ |=k τ(ψ1)
for all k, with j < k ≤ i

By the definition above, we can prove by induction on the structure of ϕ, that σ′ |= τ(ϕ).
Moreover, by Item 2 we have that, for each yesterday sub-formula ψ of ϕ, σ′ |= Yτ(ψ), because
with Table 2 we force a step-wise consistency between a yesterday formula and its request at
the previous state, in σ′, which is exactly what is stated by Yτ(ψ). Similarly, by Item 2 and
Item 2, we also have that σ′ |= Zτ(ψ) and σ′ |= Sτ(ψ) for, respectively, each weak yesterday
and each since sub-formula ψ of ϕ. This means that σ′ satisfies the conjunction of the three
formulas, hence σ′ |=

∧
ψ∈Θ(τ(ϕ)) ψ. Thus, σ′ |= θ(τ(ϕ)). This allows us to conclude that

σ′ |= RemovePast(ϕ).
(→) Given a model σ′ such that σ′ |= RemovePast(ϕ), we can easily build σ for ϕ by

setting that p ∈ σi iff σ′ |=i p for all p ∈ Σ. By induction on the structure of ϕ, using the
semantics of past operators stated by Yτ(ψ), Zτ(ψ), Sτ(ψ), we can prove that σ |= ϕ. ◀

4 The direct encoding

The BLACK satisfiability checker is based on an iterative procedure that symbolically explores
the tableau tree breadth-first by means of a SAT encoding of the tableau branches up to
a given depth k, for increasing values of k. The satisfiability checking procedure employed
by BLACK is reported in Algorithm 1 [12]. The three formulas JϕKk, |ϕ|k, and |ϕ|kT encode
different rules of the tableau. This section shows how to extend them to support past
operators by encoding the tableau rules recalled in Section 2.

Let us start with some notation. Let ϕ be an LTL+Past formula in NNF over the alphabet
Σ. We define the following sets of formulas:

XR = {ψ ∈ C(ϕ) | ψ is a tomorrow formula}
YR = {ψ ∈ C(ϕ) | ψ is a yesterday formula}
ZR = {ψ ∈ C(ϕ) | ψ is a weak yesterday formula}

XEV = {ψ ∈ C(ϕ) | ψ is an X-eventuality}

The three encoding formulas are defined over an extended alphabet Σ, which includes:
1. any proposition letter from the original alphabet Σ;
2. the set {pψ | ψ ∈ XR,YR,ZR}, that is, the set of all the grounded X-, Y-, and Z-requests;
3. a stepped version pk of all the proposition letters defined in items 1 and 2, with k ∈ N

and p0 identified as p.

TIME 2021
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Algorithm 1 BLACK’s main procedure [12].

1: procedure BLACK(ϕ)
2: k ← 0
3: while True do
4: if JϕKk is UNSAT then
5: return ϕ is UNSAT
6: end if
7: if |ϕ|k is SAT then
8: return ϕ is SAT
9: end if

10: if |ϕ|kT is UNSAT then
11: return ϕ is UNSAT
12: end if
13: k ← k + 1
14: end while
15: end procedure

Intuitively, different stepped versions of the same proposition letter p are used to represent
the value of p at different states. Thus, when pi holds, it means that p holds at i-th step
node of the branch, i.e. the i-th state of the model.

Moreover, given ψ ∈ C(ϕ), we denote by ψG the formula in which all the X-, Y-, and
Z-requests are replaced by their grounded version. Similarly, given ψ ∈ C(ϕ), we denote by
ψk the formula in which all proposition letters are replaced by their k stepped version. We
write ψkG to denote (ψG)k.

The formula JϕKk is called the k-unraveling of ϕ, and encodes the expansion of the tableau
tree. To define it, we need to encode the expansion rules of Table 1.

▶ Definition 5 (Stepped Normal Form). Given an LTL+Past formula ϕ in NNF, its stepped
normal form, denoted by snf(ϕ), is defined as follows:

snf(ℓ) = ℓ where ℓ ∈ {p,¬p}, for p ∈ Σ
snf(⊗ϕ1) = ⊗ϕ1 where ⊗ ∈ {X,Y,Z}

snf(ϕ1 ⊗ ϕ2) = snf(ϕ1)⊗ snf(ϕ2) where ⊗ ∈ {∧,∨}
snf(ϕ1 U ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ X(ϕ1 U ϕ2))
snf(ϕ1 R ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ X(ϕ1 R ϕ2))
snf(ϕ1 S ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ Y(ϕ1 S ϕ2))
snf(ϕ1 T ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ Z(ϕ1 T ϕ2))

The stepped normal form is the extension to past operators of the next normal form used
by Geatti et al. [13]. It can be noted how it follows the expansion rules of each operator in
Table 1. We can now define the k-unraveling of ϕ recursively as follows:

JϕK0 = snf(ϕ)G ∧
∧
ψ∈YR

¬ψG ∧
∧
ψ∈ZR

ψG

JϕKk+1 = JϕKk ∧ Sk ∧ Yk ∧ Zk

Sk ≡
∧

Xα∈XR

(
(Xα)kG ↔ snf(α)k+1

G

)
,
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Yk ≡
∧

Yα∈YR

(
(Yα)k+1

G ↔ snf(α)kG
)
, Zk ≡

∧
Zα∈ZR

(
(Zα)k+1

G ↔ snf(α)kG
)

The Sk, Yk and Zk formulas encode, respectively, the STEP, YESTERDAY, and W-
YESTERDAY rules of the tableau, while the base case of the 0-unraveling ensures that
yesterday formulas are false and weak yesterday formulas are true at the first state. The
CONTRADICTION rule of the tableau is implicitly encoded in the fact that only satisfying
assignments of the formula are considered. Note that the FORECAST rule as well does not
need to be explicitly encoded: the intrinsic nondeterminism of the SAT solving process
accounts for the nondeterministic choices implemented by the rule.

Intuitively, if JϕKk is unsatisfiable, all the branches of the tableau for ϕ are rejected before
k + 1 steps.

▶ Lemma 6. Let ϕ be an LTL+Past formula. Then, JϕKk is unsatisfiable if and only if
all the branches of the complete tableau for ϕ are crossed by the CONTRADICTION or
(W-)YESTERDAY rules and contain at most k + 1 step nodes.

Proof. We prove the contrapositive, i.e. that JϕKk is satisfiable if and only if the complete
tableau for ϕ has at least a branch that is either accepted, crossed by PRUNE, or longer than
k + 1 step nodes. To do that we establish a connection between truth assignments of JϕKk

and suitable branches of the tableau.
From branches to assignments. Let u = ⟨u0, . . . , un⟩ be a branch that is either accepted,

crossed by PRUNE, or longer than k+ 1 step nodes. Let π = ⟨π0, . . . , πm⟩ be the sequence of
its step nodes. We define a truth assignment ν for JϕKk as follows. Note that JϕKk contains
stepped propositions from p0 until pk for any given p, so we need at most k + 1 step nodes
from u, which however can be shorter if it is accepted or crossed by the PRUNE rule. Hence,
let us define ℓ = min{m, k}. Moreover, let us define pU to be p if p ∈ Σ, and to be ψ if
p = ψG for some X-, Y-, or Z-request ψ, i.e. (·)U is the inverse of the (·)G operation. Then,
for 0 ≤ i ≤ ℓ, we set ν(pi) = ⊤ if and only if pU ∈ Γ(πi). Then, we complete the assignments
for positions m < j ≤ k + 1 (if any) as follows:
1. if the branch has been accepted by the EMPTY rule, all the other positions j > m can be

filled arbitrarily;
2. if the branch has been accepted by the LOOP or crossed by the PRUNE rule, then there

is a position w such that Γ(πw) = Γ(πm). Then we continue filling the truth assignment
considering the successor of πw as a successor of πm.

It can be verified that the truth assignment so constructed satisfies JϕKk.
From assignments to branches. Let ν be a truth assignment for JϕKk. We use ν as a

guide to navigate the tableau tree to find a suitable branch which is either accepted, crossed
by PRUNE, or has more than k + 1 step nodes. To do that we build a sequence of branch
prefixes ui = ⟨u0, . . . , ui⟩ where at each step we obtain ui+1 by choosing ui+1 among the
children of ui, until we find a leaf or we reach k+ 1 step nodes. During the descent, we build
a partial function J : N→ N that maps positions j in ui to indexes J(j) such that for all ψ
it holds that ψ ∈ Γ(uj) if and only if ν |= snf(ψ)J(j)

G , i.e. we build a relationship between
positions in the branch and steps in ν. As the base case, we put u0 = ⟨u0⟩ and J(0) = 0 so
that the invariant holds since Γ(u0) = {ϕ} and ν |= snf(ϕ)0

G by the definition of JϕKk. Then,
depending on the rule that was applied to ui, we choose ui+1 among its children as follows:
1. if the STEP rule has been applied to ui, then there is a unique child that we choose as

ui+1, and we define J(i+ 1) = J(i) + 1. Now, for all Xα ∈ Γ(ui), we have α ∈ Γ(ui+1) by
construction of the tableau. Note that snf(Xα) = Xα, hence we know by construction
that ν |= (Xα)J(j)

G . Then, by definition of JϕKk, we know that ν |= snf(α)J(j)+1
G , i.e.

TIME 2021
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ν |= snf(α)J(i+1)
G . On the other direction, if ν |= snf(α)J(i+1)

G , then by definition of JϕKk

we have ν |= (Xα)J(i)
G , hence ν |= snf(Xα)J(i)

G , hence Xα ∈ Γ(ui), so by construction of
the tableau we have α ∈ Γ(ui+1). Hence the invariant holds.

2. if the FORECAST rule has been applied to ui, then there are n children {u1
i , . . . , u

n
i } such

that Γ(ui) ⊆ Γ(umi ) for all 1 ≤ m ≤ n. Now, we set J(i+ 1) = J(i) and we choose ui+1
as a child umi with a label Γ(umi ) such that for any ψ we have ψ ∈ Γ(ui+1) if and only if
ν |= snf(ψ)J(i+1)

G . Note that at least one such child exists, because at least one child has
the same label as ui. Thus the invariant holds by construction.

3. if an expansion rule has been applied to ui, then there are one or two children. In both
cases, we set J(i+ 1) = J(i). Then:
a. if there is one child, then it is chosen as ui+1. In this case, the rule is the CONJUNCTION

rule and has been applied to a formula ψ ≡ ψ1 ∧ ψ2, hence ψ1, ψ2 ∈ Γ(ui+1). By
construction we know that ν |= snf(ψ)J(i)

G , hence ν |= snf(ψ)J(i+1)
G . Now, note

that snf(ψ1 ∧ ψ2) = snf(ψ1) ∧ snf(ψ2), so it holds that ν |= snf(ψ1)J(i+1)
G and ν |=

snf(ψ2)J(i+1)
G . On the other direction, if ν |= snf(ψ1)J(i+1)

G and ν |= snf(ψ2)J(i+1)
G we

know that ν |= snf(ψ1 ∧ ψ2)J(i+1)
G hence ν |= snf(ψ1 ∧ ψ2)J(i)

G , hence by construction
we have ψ1 ∧ ψ2 ∈ Γ(ui) and so we have ψ1, ψ2 ∈ Γ(ui), hence the invariant holds.

b. if there are two children u′
i and u′′

i , then let us suppose the rule applied is the
DISJUNCTION rule. Similar arguments will hold for the other rules. In this case, the
rule has been applied to a formula ψ ≡ ψ1 ∨ψ2, hence ψ1 ∈ Γ(u′

i) and ψ2 ∈ Γ(u′′
i ). We

know ν |= snf(ψ)J(i)
G , hence ν |= snf(ψ)J(i+1)

G . Since snf(ψ1 ∨ ψ2) = snf(ψ1) ∨ snf(ψ2),
it holds that either ν |= snf(ψ1)J(i+1)

G or ν |= snf(ψ2)J(i+1)
G . Now, we choose ui+1

accordingly, so to respect the invariant. Note that if both nodes are eligible, which one
is chosen does not matter. The other direction of the invariant also holds, since if either
ν |= snf(ψ1)J(i+1)

G or ν |= snf(ψ2)J(i+1)
G , then ν |= snf(ψ1)J(i)

G or ν |= snf(ψ2)J(i)
G , so

ν |= snf(ψ1∨ψ2)J(i)
G , hence ψ1∨ψ2 ∈ Γ(ui), hence either ψ1 ∈ Γ(ui+1) or ψ2 ∈ Γ(ui+1).

Let u = ⟨u0, . . . , ui⟩ be the branch prefix constructed as above, and let π = ⟨π0, . . . , πn⟩ be
the sequence of its step nodes. As mentioned, the descent stops when πn is a leaf or when
n = k + 1. Note in any case that ui = πn. In case we find a leaf, note that it cannot have
been crossed by the CONTRADICTION rule. Otherwise, we would have {p,¬p} ⊆ Γ(ui),
which would mean ν |= pJ(i) and ν |= ¬pJ(i), which is not possible. Moreover, it cannot have
been crossed by the YESTERDAY rule, since that would mean there is some Yα ∈ Γ(πn) with
α ̸∈ Γ∗(πn−1). But, we know that ν |= snf(Yα)J(i)

G , hence ν |= (Yα)J(i)
G since snf(Yα) = Yα.

Then, by definition of JϕKk, we know that ν |= snf(α)J(i)−1
G . Since ui = πn is a step node,

J(i)− 1 = J(j) for some j such that uj = πn−1, hence ν |= snf(α)J(j)
G , and by construction

we know that α ∈ Γ(uj), which conflicts with the hypothesis that the YESTERDAY rule
crossed the branch. With a similar argument, we can see that it cannot have been crossed
by the W-YESTERDAY rule neither. Hence we found a branch which is either longer than
k + 1 step nodes, or have been accepted, or have been crossed by the PRUNE rule. ◀

The formula |ϕ|k is called the base encoding of ϕ and, in addition to the k-unraveling,
includes the encoding of the EMPTY and LOOP rules, i.e. the rules that can accept branches.
The formula is defined as:

|ϕ|k ≡ JϕKk ∧ (Ek ∨ Lk)

where the Ek formula encodes the EMPTY rule and is defined as follows:

Ek ≡
∧
ψ∈XR

¬ψkG
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and the Lk formula encodes the LOOP rule and is defined as:

Lk ≡
k−1∨
l=0

( lRk ∧ lFk )

where

lRk ≡
∧

ψ∈XR∪YR∪ZR

(
ψlG ↔ ψkG

)
, and

lFk ≡
∧

ψ∈XEV
ψ≡X(ψ1Uψ2)

(
ψkG →

k∨
i=l+1

snf(ψ2)iG
)
.

Intuitively, lRk encodes the presence of two nodes whose labels contain the same requests
for the next and the previous nodes, while lFk checks that all the X-eventualities are fulfilled
between those nodes. It can be proved that |ϕ|k correctly encodes tableau trees where at
least one branch is accepted in k + 1 steps.

▶ Lemma 7. Let ϕ be an LTL+Past formula. If the complete tableau for ϕ contains an
accepted branch of k + 1 step nodes, then |ϕ|k is satisfiable.

Proof. Suppose that the complete tableau for ϕ contains an accepted branch of k + 1 step
nodes, so let u = ⟨u0, . . . , un⟩ be such a branch, and let π = ⟨π0, . . . , πk⟩ be the sequence of
its step nodes. Then, by Lemma 6, JϕKk is satisfiable. We can then build a truth assignment
ν in the same way as in the proof of Lemma 6, such that ν |= JϕKk. Remember that this
means we set ν(pi) = ⊤ if and only if pU ∈ Γ(πi) for all 0 ≤ i ≤ k. So now we have to prove
that ν satisfies either Ek or Lk. We will need an auxiliary fact, that is, that ψ ∈ Γ∗(πi) if
and only if ν |= snf(ψ)iG. That can be done by induction on the structure of ψ, exploiting
the definition of the expansion rules of the tableau.

Now, we distinguish two cases depending on which rule accepted the branch:
1. if the branch was accepted by the EMPTY rule, then Γ(πk) = ∅, hence, in particular

Γ(πk) does not contain any X-request. Hence by definition of ν we have that ν |= ¬ψkG
for any ψ ∈ XR, so Ek is satisfied;

2. if the branch was accepted by the LOOP rule, then we have a node πl such that Γ(πl) =
Γ(πk), hence by definition of ν we have ν |= ψlG if and only if ν |= ψkG for any ψ ∈
XR ∪ YR ∪ ZR, so lRk is satisfied. Moreover, we know that for any X-eventuality
ψ ≡ X(ψ1 U ψ2) requested in Γ(πk), ψ has been fulfilled between πl and πk, i.e. there
is a l < j ≤ k such that ψ2 ∈ Γ∗(πj). Hence we know that ν |= snf(ψ2)jG, hence lFk is
satisfied. Then, lRk ∧l Fk is satisfied for at least one l, so Lk is satisfied. ◀

▶ Lemma 8. Let ϕ be an LTL+Past formula. If |ϕ|k is satisfiable then the complete tableau
for ϕ contains an accepted branch.

Proof. Suppose that |ϕ|k is satisfiable, hence we have a truth assignment ν such that ν |= |ϕ|k.
Then, JϕKk is satisfiable, and we know from Lemma 6 that the complete tableau for ϕ has
a branch that is either accepted, crossed by PRUNE, or longer than k + 1 step nodes. Let
u = ⟨u0, . . . , un⟩ be the branch prefix found as shown in the proof of Lemma 6, and let
π = ⟨π0, . . . , πm⟩ be the sequence of its step nodes. By construction we have a function
J : N→ N fulfilling the invariant that ψ ∈ Γ(ui) if and only if ν |= snf(ψ)J(i)

G . We now show
that indeed u is accepted or is the prefix of an accepted branch. Since |ϕ|k is satisfiable,
either Ek or Lk are satisfiable as well:
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1. if Ek is satisfiable, we know that ν |= ¬ψkG for each ψ ∈ XR. Since ψ is an X-request,
snf(ψ) ≡ ψ, so ν ̸|= snf(ψ)kG. Here, k = J(j) for some j, and from the invariant we know
that ψ ̸∈ Γ(uj). Hence, uj does not contain any X-request, so its successor uj+1 has an
empty label, triggering the EMPTY rule that accepts the branch.

2. if Lk is satisfiable, so are lRk and lFk for some 0 ≤ l < k. Hence from lRk we know
that ν |= ψlG if and only if ν |= ψkG for all ψ ∈ XR ∪ YR ∪ ZR, that is ν |= snf(ψ)lG if and
only if ν |= snf(ψ)kG because ψ is an X-, Y-, or Z-request. Here, l = J(i) and k = J(j)
for some i and some j. Since the value of the function J increments at each step node,
we can assume w.l.o.g. that ui and uj are step nodes, and by the invariant we know
ψ ∈ Γ(ui) if and only if ψ ∈ Γ(uj), i.e. ui and uj have the same X-, Y-, and Z-request.
Similarly, the fact that ν |= lFk tells us that all the X-eventualities requested in ui are
fulfilled between ui+1 and uj . The LOOP rule requires two identical labels in order to
trigger, but ui and uj only have the same requests. However, since they have the same
X-requests, we know that Γ(ui+1) = Γ(uj+1). Then, there is a step node uj′ , grandchild
of uj , such that Γ(uj) = Γ(uj′) and the segment of the branch between ui+1 and uj is
equal to the segment between uj+1 and uj′ , hence all the X-eventualities requested in ui
and uj , fulfilled between ui+1 and uj , are fulfilled between uj+1 and uj′ as well, and the
LOOP rule can apply to uj′ , accepting the branch. ◀

Lastly, the formula |ϕ|kT , called the termination encoding, encodes the PRUNE rule. The
formula is defined as follows:

|ϕ|kT ≡ JϕKk ∧
k∧
i=0
¬P i

where

P k ≡
k−2∨
l=0

k−1∨
j=l+1

(
lRj ∧ jRk ∧ lP

k
j

)
lP

k
j ≡

∧
ψ∈XEV

ψ≡X(ψ1Uψ2)

(
ψkG ∧

k∨
i=j+1

snf(ψ2)iG →
j∨

i=l+1
snf(ψ2)iG

)

It can be proved that |ϕ|kT is unsatisfiable if the tableau for ϕ contains only rejected branches.

▶ Lemma 9. Let ϕ be an LTL+Past formula. If |ϕ|kT is unsatisfiable, then the complete
tableau for ϕ contains only rejected branches.

Proof. We prove the contrapositive, i.e. that if the complete tableau for ϕ contains an
accepted branch, then |ϕ|kT is satisfiable. Let u = ⟨u0, . . . , un⟩ be such a branch, and let
π = ⟨π0, . . . , πm⟩ be the sequence of its step nodes. By Lemma 6, we know JϕKk is satisfiable,
thus we can obtain a truth assignment ν such that ν |= JϕKk. We can build ν as in the proof
of Lemma 6, i.e. such that ν(pi) = ⊤ if and only if pU ∈ Γ(πi) for all 0 ≤ i ≤ k. Similarly
to the proof of Lemma 7, we highlight the fact that ψ ∈ Γ∗(πi) if and only if ν |= snf(ψ)iG.
Now, since the branch is accepted, the PRUNE rule cannot be applied to it. This means that
either a) there are no three nodes πu, πv, πw such that Γ(πu) = Γ(πv) = Γ(πw), or b) these
three nodes exist but there is an X-eventuality ψ requested in Γ(πw) that is fulfilled between
πu and πv and not between πv and πw. In case a) this means uRv ∧ vRw does not hold for
any u and v. In case b), uRv ∧ vRw holds but uP

w
v does not. In any case, it follows that

¬P i holds for any 0 ≤ i ≤ k, hence |ϕ|kT is satisfied. ◀
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Together with the soundness and completeness results for the underlying tableau [13],
the above Lemmata allow us to prove the soundness and completeness of the procedure of
Algorithm 1.

▶ Theorem 10 (Soundness and completeness). Let ϕ be an LTL+Past formula. The BLACK
algorithm answers satisfiable on ϕ if and only if ϕ is satisfiable.

Proof. (→) Suppose the BLACK algorithm answers satisfiable on the formula ϕ. Then, it
means there is a k ≥ 0 such that |ϕ|k is satisfiable. By Lemma 8, the complete tableau for ϕ
has an accepting branch. By the soundness of the tableau, then ϕ is satisfiable.

(←) Now suppose the formula ϕ is satisfiable. By the completeness of the tableau, the
complete tableau for ϕ has an accepting branch. Let us suppose such a branch has k + 1
step nodes for some k ≥ 0. Then, we want to show that the BLACK algorithm eventually
answers satisfiable. Let i < k be any earlier iteration of the main loop of the algorithm. We
have that by Lemma 6, JϕKi is satisfiable because there is a branch longer than i+ 1 step
nodes. Similarly, by Lemma 9, |ϕ|iT is satisfiable because not all the branches of the tableau
are rejected. Hence, the algorithm does not answer unsatisfiable at step i. Arrived at step
k, |ϕ|k is satisfiable by Lemma 7 because the tableau has an accepted branch of k + 1 step
nodes, hence the algorithm answers satisfiable. ◀

Despite the final encoding may seem trivially simple, this simplicity makes the approach
interesting for two reasons. First of all, it was not a priori clear that such a simple encoding
would be possible, given the presence of the FORECAST rule: a rule that kills the performance
of the explicit construction of the tableau turns out to be a non-problem in the symbolic
exploration of the tree. Secondly, this simplicity is what drives the experimental success of
the encoding. Comparing it for example with Biere et al. [2] which is, as far as we know,
the approach implemented by nuXmv: all the virtual unrollings machinery that they need to
support past operators is much more complex than our seemingly trivial encoding which,
however, performs better even though it does not generate CNF formulas of linear size.
Hence, showing that the approach by Geatti et al. [12] can be successfully extended so easily
can be considered one of the main contributions of this work.

5 Experimental results

We have implemented the above two approaches in version 0.3.0 of the BLACK tool1: the
translation as an optional module that can be activated upon user request, and the direct
encoding as an expansion of the core procedure.

Since the literature lacks significant LTL+Past family of formulas for benchmarks, we have
devised two novel sets of formulas. As for the first family, we chose a set of random formulas,
generated with an algorithm adapted from [24], in order to verify how the tool scales in
general. The second family, that we called crscounter, is inspired by and adapted from
Cimatti et al. [7], where a Kripke structure called Counter(N), where N is a power of two, is
introduced. Counter(N) works as follows: it starts at c = 0, counts up to c = N , jumps back
to c = N/2, and then loops, counting up to c = N and jumping back to c = N/2, forever.
Afterwards, they evaluated, on top of that Kripke structure, some parametric properties of
the form:

P (i) ≡ ¬F
(
O((c = N

2 ) ∧ O((c = N
2 + 1) ∧ . . . ∧ O(c = N

2 + i) . . .))
)
.

1 The tool can be found at https://github.com/black-sat/black. Packages for macOS and common
Linux distributions are provided, together with all the necessary scripts to reproduce the tests performed.
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Figure 1 Experimental results of BLACK against the other tested tools and modalities, for
random formulas of size n ∈ {500, 1000, 2000, 3000, 5000, 10000}. Times are in seconds. Note that
only instances that could not be solved by any tool are marked as unsolved.

The value i identifies the number of nested once operators, while the structure of such
properties requires that the loop of length N/2 in the model is traversed backwards several
times in order to reach a counterexample.

The crscounter benchmarks were introduced in the context of model checking. Thus,
we made a reduction from the model checking problem to the satisfiability checking one
for LTL+Past: we built the LTL+Past formulas ϕCounter(N) and ϕP (i) encoding the above
elements. In this way, ¬(ϕCounter(N) → ϕP (i)) is UNSAT if and only if Counter(N) |= P (i).
With this framework, we were able to obtain both SAT (i ≤ N

2 ) and UNSAT (i > N
2 ) instances.

Moreover, this family of formulas stresses the ability to process past operators and find short
counterexamples, and thus, it specifically challenges our contribution.

For each formula, we executed both an internal comparison between the two proposed
techniques – with BLACK over MathSAT [4], which is the best performing solver among those
supported by BLACK so far –, and an external comparison with nuXmv [5], which, as far as
we know, is the only state-of-the-art tool directly supporting past operators. Specifically,
we tested BLACK against nuXmv in both sbmc and klive modalities. The former stands for
Simple Bounded Model Checking [2], and it is the closest to our approach between the two.
The latter has been proposed more recently, and it is based on K-Liveness [6].
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Figure 2 Experimental results for crscounter formulas of size N ∈ {8, 16, 32}. Green vertical
bars indicate where formulas start to be UNSAT.

All the experiments have been performed on a Dell PowerEdge rack server equipped
with a 16-cores AMD EPYC™ 7281 CPU (2.7GHz) and 64GB of RAM (DDR4 2400 MT/s).
Moreover, experiments have been run in parallel, each on a single core, with a memory limit
of 3GB of RAM per core, and a 10 minutes timeout. Experimental results plots can be found
in Figure 1 and Figure 2.

Regarding the random formulas, what immediately catches the eye is that BLACK– in the
direct approach – performs overall significantly better, in particular if compared with nuXmv.
Indeed, the latter starts to be in difficulty already at size n = 3000, and gets almost always
stuck at size n = 10000. It can also be noticed that BLACK solves UNSAT instances quicker
than the SAT ones. This could be a bit surprising, considering that the former is a universal
property, while the latter is an existential one. However, this has a twofold explanation.
Firstly, the Boolean encoding acts like a breadth-first search, which is in some sense an
exhaustive search, up to depth k. Secondly, in all UNSAT random formulas the tableaux
are closed by contradiction, and never by the PRUNE rule. This is because of the nature of
the random formulas generator: it is less likely to generate a formula with such a peculiar
structure as to trigger the PRUNE rule. Also, it is more likely to produce contradictions that
can be spotted in the first depth levels. Nevertheless, it is interesting to note that BLACK is
able to manage those UNSAT formulas better than nuXmv, overall.

Looking instead at the crscounter plots, there are two interesting aspects to point out.
First, BLACK performs slightly better with the direct past encoding than with the translation
approach. Second, while BLACK performs worse with SAT formulas, the situation overturns
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when the formulas become UNSAT. This can be explained by the PRUNE rule: it may cause
an overhead in the encoding of SAT formulas, but it has the advantage of guaranteeing a
quicker termination, i.e. closure of the tableau, in case of UNSAT ones. Indeed, in this family
of formulas, all UNSAT ones have a tableau which is closed by the PRUNE rule.

6 Conclusions

This work contributes to the state of the art of the satisfiability problem for LTL+Past in
different directions. First of all, it provides a translation procedure for LTL+Past, that has
been implemented into the BLACK tool, but, in principle, can be used also as a preprocessing
step for any LTL satisfiability checker in order to let them support the past. Then, it extends
the SAT-based encoding of a one-pass and tree-shaped tableau for LTL to LTL+Past, and
shows that the resulting tool is very effective and efficient compared to the state-of-the-art
ones. It is also worth noting that the encoding is quite simple compared to the virtual
unrollings techniques used to support past operators by Latvala et al. [15], and it offers an
exponential advantage over the explicit construction of the tableau since the FORECAST
rule is not required to be encoded. Finally, it introduces two new sets of formulas which aim
at starting to build a larger set of standardized formulas for benchmarks in the field.

Results showed that the direct encoding is the preferred way to manage the past, but
also that the translation is a viable alternative, as it adds only a linear overhead.

Future work should head at reducing the overhead introduced by the PRUNE rule,
possibly by triggering it not at each step, but with some predetermined heuristics, in order
to reduce the gap in performance between SAT and UNSAT properties. Moreover, since the
framework has been shown to be efficient and modular, it could be interesting to investigate
its extension to other logics. Orthogonally, some in-depth theoretical comparison with other
state-of-the-art techniques could suggest new ways of improvement.
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