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—— Abstract

We consider the problem of sampling and approximately counting an arbitrary given motif H in
a graph G, where access to G is given via queries: degree, neighbor, and pair, as well as uniform
edge sample queries. Previous algorithms for these tasks were based on a decomposition of H into a
collection of odd cycles and stars, denoted D*(H) = {Ok;, ..., Ok,, Sp,, ..., Sp, }. These algorithms
were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower
bounds were known.

We present a new algorithm for sampling arbitrary motifs which, up to poly(logn) factors, is
always at least as good, and for most graphs G is strictly better. The main ingredient leading to this
improvement is an improved uniform algorithm for sampling stars, which might be of independent
interest, as it allows to sample vertices according to the p-th moment of the degree distribution.

Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at
least one odd cycle. These are the first lower bounds for motifs H with a nontrivial decomposition,
i.e., motifs that have more than a single component in their decomposition.
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Towards a Decomposition-Optimal Algorithm for Sampling Motifs

1 Introduction

The problems of counting and sampling small motifs in graphs are fundamental algorithmic
problems with many applications. Small motifs statistics are used for the study and charac-
terization of graphs in multiple fields, including biology, chemistry, social networks and many
others (see e.g., [36, 30, 21, 33, 32, 43, 28, 35, 38, 41, 31]). From a theoretical perspective,
the complexity of the best known classical algorithms for exactly enumerating small motifs
such as cliques and paths of length k, grows exponentially with k [42, 9]. On the more applied
side, there is an extensive study of practical algorithms for approximate motif counting
(e.g., [39, 5, 34, 1, 27, 12, 7, 24]). We study the problems of approximate motif counting and
uniform sampling in the sublinear-time setting, where sublinear is with respect to the size of
the graph. We consider the augmented query model, introduced by [2], where the allowed
queries are degree, neighbor and pair queries as well as uniform edge sample queries.! We
note that the model which only allows for the first three types of queries is referred to as the
general graph query model, introduced by [29].

The problems of approximate counting and uniformly sampling of arbitrary motifs of
constant size in sublinear-time have seen much progress recently, through the results of Assadi,
Kapralov and Khanna [3], and Fichtenberger, Gao and Peng [23]. The algorithms of [3, 23]
both start by computing an optimal (in a sense that will be clear shortly) decomposition of
the motif H into vertex-disjoint odd cycles and stars, defined next.

A decomposition into odd cycles and stars. A decomposition D of a motif (graph) H into
a collection of vertex disjoint small cycles and stars {Og,,..., Ok, , Sp,, ..., Sp, } is valid if all
vertices of H belong to either a star or an odd cycle in the collection. Each decomposition

can be associated with a weight function fp : E — {0, 4,1} which assigns weight 1 to

edges of its star components, weight 1/2 to edges of its odd cycle components and weight
0 to all other edges in H. See figure 1 for an illustration. Hence, each decomposition

{Ok,,....0k,,Sp,s .-, Sp, } has value p(D) = 3. .,y fp(e) = >0 ki/2 + Zlepj, where
throughout the paper k; and p; denote the length and number of petals in the ith cycle
and ;' star, respectively, in D*(H). For every H, its optimal decomposition value is
p(H) = minp{p(D)}, and a decomposition D is said to be optimal for H if p(D) = p(H).
We fix (one of) the optimal decomposition of H, and denote it by D*(H). In [3], it is shown

that an optimal decomposition of a motif H can be computed in polynomial time in |H|.?
mPU

The algorithm in [23] has expected running time ® O ( =

) for the task of uniformly

Degree queries return the degree of the queried vertex, neighbor queries with index 7 < d(v) return the
ith neighbor of the queried vertex, pair queries return whether there is an edge between the queried
pair of vertices, and uniform edge queries return a uniformly distributed edge in the graph.

We note that p(H) is equal to the fractional edge cover value of H: the fractional edge cover value
of a motif (graph) H is the solution to the following minimization problem. Minimize ZEEE f(e)

under the constraint that for every v € H, Zes” f(e) > 1. In [3], the decomposition is computed by
first computing an optimal fractional cover. However, as there exists a mapping between fractional
edge covers to decompositions which preservers their value, we choose to define p(H) according to the
minimal valid decomposition value.

Throughout the paper, unless stated otherwise, the query complexity of the mentioned sublinear-time
algorithms is the same as the minimum between their running time and min{n + m,mlogn}. This is
true since any algorithm can simply query the entire graph and continue computation locally. Querying
the entire graph can either be performed by querying the neighbors of all vertices (which takes O(n+m)
queries), or by performing mlogn uniform edge samples, which, with high probability, return all edges
in the graph (note that we do not care about isolated vertices, as we assume the motif H is connected).
Hence, we focus our attention on the running time complexity.
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Figure 1 An example of an optimal decomposition of a motif H into odd cycles and stars. The
orange edges have weight 1/2, the red edges have weight 1, and the dotted edges have zero weight.

sampling a copy of H, where h is the number of copies of H in G, and m is the number of
oriented edges? in G. The algorithm in [3] for the (1 & ¢)-approximation task has the same
complexity up to poly(e, |H|,logn) factors, where n is the number of vertices in G.

1.1  Our results

We present improved upper and lower bounds for the tasks of estimating and sampling any
arbitrary motif in a graph G in sublinear time (with respect to the size of G). First, we give a
new, essentially optimal, star-sampler for graphs. We also show that with few modifications,
the star-sampler can be adapted to an optimal ¢, sampler, which might be of independent
interest. Based on this sampler, as well as an improved sampling approach, we present our

main algorithm for sampling a uniformly distributed copy of any given motif H in a graph G.

Our algorithm’s complexity is parameterized by what we refer to as the decomposition-cost
of H in G, denoted DECOMP-COST(G, H, D*(H)). We further show that our motif sampling
algorithm can be used to obtain a (1 &+ €)-estimate of the motif at question (with an overhead
of an O(1/€?) factor). As we shall see, our result is always at least as good as previous
algorithms for these problems (up to a logn loglog n term), and greatly improves upon them

for various interesting graph classes, such as random graphs and bounded arboricity graphs.

We then continue to prove that for any motif whose optimal decomposition contains at least
one odd cycle, this bound is decomposition-optimal: we show that for every decomposition
D that contains at least one odd cycle, there exists a motif Hp (with optimal decomposition
D) and a family of graphs G so that in order to sample a uniformly distributed copy of H
(or to approximate h) in a uniformly chosen graph in G, the number of required queries is
Q(min{DECOMP-COST(G, H, D*(H)), m}) in expectation.

We start by describing the upper bound.

1.1.1 Optimal star/£,-sampler

Our first contribution is an improved algorithm, Sample-a-Star, for sampling a (single) star
uniformly at random, and its variant for sampling vertices according to the p*® moment. For a
vertex v, we let §,(v) = (d(:)), if d(v) > p, and otherwise, §,(v) = 0. Welet 5, = > -y 5,(v)
denote the number of p-stars in the graph. We will also be interested in the closely related
d(v)P.

value of the p'® moment of the degree distribution, fi, = Y vev

4 Throughout the paper we think of every edge {u,v} as two oriented edges (u,v) and (v,u), and let m
denote the number of oriented edges.
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» Theorem 1. There exists a procedure, Sample-a-Star, that given query access to a graph
G, and a constant factor estimates of s,, returns a uniformly distributed p-star in G. The

expected query complexity and running time of the procedure are O <min {m:;jl, 5?’7 })

where s, denotes the number of p-stars in G.

We note that a constant factor estimate of s, can be obtained by invoking one of the

algorithms in [17, 2], in expected query complexity O <min { m'g:_l, 51{7% }) Therefore, if
such an estimate is not known in advance, then it could be computed, with probability at
least 2/3, by only incurring a logn factor to the expected time complexity.

We will also show a variant of Sample-a-Star, denoted Sublinear-£,-Sampler, that gives
an optimal £p-sampler for any integer p > 2 in sublinear time. That is, Sublinear-£,-Sampler
allows to sample according to the p** moment of the degree distribution, so that every vertex
v € V is returned by it with probability d(v)?/fa,. The question of sampling according to
the p*" moment for various values of p has been studied extensively in the streaming model
where £, samplers have found numerous applications, see, e.g., the recent survey by Cormode
and Hossein [11] and the references therein. Therefore we hope it could find applications in
the sublinear-time setting that go beyond subgraph sampling.

» Theorem 2. There exists an algorithm, Sublinear-£,-Sampler, that returns a vertezv € V,
so that each v € V is returned with probability d(v)P/fi,. The expected running time of the

. . . .nP-1
algorithm is O (mln { o Zp , —ﬂ’l’}p }) .
P

Observe that for every value of p, 5, < fi,. Furthermore, Since m and ﬁzl,

/P are simply

the ¢, and ¢, norms of the degree distribution of G, it holds that ﬂ;/ P is smaller than m, and
could be as small as m/n'~1/?. Therefore, jiy/? < m < pb /P < mP=1. and it follows that

m - min {nzﬂfl7 g(pfl)/p} <m- gl()pfl)/p <m- ﬁz()pfl)/p <m-mP~! =mpP. (1)
Hence, not accounting for the O(logn loglog n) term, the expected complexity O(m
min{n?~1,587"V/P}/5,) of Sample-a-Star strictly improves upon the O(mP/s,) expected
complexity of the star-sampling algorithm by [23]. Accounting for that term, our algorithm
is preferable when either d,z = w(logn loglog n) or m/é,l,/p = w(logn).

Furthermore, the complexity of Sample-a-Star matches the complexities of the star
approximation algorithms by [26, 2], thus proving that uniformly sampling and approximately
counting stars in the augmented model have essentially the same complexity. Finally, the
construction of the lower bound for the estimation variant by [26] proves that Sample-a-Star
and Sublinear-£,-Sampler are essentially optimal.

1.1.2 An algorithm for sampling and estimating arbitrary motifs

Given the above star sampler, we continue to describe our main contribution: an algorithm,
Sample-H, that for any graph G and given motif H, outputs a uniformly distributed copy of
H in G.

To sample a copy of H we first sample copies of all basic components in its decomposition
D*(H), and then check if they can be extended to a copy of H in G. Therefore, it will be
useful to define the costs of these sampling operations.
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» Notation 3 (Basic components, counts and costs). Let H be a motif, and let D*(H) =
{Okys.-,Ok,, Sp, s .-, Sp,} be an optimal decomposition of H. We refer to the odd cycles
and stars in D*(H) as the basic components of the decomposition (or sometimes, abusing
notation, of H). We use the notation {C;}ic[y, to denote the set of all components in D*(H),
{Ci}iey = D*(H), where r = g+ L.

For every basic component C; in D*(H) = {C;}c}r), we denote the number of copies of
C; in G as c; and refer to it as the count of C;. Similarly, o) and s, denote the number of
copies of length k odd cycles and p-stars in G. respectively.

We also define the sampling cost (or just cost in short) of C; to be:

mk/Q/ak C; = Oy

cost(C;) = ) = .
‘ mm{mg: "}} Ci =5,

Observe that indeed, by Theorem 1, sampling a single p-star in G takes cost(S,) =

min { mg%l , ?}p} queries in expectation, and by [23, Lemma 3.1], sampling a single Oy,
p Sp

odd cycle takes cost(Oy) = m*/? /o), queries in expectation.

» Notation 4 (Decomposition-cost). For a motif H, an optimal decomposition D*(H) of H,
and a graph G, the decomposition cost of H in G, denoted DECOMP-COST(G, H, D*(H)) is

6,
DECOMP-COST(G, H, D*(H)) = mz[wf {cost(C;)} - % .
i€[r
Note that the motif H determines the counts of h and its decomposition D*(H) determines
what are the basic component counts in G that are relevant to the sampling cost.

» Theorem 5. Let G be a graph over n vertices and m edges, and let H be a motif such
that D*(H) = {Og,, -+, Ok, Sp,» .-+, Sp, } = {Ci}ier). There exists an algorithm, Sample-H
that returns a copy of H in G. With probability at least 1 — 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {DECOMP-CcOST(G, H, D*(H)), m}) - logn loglog n.

In the full version of this paper ( [8]), we prove that with slight modifications to the
sampling algorithm we can obtain a (1 + €)-approximation algorithm for h, with the same
expected query complexity and running time up to a multiplicative factor of O(1/€?).

Comparison to previous bounds. We would like to compare our algorithm’s expected
and sampling algorithms by [3] and [23], respectively, where recall that for an optimal
decomposition D*(H) = {O,, ..., Ok, Spy, -, Sp, } of H, p(H) =310 ki/2 4 Xie 0 Pi-

Recalling Equation 1, and plugging in the costs of the basic components and the decom-
position cost, defined in Notations 3 and 4, respectively, we get that for any graph G and
motif H,

complexity stated in Theorem 5, to the expected complexity O ( ) of the counting

DECOMP-COST(G, H, D*(H)) = max {cost(Cy)} - Hﬁci
1e|r

icia) Ok * L Licio Sp:
Zmﬁ{cost(&)knzem ’“'EHZE[@] pi
€T
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‘ i i—1 z(Pi—1)/p:
< Hiey m#i/2 Tl m - (min{nri—1 s~/
B b

icigm™? Ty m* et

h h

Therefore, as long as D*(H) contains at least one star, and not accounting for the term
O(logn loglog n), our algorithm is preferable to the previous one, as we save a factor of at
least db,.! for each p-star in D*(H).

Moreover, the complexity of our sampling algorithm is parameterized by the actual counts
of the basic components Ok, , ..., O, Sp,, ..., Sp, of the graph G at hand, rather than by the
maximal possible counts of these components, respectively m*1/2 .. .mFa/2 mPr . mPt as
is in previous algorithms. For example, if the max component cost is due to the odd cycle of

length ki, we get

ki/2 . = = .3 =
O* (m v/ 'Okz‘--~'°kq'sp1'~--'Spg> vs. OF (mkl/Z-mk2/2...-ka/2~mp1-...~mp€>

h

h

of the previous algorithms. Importantly, this parameterization arises only in the analysis,
while the algorithm itself is very simple, and does not depend on prior knowledge of the
actual values of these counts.

Improved results for various graph classes. Our parameterization immediately implies
improved results in various interesting graph classes. For example, for sparse Erdés-Rényi
random graphs G(n,d/n), the expected count of k-odd cycles is ©(d*), and of p-stars is
O(n - d?). Hence, if we consider for example a motif H that is composed of a triangle

“'d4), while the

h

m

connected to a 5-petals star, our algorithm has expected complexity O* (

algorithms in [3, 23] have expected complexity O(#) In another example, for graphs
of bounded arboricity® «, the number of k-odd cycles is upper bounded® by a - mF—1)/2,
Therefore, in the case that G has, e.g., constant arboricity, we save a multiplicative factor of
vm? or \/ﬁq_l, depending on whether the max cost component is due to a star or an odd
cycle, respectively (recall that ¢ is the number of odd cycles in the decomposition).

1.1.3 Lower bound for estimating and sampling general motifs

In the full version, we prove the following lower bound, which states that for every decom-
position D that contains at least one odd cycle component and every realizable value of
DECOMP-COST, there exists a motif Hp such that D is an optimal decomposition of Hp,
and for which our upper bound is optimal.

» Theorem 6. For any decomposition D that contains at least one odd cycle, and for every
n and m and realizable value DC of DECOMP-COST, there exists a motif Hp, with optimal
decomposition D, and a family of graphs G over m wvertices and m edges, for which the
following holds. For every G € G, DECOMP-COST(G, Hp, D) = DC, and the expected query
complexity of sampling (whp) a uniformly distributed copy of Hp in a uniformly chosen
G € G is Q(DC).

5 The arboricity of a graph G is the minimal number of forests required to cover the edge set of G.

5 In a graph G with arboricity « there exists an acyclic ordering of the graph’s vertices, such that each
vertex has O(«) vertices exceeding it in the order. We can attribute each k-cycles in the graph to its
first vertex in that ordering. It then holds that each vertex has at most (d* (v))? - m*=3)/2 attributed
cycles, and it follows that 6 < o - m* /2, where d™ (v) is the number of neighbors of v that exceed
it in the aforementioned ordering.
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Prior to this work, the only known lower bounds for the tasks of uniformly sampling or
approximately counting motifs H that were either a clique [19], a single odd cycle [3], or a
single star [26, 2, 19]. The above theorem provides the first lower bounds for motifs with
non-trivial decompositions. Furthermore, even though our bounds are only decomposition-
optimal (that is, they do not hold for any motif H), each decomposition D corresponds to at
least one motif Hp (generally, there are multiple valid ones), for which our bounds are tight.

In order to prove Theorem 6, we actually prove a stronger theorem, which relies on a
technical notion of good counts, formally stated in Definition 17 in the full version.

» Theorem 7. For any decomposition D = {Oy,,...,Ok,,Sp,,.... 8, = {Ci}tie,r that
contains at least one odd cycle component, for every n,m, h and a set of good counts,
{Citier] = {Okys-- Okys8pys .- 8p, ), as defined in Definition 17 of the full version, the
following holds. There exists a motif Hp, with an optimal decomposition D, and a family of
graphs G over n vertices and m edges, as follows. For every G € G, the basic components
counts are as specified by {C;}icfy), the number of copies of Hp is h, and the expected query
complexity of sampling (whp) a uniformly distributed copy of Hp in a uniformly chosen
Gegis

2 (uin {pstoncc)- L2} )

In the full version, we first prove that Theorem 6 follows from Theorem 7. Theorem 7 is

essentially a substantial refinement of Theorem 6, in the following sense. Not only that for
any decomposition cost we can match the lower bound (as stated in Theorem 6), but we can
match it for a large variety of specific setting of the basic counts (as long as they are good,
as stated in Theorem 7). While Theorem 7 does not state that the lower bound holds for
any setting of the counts {C;};c[r), as we discuss in the full version, some of the constraints
on these counts are unavoidable. It remains an open question whether this set of constraints
can be weakened, or perhaps more interestingly, whether, given that a set of constraints that
is mot good, can a better upper bound be devised.

1.2 Organization of the paper

We give some preliminaries in Section 2. The discussion on additional related works on
sublinear motif counting and sampling is deferred to Appendix A. In Section 3 we give a
high level overview of our techniques. We present our algorithms for uniformly sampling
stars and arbitrary motifs H in Section 4. Due to page limitation, the full details of the
¢p-sampler, approximation algorithm, as well as the decomposition-optimal lower bounds are
deferred to the full version of this paper [8].

2 Preliminaries and Notation

Let G = (V, E) be a simple undirected graph. We let n denote the number of vertices in
the graph. We think of every edge {u,v} in the graph as two oriented edges (u,v) and
(v,u), and slightly abuse notation to let m denote the number of oriented edges, so that
m =) oy dv) = 2|E|, and dag = m/n. Unless explicitly stated otherwise, when we say
“edge” we mean an oriented edge. We let d(v) denote the degree of a given vertex. We let [r]
denote the set of integers 1 through r.

55:7
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The augmented query model. We consider the augmented query model which allows for
the following queries. (1) A degree query, deg(v), returns the degree of v, d(v); (2) An i'h
neighbor query, Nbr(v,4) returns the i** neighbor of v if i < d(v), and otherwise returns
FAIL; (3) A pair query, pair(u,v), returns whether (u,v) € E; and (4) Uniform edge query
returns a uniformly distributed (oriented) edge in E.

A decomposition into odd cycles and stars. Given a motif H, the result in [3] is para-
meterized by the fractional edge cover number p(H). The fractional edge cover number
is the optimal solution to the linear programming relaxation of the integer linear program
(ILP) for the minimum edge cover of H: The ILP allows each edge to take values in {0, 1},
under the constraint that the sum of edge values incident to any vertex v is at least 1.
The LP relaxation allows values in [0, 1] instead, and p(H) is the minimum possible sum
of all the (fractional) values. In [3], the authors strengthen an existing result by Atserias,
Grohe nd Marx [4], in order to prove that there always exists an optimal solution as follows.
All of the weight (i.e., non zero edges) is supported on (the edges of) vertex-disjoint odd
cycles and stars, where each odd cycle edge has weight 1/2, and each star edge has weight 1.
Consequently, the corresponding optimal solution of the LP for a given graph H is equivalent
to a decomposition of H into a collection of vertex-disjoint odd cycles and stars, denoted
D*(H) ={O,,...,Ok,,Sp,---,Sp, }. See Figure 1 for an illustration.

Generally, the motif we aim to sample (or approximate its counts) will be denoted by H,
and the corresponding decomposition will be D(H) = {Ok,,...,O,, Sp, s -+, Sp, } = {Ci}ier
for 7 = g + £. We use a convention of using Oy, to refer to the i*" decomposition component
which is an odd cycle of size k;, and S}, to refer to the i*" star component, which is a star
with p; petals. We use o, and s, denote the number of k-cycles and p-stars in G respectively,
and we use h to denote the number of copies of H in G.

Next, we formally define the fractional edge cover of a graph (or motif), and the resulting
decomposition. We note that in this paper we will be interested in the decomposition of the
motif H, and not the graph G.

» Definition 8 (Fractional edge cover). A fractional edge cover of a graph is a function
[+ E = Rxq such that for everyv € V, 3 . f(e) > 1. We say that the cost of a given
edge cover f is Y . f(e). For any graph (motif) H, its fractional edge cover value is the
minimum cost over all of its fractional edge covers, and we denote this value by p(H). An
optimal edge-cover of H is any edge cover of H with cost p(H).

» Lemma 9 (Lemma 4 in [3]). Any graph (motif) H admits an optimal fractional edge cover
x*, whose support, denoted SUPP(x*), is a collection of vertex-disjoint odd cycles and stars,
such that:

for every odd cycle C € SUPP(x*), for every e € C, x*(e) = 1/2.

for every e € SUPP(z*) that does not belong to an odd cycle, z*(e) = 1.

» Definition 10 (Decomposition into odd-cycles and stars). Given an optimal fractional
edge-cover x* as in Lemma 9, let {Oy,, ..., Oy, } be the odd-cycles in the support of x*, and let
{Sp1s .-, Sp,} be the stars. We refer to D*(H) := {Op,,...,O,,Sp,, ..., Sp,} as an (optimal)
decomposition of H.

Given a graph (motif) H, its fractional edge cover value and an optimal decomposition
can be computed efficiently:

» Theorem 11 (Lemma 4 and Section 3 in [3]). For any graph H, its fractional edge cover
value p(H) and an optimal decomposition D*(H) can be computed in polynomial time in |H|.
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3 Overview of Our Results and Techniques

We start with describing the ideas behind our upper bound result.

3.1 An algorithm for sampling arbitrary motifs

We take the same approach as that of [23], of sampling towards estimating, but improve on
the query complexity of their bound using two ingredients. The first is an improved star
sampler, and the second is an improved sampling approach.

Improved star sampler. The algorithm of [23] tries to sample p-stars by sampling p edges
uniformly at random, and checking if they form a star (by simply checking if all p edges
agree on their first endpoint). Hence, each p-star is sampled with probability 1/m?. Our
first observation is that it is more efficient to sample a single edge (u,v) and then sample
p — 1 neighbors of v uniformly at random, by drawing (p — 1) indices 41, ..., in [d(v)]
uniformly at random, and performing neighbor queries (v, ;) for every j € [p — 1]. However,
this sampling procedure introduces biasing towards stars that are incident to lower degree
endpoints. If we were also given an upper bound d,; on the maximal degree in the graph, i.e.,
a value d,; such that d,q: < dyp, where dy,q, is the maximum degree in G, then we could
overcome the above biasing, by “unifying” all the degrees in the graph to d,;. Specifically,
this unification of degrees is achieved by querying the i*" neighbor of a vertex, where i is
chosen uniformly at random in [dys], rather than in [d(v)].” By repeating this process p — 1
times, we get that each specific copy of a p-star is sampled with equal probability W
Observe that this is always preferable to 1/mP, i.e. W > %pv since for every graph
G, dyp < m. While we are not given such a bound on the maximal degree, letting s, denote
the number of p-stars in G, it always holds that d,q; < min{n, 5117/ P1 (since every vertex
with degree d > p contributes d? to §,). Hence, we can use the existing algorithms for star
approximations by [26, 2, 17] in order to first get an estimate §, of 5,, and then use this

estimate to get an upper bound d,;, on d,,, by setting d,p = min{n, é}g/p}.

An improved sampling approach. In order to describe the second ingredient for improving
over the bounds of [23], we first recall their algorithm. In the first step, their algorithm
simultaneously attempts to sample a copy of each odd cycle and star in the decomposition of
H. Then if all individual sampling attempt succeed, the algorithm proceeds to check if the
sampled copies are connected in G in a way that is consistent with the non-decomposition
edges of H. However, it is easy to see that this approach is wasteful. Even if all but one of
the simultaneous sampling attempts of the first step succeed, the algorithm starts over. For
example, if D*(H) consists of a star and a triangle, then in the first step their algorithm
attempts to sample simultaneously a star and a triangle, and in the case that, say, a triangle
is sampled but the star sampling attempt fails, then the sampled triangle is discarded, and
the algorithm goes back to the beginning of the first step.

To remedy this, in the first step our algorithm invokes the star- and odd-cycle samplers for
every basic component in D*(H), until all samplers return an actual copy of of the requested
component. This ensures that we proceed to the next step of verifying H only once we have
actual copies of all the basic components. We then continue to check if these copies can be

7 This is effectively equivalent to rejection sampling where first v is “kept” with probability d(v)/ds, and
then a neighbor of v is sampled uniformly at random.
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extended to a copy of H in G, as before. While this is a subtle change, it is exactly what
allows us to replace the dependency in the maximum number of potential copies of the basic
components, to a dependency in the actual number of copies in G.

We note that for motifs H whose decomposition has repeating smaller sub-motifs, our
sampling approach can be used recursively, which can be more efficient. That is, instead
of decomposing H to its most basic components, stars and odd-cycles, we can consider
decomposing it to collections of more complex components. For example, if H has such a
collection Hy; C H that is repeated more than once, then it is more beneficial to first try
and sample all of the copies of H; (as well as the other components of H) and only then try
to extend these copies to H. The sampling of the H; copies can then be performed by a
recursive call to the motif sampler. It can be shown that for any repeated motif H; in the
decomposition of H, applying the recursive sampling process results in an improved upper
bound.

From sampling to estimating

In order to obtain a (1 4 ¢)-estimate of h, we can use the sampling algorithm as follows.
Consider a single sampling attempt in which we first sample all basic components of D*(H)
(at some cost @), and then preform all pair queries between the components to check if the
sampled components induce a copy of H (at cost O(|H|?)). By the above description such
an attempt succeeds with probability that depends on the counts of the basic components of
D*(H) and on the count h. Hence we can think of the success probability of each attempt
as a coin toss with bias p, where p depends only on the counts of the components and h.
By standard concentration bounds, using ©(1/(pe?)) sampling attempts, we can compute a
(1 £ €)-estimate p of p. Since we can also get (1 + €)-multiplicative estimates of the counts of
each basic component without asymptotically increasing the running time, we can deduce
from p a (1 & O(e))-estimate of h. See the full version for more details.

3.2 Decomposition-optimal lower bounds

Theorem 6 follows from Theorem 7. To prove Theorems 6 and 7, we first explain why
given Theorem 7, Theorem 6 follows. We then describe at a high level a family of graphs G
in which sampling copies of a given motif is hard.

At a high level, Theorem 7 states that given (1) a decomposition D and (2) a set of good
counts {C; };e[s], we can construct (3) a motif Hp (such that D is an optimal decomposition
of Hp) and (4) a family of graphs G such that expected number of queries required to
sampling copies of Hp in G is

max {cost(C};)
1€[r]

Ilc
e
Theorem 6 states that given (a) a decomposition D and (b) a (realizable) decomposition cost
DC, that there exists (¢) a motif Hp and (d) a family of graphs for which the decomposition-
cost of G, D and Hp is DC, and sampling copies of Hp in graphs of G requires Q(DC)
queries.

To prove that Theorem 6 follows from Theorem 7, we then prove that given (a) and (b),
ﬁci and which
is good. Since the set of counts is good, we can invoke Theorem 7, and get that there exists
a motif Hp and a family of graphs in which it is hard to sample copies of Hp. Therefore, in
the rest of the section we focus our attention on the proof of Theorem 7.

we can specify a set of counts which both satisfies DC = max;¢[,) {cost(C;)} -
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Ideas behind the proof of Theorem 7. Given a graph decomposition D, values n, m, h and
a set of counts ¢y, ..., ¢, of its basic components, our lower bound proof starts by defining a
motif Hp, and a family of graphs G such that the following holds.

The optimal decomposition of Hp is D;

For every G € G and Oy,, Sy, € D, their number of copies in G is ©(oy,) and O(s,,),
respectively;

The number of copies of H in G is O(h)

Sampling a uniformly distributed copy of Hp in a uniformly chosen G in G, requires
Q (min {m, DC}) queries in expectation.

There are several challenges in proving our lower bound. First, as they are very general
and work for any given decomposition D that contains at least one odd cycle, there are many
sub cases that need to be dealt with separately, depending on the mixture of components in
D. Second, the lower bound term does not only depend on the different counts, but also on
the relations between them, which determines the component that maximizes cost(C;). As
mentioned previously, our lower bound only holds for the case that the max cost is due to
an odd cycle component. It remains an open question whether a similar lower bound can
be proven for the case that the max cost is due to a star, or whether in that case a better
algorithm exists. The authors suspect the latter option. Third, as in most previous lower
bounds for motif sampling and counting, we prove the hardness of the task by “hiding” a
constant fraction of the copies of Hp, so that the existence of these copies depends on a
small set of crucial edges. That is, we prove that we can construct the family of graphs G,
such that for every G € G, a specific set of t crucial edges, for some small ¢ that depends
on the basic counts and h, contributes ©(h) copies of Hp . We then prove that detecting
these edges requires many queries (this is formalized by a reduction from a variant of the

SET-DISJOINTNESS communication complexity problem, based on the framework of [19]).

This approach of constructing many copies of Hp which all depend on small set of crucial
edges, leads the construction of the graphs G to contain very dense components, which in turn
causes correlations between the counts of the different components. A significant challenge is
therefore to define the motif Hp and the graphs of G in a way that satisfies all given counts
simultaneously.

In each graph G in the hard family G, we have a corresponding “gadget” to each of

the components of D. Let k; denote (one of) the maximum-cost odd-cycle components.

For each odd-cycle component Oy, for k; # ki, we define either a few-cycles-gadget or
a cycle-gadget that induce oy, odd cycles of length k; according to the relation between
k; and k;. For each star component S, we define a star-gadget that induces s,, many
pj-stars. The maximum-cost cycle component Oy, has a different gadget, a CC-gadget. This
gadget is used to hide the set of ¢ crucial edges, and allows us to parameterize the complexity
in terms of the cost cost{Oy, }.

To formally prove the lower bound we make use the framework introduced in [19], which
uses reductions from communication complexity problems to motif sampling and counting
problems in order to prove hardness results of these latter tasks. This allows us to prove
that one cannot, with high probability, witness an edge from the set of ¢ hidden edges, unless
Q(m/t) queries are performed. This in turn implies that one cannot, with high probability,
witness a copy of Hp contributed by these edges. Hence, we obtain a lower of Q(m/t) for the
task of outputting a uniformly sampling. Setting ¢ appropriately gives the desired bound.
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4 Upper Bounds for Sampling Arbitrary Motifs

In this section we present our improved sampling algorithm. Recall that our upper bound
improvement has two ingredients, an improved star sampler, and an improved sampling
approach. We start with presenting the improved star sampling algorithm.

4.1 An optimal (£,) star-sampler

Our star sampling procedure assumes that it gets as a parameter a value §, which is a
constant-factor estimate of §,. This value can be obtained by invoking one of the star
estimation algorithm of [2, 17].

» Lemma 12 ([2], Theorem 1). Given query access to a graph G and an approximation
parameter €, there exists an algorithm, Moment-Estimator, that returns a value §,, such that
with probability at least 2/3, &, € [8p,28,]. The expected query complexity and running time

. . mnP~l m
0] (mln{m,mln{ s ’s}/”} - loglog n})

Given an estimate §, on §,, our algorithm sets an upper bound® d,; on the maximal
degree, d,, = min{n,§,}. It then tries to sample a copy of a p-star as follows. In each
sampling attempt it samples a single edge (vg, v1), and then performs p — 1 neighbor queries
nbr(vy, i;) for j = 2...p, where each i; is chosen independently and uniformly at random from
[dup]. In order to ensure that the sampled neighbors are distinct, and to avoid multiplicity

issues, a p-star is returned only if its petals are sampled in ascending order of ids. In every
1

.drTte
m-d,

such sampling attempt, each specific p-star is therefore sampled with equal probability

. . dryt . . . —_—
Hence, invoking the above mgiub times, in expectation, returns a uniformly distributed copy
p

of a p-star.

Sample-a-Star(p, n, §,)

1. Let dyp = min{n, (c,-8,)"/?} for a value ¢, as specified in the proof of Theorem 1.

2. While TRUE:
a. Perform a uniform edge query, an denote the returned edge (vg, v1).
b. Choose p—1 indices g, . . ., i, uniformly at random in [d,;] (with replacement).

c. For every j € [2..p], query the i;-h neighbor of vg. Let vg,...,v, be the
returned vertices, if all queries returned a neighbor. Otherwise break.
d. If id(ve) < id(v2) < ... < id(vp), then return (vo,v1,...,vp).

» Theorem 13. Assume that 8, € [, c-8,] for some small constants c. The procedure Sample-
a-Star(p, §,) returns a uniformly distributed p-star in G. The expected query complexity of

. : mnP~l  m
the procedure is O (mm{ S })

Proof. Let ¢, denote the minimal value such that for every k € [n], ¢, - (];) > kP (note that
¢, = O(p!)). Then 5, = > v (d(;)) > (d";z) > dP ../, and by the assumption on §,,

Amaz < (cp - 8p)P < (¢, - 8,)'/P. Tt follows by the setting of d,j, = min{n, (c, - 8,)*/P} in
Step 1, that dyp > dnas-

8 Observe that dmaz iS dmaes = Mmaxy d(v), while dys is simply a bound on dmas, S0 that dmaz < duys.
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Consider a specific copy Sp = (ag,a1,-..,ap) of a p-star in G, where ag is the star center
and a; through a, are its petals in ascending id order. In each iteration of the while loop,
the probability that S, is returned is

Pr[S, is returned] = Pr[(ag, a;) is sampled in Step 2a]
- Prfas, ..., a, are sampled in Step 2b]

=3 (2)

1
m dP

ub

Note the the last equality crucially depends on d(v) < dpar < dyp for all v € V. (Indeed, if
there exists a vertex v with degree d(v) > d3, then some of its incident stars will have zero
probability of being sampled.) Hence, each copy is sampled with equal probability, implying
that the procedure returns a uniformly distributed copy of a p-star.

We now turn to bound the expected query complexity. It follows from Equation 2 and

the setting of ds, that the success probability of a single invocation of the while loop is
_ .gp—1

#. Hence, the expected number of invocations is %. It follows that, for a constant
. wb P

p, the expected number of invocations is

o™ min{n, (c, - §,)/P}P~1 O wind ™ nP~t m
5p s g7 f)
p

Since the query complexity and running time of a single invocation of the while loop are
constant, the above is also a bound on the expected query complexity and running time of
the while loop. <

In the full version of this paper, we explain how algorithm Sample-a-Star can be slightly
modified to produce an ¢,-sampler, Sublinear-£,-Sampler as specified in Theorem 2.

4.2 General motif sampler

Our algorithm for sampling uniform copies of a motif H in a graph G relies on the above
star sampler, and the odd cycle sampler of [23].

» Lemma 14 (Lemma 3.3 in [23], restated). There exists a procedure that, given a parameter
k and an estimate 1 € [m,2m] , samples each specific copy of an odd cycle of length k with
probability 1/m*/2.

It follows that by repeatedly invoking the procedure above until an odd cycle is returned
we can get an odd cycle sampling algorithm.

» Corollary 15. There exists a procedure, Sample-Odd-Cycle, that, given an estimate 1 €
[m, 2m], returns a uniformly distributed copy of an odd cycle of length k. The expected query

77Lk/2
Ok

complezity is O (min {mlog n,n+m, }), where oy, denotes the number of odd cycles

of length k in G.
We also use the following algorithm from [25] to obtain an estimate of m.

» Theorem 16 ( [25], Theorem 1, restated). There exists an algorithm that, given query
access to a graph G, the number of vertices n, and a parameter €, returns a value m, such
that with probability at least 2/3, m € [m, (1 + €)m]. The expected query complezity and
running time of the algorithm is O(n//m) - (loglog n/e?).
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Our motif sampling algorithm invokes the star-sampler and odd-cycles-sampler for each
of the star and odd-cycles components in D*(H), respectively. Once actual copies of all the
components are sampled, it checks whether they form a copy of H in G, using O(|H|?) = O(1)
additional pair queries.

Sample-H (H,n)
1. Compute a 2-factor estimate /M of m by invoking the algorithm of [25] with

e = 1/2 for 10logn times, and letting /M be the median of the returned values.
2. Compute an optimal decomposition of H, D*(H) = {Ok,,..., Ok, Sp,, ..., Sp, }.

3. For every Sp, in D, invoke algorithm Moment-Estimator with e = 1/2 and r = p;
for ¢ = 10log(n - £) times to get ¢ estimates of 5p,. Let §,, be the median value
among the ¢ received estimates of each S),.

4. While True:

a. For every i € [q] do:
i. Invoke Sample-Odd-Cycle(k;, ), and let O; be the returned odd cycle.

b. For every i € [¢] do:
i. Invoke Sample-a-Star(p;, n, 8,,), and let S; be the returned s;-star.

c. Perform O(|H|?) pair queries to verify whether the set of components
{O1,...,04,81,...,S¢} can be extended to a copy of H in G.

d. If a copy of H is discovered, then return it.

e. If the number of queries performed exceeds n + 1, then query all edges of
the graph® and output a uniformly distributed copy of H.

¢ by either performing n + 2m degree and neighbor queries, or 10m logn uniform edge queries

We are now ready to prove our main upper bound theorem, which we recall here.

» Theorem 17. Let G be a graph over n vertices and m edges, and let H be a motif such
that D*(H) = {Og,, .-+, Ok, Spy» .-+, Sp, } = {Ci}tier). There exists an algorithm, Sample-H
that returns a copy of H in G. With probability at least 1 — 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {DECOMP-CcOST(G, H,D*(H)), m}) - logn loglog n.

Proof. By Theorem 16, when invoked with a value e = 1/2, the edge estimation algorithm
of [25] returns a value 7 such that, with probability at least 2/3, m € [m,1.5m]. Hence,
with probability at least 1 — 1/3n2, the median value 1 of the 10logn invocations is such
that 7 € [m, 1.5m]. We henceforth condition on this event.

We next prove that with probability at least 1 — 1/3n?, all the computed §p, values are
good estimates of §,,. By Lemma 12, for a fixed p;, with probability at least 2/3, the value
returned from Moment-Estimator is in [§,,,1.5 - §,,]. Therefore, the probability that the
median value of the ¢ = 10log(nf) invocations in Step 3 is outside this range is at most
1/(3¢n?). Hence, taking a union bound over all i € [¢], with probability at least 1 — 1/3n?,
for every i € [€], &, € [Sp, 1.5 - §p]. We henceforth condition on this event as well.

Fix a copy H' of H in G, and let O1, ..., Oy, 51, ..., S be its cycles and stars, corresponding
to those of D*(H). By Corollary 15, for each O, its probability of being returned in Step 4(a)i
is 1/0g,. Similarly, by Lemma 1, for each S, its probability of being returned in Step 4(b)i is
1/8p,. Therefore, in the case that the number of queries does not exceed 77, in every iteration
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of the loop, each specific copy of H is returned with equal probability Hf_lak,}Hf_lépi‘ 9
Hence, once a copy of H is returned, it is uniformly distributed in G. In the case that the
number of queries exceeds m, the algorithm either performs n + 2m queries to query all
the neighbors of all vertices, or 10m logn queries, in order to discover all edges with high
probability. In the former case, the entire graph G is known. In the latter case, by the
coupon collector analysis, the probability that all edges are known at the end of the process
is at least 1 —1/3n%. Hence, with probability at least 1 —1/3n2, at the end of this process, a
uniformly distributed copy of H is returned.

It remains to bound the query complexity. By Lemma 12, Step 3 takes Zpit .

min { m'g:i_l , _1’71%} -log n log log n queries in expectation. By the above discussion, it holds
7 Spi

7 5 L 3
10k, i1 Sp,

that the expected number of invocations of the while loop is —='—- . Furthermore, by

Lemma 1, the expected query complexity of sampling each S, is min { m';‘:f'71 , Sf/”p} By

°k‘7:

Lemma 15, the expected running time of each invocation of the k;-cycle sampler is O (mfw2 )

The complexity of Step 4c is O(|H|?) = O(1) queries, and is subsumed by the complexity of
the other steps. Hence, the expected cost of each invocation of the while loop is

mFi/2 ) m  m-nPi—1 mki/? ) m m-nP1
max — +max { min e = = max — +min i s (0
i€[q] Ok; i€e] sp Sp; i€[q] Ok, sp? Sp

where the equality holds since the maximum of the second term is always achieved by the
largest star in the decomposition, S,. Also, due to Step 4e and the assumption on 7, the
query complexity of algorithm is always bounded by O(min{mlogn,n+ m}). Therefore, the
overall expected query complexity is the minimum between O(min{mlogn,n + m}) and

ki/2 .pp—1 11 Ci
(0] max{m }+min %,? -logn loglog n Hli
iclg) | Ok, Sp sL/P h

=0 <min {mz[au]( {cost(C;)} - Hﬁci , m} -log n log log n>
1e(r

= O (min {PECOMP-COST(G, H, D*(H)), m,n} - logn loglog n),

as claimed. <
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A Related Work

We note that some of the works were mentioned before, but we repeat them here for the sake
of completeness. Over the past decade, there has been a growing body of work investigating
the questions of approximately counting and sampling motifs in sublinear time. These
questions were considered for various motifs H, classes of G, and query models.

The study of sublinear time estimation of motif counts was initiated by the works of
Feige [22] and of Goldreich and Ron [25] on approximating the average degree in general
graphs. Feige [22] investigated the problem of estimating the average degree of a graph,
denoted dayg, when given query access to the degrees of the vertices. By performing a careful

variance analysis, Feige proved that O <\ /1) davg/ e) queries are sufficient in order to obtain

a (% — €)-approximation of dag. He also proved that a better approximation ratio cannot be
achieved in sublinear time using only degree queries. The same problem was then considered

by Goldreich and Ron [25]. Goldreich and Ron proved that an (1 + €)-approximation can be
achieved with O (\ /n/ dm,g) -poly(1/e,logn) queries, if neighbor queries are also allowed.

Building on these ideas, Gonen et al. [26] considered the problem of approximating the
number of s-stars in a graph. Their algorithm only assumed neighbor and degree queries. In
[2], Aliakbarpour, Biswas, Gouleakis, Peebles, and Rubinfeld and Yodpinyanee considered the
same problem of estimating the number of s-stars in the augmented edqu queries model, which
allowed them to circumvent the lower bounds of [26] for this problem. In [17], Eden, Ron and
Seshadhari again considered this problem, and presented improved bound for the case where
the graph G has bounded arboricity. In [13, 16, 18], Eden, Ron and Seshadhri considered the
problems of estimating the number of k-cliques in general and in bounded arboricity graphs,
in the general graph query model, and gave matching upper and lower bounds. In [40], Tétek
considers both the general and the augmented query models for approximately counting
triangles in the super-linear regime. In [19], Eden and Rosenbaum presented a framework
for proving motif counting lower bounds using reduction from communication complexity,
which allowed them to reprove the lower bounds for all of the variants listed above.

In [20, 14], Eden and Rosenbaum and Ron has initiated the study of sampling motifs
(almost) uniformly at random. They considered the general graph query model, and presented
upper and matching lower bounds up to poly(log n/1/e) factors, for the task of sampling edges
almost uniformly at random, both for general graphs and bounded arboricity graphs. Recently,
Tétek and Thorup [37] presented an improved analysis which reduced the dependency in


http://arxiv.org/abs/2104.08501
https://doi.org/10.1016/j.ipl.2008.10.014

A.S. Biswas, T. Eden, and R. Rubinfeld

€ to log(1/€). This result implies that for all practical applications, the edge sampler is
essentially as good as a truly uniform sampler. They also proved that given access to what
they refer to as hash-based neighbor queries, there exists an algorithm that samples from the

exact uniform distribution. The authors of [14] also raised the question of approximating vs.

sampling complexity, and gave preliminary results that there exists motifs H (triangles) and
classes of graphs G (bounded arboricity graphs) in which approximating the number of H’s
is strictly easier than sampling an almost uniformly distributed copy of H. This question was
very recently resolved by them, proving a separation for the tasks of counting and uniformly
sampling cliques in bounded arboricity graphs [15].

A significant result was achieved recently, when Assadi, Kapralov and Khanna gave an
algorithm for approximately counting the number of copies of any given general H, in the
edge queries augmented query model. They also gave a matching lower bound for the case
that H is an odd cycle. Fichtenberger, Gao and Peng presented a cleaner algorithm with a
mich simplified analysis for the same problem, that also returns a uniformly distributed copy
of H.

Another query model was suggested recently by Beame et al. [6], which assumes access
to only independent set (IS) queries or bipartite independent set (BIS) queries . Inspired
by group testing, IS queries allow to ask whether a given set A is an independent set, and

BIS queries allow to ask whether two sets A and B have at least one edge between them.

In this model they considered the problem of estimating the average degree and gave an

O(n?/3) - poly(logn) algorithm using IS queries, and poly(log n) algorithm using BIS queries.

Chen, Levi and Waingarten [10] later improved the first bound to O(n/+/m) - poly(logn)
and also proved it to be optimal.
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