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Abstract
An important task in terrain analysis is computing viewsheds. A viewshed is the union of all the
parts of the terrain that are visible from a given viewpoint or set of viewpoints. The complexity of a
viewshed can vary significantly depending on the terrain topography and the viewpoint position.

In this work we study a new topographic attribute, the prickliness, that measures the number of
local maxima in a terrain from all possible angles of view. We show that the prickliness effectively
captures the potential of terrains to have high complexity viewsheds. We present near-optimal
algorithms to compute it for TIN terrains, and efficient approximate algorithms for raster DEMs.
We validate the usefulness of the prickliness attribute with experiments in a large set of real terrains.
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1 Introduction

Digital terrain models represent part of the earth’s surface, and are used to solve a variety of
problems in geographic ç science. An important task is viewshed analysis: determining which
parts of a terrain are visible from certain terrain locations. Two points p and q are mutually
visible if the line of sight defined by line segment pq does not intersect the interior of the
terrain. Given a viewpoint p, the viewshed of p is the set of all terrain points that are visible
from p. Similarly, the viewshed of a set of viewpoints P is defined as the set of all terrain
points that are visible from at least one viewpoint in P . Viewsheds are useful, for example,
in evaluating the visual impact of potential constructions [2], analyzing the coverage of an
area by fire watchtowers [12], or measuring the scenic beauty of a landscape [1, 21].

Discrete and continuous terrain representations. Two major terrain representations are
prevalent in GIS. The simplest and most widespread is the raster, or digital elevation model
(DEM), consisting of a rectangular grid where each cell stores an elevation.① The main
alternative is a vector representation, or triangulated irregular network (TIN), where a set of
irregularly spaced elevation points are connected into a triangulation. A TIN can be viewed
as a continuous xy-monotone polyhedral surface in R3. A viewshed in a DEM is the set of
all raster cells that are visible from at least one viewpoint. In contrast, a viewshed in a TIN
is the union of all parts of triangles that are visible from at least one viewpoint.

DEMs are simpler to analyze than TINs and facilitate most analysis tasks. The main
advantage of TINs is that they require less storage space. Both models have been considered
extensively in the literature for viewshed analysis, see Dean [4] for a complete comparison
of both models in the context of forest viewshed. Some studies suggest that TINs can be
superior to DEMs in viewshed computations [4], but experimental evidence is inconclusive [19].
This is in part due to the fact that the viewshed algorithms used in [19] do not compute
the visible part of each triangle, but only attempt to determine whether each triangle is
completely visible. This introduces an additional source of error and does not make use of
all the information contained in the TIN.

Figure 1 Part of a TIN with a high-complexity viewshed. The viewpoint (not shown) is placed
at the center of projection. The relevant triangles of the TIN are the ones shown, which define n

peaks and ridges. The viewshed in this case is formed by Θ(n2) visible regions.

① For the sake of simplicity, in this paper we use DEM to denote the raster version of a DEM.
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Figure 2 Left: a TIN (1.5D profile) with three peaks and one viewpoint (p), with a viewshed
composed of three parts (visible parts shown orange). Right: transformation of the terrain with no
peaks (other than p) but the same viewshed complexity. Dotted segments show lines of sight from p.

Viewshed complexity. The algorithmic study of viewsheds focuses on two main aspects:
the complexity of the viewsheds, and their efficient computation. In this work, we are
interested in their complexity. We use the information-theoretic meaning of “complexity”:
the complexity of an object is the number of bits needed to represent it in memory. Therefore,
in the case of TINs, viewshed complexity is defined as the total number of vertices of the
polygons that form the viewshed. In the case of DEMs, there are several ways to measure
viewshed complexity. To facilitate comparison between TIN and DEM viewsheds, we convert
the visible areas in the raster viewshed to polygons, and define the viewshed complexity as the
total number of vertices in those polygons. A typical high-complexity viewshed construction
for a TIN is shown schematically in Fig. 1, where one viewpoint would be placed at the
center of projection, and both the number of vertical and horizontal triangles is Θ(n), for n

terrain vertices. The vertical peaks form a grid-like pattern with the horizontal triangles,
leading to a viewshed with Θ(n2) visible triangle pieces.

While a viewshed can have high complexity, this is expected to be uncommon in real
terrains [3]. There have been attempts to define theoretical conditions for a (TIN) terrain that
guarantee, among others, that viewsheds cannot be that large. For instance, Moet et al. [18]
showed that if terrain triangles satisfy certain “realistic” shape conditions, viewsheds have
O(n

√
n) complexity. De Berg et al. [3] showed that similar conditions guarantee worst-case

expected complexity of Θ(n) when the vertex heights are subject to uniform noise.

Viewsheds and peaks. The topography of the terrain has a strong influence on the potential
complexity of the viewshed. To give an extreme example, in a totally concave terrain, the
viewshed of any viewpoint will be the whole terrain, and has a trivial description. Intuitively,
to obtain a high complexity viewshed as in Fig. 1, one needs a large number of obstacles
obstructing the visibility from the viewpoint, which requires a somewhat rough topography.

In fact, it is well-established that viewsheds tend to be more complex in terrains that
are more “rugged” [13]. This leads to the natural question of which terrain characteristics
correlate with high complexity viewsheds. Several topographic attributes have been proposed
to capture different aspects of the roughness of a terrain, such as the terrain ruggedness
index [20], the terrain shape index [16], or the fractal dimension [14]. These attributes focus
on aspects like the amount of elevation change between adjacent parts of a terrain, its overall
shape, or the terrain complexity. However, none of them is specifically intended to capture
the possibility to produce high complexity viewsheds, and there is no theoretical evidence
for such a correlation. Moreover, these attributes are locally defined, and measure only
attributes of the local neighborhood of one single point. While we can average these measures
over the whole terrain, given the global nature of visibility, it is unclear a priori whether such
measures are suitable for predicting viewshed complexity. We refer to Dong et al. [5] for a
systematic classification of topographic attributes.

GISc ience 2021
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One very simple and natural global measure of the ruggedness of a terrain that is relevant
for viewshed complexity is to simply count the number of peaks (i.e., local maxima) in the
terrain. It has been observed in the literature that areas with higher elevation difference,
and hence, more peaks, cause irregularities in viewsheds [9, 12], and this idea aligns with
our theoretical understanding: the quadratic example from Fig. 1 is designed by creating
an artificial row of peaks, and placing a viewpoint behind them. However, while it seems
reasonable to use the peak count as complexity measure, there is no theoretical correlation
between the number of peaks and the viewshed complexity. This is easily seen by performing
a simple trick: any terrain can be made arbitrarily flat by scaling it in the z-dimension by a
very small factor, and then rotating it slightly – this results in a valid terrain without any
peaks, but retains the same viewshed complexity. See Fig. 2 for an example in 1.5D. In fact,
viewshed complexity is invariant under affine transformations (i.e., scalings, rotations, and
translations) of the terrain: the application of any affine combination to the terrain and
the viewpoints results in a viewshed of the same complexity. Hence, any measure that has
provable correlation with it must be affine-invariant as well. This is a common problem to
establish theoretical guarantees on viewshed complexity, or to design features of “realistic”
terrains in general [3, 18]. In fact, it is easy to see that none of the terrain attributes
mentioned above is affine-invariant.

Prickliness. In this work we propose a new topographic attribute: the prickliness. The
definition follows directly from the above observations: it counts the number of peaks in a
terrain, but does so for every possible affine transformation of the terrain. We first present a
definition for TINs, and then we explain how the definition carries over to DEMs.

Let T be a triangulated surface that is xy-monotone. Let A be an affine transformation,
and let A(T ) be the terrain obtained after applying A to T . We define m(A(T )) to be the
number of internal and convex vertices of T ② that are peaks in A(T ). Let A(T ) be the set of
all affine transformations of T . We define the prickliness of T , π(T ), to be the maximum
number of local maxima over all transformations of T ; that is, π(T ) = maxA∈A(T ) m(A(T )).
We start by observing that, essentially, the prickliness considers all possible directions in
which the number of peaks are counted. Let v⃗ be a vector in R3. Let πv⃗(T ) be the number
of internal and convex vertices of T that are local maxima of T in direction v⃗; that is, the
number of internal and convex vertices of T for which the local neighborhood does not extend
further than that vertex in direction v⃗.

▶ Observation 1. π(T ) = maxv⃗ πv⃗(T )

Using this observation, we reduce the space of all affine transformations to the 2-
dimensional space of all directions in 3D. Since T is a terrain, for any v⃗ with a negative
z-coordinate we have πv⃗(T ) = 0 by definition, thus the interesting directions reduce to
the points on the (positive) unit half-sphere. This provides a natural way to visualize the
prickliness of a terrain. Each direction can be expressed using two angles θ and ϕ (i.e., using
spherical coordinates), where θ represents the polar angle and ϕ the azimuthal angle. Fig. 3
shows a small terrain and the resulting prickliness, showing a projection of the half-sphere,
where each point represents a direction, and its color indicates its prickliness. Note that
we specifically define prickliness to be the maximum over all orientations rather, say, the
average over all orientations. Even for a terrain with high-complexity viewsheds like the one

② We explicitly only count vertices that are already convex in the original terrain, since some affine
transformations will transform local minima / concave vertices of the original terrain into local maxima.
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Figure 3 (left) A TIN T , with triangulation edges shown in black, and elevation indicated using
colors. (right) A visualization of the prickliness of T as a function of the angles (θ, ϕ) that define each
direction (circles indicate contour lines for θ); color indicates prickliness. The maximum prickliness
is 8, attained at a direction of roughly θ = 13◦ and ϕ = 60◦ (north-east from the origin).

in Fig. 1, the average number of peaks would still be relatively small since there are many
orientations with a small number of peaks. Hence, such a definition is unlikely to accurately
capture the complexity of viewsheds on a terrain.

We notice that all previous notions easily translate to DEMs. The centers of the DEM
cells can be seen as the vertices of the terrain, and every internal vertex of the terrain has eight
neighbors given by the cell centers of the eight neighboring cells. Hence, in the definitions
for DEMs, the notion of adjacent vertices for TINs is replaced by that of neighbors. A vertex
is a local maximum for some affine transformation of the terrain if all of its neighbors have a
lower or equal z-coordinate. This gives an equivalent definition of π(T ) when T is a DEM.

Results and organization. The remainder of this paper is organized as follows.

In Section 2, we review existing topographic attributes in more detail, and discuss how
attributes defined for DEMs can be adapted to TINs.
We show in Section 3 that the viewshed complexity of a single viewpoint in a TIN terrain
cannot be higher than O(n · π(T )), and this is tight.
In Section 4, we consider the question of how to compute prickliness. We provide an O(n2)
time algorithm for TIN terrains, which is near-optimal, and an efficient approximate
algorithm for DEM terrains.
In Sections 5-7, we report on experiments that measure the values of distinct topographic
attributes (including the prickliness) of real terrains, and analyze their possible correlation
with viewshed complexity. From the experiments, we conclude that prickliness provides
such a correlation in the case of TIN terrains, while the other measures perform more
poorly. The situation for DEM terrains is less clear.
Finally, we provide our code implementing two key algorithms for this work: an algorithm
to calculate the prickliness of a TIN terrain and an algorithm to calculate the combined
viewshed originating from a set of multiple viewpoints.

2 Topographic attributes

In addition to prickliness, we consider the following topographic attributes, and their relation
to viewshed complexity.

GISc ience 2021
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Terrain Ruggedness Index (TRI). The Terrain Ruggedness Index measures the variability
in the elevation of the terrain [20]. Riley et al. originally defined TRI specifically for DEM
terrains as follows. Let c be a cell of the terrain, and let N (c) denote the set of (at most)
eight neighboring cells of c. The TRI of c is then defined as

pTRI (c) =

√√√√ 1
|N (c)|

∑
q∈N (c)

(cz − qz)2
,

where |N (c)| denotes the cardinality of N (c). Hence, pTRI (c) essentially measures the
standard deviation of the difference in height between c and the points in N (c). The Terrain
Roughness Index TRI (T ) of T is the average pTRI (T, c) value over all cells c in T .

For TINs, we have adapted the definition as follows: N (c) is defined as the set of vertices
which are adjacent to a given vertex c in T . The Terrain Roughness Index TRI (T ) is then
obtained as the average pTRI (T, c) value over all vertices c of T .

Terrain Shape Index (TSI). The Terrain Shape Index also measures the “shape” of the
terrain [16]. Let C(c, r, T ) denote the intersection of T with a vertical cylinder of radius r

centered at c (so after projecting all points to the plane, the points in C(c, r, T ) lie on a circle
of radius r centered at c). For ease of computation, we discretize C(c, r, T ): for DEMs we
define C(c, r, T ) to be the grid cells intersected by C(c, r, T ), and for TINs we define C(c, r, T )
as a set of 360 equally spaced points on C(c, r, T ). The TSI of a point c is then defined as

pTSI (c, r, T ) = 1
r|C(c, r, T )|

∑
q∈C(c,r,T )

cz − qz ,

and essentially measures the average difference in height between “center” point c and the
points at (planar) distance r to c, normalized by r. The Terrain Shape Index TSI (T, r) of
the entire terrain T is the average pTSI (c, r, T ) over all cells (in case of a DEM) or vertices
(in case of a TIN) of T . We choose r = 1000m (which is roughly eight percent of the width
of our terrains) in our experiments.

Fractal dimension (FD). The (local) fractal dimension measures the roughness around
a point c on the terrain over various scales [14, 22]. We use the definition of Taud and
Parrot [22] that uses a box-counting method, and is defined as follows. Let w be the
width of a cell in the DEM, and let s ∈ N be a size parameter. For q ∈ 1..s/2, consider
subdividing the cube with side length sw centered at c into (s/q)3 cubes of side length qw.
Let Cs(c, q) denote the resulting set of cubes, and define Ns(c, q, T ) as the number of cubes
from Cs(c, q) that contain a “unit” cube from Cs(c, 1) lying fully below the terrain T . Let
ℓs(c, T ) be the linear function that best fits (i.e. minimizes the sum of squared errors) the
set of points {(ln(q), ln(Ns(c, q, T ))) | q ∈ 1..s/2} resulting from those measurements. The
fractal dimension pFDs(c, T ) at c is then defined as the inverse of the slope of ℓs(c, T ). The
fractal dimension FD(T, s) of the DEM terrain itself is again the average over all DEM cells.
Following Taud and Parrot we use s = 24 in our experiments. For our TIN terrains, we keep
w the same as in their original DEM representations, and average over all vertices.

3 Prickliness and viewshed complexities

In this section we show that there is a provable relation between prickliness and viewshed
complexity. We present our analysis for TINs, since they provide a natural way to measure
viewshed complexity. However, a similar analysis can be carried out for DEMs as well.
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Let v be a vertex of T , and let p be a viewpoint. We denote by ↑v
p the half-line with

origin at p in the direction of vector −→pv. Now, let e = uv be an edge of T . The vase of p and
e, denoted ↑e

p, is the region bounded by e, ↑u
p , and ↑v

p (see Fig. 4).

p

e

v

u

↑up

↑vp

↑ep

Figure 4 A vase.

p

e1
q

t

r

↑e2p

↑e1p

e2

Figure 5 The situation in the proof of Lemma 3.

Vertices of the viewshed of p can have three types [11]. A vertex of type 1 is a vertex of
T , of which there are clearly only n. A vertex of type 2 is the intersection of an edge of T

and a vase. A vertex of type 3 is the intersection of a triangle of T and two vases.

▶ Lemma 2. There are at most O(n · π(T )) vertices of type 2.

Proof. Consider an edge e of T and let H be the plane spanned by e and p. Consider the
viewshed of p on e. Let qr be a maximal invisible portion of e surrounded by two visible
ones. Since q and r are vertices of type 2, the open segments pq and pr pass through a point
of T . On the other hand, for any point x in the open segment qr, there exist points of T

above the segment px. This implies that there is a continuous portion of T above H such
that the vertical projection onto H of this portion lies on the triangle pqr. Such portion
has a local maximum in the direction perpendicular to H which is a convex and internal
vertex of T . In consequence, each invisible portion of e surrounded by two visible ones can
be assigned to a distinct point of T that is a local maximum in the direction perpendicular
to H. Hence, in the viewshed of p, e is partitioned into at most 2π(T ) + 3 parts. ◀

▶ Lemma 3. There are at most O(n · π(T )) vertices of type 3.

Proof. Let q be a vertex of type 3 in the viewshed of p. Point q is the intersection between
a triangle t of T and two vases, say, ↑e1

p and ↑e2
p ; see Fig. 5. Let r be the ray with origin at

p and passing through q. Ray r intersects edges e1 and e2. First, we suppose that e1 and
e2 do not share any vertices and, without loss of generality, we assume that r ∩ e1 is closer
to p than r ∩ e2. Notice that r ∩ e2 is a vertex of type 2 because it is the intersection of e2
and ↑e1

p , and ↑e1
p partitions e2 into a visible and an invisible portion. Thus, we charge q to

r ∩ e2. If another vertex of type 3 was charged to r ∩ e2, then such a vertex would also lie
on r. However, no point on r after q is visible from p because the visibility is blocked by t.
Hence, no other vertex of type 3 is charged to r ∩ e2.

If e1 and e2 are both incident to a vertex v, since t ∩ ↑e1
p ∩ ↑e2

p is a type 3 vertex, we have
that r passes through v. Therefore, q is the first intersection point between r (which can be
seen as the ray with origin at p and passing through v) and the interior of some triangle in
T . Therefore, any vertex v of T creates at most a unique vertex of type 3 in this way. ◀

▶ Theorem 4. Let T be a TIN terrain with n vertices and prickliness π(T ). The complexity
of a viewshed is O(n · π(T )). This bound is asymptotically tight.

GISc ience 2021
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Figure 6 Schematic top-down view of the classic quadratic construction (left), and the same
adapted to have small prickliness (right). If an observer is at (0, −∞), the resulting view has
quadratic complexity (see Fig. 1). Blue vertices/edges are low, red are medium height, and green
are high. The right construction introduces a new height (yellow) between medium and high, and
changes the triangulation slightly, to ensure that all convex vertices in the construction are green.

Proof. The upper bound on the complexity follows directly from Lemmas 2 and 3. Hence,
we focus on the lower bound; i.e. we show that there exists a terrain T with prickliness π(T ),
and a viewpoint on T with viewshed whose complexity is Ω(n · π(T )).

Consider the standard quadratic viewshed construction, composed of a set of front
mountains and back triangles (Fig. 6 (left)). Notice that there can be at most π(T ) mountains
“at the front”. We add a surrounding box around the construction, see Fig. 6 (right), such
that each vertex of the back triangles is connected to at least one vertex on this box. We set
the elevation of the box so that it is higher than all the vertices of the back triangles, but
lower than those of the front mountains. In this way, no vertex of the back triangles will be
a local maximum in any direction, and all local maxima will come from the front. ◀

4 Prickliness computation

4.1 Algorithm for TINs
For every convex terrain vertex v, we compute the region of the unit sphere S2 containing all
vectors w⃗ such that v is a local maximum of T in direction w⃗. As we will see, such a region
is a cone and we denote it by co(v). To compute co(v), we consider all edges of T incident to
v. Let e = vu be such an edge, and consider the plane orthogonal to e through v. Let H be
the half-space which is bounded by this plane and does not contain u. We translate H so
that the plane bounding it contains the origin; let He be the intersection of the obtained
half-space with the unit sphere S2. The following property holds: For any unit vector w⃗ in
He, the edge e does not extend further than v in direction w⃗. We repeat this procedure for
all edges incident to v, and consider the intersection co(v) of all the obtained half-spheres
He. For any unit vector w⃗ in co(v), none of the edges incident to v extends further than v in
direction w⃗. Since v is convex, this implies that v is a local maximum in direction w⃗.

Once we know all regions of type co(v), computing the prickliness of T reduces to finding
a unit vector that lies in the maximum number of such regions. To simplify, rather than
considering these cones on the sphere, we extend them until they intersect the boundary of a
unit cube Q centered at the origin. The conic regions of type co(v) intersect the faces of Q
forming (overlapping) convex regions. Notice that the problem of finding a unit vector that
lies in the maximum number of regions of type co(v) on S is equivalent to the problem of
finding a point on the surface of Q that lies in the maximum number of “extended” regions
of type co(v). The second problem can be solved by computing the maximum overlap of
convex regions using a topological sweep [6], for each face of the cube.
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Computing the intersection between the extended regions of type co(v) (for all convex
vertices v) and the boundary of Q takes O(n log n) time, and topological sweep to find the
maximum overlap takes O(n2) time. We obtain the following:

▶ Theorem 5. The prickliness of an n-vertex TIN terrain can be computed in O(n2) time.

4.2 Algorithm for DEMs
The prickliness of a DEM terrain can be computed using the same algorithm as for TINs:
Each cell center can be seen as a vertex v, and its neighbors are the cell centers of its eight
neighboring cells. The edges connecting v to its neighbors can then be used to compute
co(v) as in Section 4.1, and the rest of the algorithm follows. However, DEM terrains
have significantly more vertices, and vertices have on average more neighbors; this causes a
significant increase in computation time and, more importantly, in memory usage. For this
reason, in our experiments, the prickliness values for the DEM terrains were approximated.

The approximated algorithm discretizes the set of vectors that are candidates to achieve
prickliness as follows: For every interior cell g of the terrain, we translate a horizontal grid
G of size n by n and cell size s above the cell center v of g in a way that v and the center
of G are vertically aligned and at distance one. Then the vectors considered as potential
prickliness are those with origin at v and endpoint at some cell center c in G. For any such
vector lying inside co(v), the value of c gets incremented by one. When all interior cells of the
terrain have been processed, a cell center of G with maximum value gives the approximated
prickliness of the terrain. Cell size s was set to 0.05, based on the spread of the results on
TIN terrains. This method should, in practice, produce a close approximation of prickliness.

5 Experiments

In this section we present our experimental setup. Our goals are to
verify our hypothesis that existing topographic attributes do not provide a good indicator
of the viewshed complexity,
evaluate whether prickliness does provide a good indicator of viewshed complexity in
practice, and
evaluate whether these results are consistent for DEMs and TINs.

Furthermore, since in many applications we care about the visibility of multiple viewpoints
(e.g. placing guards or watchtowers), we also investigate these questions with respect to the
complexity of the common viewshed of a set of viewpoints. In this setting a point is part of
the (common) viewshed if and only if it can be seen by at least one viewpoint. Note that
since Theorem 4 proves that the complexity of a viewshed is proportional to the prickliness,
our second goal is mainly to evaluate the practicality of prickliness. That is, to establish if
this relation is also observable in practice or that the hidden constants in the big-O notation
are sufficiently large that the relation is visible only for very large terrains.

Next, we briefly describe our implementations of the topographic attributes. We then
outline some basic information about the terrain data that we use as input, and we describe
how we select the viewpoints for which we compute the viewsheds.

Implementations. We consider prickliness and the topographic attributes from Section 2.
To compute the prickliness we implemented the algorithm from Theorem 4 in C++ using
CGAL 5.0.2 [23] and its 2D arrangements [24] library.③ We also implemented the algorithms

③ Source code available from https://github.com/GTMeijer/Prickliness.
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for TRI, TSI, and FD on TINs. These are mostly straightforward. To compute the viewsheds
on TINs we implemented the hidden-surface elimination algorithm of [10] using CGAL.④ We
remark that our implementation computes the exact TIN viewsheds, as opposed to previous
studies that only considered fully visible triangles (e.g., [19]).

To compute the prickliness on DEMs we used the algorithm from Section 4.2. For TRI,
TSI, and FD on DEMs we used the implementations available in ArcGIS Pro 2.5.1 [7].
To compute viewsheds on DEMs we used the builtin tool “Viewshed 2” in ArcGIS, which
produces a raster with boolean values that indicate if a cell is visible or not. To get a measure
of complexity similar to that of the TINs we use the “Raster to Polygon” functionality
of ArcGIS (with its default settings) to convert the set of True cells into a set of planar
polygons (possibly with holes). We use the total number of vertices of these polygons as the
complexity of the viewshed on a DEM.

Terrains. We considered a collection of 52 real-world terrains around the world. These
terrains were handpicked in order to cover a large variety of landscapes, with varying
ruggedness, including mountainous regions (Rocky mountains, Himalaya), flat areas
(farmlands in the Netherlands), and rolling hills (Sahara), and different complexity. We
obtained the terrains through the Terrain world elevation layer [8] in ArcGIS [7]. Each terrain
is represented as a 10-meter resolution DEM of size 1400×1200. According to past studies
the chosen resolution of 10 meters provides the best compromise between high resolution and
processing time of measurements [15, 25]. The complete list of terrains with their extents
can be found in [17].

We generated a TIN terrain for each DEM using the “Raster to TIN” function in
ArcGIS [7]. This function generates a Delaunay triangulation to avoid long, thin triangles as
much as possible. With the z-tolerance setting, the triangulation complexity can be controlled
by determining an allowed deviation from the DEM elevation values. We considered TIN
terrains generated using a z-tolerance of 50 meters. This resulted in TINs where the number
of vertices varied between 30 and 5808 (with an average of 1547 vertices). Their distribution
can be seen in Fig. 8.

Viewpoints. Kim et al. [13] found that placing the viewpoints at peaks typically produces
viewsheds that cover hilltops, but not many valleys, whereas placing viewpoints in pits
typically covers valleys but not hilltops. This leads us to consider three different strategies
to pick the locations of the viewpoints: picking “high” points (to cover peaks), picking “low”
points (to cover valleys), and picking viewpoints uniformly at random. To avoid clusters
of high or low viewpoints we overlay an evenly spaced grid on the terrain, and pick one
viewpoint from every grid cell (either the highest, lowest, or a random one). We pick these
points based on the DEM representation of the terrains, and place the actual viewpoints one
meter above the terrain to avoid degeneracies. We use the same locations in the TINs in order
to compare the results between TINs and DEMs (we do recompute the z-coordinates of these
points so that they remain 1m above the surface of the TIN). The resulting viewsheds follow
the expected pattern; refer to Fig. 7. In our experiments, we consider both the complexity of
a viewshed of a single viewpoint as well as the combined complexity of a viewshed of nine
viewpoints (picked from a 3 × 3 overlay grid). Results of Kammer et al. [12] suggest that
for the size of terrains considered these viewpoints already cover a significant portion of the
terrain, and hence picking even more viewpoints is not likely to be informative.

④ Source code available from https://github.com/GTMeijer/TIN_Viewsheds.

https://github.com/GTMeijer/TIN_Viewsheds
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Figure 7 (left) A joint viewshed (blue) created from viewpoints placed on the highest points.
(right) A joint viewshed (blue) created from viewpoints placed on the lowest points.

Table 1 The correlation coefficients (R values) between the attributes and viewshed complexity.

TIN DEM
highest lowest random highest lowest random

single multi single multi single multi single multi single multi single multi

Prick 0.75 0.97 0.41 0.83 0.64 0.93 0.63 0.90 0.10 0.19 0.18 0.64
TRI 0.44 0.58 0.62 0.72 0.61 0.63 -0.52 -0.38 -0.27 -0.30 -0.34 -0.43
TSI 0.45 0.69 0.69 0.81 0.63 0.75 -0.53 -0.40 -0.24 -0.23 -0.32 -0.42
FD -0.56 -0.73 -0.64 -0.78 -0.66 -0.76 0.11 -0.27 0.27 0.25 0.27 -0.01

Analysis. For each topographic attribute we consider its value in relation to the complexity
of the viewsheds. In addition, we test if there is a correlation between the viewshed complexity
and the attribute in question. We compute their sample correlation coefficient (Pearson
correlation coefficient) R to measure their (linear) correlation. The resulting value is in
the interval [−1, 1], where a value of 1 implies that a linear increase in the attribute value
corresponds to a linear increase in the viewshed complexity. A value of −1 would indicate
that a linear increase in the attribute leads to a linear decrease in viewshed complexity, and
values close to zero indicate that there is no linear correlation.

6 Results

We start by investigating the prickliness values compared to the complexity of the terrains
considered. These results are shown in Fig. 8. We can see that the prickliness is generally
much smaller than the number of vertices in the (TIN representation of the) terrain. In
Fig. 9 we also see one the πv⃗ values for orientation vectors near (0, 0, 1) (recall that the
maximum over all orientations defines the prickliness).

6.1 Topographic attributes and viewshed complexity

For each of the terrains we compute the viewshed of one or nine viewpoints, for three
viewpoint placement strategies, and analyze the complexity of the viewshed as a function of
the topographic attributes both for TINs and DEMs. Table 1 summarizes the correlation
between the attributes and the viewshed complexity for each case.

GISc ience 2021
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Figure 8 The prickliness values for the terrains we considered.
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Figure 9 (left) A real-world terrain with 583 vertices from the neighborhood of California Hot
Springs whose prickliness is only 62. (right) The value πv⃗ for vectors near (0, 0, 1).

Single viewpoint. The first row in Fig. 10 shows the full results for a randomly placed
viewpoint on the TIN. Somewhat surprisingly, we see that terrains with high fractal dimension
have a low viewshed complexity. For the other measures, higher values tend to correspond
to higher viewshed complexities. However, the scatter plots for these two measures show a
large variation. The scatter plots for the other placement strategies (highest and lowest) look
somewhat similar, hence the strategy with which we select the viewpoints does not seem
to have much influence in this case. None of the four attributes shows a strong correlation
in this case (see also Table 1). Prickliness shows weak-medium correlation in three out of
six cases, strong correlation for one case – viewpoints at highest points – and no correlation
for two cases with viewpoints at lowest points. The other attributes show an even weaker
correlation in general.

Multiple viewpoints. The results comparing the topographic attributes to the complexity
of the common viewshed of multiple viewpoints, selected from a 3 × 3 overlay grid (refer to
Section 5) can be found in the second row of Fig. 10. Again, fractal dimension shows an inverse
behavior. In contrast, the other three attributes show now a much clearer positive correlation
with viewshed complexity. In this case the prickliness shows the strongest correlation in all
but one case (that of viewpoints at lowest points). In particular when placing the viewpoints
on highest points within the overlay grids the correlation is strong. See also Fig. 11 (left).
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Figure 10 The viewshed complexity on a TIN. First row: single random viewpoint. Second row:
common viewshed of multiple (nine, selected from a 3 × 3 overlay) random viewpoints.
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Figure 11 The complexity of the common viewshed of nine viewpoints placed using the highest
strategy on a TIN (left) or on a DEM (right).

DEM results. The scatter plots for randomly placed viewpoints can be found in Fig. 12.
The first row again corresponds to the complexity of a single viewshed, whereas the second
row corresponds to the complexity of the common viewshed of nine viewpoints selected from
a 3 × 3 overlay. In contrast to TINs, for DEMs all measures show no to weak correlation
values. The correlation between prickliness and the viewshed complexity is the highest with
a positive correlation value of 0.629. However, the scatter plot (Fig. 11 right) suggests that
this value is not very meaningful.

Something similar occurs in the case of viewsheds of DEMs for multiple viewpoints, where
none of the measures seems to have a statistical significance, with most of the R2 values
being below 0.200. The exception to this is the correlation between prickliness for viewpoints
on highest points, which shows a very strong relationship.

7 Discussion

The experimental results for TINs confirm our hypotheses. We can see a clear correlation
between the viewshed complexity and the prickliness, especially when multiple viewpoints are
placed on the highest points. In contrast, this is not evident for the other three topographic
attributes considered. The terrain ruggedness index (TRI) and terrain shape index (TSI)
show some very weak positive correlation, but not as strong as prickliness. This could be
explained by the fact that TRI and TSI only consider a fixed neighborhood around each
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Prickliness FD TRI TSI

0.5 1 1.5 2 2.5 3

2

4

6

·104
V
ie
w
sh
ed

C
o
m
p
le
x
it
y

2.78 2.79 2.8 2.81 2.82

2

4

6

·104

2 4 6 8 10 12 14 16
0

2

4

6

·104

5 · 10−2 0.1 0.15 0.2 0.25

0

2

4

6

·104

0.5 1 1.5 2 2.5 3

1

2

3

4

5
·104

V
ie
w
sh
ed

C
o
m
p
le
x
it
y

2.78 2.79 2.8 2.81 2.82

1

2

3

4

5
·104

2 4 6 8 10 12 14 16

1

2

3

4

5
·104

5 · 10−2 0.1 0.15 0.2 0.25

1

2

3

4

5
·104

Figure 12 The viewshed complexity on a DEM. First row: single random viewpoint. Second
row: common viewshed of multiple (nine, selected from a 3 × 3 overlay) random viewpoints. The
prickliness values are times 104.

point, making them local measures unable to capture the whole viewshed complexity. Indeed,
a small (local) obstruction can be enough to significantly alter the value for any of these
attributes. The fractal dimension (FD) seems to be even worse at predicting viewshed
complexity. Unlike TRI and TSI, this topographic attribute considers the variability within
an area of the terrain as opposed to a fixed-radius neighborhood. Taking a closer look at
the FD values for both terrain datasets shows a minimal variation, with most of them being
close to 3.0, which, according to Taud et al. [22], indicates a nearly-constant terrain. These
results seem to indicate that this measure fails to detect the variation in elevation levels with
the chosen parameters.

The situation for DEM terrains is less clear. Only for viewsheds originating from the
highest points we see a strong correlation between prickliness and viewshed complexity.
When the viewpoints are placed at the lowest points of the DEM terrains, the correlation
disappears. Since the prickliness measures the amount of peaks in the terrain in all possible
(positive) directions, this means that when a viewpoint is placed at the highest elevation
and the viewshed gets split up by the protrusions (which seem to be accurately tracked
by prickliness), there is a strong correlation. However, when the viewpoints are placed at
the lowest points, the viewsheds become severely limited by the topography of the terrain
surrounding them. Even when placing multiple viewpoints, these viewsheds do not seem
to encounter enough of the protrusions that are detected by the prickliness measure for
viewpoints placed at high points.

One possible explanation for the difference between the results on the TIN and DEM
terrains for prickliness could be attributed to the difference in resolution between the DEMs
and TINs used. The DEMs used consisted of 1.68M cells of 10m size, while the TINs –
generated with an error tolerance of 50m – had 1547 vertices on average. While it would
have been interesting to use a higher resolution TIN, this was not possible due to the high
memory usage of the prickliness algorithm. Another possible explanation for the mismatch
between the results for TINs and DEMs may be on the actual definition of prickliness, which
is more natural for TINs than for DEMs. Indeed, it can be seen in the results that the
prickliness values for DEMs are much higher than for TINs, which could indicate that the
definition is too sensitive to small terrain irregularities.
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8 Conclusion

We established that prickliness is a reasonable measure of potentially high viewshed complexity,
at least for TINs, confirming our theoretical results. Moreover, prickliness shows a much
clearer correlation with viewshed complexity that the three other terrain attributes considered.

One aspect worth further investigation is its correlation for DEMs, which seems to be
much weaker. One explanation for this might be that the definition of prickliness is more
natural for TINs than for DEMs, but there are several other possible explanations, and it
would be interesting future work to delve further into this phenomenon. Having established
that prickliness can be a useful terrain attribute, it remains to improve its computation time,
so it can be applied to larger terrains in practice.

Finally, during our work we noticed that several of the terrain attributes are defined
locally, and are parameterized by some neighborhood size. Following previous work, we
aggregated these local measures into a global measure by averaging the measurements. It
may be worthwhile to investigate different aggregation methods as well. This also leads to a
more general open question on how to “best” transform a local terrain measurement into a
global one.
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