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Abstract
We deal with the efficient implementation of storage models for time-varying graphs. To this end,
we present an improved approach for the HiNode vertex-centric model based on MongoDB. This
approach, apart from its inherent space optimality, exhibits significant improvements in global query
execution times, which is the most challenging query type for entity-centric approaches. Not only
significant speedups are achieved but more expensive queries can be executed as well, when compared
to an implementation based on Cassandra due to the capability to exploit indices to a larger extent
and benefit from in-database query processing.
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1 Introduction

During a conference in 2009 some of the attendees (405 out of 1200 attendees in total) were
carrying a RFID tag that could detect close contacts for two days [16]. They aggregated all
daily contact information into two networks (snapshots) for the two consecutive days of the
conference. They finally generated snapshots of longer timescales by repeating these two
networks and adding some stochastic noise. Their goal was to study a SEIR epidemiological
model on the contact network. Such an approach, where a series of aggregated snapshots of
the same graph is analyzed, has two main advantages. Firstly, ease of modeling: aggregating
the dynamic contact information at a coarser time granularity, e.g., per day, renders the
modelling simpler albeit at the expense of losing some information, such as in which exact
time period within a day two people met. Secondly, ease of management: storing and
managing such time-evolving graphs for long periods is not an easy task, thus having fewer
snapshots facilitates their processing and analysis. In this paper, we focus on the second
aspect, related to the efficient data management of time-varying graphs. Improving the
data management efficiency also mitigates the problem of information loss given that the
more efficient the management of a series of snapshots, the higher the frequency at which
snapshots can be generated.
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Introducing the time dimension in the analysis of networks has been of increasing interest
the last years in various scientific fields. This is the reason why such networks have been
called dynamic networks, adaptive networks, time-varying networks, evolving networks and
temporal networks that essentially refer to the same idea. In [1], a unified framework called
TVG (Time-Varying Graph) was proposed and all different formalisms have been shown to
be expressed easily in such a framework. Various time-related operations are discussed with
respect to their implementation. However, there is no discussion as to how these networks
are stored. In general, it seems that there is a lack of a comprehensive framework to actually
handle these time evolving graphs, meaning that one should start from the storage model
and go all the way to the actual implementation of the algorithm for a specific problem.

TVGs constitute a graph data structure with entities corresponding to vertices and the
relationships between them corresponding to edges; both the vertex and edge elements may
be annotated by attributes, such as name and weight respectively. The distinctive feature of
TVGs is their dynamic nature with vertices and edges constantly being inserted, removed or
altered as time progresses and entities interact with each other. By studying the evolution of
these dynamic graphs we can obtain useful information and metrics regarding the nature
of the originating network itself. As a result, one of the greatest challenges that arises in
the presence of such evolving graphs is maintaining the state of the graph at different time
instances (referred to as snapshots) in a spatially and temporally efficient way.

1.1 Background and Related Work
There have been two main approaches with regard to a TVG system’s design [10, 3, 4], the
time-centric approach and the entity-centric approach (see [2] for a related discussion with a
comparison between them). In the former case, the system is indexed according to the time
instances (i.e. changes are organized by the time instance they occur in), while in the latter
case the system is indexed according to the entities, their relationships and their respective
history throughout the snapshots (i.e. changes are organized based on the vertex or edge
they refer to). Most of the previous research work conducted so far aims at storing the
changes themselves (known as deltas) that occur between different snapshots. A system that
maintains sets of deltas is thus able to reconstruct any particular snapshot by sequentially
applying all the deltas up to the desired time instance. This framework can be used in both
approaches but lends itself more naturally to a time-centric approach.

Another viewpoint concerning a system’s design is based on the type of queries that the
system should be able to evaluate. Local queries are based on a particular vertex or a limited
selection of adjacent vertices (e.g., the 2-hop neighborhood of a vertex) while global queries
consider the majority or the entirety of a graph’s vertices (e.g., global clustering coefficient).
Furthermore, both local and global queries should be able to be executed on either a single
snapshot or on a range of snapshots (e.g., average shortest path length between two vertices
in the ten first snapshots).

There have been two main research directions over the previous years with regards to
evolving graph storage processing. Systems for non-evolving graphs, such as Trinity [14],
Pregel [9], and others can be leveraged to support historical queries through explicitly storing
each snapshot, but apparently, such solutions are inefficient. A comprehensive survey for
evolving graph data management can be found in [5] with the most notable proposals being
those in [3, 8, 15, 11]. In general, these techniques rely on storage of snapshots and deltas
(logging), which exhibits a trade-off between space and time. Having a large number of
snapshots results in deltas of small size but the space cost is substantial since we need to
maintain many copies of the graph. On the other hand, having a handful of snapshots means
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that deltas will be quite large and queries at specific time instances may require a long
time to execute. Three of these proposals operate in a parallel or distributed setting, i.e.,
DeltaGraph [3], TGI [4] and G∗ [8]. Notably, the G∗ parallel system takes advantage of the
commonalities that exist between snapshots by only storing each version of a vertex once
and avoids storing redundant information that is not modified between different snapshots.
Furthermore, G∗ achieves substantial data locality since each G∗ server is assigned its own
set of vertices and corresponding entities. On the other hand, G∗ uses some form of logging
to store connection information between different entities.

We take an entity-centric approach, the storage model of which has appeared in [7]. This
new storage model is more space efficient and in most of the cases more time efficient. This
model departs from the logging framework (snapshots + deltas) by storing the history at the
level of the nodes instead of storing snapshots. It has been attached in the G∗ prototype [15]
for handling TVGs. Unfortunately, this prototype is incomplete and with severe restrictions
that render its use rather impractical (see [6] for a related discussion). There also exist
solutions for specific problems that cannot be generalized to arbitrary operations, including
historical reachability queries [13], mining the most frequently changing component [17],
continuous pattern detection [17] or shortest path distance queries [12]. To tackle these
limitations, an early attempt to depart from G∗ and use NoSQL has appeared in [6]. In this
work, we further improve upon [6] by replacing Cassandra with MongoDB with a view to
exploiting additional indexing options and techniques to perform query processing.

1.2 Our contribution
Based on the aforementioned discussion, someone can expect that the time-centric approach
is more suited towards evaluating global queries over a few snapshots. At the same time, in
order to efficiently handle local queries, an entity-centric approach seems to be the natural
choice. While there has been plenty of work revolving around the usage of deltas and
(variants of) the time-centric approach, entity-centric systems are at their infancy and have
not been thoroughly studied. This paper describes our work on devising efficient storage
solutions for the entity-centric model; our work capitalizes on our previous work in [7, 6]. In
particular, in Section 2 we describe the vertex-centric storage model given by the authors in
[7], and we provide details for two completed implementation approaches of the vertex-centric
schema in Cassandra as described in [6], which are shown to outperform solutions based on
tailored graph management systems, such as Neo4j. We describe our new approach using
MongoDB, which better exploits in-database query processing mechanisms in Section 3.
To be more precise, our main motivation behind using MongoDB is to exploit the wider
range of indexing options and the capabilities provided to reduce the client involvement
when processing queries. Our proposal, which is freely available, is thoroughly evaluated in
Section 4 and the results show significant improvement especially for global queries, whereas
we manage to run more expensive queries on the same infrastructure. Our focus on global
queries is justified by the fact that local queries can be easily and efficiently handled by our
purely entity-centric approach. Finally, we conclude in Section 5.

2 The HiNode storage model and its initial implementation

Let G = (V, E) be a graph consisting of a set of vertices V and a set of edges E. The state
of the graph G at a particular time instance t, that is, the active vertices and edges of G at
a time instance t, is termed as snapshot and is denoted by Gt. We regard time as strictly
increasing quantities of indivisible time intervals that follow a linear order. Under this notion
of time G =< G1, G2, . . . > corresponds to a constantly evolving graph sequence of snapshots
that are to be stored and maintained appropriately.

TIME 2021
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In [7], the first purely entity-centric, and more specifically, vertex-centric model for
maintaining graph historical data, termed as HiNode is introduced. Its strongest point is that
it builds upon a theoretical storage model that is asymptotically space-optimal, time efficient
and supports a general notion of time that needs not be contrained to linear as previously
described. The core idea behind HiNode’s solution is that a vertex history throughout all
snapshots is combined into a set of collections called diachronic node. HiNode supports
adding or removing vertices and attributes as fundamental operations upon which more
complex operations and queries (e.g., graph traversal, shortest path evaluation etc.) are
constructed. In HiNode, each change is stored O(1) times, resulting in an asymptotically
optimal total space cost. Furthermore, due to the local handling of history, HiNode performs
well on local queries and the authors further demonstrate that HiNode on top of G∗ is
competitive regarding global queries as well when compared to G∗ [7].

2.1 Data Structure Overview
A vertex v ∈ Gi is characterized by a set of attributes (e.g., color), a set of incoming edges
from the other vertices of Gi and a set of outgoing edges to the other vertices of Gi. We
construct an external interval tree I that maintains a set of intervals {T v

ts,te
} where an

interval T v
ts,te

signifies the “lifetime” of a vertex v, i.e. from time instance ts to time instance
te. We mark a vertex to be “active” (alive) up until the latest time instance, by setting the
te value to be +∞. Finally, each interval T v

ts,te
is augmented with a pointer (handle) to an

additional data structure for each vertex v, called diachronic node.
A diachronic node Dv of a vertex v maintains a collection of data structures correspond-

ing to the full vertex history in the sequence G, i.e. when that vertex was inserted, all
corresponding changes to its edges or attributes and finally its deletion time (if applicable).
More formally, a diachronic node Dv maintains an external interval tree Iv which stores
information regarding all of v’s characteristics (attributes and edges) throughout the entire
G sequence. An interval in Iv is stored as a quadruple (f, {ℓ1, ℓ2, . . .}, ts, te), where f is the
identifier of the attribute that has values ℓ1, ℓ2, . . . during the time interval [ts, te]. Note
that an edge belonging to v (i.e. one endpoint of the edge is v), can be represented as an
attribute of v by using one value ℓi to denote the other end of the edge, another value ℓj to
mark the edge as incoming or outgoing and a last value ℓh that is used as a handle to the
diachronic node corresponding to the vertex in the other end of the edge. The remaining ℓ

values can be used to store the attributes of the edge themselves (e.g., weight). Additionally,
the diachronic node maintains a B-Tree for each attribute and for each individual edge of
the vertex. Full details are in [7].

2.2 Initial implementation in Cassandra
The first HiNode implementation, hereafter termed as HiNode-G∗1, was based on extensions to
the G∗ [8, 15] parallel graph database. This design choice incurred severe limitations regarding
the efficiency and scalability of the HiNode-G∗ prototype (see [6] for a detailed discussion). In
a follow-up work [6], we proposed to leverage NoSQL as the underlying database technology
providing preliminary results about two different implementation approaches in Cassandra.
These approaches consist of the Single Table (ST) and Multiple Table (MT) implementations.
In the former case, the entire history of a vertex is stored in a single table with each vertex

1 Source code available at https://github.com/hinodeauthors/hinode.

https://github.com/hinodeauthors/hinode
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Figure 1 Each vertex possesses two attributes: a name and a color. Additionally, vertices are
connected by labelled edges. Three consecutive snapshots are depicted. Snapshot G1 is obtained by
changing the name of v4 in G0 from d to lbl. Snapshot G2 is obtained from G1 by inserting v5 and
an edge from v2 to v5.

Table 1 ST (Single Table) representation for the graph sequence shown in Fig. 1. The fields
“start” and “end” correspond to the time range in which the corresponding value is valid.

id tart nd name color incoming_edges outgoing_edges

1 0 ∞
[{value: ’a’,
start: ‘0’, end: ‘∞’}]

[{value: ’amber’,
start: ‘0’, end: ‘∞’}]

null

‘2’: [{label: ’elbl1’,
start: ‘0’, end: ‘∞’}],
‘4’: [{label: ’elbl2’,
start: ‘0’, end: ‘∞’}]

2 0 ∞
[{value: ’b’,
start: ‘0’, end: ‘∞’}]

[{value: ’blue’,
start: ‘0’, end: ‘∞’}]

‘1’: [{label: ’elbl1’,
start: ‘0’, end: ‘∞’}],
‘3’: [{label: ’elbl5’,
start: ‘0’, end: ‘∞’}]

‘4’: [{label: ’elbl3’,
start: ‘0’, end: ‘∞’}],
‘5’: [{label: ’elbl4’,
start: ‘2’, end: ‘∞’}]

3 0 ∞
[{value: ’c’,
start: ‘0’, end: ‘∞’}]

[{value: ’cyan’,
start: ‘0’, end: ‘∞’}]

null
‘2’: [{label: ’elbl5’,
start: ‘0’, end: ‘∞’}]

4 0 ∞

[{value: ’d’,
start: ‘0’, end: ‘1’},
{value: ’lbl’,
start: ‘1’, end: ‘∞’}]

[{value: ’denim’,
start: ‘0’, end: ‘∞’}]

‘1’: [{label: ’elbl2’,
start: ‘0’, end: ‘∞’}],
‘2’: [{label: ’elbl3’,
start: ‘0’, end: ‘∞’}]

null

5 2 2
[{value: ’f’,
start: ‘2’, end: ‘∞’}]

[{value: ’ecru’,
start: ‘2’, end: ‘∞’}]

‘2’: [{label: ’elbl4’,
start: ‘2’, end: ‘∞’}]

null

corresponding to a single table row, while in the latter case the data of each vertex is stored
in multiple tables with each table corresponding to a single vertex attribute. Tables 1 and 2
show the single table and multi table implementations for the toy example shown in Figure 1.2

In order to adequately support global type of queries (i.e. queries that involve a significant
part of a snapshot’s vertices), the two models offer two querying modes for the retrieval of all
vertices relevant to a specified query. Let [ts, te] be a specified time range for which a query
is about to be executed. In the first mode (termed retrieve_all (RA)), and regardless of the
given time range, we retrieve all vertices from each model and then perform a client-side
filtering operation, where we discard any vertices that do not belong in [ts, te]. In the second
mode (termed retrieve_relevant (RR)), in each model, we first determine the vertices that
are “alive” at [ts, te] and then, we retrieve them.

While in ST, the implementation of RR is straightforward, MT requires additional work
since retrieving a particular (set of) attribute(s) during a certain time interval [ts, te] would
translate to a range query and the retrieval of all data with a “timestamp” value between ts

2 Source code available at https://github.com/akosmato/HinodeNoSQL

TIME 2021
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Table 2 The MT (Multiple Table) representation of the graph sequence shown in Fig. 1. The
fields “start” and “end” correspond to the time range in which the corresponding value is valid. “vid”
corresponds to the id of the vertex while “sourceid” and “targetid” correspond to the source and the
target of a directed edge respectively.

(a) vertex

vid start end
1 0 ∞
2 0 ∞
3 0 ∞
4 0 ∞
5 2 ∞

(b) vertex_name

vid start name
1 0 a
2 0 b
3 0 c
4 0 d
4 1 lbl
5 2 f

(c) vertex_color

vid start name
1 0 amber
2 0 blue
3 0 cyan
4 0 denim
5 2 ecru

(d) edge_incoming

targetid start end sourceid
2 0 ∞ 1
2 0 ∞ 3
4 0 ∞ 1
4 0 ∞ 2
5 2 ∞ 2

(e) edge_outgoing

sourceid start end targetid
1 0 ∞ 2
1 0 ∞ 4
2 0 ∞ 4
2 2 ∞ 5
3 0 ∞ 2

(f) edge_label_incoming

targetid start sourceid label
2 0 1 elbl1
2 0 3 elbl5
4 0 1 elbl2
4 0 2 elbl3
5 2 2 elbl4

(g) edge_label_outgoing

sourceid start targetid label
1 0 2 elbl1
1 0 4 elbl2
2 0 4 elbl3
2 2 5 elbl4
3 0 2 elbl5

and te (i.e. we are not interested in any updates that occur outside [ts, te]). Since Cassandra
does not natively permit double-bounded range queries for the sake of efficiency, we fetch the
relevant data with a timestamp larger than ts and then filter all data with a timestamp larger
than te at the client side. In [6] there is extensive experimental evaluation. The conclusion
is that the choice of a particular vertex-centric implementation is not straightforward and
exhibits different trade-offs depending on the query at hand.

3 A MongoDB implementation

Our main motivation behind using MongoDB is to exploit the wider range of indexing options
and the capabilities provided to reduce the client involvement when processing queries.
Additionally, in Cassandra, data are saved as strings and, as such, they are being serialized
when returned to the client, while in MongoDB, we have the ability to store the elements of
the nodes with a combination of lists and documents. Overall, we are able to perform more
complex in-database queries and decrease the client involvement in query processing. Finally,
in the new implementation, instead of getting the documents from the database in a single
large batch, we have the option to employ a foreach approach (when this is expected to be
more efficient) and as a result, to mitigate intermediate client-side storage requirements.3

3.1 Schema alternatives

Both the ST and MT models shown in Tables 1 and 2 have been transformed to comply
with MongoDB’s JSON format in a straightforward manner. In addition, we developed an
alternative schema for both models, where the elements of the primary key are inserted as
characteristics in the document; as primary key, we insert the standard key assigned by
MongoDB automatically. The reason for this schema is to further simplify the client-side
tasks (i.e., the processing refers to the document content exclusively) with no difference in
the capability of answering specific types of queries.

3 Source code available at https://github.com/alexspitalas/HiNode-MongoDB/.

https://github.com/alexspitalas/HiNode-MongoDB/
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In the ST model, a document is a representation of a diachronic node and consists of the
primary key as a triple (vid, start and end of the node), the incoming and outgoing edges
and the vertex attributes. The features forming the key are stored as atomic string values,
while the vertex attributes are stored as a list of sub-documents, where each document is a
triple. The incoming and outgoing edge metadata are stored as a sub-document containing
a list of triples (where each triple is a MongoDB sub-document). The former document is
essentially a hashmap structure with the key corresponding to the vertex id, while the nested
sub-document stores the attributes and the period for each edge. The following 3 indices are
built on: (i) vid; (ii) start and end; the complete key. The first index allows quick retrieval
of a specific vertex, while the second and third indices facilitate stabbing queries. Finally, as
already mentioned, we have experimented with an alternative ST model created (termed as
NoKey), where the key is the default _id provided by MongoDB, and vid, start and end
are inserted as characteristics of the document, while the indices are the same.

In the MT model, we split the diachronic node into 3 sets of collections, one about the
vertex ((a)-(c) in Table 2), one about incoming edges ((d),(f)) and one about outgoing edges
((e)-(g)). Each set consists of one collection about the time period and the existence of the
vertex or edge and one collection for every attribute. The standard indices are on vid and
vid,start in the first set of collections ((a)-(c) in Table 2). For the edge collection sets, the
multikey indices are on sourceID (or targetID) and the start timestamp. In summary,
the main difference with the Cassandra-based implementation in [6] in terms of modelling is
the increased flexibility regarding indices and the fact that sub-documents are stored without
being serialized as strings.

3.2 Query processing
For local queries, the server (database) side is straightforward, while most of the work is
performed on the client side. The local queries we investigate in this paper are retrieving
the history of a vertex and one hop queries. In the former case, we retrieve the history of a
specified vertex for some time period. In the latter query, all neighboring vertex ids of the
query vertex at a specified time period are returned. Both tasks are supported by the two
implementation models in a straightforward manner.

Due to the vertex-centric approach, we investigate global queries since local queries can
be supported very efficiently. Global query processing comprises two phases. The first is
concerned with the retrieval of the data, while in the second one, the processing of the
retrieved data takes place. These phases can be intertwined. In our implementation and
experiments, the two phases are separated so that the client’s side is the same for all ST-based
and all MT-based techniques. Regarding the retrieval of the data, three variants have been
developed, retrieve_relevant (RR), retrieve_all (RA) and in-database (ID).

In RR, the main objective is to find the relevant documents by retrieving only their
necessary characteristics. In RA, we retrieve all the characteristics of the document, checking
at the same time whether the document is needed for the query. Compared to RR, we
perform only one read at the database, but we retrieve more data than necessary if the
document is not needed for the query; as a result, RR is expected to perform better when the
amount of data stored per node is much higher than the data needed to establish the necessity
of the node. The necessity check, along with the rest of the query execution, is performed
on the client. In the new MongoDB implementation, contrary to the initial Cassandra one,
we adopt a more incremental (iterative) approach instead of returning all data in a single
batch; this has increased the scope of global queries that can be executed without throwing
an out-of-memory error.

TIME 2021
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Figure 2 Results for the vertex history query on the US Patents dataset.

However, the most notable difference between the two implementations is that MongoDB
naturally lends itself to in-database query processing, so that the client gets only the data
needed to compute the final results. This is achieved by submitting more complex queries
that are supported by the MongoDB driver. To this end, we use the in-database MongoDB
mechanisms to perform the necessity checks mentioned in the RR technique. Similarly to RR,
the data needed for the final answer computations are returned incrementally to the client.
As such, this approach has even lower space requirements on the client-side and at the same
time, it allows for both the server and client working in parallel. It should be mentioned,
that in some local queries (like onehop query), it may make sense to adopt an in-database
query processing rationale, but this is beyond the scope of this paper.

4 Experiments

In the experiments, we use the same 4 queries as in [6] (Vertex History, One Hop, Average
Vertex Degree, Vertex Degree Distribution) in 3 different datasets (hep-Th with 27.77K
vertices, 352.8K edges and 156 snapshots; hep-Ph with 34.5K vertices, 421.6K edges and 132
snapshots; and US Patents with 3,774.8K vertices, 16.5M edges and 444 snapshots). We
experiment with all MT and ST Cassandra and MongoDB combinations. For MongoDB,
we test both key and nokey flavors and all modes of global query processing (RA, RR and
ID). Each query is executed referring to a range of snapshots from 1 to all. We use a client
application written in Java, and all the experiments were executed on a single node system
with i5-3210M, 16GB RAM, and a 500GB SSD, while the client and the databases are
collocated on the same machine.

4.1 Local queries
Regarding local queries, we investigated the vertex history query and one hop query query at
the 3 datasets. We repeated each query 500 times and we report the average values. For each
set of such runs we have a cold start. Fig. 2 presents the results for the US Patents dataset,
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Figure 3 Results for the 1-hop query on the US Patents dataset.

but the results are similar for all datasets. In summary, for the vertex history query, ST
outperforms MT by more than 70% (as also mentioned at [6]) while we observe an increase
in performance at the best performing ST models executed in MongoDB by up to 42% (in
average, it is 39.6% across all snapshot amounts) compared to the Cassandra ones. The
best performing MT model in MongoDB is faster by up to 42% compared to its Cassandra
counterpart, as well. Another observation is that the performance of the models does not
depend on the amount of snapshots in the query. Finally, Key and NoKey settings (recall
that in NoKey, the key is the default _id provided by MongoDB) have small differences (Key
is faster by up to 8.5 %)

In the oneHop query, the observations are mixed but are still consistent across the three
datasets (see Fig. 3 for the large dataset). Firstly, the differences between Cassandra and
MongoDB are smaller with no dominant database system. More specifically, the differences
between the two databases for any range of snapshots are up to 20 % when MongoDB
performs better, and up to 6% when the dominant model is the Cassandra-based one, i.e.,
the differences between the two database systems are smaller than previously. Secondly, MT
is better than ST in all cases by up to 26%, while the average performance improvement is
13.2% (due to the fact that only edge info needs to be retrieved). When considering only MT
models, the differences between MongoDB and Cassandra do not exceed 10%. Finally, Key
and NoKey have larger differences, up to 23 %. In all cases except one, for the MT model,
the key version is the dominant one.

4.2 Global queries

For global queries, we demonstrate the results for both Hep-Th and US Patents datasets,
since hep-Ph has similar results as hep-Th. The graphs include more query processing modes
than previously, since we distinguish between RA, RR and ID.

Average Vertex Degree Query. The results are shown in Figure 4. Our observations for
the two datasets are summarized below.

TIME 2021
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Figure 4 Results for the average degree query on the hep-Th (top) and US Patents (bottom)
datasets.

1. For the big dataset (US Patents), the MongoDB in-database techniques are always the
most efficient. Regarding the exact storage model, for snapshots in the range of [1-50%),
ST models behave better, while for more snapshots, MT is superior. On average, ID
MongoDB techniques improve upon the best performing Cassandra models (which manage
to handle up to 20% snapshots) by up to 75.9% (speedup factor of 4×).

2. For the smaller datasets, when accessing 50% or 100% of the snapsots, the MongoDB RA
approach is better than the ID approach, albeit by a small margin (on average, 11.5%).
On the other hand, when accessing [1 to 20 %] of the graph snapshots, MongoDB RR
approach is better than every other approach. When compared to ID, they improve the
performance on average by 84%, mostly due to the small intermediate results.

3. MongoDB solutions are superior to those of Cassandra, with the margin in performance
increasing with more snapshots. When accessing all snapshots, the MongoDB speedup is
1.96× for the smaller dataset; for the larger dataset, MongoDB managed to return results
when employing the ID technique, while Cassandra did not manage to run.

4. The RR and RA query processing methods perform differently in Cassandra and in
MongoDB. In Cassandra’s ST model, RA outperformed RR in 50% and 100% of snapshots
by less than 12%. In the MT model, it outperformed only when accessing 100% of the graph
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Figure 5 Results for the vertex degree distribution query on the hep-Th (top) and US Patents
(bottom) datasets.

(by 18.5%). On the other hand, in MongoDB, both for ST and MT, RA outperformed
RR when the queries were applied on over 50% of the snapshots; the differences for ST
were on average 73%, while, for MT, were 71.5%.

5. Overall, while MongoDB is always the main option, the best performing model differs. In
smaller datasets, when the query accesses less than half of the snapshots, ST combined
with RR is more efficient; for more snapshots MT combined with RA dominates. In the
large dataset, ID is always the main option, but ST is more efficient when accessing less
than 50% of the snapshots, while MT performs better otherwise.

Vertex Degree Distribution Query. The results are shown in Figure 5. Our main observa-
tions are the following:
1. MongoDB ST model combined with the ID technique manages to execute all queries over

all snapshot ranges; no other combination of choices achieves this, e.g., Cassandra-based
solutions can run queries only up to 20% snapshots.

TIME 2021
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2. For the big dataset, the MongoDB RA approach is the most efficient. When accessing up
to 20% snapshots, MT combined with RA behave better and improve the performance by
77.3% on average. On the other hand, the only implementation that was able to execute
on all snapshots was MongoDB MT combined with ID, which improved upon the best
performing Cassandra models by 74% on average.

3. For the smaller datasets, MongoDB ST combined with ID is the best when accessing all
snapshots, by up to 51% compared to the Cassandra implementation. When accessing
50% of the snapshots, MongoDB ST combined with RA is better than the best-performing
Cassandra implementation by 48%. Finally, when the query access up to 20% of the
snapshots, MongoDB MT combined with RR improves upon their Cassandra counterparts
by 58.6% on average.

4. In Cassandra, RA does not increase the performance with minor exceptions. On the
other hand, in MongoDB, RA always increases the performance by up to 80%.

5. The NoKey option performs more efficiently than Key in most cases but by a small
margin, i.e., it does not decrease the best performing times by more than 10%.

Finally, to assess the impact of indices, we experimented with a MongoDB model without
using indexes on any non-key characteristic. The experiment was performed on the Hep-Th
dataset with global queries using only the ST model. The results show a serious performance
degradation. More specifically, when we use indexes, the execution time is reduced by up to
98% (improvement by a factor of 41×). This speedup is observed for both global queries.

Space issues. While Cassandra requires less space to store the data since it builds fewer
indices and adopts a different storage approach, MongoDB requires less memory on the client
while executing the query. This is the result of the iterative approach that was adapted in
MongoDB as well as from the ID query processing method. The space required for the three
datasets (in increasing size) in Cassandra ST was 31.0 MB, 37.4 MB and 1.83 GB, and for
MT 45.7 MB, 55.5 MB and 3.10 GB. The space for MongoDB ST was 89.70 MB, 107.37 MB,
4.84 GB, and for MT 218.34 MB, 260.87 MB and 10.96 GB, respectively. On the other hand,
MongoDB has exhibited a speedup above 2× for insertions.

5 Summary

In this work, we have shown how the HiNode vertex-centric approach for storing time-varying
graphs can be implemented in MongoDB. We have achieved significant improvements for
global queries compared to the previous NoSQL based implementation (over 4X in some
cases); the speedups were lower for local queries, but such queries are already performed
efficiently in any vertex-centric implementation. Our vision is broader. We aim to develop a
complete historical graph data management system through extending the described storage
layer with more sophisticated query processing and optimization techniques.
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