Hitting Sets for Orbits of Circuit Classes and
Polynomial Families
Chandan Saha &

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Bhargav Thankey =&

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

—— Abstract

The orbit of an n-variate polynomial f(x) over a field F is the set { f(Ax+b) : A € GL(n,F) and b €
F"}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials
computable by several natural and well-studied circuit classes and polynomial families. In particular,

we give quasi-polynomial time hitting sets for the orbits of:

1. Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-
polynomial time hitting sets for the orbits of the elementary symmetric polynomials.

2. Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial
time hitting set for the orbits of the family {IMMs3 4}4en, which is complete for arithmetic
formulas.

3. Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-
polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top
fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the
sum-product polynomials.

4. Polynomials computable by occur-once formulas.
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1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in arithmetic circuit complexity.
PIT is the problem of deciding if a given arithmetic circuit computes an identically zero
polynomial. It is one of the few natural problems in BPP (in fact, in co-RP) for which we
do not know of deterministic polynomial-time algorithms. A probabilistic polynomial-time
algorithm for PIT follows from the DeMillo-Lipton-Schwartz—Zippel lemma [15,71,78]. PIT
has connections to other interesting problems like perfect matching [19,41,49,53,75], the
linear matroid intersection [33,55], and the maximum rank matrix completion [33,54]. The
deterministic primality testing algorithm in [4] derandomizes a particular instance of PIT over
a ring [2]. Also, multivariate polynomial factorization for general circuits can be efficiently
reduced to PIT and factoring univariate polynomials [37,38,48]. Moreover, derandomizing
PIT or the black-box version of PIT! is essentially equivalent to proving arithmetic circuit
lower bounds.

! An algorithm for the black-box PIT problem takes as input black-box access to a circuit. The algorithm
cannot “see” the circuit but can query it at any point [1,34,36,57]. The black-box PIT problem for a
circuit class C is also known as the problem of constructing hitting sets for C
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In the past two decades, PIT algorithms and hitting set constructions have been studied
for various restricted classes/models of circuits. Bounding the read of every variable is a
natural restriction that has received a lot of attention. Two constant-read models, viz. read-
once oblivious algebraic branching programs (ROABPs) and constant-read (more generally,
constant-occur) formulas. These models are quiet powerful and capture many interesting
circuit classes. A polynomial-time PIT algorithm and a quasi-polynomial time hitting
set construction for ROABPs are known [3,23,61]. A quasi-polynomial time hitting set
construction for multilinear constant-read formulas was given by [10]. [5] obtained polynomial-
time constructible hitting sets for constant-depth, constant-occur formulas.

Hitting sets for orbits. In this paper, we study hitting set constructions for the orbits of
ROABPs and constant-occur formulas. The orbit of a polynomial f is the set of polynomials
obtained by applying invertible affine transformations on the variables of f, i.e., by replacing
the variables of f with linearly independent affine forms. The orbit of a circuit class is the
union of the orbits of the polynomials computable by the circuits in the class. Our reasons
for studying hitting sets for the orbits of ROABPs and constant-occur formulas are threefold:

1. The power of orbit closures: The set of affine projections of an n-variate polynomial
f(x) over a field F is aproj(f) := {f(Ax+b) : A € F"*" and b € F"}; the orbit of
f is the set orb(f) = {f(Ax+Db) : A € GL(n,F) and b € F"} C aproj(f). Affine
projections of polynomials computable by polynomial-size ROABPs or constant-occur
formulas have great expressive power. All polynomials computed by algebraic branching
programs and arithmetic formuals are affine projections of polynomial width ROABPs
and constant ROABPs, respectively. Similarly, all polynomials computed by depth-3
arithmetic circuits (which are quiet powerful [7,30,46,76,77]) and arithmetic formulas are
affine projections of read once formulas. The orbit of f being a mathematically interesting
subset of aproj(f), it is natural to ask if we can construct efficient hitting sets for the
orbits of the above-mentioned circuit classes. Moreover, orb(f) is not “much smaller’
than aproj(f), as the latter is contained in the orbit closure of f if char(F) = 0 (see the
full version [64] for more details).

)

2. Geometry of the circuit classes: Consider an n-variate polynomial f € R[x] and let V(f)
be the variety (i.e., the zero locus) of f. The geometry of V(f) is preserved by any
rigid transformation on R™. Computation of a set H C R™ that is not contained in
T(V(f)), for every rigid transformation T, would have to be “mindful” of the geometry
of V(f) and oblivious to the choice of the coordinate system. Computing such an H is
exactly the problem of constructing a hitting set for the polynomials { f(Rx+b) : R €
O(n,R) and b € R"}. We can generalize the problem slightly by replacing R € O(n,R)
with A € GL(n,R). A hitting set for ROABPs or constant-occur formulas does not
immediately give a hitting set for {f(Ax+b) : A € GL(n,R) and b € R"}, as the
definitions of an ROABP and a constant-occur formula are tied to the choice of the
coordinate system. It is thus natural to ask if there is anything special about the geometry
of V(f) which can facilitate efficient constructions of hitting sets for orb(f).

3. Strengthening existing techniques: Finally, it is worth investigating whether the techniques
used to design hitting sets for ROABPs and constant-occur formulas can be applied or
strengthened or combined to give hitting sets for the orbits of these circuit classes.
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1.1 The models

Unless otherwise stated, we will assume that polynomials are over a field F. Read Once
Algebraic Branching Programs (ROABPs) are the read once versions of Algebraic Branching
Programs defined by Nisan [56]. While Nisan defined ABPs using directed graphs, we use
the following equivalent and conventional definition of an ROABP.

» Definition 1 (ROABP [23]). An n-variate, width-w read-once oblivious algebraic branching
program (ROABP) is a product of the form 17 - My (xy)Ms(x2) - - M, (x,) - 1, where 1 is
the w x 1 vector of all ones, and for every i € [n], M;(x;) is a w X w matriz whose entries
are in Flz;].

» Definition 2 (Commutative ROABP). An n-variate, width-w commutative ROABP is an
n-variate, width-w ROABP 17 . My (x1)Ma(xs) - -+ My (xy,) -1, where for alli,j € [n], M;(x;)
and M;(z;) commute with each other.

A polynomial f is s-sparse if it has at most s monomials with non-zero coefficients; these
monomials will be referred to as the monomials of f. A degree-d s-sparse polynomial can be
computed by a depth-2 circuit of size sd as well as by a width-s commutative ROABP.

» Definition 3 (Occur-k formula [5]). An occur-k formula is a rooted tree whose leaves are
labelled by s-sparse polynomials and whose internal nodes are sum (+) gates or product-power
(XX ) gates. FEach variable appears in at most k of the sparse polynomials that label the
leaves. The edges feeding into a + gate are labelled by field elements and have 1 as edge
weights, whereas the edges feeding into a XA gate have natural numbers as edge weights. A
leaf node computes the s-sparse polynomial that labels it. A + gate with inputs from nodes
that compute fy, ..., fm and with the corresponding input edge labels oy, ..., ap,, computes
arfi+ -+ amfm. A XA gate with inputs from nodes that compute f1, ..., fm and with the
corresponding input edge weights e1, ..., em,, computes fi*--- fem. The formula computes the
polynomial that is computed by the root node.

The size of an occur-k formula is the weighted sum of all the edges in it (i.e., an edge is
counted as many times as its edge weight) plus the sizes of the depth-2 circuits computing the
s-sparse polynomials at the leaves. The depth of an occur-k formula is equal to the depth
of the underlying tree plus 2, to account for the depth of the circuits computing the sparse
polynomials at the leaves.

Read-k formulas have been studied intensely in the literature (see Section 1.4). Occur-k
formulas generalize read-k formulas in two ways — the leaves are labelled by arbitrary sparse
polynomials instead of just variables, and powering gates are included along with the usual
sum and product gates. These generalizations help make the occur-k model complete 2, and
capture other interesting circuit classes (such as multilinear depth-4 circuits with constant top
fan-in [39,65]) and polynomial families (such as the power symmetric polynomials). Besides,
unlike some prior work [10,39,65], there is no restriction of multilinearity on the model. We

will identify the variable set x = {x1,...,2,} with the column vector (z; o --- x,)%.

» Definition 4 (Orbits of polynomials). Let f(x) be an n-variate polynomial over a field F.
The orbit of f, denoted by orb(f), is the set {f(Ax) : A € GL(n,F)}. The orbit of a set of
polynomials C, denoted by orb(C), is the union of the orbits of the polynomials in C.

2 For example, the power symmetric polynomial 27 + ... + 2 cannot be computed by a read-k formula
for any k < n, but it can be computed by an occur-once formula.

50:3

APPROX/RANDOM 2021



50:4

Hitting Sets for Orbits of Circuit Classes and Polynomial Families

The results we present in this paper hold even if we define the orbit of an n-variate polynomial
fasorb(f) ={f(Ay+Db) : |y|=m >n, A e F"™ has rank n, and b € F"}. However,
we work with this slightly conventional definition of orb(f) for simplicity of exposition, and
because the proofs in the general setting are nearly the same as the proofs we present here.
By the “orbit of a circuit class C”, we mean the union of the orbits of the polynomials
computable by the circuits in the class C. Our main results are efficient constructions of
hitting sets for the orbits of commutative ROABPs and constant-width ROABPs (under low
individual degree restriction), and the orbits of constant-depth constant-occur formulas and
occur-once formulas.

1.2 Our results

» Definition 5 (Hitting set). Let C be a set of n-variate polynomials. A set of points H C F™
is a hitting set for C if for every non-zero f € C, there is a point a € H such that f(a) # 0.

By a “T-time hitting set”, we mean that the hitting set can be computed in T" time. The
individual degree of a monomial is the largest of the exponents of the variables that appear
in it. The individual degree of a polynomial is the largest of the individual degrees of its
monomials. We are now ready to state our results.

» Theorem 6 (Hitting sets for the orbits of commutative ROABPs with low individual degree).
Let C be the set of n-variate polynomials with individual degree at most d that are computable
by width-w commutative ROABPs. If |F| > n%d, then a hitting set for orb(C) can be computed
in (nd)C(@1°8w) time,

We say an n-variate polynomial f(x1,a,...,2,) can be expressed as a sum of s products
of univariates if f = >_,c [1;ep fii(25), where each f; ;(z;) is a univariate polynomial in
x;. This model is subsumed by commutative ROABPs and has found important applications
in several other works [30,63,66]. The above theorem implies a nd©(@19g5) time hitting set
for this model. As the elementary symmetric polynomials and low individual degree sparse
polynomials are special cases of low individual degree sum of products of univariates, we
also get quasi-polynomial hitting sets for these models. It turns out though that for the
particular case of sparse polynomials it is possible to remove the individual degree restriction
from the above theorem. This is due to an independent and simultaneous work by [51]. We
state their result next.

» Theorem 7 (Hitting sets for the orbits of sparse polynomials [51]). Let C be the set of
n-variate, s-sparse polynomials of degree at most d. If |F| > nd and char(F) =0 or > d,

then a hitting set for orb(C) can be computed in (nd)°1°8%) time.

The above theorem plays a basic role in the proofs of Theorem 9 and Theorem 10. There,
we apply the algebraic independence based analysis from [5,11] and the Shpilka-Volkovich
(SV) generator based argument from [73], respectively, to reduce to the case of constructing
hitting sets for the orbits of sparse polynomials. While in the original version of our work [64]
we applied Theorem 6 in the base case of the proofs of Theorem 9 and 10, here we plug-in
Theorem 7 in the base case. This helps us forgo the low individual degree restriction that
was present in these theorems in the original version.

» Theorem 8 (Hitting sets for the orbits of multilinear constant-width ROABPs). Let C be
the set of n-variate multilinear polynomials that are computable by width-w ROABPs. If

|F| > no(w4), then a hitting set for orb(C) can be computed in nO(w1ogn) fime.
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The theorem gives a quasi-polynomial time hitting set for orb(IMMj3 4), which is complete
for the class of arithmetic formulas under affine projections (in fact, under p-projections)
[12]. The set of affine projections of IMMg 4 is also quite rich, despite the fact that there
are simple quadratic polynomials that are not in aproj(IMMg 4) for any d [8,62]. This is
because hitting sets for aproj(IMMs 4) give hitting sets for depth-3 circuits [62]. Moreover,
orb(IMMg 4) captures the orbit closures of arithmetic formulas [13]. The above theorem
implies a quasi-polynomial time hitting set for orb(IMMg 4).

» Theorem 9 (Hitting sets for the orbits of constant-depth, constant-occur formulas). Let
C be the set of n-variate, degree-D polynomials that are computable by depth-A, occur-k
formulas of size s. Let R := (Zk)QA'QA, If char(F) =0 or > (ka)ABR, then a hitting set for
orb(C) can be computed in (nRD)C(Rlog Rt Alogh+Alogs)+AR) time  [f the leaves are labelled
by b-variate polynomials, then a hitting set for orb(C) can be computed in (nRD)CFb+AR)
time. In particular, if A and k are constants, then the hitting sets can be constructed in time
(nD)PU°83) gnd (nD)°®), respectively.

The above theorem gives quasi-polynomial hitting sets for the orbits of two other in-
teresting models viz. multilinear depth-4 circuits with constant top fan-in and the class of
polynomials C(f1,..., fm), where C is a low-degree circuit and f1,..., f,, are sparse poly-
nomials with bounded transcendence degree [11]. The theorem also yields polynomial-time
hitting sets for the orbits of the power symmetric polynomial and the sum-product polynomial
SP,.p = Zie[n] Hje[D] x; ;. Prior to our work, [47] gave a polynomial-time hitting set for
the orbit of power symmetric polynomials using a different argument.

» Theorem 10 (Hitting sets for the orbits of occur-once formulas). Let C be the set of n-variate,
degree-D polynomials that are computable by occur-once formulas whose leaves are labelled
by s-sparse polynomials. If |F| > nD and char(F) =0 or > D, then a hitting set for orb(C)
can be computed in (nD)PU1E"+1025) time  If the leaves are labelled by b-variate polynomials,

then a hitting set for orb(C) can be computed in (nD)CU1°e"+0) time,

The independent and concurrent work [51] gave (among other results) a quasi-polynomial
time hitting set for the orbits of read-once formulas. We note that this result also follows
from the second part of the above theorem which is already present in the original version of
this work [64]. The proofs of Theorems 9 and 10 can be found in the full version [64].

1.3 Proof techniques

Let us briefly discuss the techniques that go into proving the above results.

Commutative ROABPs with low individual degree. Theorem 6 is proved by adapting the
rank concentration by translation technique of [6] to work for the orbits of commutative
ROABPs. Let f = 17 . My (x1)Ma(x3) -+ M, (z,) - 1 be a commutative ROABP and
F = My(z1)Ms(x2)--- My(x,). For any A € GL(n,F), let ¢ = f(Ax) and G = F(Ax).
Suppose that A maps z; to a linear form ¢;(x) for every i € [n], and let y; = ¢;(x). Then,
g =17 My(y1)Ma(y2) -+ My (yn) - 1 and G = My (y1)Ma(ya) - My, (yn). We show that
if g # 0, then there exist explicit “low” degree polynomials t1(z),...,t,(z), where z is
a “small” set of variables, such that g(z1 + t1(2),...,z, + t,(2)) has a “low” support
monomial. This is done by proving that G(z1 +t1(z),. .., 2, + t,(2z)) has low support rank
concentration over F(z) in the “y-variables” (see Section 2.2 for the meaning of low support
rank concentration.). That done, we use the assumption that f has low individual degree to
argue that g(z1 + t1(2z), ..., 2, + t,(2z)) also has a low support x-monomial. This and the
fact that |z| is small imply that g(z1 + t1(2),..., T, + t,(2z)), when viewed as a polynomial
in F[x, z], has a low support monomial. Finally, we use the SV generator to hit g.
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Our analysis differs from that in [6] at a crucial point: In [6], it was shown that
F(x+t) = My(x1 + t1)Ma(za + t2) - - - My (zy, + t,) has low support rank concentration
over F(t) if the nonzeroness of every polynomial in a certain collection of polynomials —
each in a “small” set of t-variables — is preserved. As each polynomial in the collection
has “few” t-variables, a substitution ¢; + ¢;(z) that preserves its nonzeroness is relatively
easy to construct. But the collection of polynomials that we need to preserve to show low
support rank concentration for G(x + t) is such that every polynomial in the collection has
potentially all the t-variables. However, we are able to argue that each of these polynomials
still has a low support t-monomial. This then helps us construct a substitution ¢; — ¢;(z)
that preserves the nonzeroness of these polynomials.

Multilinear constant-width ROABPs. Theorem 8 is proved by combining the rank con-
centration by translation technique of [6] with the merge-and-reduce idea from [23] and
[21]. Let f = 1T . My (z1)Ma(x2) - - - M, (7,) - 1 be a multilinear, width-w ROABP; here
M;(z;) € F*%[x,] for all i € [n]. Also, let F = M;(x1)Ma(z2) -+ M,(x,). For any
A € GL(n,F), let ¢ = f(Ax) and G = F(Ax). For i € [n], suppose that A maps
x; — £i(x), where ¢; is a linear form, and let y; = ¢;(x) and y = {y1,...,yn}. Then,
g = 17 - My(y1)Ma(y2) -+ Mu(yn) - 1 and G = Mi(y1)Ma(y2) - - My (y). Much like
in the case of commutative ROABPs, we show that if g # 0, then there exist explicit
“low” degree polynomials ¢1(z),...,t,(z), where z is a “small” set of variables such that
G(z1 + t1(2),...,zn + tn(2z)) has “low” support rank concentration in the “y-variables”.
While in the rank concentration argument for commutative ROABPs the x-variables were
translated only once, here the translations can be thought of as happening sequentially and
in stages. There will be [logn] stages with each stage also consisting of multiple translations.
After the p-th stage, the product of any 2P consecutive matrices in G will have low support
rank concentration in the y-variables. Thus, after [logn] stages, we will have low support
rank concentration in the y-variables for G(z1 + t1(2), ..., z, + tn(2)).

As in the case of commutative ROABPs, we show that G(x + t) has low support
rank concentration if each polynomial in a certain collection of non-zero polynomials in the
t-variables is kept non-zero by the substitution ¢; — ¢;(z). However, in this case, it is trickier
to show that these polynomials have low support t-monomials. We do this by arguing that
each such polynomial can be expressed as a ratio of a polynomial that contains a low support
t-monomial and a product of linear forms in the t-variables.

Constant-depth, constant-occur formulas. We prove Theorem 9 by combining the algebraic
independence based technique in [5] with Theorem 7. Let f be a constant-depth, constant-
occur formula. We first show that it can be assumed without loss of generality that the
top-most gate of f is a 4+ gate whose fan-in is upper bounded by the occur of f, say k. In
[5], they were able to upper bound the top fan-in by simply translating a variable by 1 and
subtracting the original formula. However, the same idea does not quite work here, because
we have only access to a polynomial in the orbit of f. To upper bound the top fan-in, we
show that there exists a variable z; such that % is a constant-depth, constant-occur formula
with top fan-in bounded by k. Then, using the chain rule of differentiation, we show that one

can construct a hitting set generator for orb(f) from a generator for orb (%); this means

that we can shift our attention to f' = %, which we shall henceforth refer to as f.

Let f=fi+ -+ fr, A€ GL(n,fF), g = f(Ax), g = g1 + ... + gr where for all
i € [k], gi = fi(Ax). It was shown in [5] that a homomorphism, which is faithful (see
Definition 17) to f1,..., fk, is a hitting set generator for f. In our case, this translates to ‘a
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homomorphism that is faithful to g1, ..., gx is a hitting set generator for g . [5] also showed
that the problem of constructing a homomorphism ¢ that is faithful to f1,..., fx reduces to
constructing a homomorphism v that preserves the determinant of a certain matrix. This
matrix is an appropriate sub-matrix of the Jacobian of fi,..., fir. Also, it was argued that
its determinant is a product of sparse polynomials and so ¢ was obtained from [45]. We use
a similar argument, along with the chain rule, to show that the problem of constructing a
homomorphism ¢ that is faithful to g1, ..., g reduces to constructing a homomorphism 1)
that preserves the determinant of a sub-matrix of the same Jacobian evaluated at Ax. As
this determinant is a product of polynomials in the orbit of sparse polynomials, we can use
Theorem 7 to construct such a .

Occur-once formulas. We prove Theorem 10 by building upon the arguments in [73] and
linking it with Theorem 7. At first, we show two structural results for occur-once formulas.
These lemmas are generalizations of similar structural results for read-once formulas shown
in [73]. Much like in [73], the structural results help us show that for a “typical” occur-once
formula f with a + gate as the root node, there exists a variable x; such that % is a product
of occur-once formulas, each of which has at most half as many non-constant leaves as f.
We then use this fact to show that a hitting-set generator for orb(f) can be constructed

from a generator for orb (5%) [73] uses the derivatives of f in a similar way to show that a

generator for f can be constructed from that for % using the SV generator (see Definition

12). However, in our case, we want a generator for orb(f) and not just for f. For this reason,
we first use the chain rule for derivatives to relate the gradient of a g € orb(f) with that of f,

and then argue that there exists a x; such that a generator for orb (%) is also a generator

for %gj. Finally, we use this generator for 8‘97‘%_ to construct a generator for g. The argument
then proceeds by induction on the number of non-constant leaves. In the base case, we need
a hitting set generator for orbits of sparse polynomials which we get from Theorem 7.

1.4 Related work

We give a brief account of known results on PIT and hitting sets for arithmetic circuits.
The results on hitting sets for the constant-read models are most relevant to our work here.
However, for the sake of completeness, we mention a few other prominent results.

Constant-read models. [73] gave a polynomial-time PIT algorithm and a quasi-polynomial
time hitting set construction for sums of constantly many preprocessed read-once formulas
(PROFs). [52] later gave a polynomial time hitting set for the same model. [10] gave
a quasi-polynomial time hitting set construction for multilinear sparse-substituted read-k
formulas, wherein the leaves are replaced by sparse polynomials and every variable appears
in at most k of the sparse polynomials. Observe that the models studied in all three works
are special cases of constant occur formulas.

A polynomial-time PIT for ROABPs follows from the PIT algorithm for non-
commutative formulas [61]. [23] gave quasi-polynomial time hitting sets for ROABPs,
when the order of the variables is known. Building on the rank concentration by translation
technique from [6] and the merge-and-reduce idea from [23], [21] gave a quasi-polynomial
time hitting set construction for low individual degree ROABPs. Finally, [3] obtained a
quasi-polynomial time constructible hitting set for ROABPs using a different and simpler
method, namely basis isolation, which can be thought of as a generalization of the monomial
isolation method in [45]. [32] designed hitting sets for sums of constantly many ROABPs
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in quasi-polynomial time; they also gave a polynomial-time PIT algorithm for the same
model. Recently, more efficient constructions of hitting sets for ROABPs have been ob-
tained [27], sometimes under additional restrictions on the model such as commutativity
and constant-width [31]. For read-k oblivious ABPs, [9] obtained a subexponential-time PIT
algorithm.

Orbits and orbit closures. A polynomial-time hitting set for the orbit of the power symmetric
polynomial PSym,, ; = ¢+ ...+ 2¢ was given by [47]. As that PSym is computable by a
depth-2 occur-once formula, Theorem 9 subsumes this result. Our hitting-set construction is
different from the one in [47] which involves the Hessian matrix, whereas the proofs here work
with just the first order derivatives. Very recently and independent of our work, [51] gave
quasi-polynomial time hitting sets for the orbits of sparse polynomials and read-once formulas.
For the orbit closures of polynomials that are computable by low-degree, polynomial-size
circuits (i.e., VP circuits), [24, 28] gave PSPACE constructions of hitting sets.

Constant-depth models. The polynomial-time hitting set construction for depth-2 circuits
(i.e., sparse polynomials) in [45] is one of the widely used results in black-box PIT. [16]
gave a quasi-polynomial time PIT algorithm for depth-3 circuits with constant top fan-in.
Later [44] improved the complexity to polynomial-time. Using ideas developed in [16], and
[25], [40,43,70] gave polynomial-time constructible hitting sets for depth-3 circuits with
constant top fan-in over Q. Ultimately, a combination of ideas from the [44] and [25] led to a
polynomial-time hitting set construction for the same model over any field [69,70]. Meanwhile,
[42,66] gave polynomial-time PIT for depth-3 powering circuits. Using ideas from [44] and
[66], [63] gave polynomial-time PIT for the sum of a depth-3 circuit with constant top fan-in
and a semi-diagonal circuit (which is a special kind of a depth-4 circuit). [62] showed that
polynomial-time PIT (resp. hitting sets) for aproj(IMMg 4) implies polynomial-time PIT
(resp. hitting sets) for depth-3 circuits.

A quasi-polynomial time hitting set for set-multilinear depth-3 circuits with known
variable-partition was given by [22]. Independently and simultaneously, [6] gave a quasi-
polynomial time hitting set for set-multilinear depth-3 circuits with unknown variable-
partition (and more generally, for constant-depth pure formulas [58]) using a different
technique, namely rank concentration by translation. Set-multilinear depth-3 circuits (in fact,
pure formulas) form a subclass of ROABPs. [14] gave subexponential-time hitting sets for
multilinear depth-3 and depth-4 formulas (and more generally, for constant-depth multilinear
regular formulas) by reducing the problem to constructing hitting sets for ROABPs. For
multilinear depth-4 circuits with constant top fan-in, [39] gave a quasi-polynomial time
hitting set. This was improved to a polynomial-time hitting set in [65]. Multilinear depth-4
circuits with constant top fan-in form a subclass of depth-4 constant-occur formulas. [5]
gave a unifying method based on algebraic independence to design polynomial-time hitting
sets for both depth-3 circuits with constant top fan-in and constant-depth, constant-occur
formulas. A generalization of depth-3 powering circuits to depth-4 is sums of powers of
constant degree polynomials; [20] gave a quasi-polynomial time hitting set for this model.
Recently, a sequence of work [59,60, 72] led to a polynomial-time hitting set for depth-4
circuits with top fan-in at most 3 and bottom fan-in at most 2 via a resolution of a conjecture
of [11,29] on the algebraic rank of the factors appearing in such circuits.

Edmonds’ model. An important special case of PIT is the following problem: given
f = det(Ap + Zie[n} x;A;), where A; € F" " is a rank-1 matrix for every ¢ € [n] and
Ag € F™*™ is an arbitrary matrix, check if f = 0 [17]. This case of PIT, played an instrumental
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role in devising fast parallel algorithms for several problems such as perfect matching, linear
matroid intersection and maximum rank matrix completion [19, 33,41, 49, 53-55, 75]. A
polynomial-time PIT for this model is known [18,26, 35,50,54]. [33] gave a quasi-polynomial
time hitting set via a certain derandomization of the Isolation Lemma [53].

We refer the reader to the surveys [67,68,74] for more details on some of the results
and the models mentioned above.

2 Preliminaries

» Definition 11 (Hitting set generator). Let C be a set of n-variate polynomials and t € N.
A polynomial map G : F* — F™ is a hitting set generator for C if Vf € C\ {0}, we have
foG#0.

We say the number of variables of G is t, and the degree of G — denoted by deg(G) — is the
maximum of the degrees of the n polynomials that define G. We will denote the t-variate
polynomial foG by f(G). By treating a matrix A € F"*™ as a linear transformation from F"”
to F™, we will denote the polynomial map A oG by AG and the t-variate polynomial f o AG
by f(AG). If the defining polynomials of G have degree dy and the degree of the polynomials
in C is at most D, then the degree of f(G) is at most dyD. Thus, if we are given the defining
polynomials of G, then we can construct a hitting set for C in time poly(n, (dyD)") using the
Schwartz-Zippel lemma, provided also that |F| > dyD.

2.1 The Shpilka-Volkovich generator

» Definition 12 (The Shpilka-Volkovich hitting set generator [73]). Assume that |F| > n and
let ay, ..., an be distinct elements of F. For i € [n], let Li(y) == [ c(n (i’%ij] be the i-th
Lagrange interpolation polynomial. Then, for t € N, the Shpilka-Volkovich (SV) generator

G2V . F® — F" is defined as GZV = (gt(l), ...,Qt(")) where, gt(i)(yl, ey Yty By ey Z4) =
22:1 Li(yx) - k-
Notice that deg (gt(i)) =n, and Qi"ll(ywza,) =GV +e; - 211, where e; is the i-th

standard basis vector of F". Thus, Img( tsv) C Img (gﬂfl) and, continuing in this manner,
Img (gf") C Img (gtS,V) for any t' > t.

» Observation 13. Let f € F[x] be a non-zero polynomial that depends on only b of the x
variables, and g € orb(f). Then, g has a monomial of support at most b and g(Gy'V') # 0.

The above observation is proved in the full version [64]. The following observation,
which allows us to construct a hitting set generator for f from a hitting set generator for a%
is used crucially in the proofs of Theorems 9 and 10 and is proved in the full version [64].

» Observation 14. Let f € F[x] be an n-variate, degree d polynomial, and for some m € N,
let G : F™ — F™ be a polynomial map of degree at most d'. If |F| > dd’ and there is an i € [n]
such that g—i(g) #0, then f(G+ GPV) is not a constant.

2.2 Low support rank concentration

Let F' be a polynomial in x-variables with coefficients from K*** where K is a field and
w € N. For an m € N, we say that F has support-m rank concentration over K if the
coefficient of every monomial in F' is in the K-span of the coefficients of the monomials of
support at most m in F. Support of a monomial x® will be denoted as Supp (x®). We prove
the below observation in the full version [64].

50:9
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» Observation 15. Let f = 17 - My(z1)Ma(z2) -+ My(x,) - 1 € F[x] be computable
by an ROABP of width w, and F = My(x1)Ms(x2)--- M,(x,). For an m € N and
t1(z),...,tn(z) € Flz], where z is a set of variables different from x, suppose that
F(x+t(z)) := My(z1 +t1(2))Ma(z2 + t2(2)) - - - My (z, +t,(2)) € F(z)**™[x]| has support-m
rank concentration over F(z). Then, f(x1 +t1(2),...,2n + tn(2)), when viewed as a poly-

nomial in x-variables with coefficients from F[z], has an x-monomial of support at most m,
provided f # 0.

2.3 Algebraic rank and faithful homomorphisms

We say that polynomials f1,..., f € F[x] are algebraically independent over F, if they
do not satisfy any non-trivial polynomial equation over F, i.e., for any p € Fly1,...,Ym],
p(fi,--+s fm) =0 only if p = 0. For f = (f1,..., fm), the transcendence degree (i.e., the
algebraic rank) of f over I is the cardinality of any maximal algebraically independent subset
of {f1,..., fm} over F. The notion of algebraic rank is well defined as algebraic independence
satisfies the matroid properties.

For £ = (f1,..., fm) € F[x]™, let Jx(f) denote the Jacobian matrix of f. The following
well-known lemma relates the transcendence degree of f over F — denoted by tr-degg(f) — to
the rank of the Jacobian.

» Lemma 16 (The Jacobian criterion). Let f = (f1,..., fm) € F[x]™ be a tuple of polynomials
of degree at most D and tr-degy(f) = r. If char(F) = 0 or char(F) > D", then tr-degg(f) =
rankp(x) Jx(f).

» Definition 17 (Faithful homomorphisms). A homomorphism ¢ : F[x] — F|z] is said to be
faithful ¢to f = (f1,..., fm) € F[x]™ if tr-degg (f) = tr-degg (¢(f)).

» Lemma 18 (Theorem 2.4 in [5]). If a homomorphism ¢ : F[x] — F[z] is faithful to
f=(f1,- o fm) €F[X]™ , then for any p € Flyy, ..., ym], p(f) = 0 if and only if p(¢(f)) = 0.

The following lemma was proved in [5,11].

» Lemma 19 (Lemma 2.7 of [5]). Let f = (f1,..., fm) be a tuple of polynomials of degree at
most D, tr-degp(f) < r, and char(F) =0 or > D". Let ¢ : F]x] — F[z] be a homomorphism
such that rankgx)Jx(f) = rankg ;) (Jx(f)). Then, the map ¢ : F[x] — Flz,t,y1,...,y,] that,

for all i € [n], maps x; — (Z;Zl yjtij> + ¢¥(x;) is faithful to f.
We will need the following observation in our proofs. It is proved in the full version [64].

» Observation 20. Letf = (f1,..., fm) € F[x]™ be a tuple of polynomials with tr-degg (f) =
For any A € GL(n,TF), let g; = fi(Ax) Vi € [m] and g = (g1,...,9m)- Then, tr-degp(g) =

3 Hitting sets for the orbits of commutative ROABPs

The strategy. (Recap) Let f = 17 M (x1)Ma(x2) - - - My, (2,,)-1 be a width-w commutative
ROABP; here M;(z;) € F¥*%[z;] for all ¢ € [n]. Also, let F = My (z1)Ma(x2) - M, (x,).
For any A € GL(n,F), let ¢ = f(Ax) and G = F(Ax). For i € [n], suppose that A maps
x; — £;(x), where ¢; is a linear form, and let y; = ¢;(x) and y = {y1,...,yn}. Then,
g = 1T . Ml(yl)M2(y2) R Mn(yn) -1land G = Ml(y1>M2(y2) cee Mn(yn) We will show that
if g # 0, then there exist explicit “low” degree polynomials ¢1(z), . .., t,(z), where z is a “small”
set of variables such that g(xy + t1(2),...,z, + t,(2)) has a “low” support monomial. This



C. Saha and B. Thankey 50:11

will be done by proving that G(z1 +t1(2),. .., 2, +t,(z)) has low support rank concentration
in the “y-variables”. Applying Observation 15, we will get that g(x1 + t1(2),. .., Zn + tn(2))
has a low support y-monomial. This will then imply that g(x; 4+ t1(2), ..., 2, + t,(2)) has a
low support x-monomial, provided f has low individual degree. Finally, we will plug in the
SV generator to preserve the non-zeroness of g. More precisely, we will prove the following
theorem at the end of Section 3.2.

» Theorem 21. Let f be an n-variate polynomial with individual degree at most d that is
computable by a width-w commutative ROABP. If [F| > n, then ggﬁogwmdﬂm) is a hitting
set generator for orb(f).

Notations and conventions. In the analysis, we will treat ¢1(z), ..., t,(z) as formal variables
t = (t1,...,t,) while always keeping in mind the substitution map t; — ¢;(z). For i € [n],
let r; = ¢;(t). For S C [n], define rg = {r; : i € S}. The F-linear independence of ¢1,...,¢,
allows us to treat y and r as sets of formal variables. Notice that in this notation, G(x+t) =
Mi(yr + r1)Ma(y2 + 72) -+« My (yn + rn). Let A denote the matrix algebra F¥**. For
i € [n], let M;(y;) = Zi::o Uie,ys", where u; ., € A and M;(y; +1;) = Z(bi,:o i p,yL7, Where
vip; € Alry] C Aft]. As f is a commutative ROABP, M (y1), ..., M, (yn) commute with each
other and hence u; ., and u; ., also commute for i # j. The following observation, which we
prove in the full version [64], implies that v; ., and vj ., also commute for i # j.

» Observation 22. For everyi € [n] and b;,e; € {0,...,d}, vy, = Zi;:o (Z:) T
and u; e, = Zg,;:o (2’) (=) vy, where (3) =0 if a <b.
For a set S = {i1,i2,...,45} C [n], where i1 < iy < ... <ig|, the vector (b;,,bi,,. .., bi)

will be denoted by (b; : i € S). Let Supp (b) denote the support of the vector b which is
defined as the number of non-zero elements in it.Define the parameter m := 2 ﬂog wz] + 1.

3.1 The goal: low support rank concentration

We set ourselves the goal of proving that there exist explicit degree-n polynomials ¢ (z),

.., tn(z), where |z| = 2m, such that G(z1 + t1(2),...,2n + tn(2)) = M1(y1 + 1) Ma(y2 +
r9) -+ My (yn + 1) € Alry, ..., 7m,][y] has support-(m — 1) rank concentration over F(z) in
the y-variables. We will show in this and the next section that this happens if all polynomials
in a certain collection of non-zero polynomials {hs(l‘s) 05 C ([m"])} C F[ry,...,ry], remain
non-zero under the substitution ¢; — ¢;(z). The following lemma, proved in the full version
[64], will help us achieve this goal.

» Lemma 23. Let G,t,z,y and rg be as defined above. Suppose that the following two
conditions are satisfied:
1. For every S C ([;:L]) and (b; :i € S) € {0,...,d}™, there is a non-zero polynomial hg(rg)

such that hs(rs) - [[;cqvip, € F[t]-span {Hies Vi, ¢+ Supp (b 1 €9) < m}.

2. There exists a substitution t; — t;(z) that keeps hg(rg) non-zero for all S C ([:T‘L])
Then, for every b = (b; : i € [n]) € {0,...,d}",

H v;p, € F(z)-span H vip, : Supp (b :icn])<my,
]

i€[n] i€ln

and G(x1 + t1(2),...,xn + tn(2)) has support-(m — 1) rank concentration over F(z) in
y-variables.

APPROX/RANDOM 2021
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3.2 Achieving rank concentration

We will now see how to satisfy conditions 1 and 2 of Lemma 23 such that deg,_ (hs(rs))
< md™*, t;(z) is an explicit degree-n polynomial, and |z| = 2m. Assume wlog that
S =[m]. For b= (by,...,by) and e = (e1,...,ey) in {0,...,d}"™, define (2) := [T;cpm (V)
where, (Z) = 0if b; < e;. Also, let vy := Hie[m] Vb, and ue = Hie[m] Uje;- Define
ri=(—7T1,...,—Tp), TP = Hie[m](fn—)bi and r¢ := [[,¢,, (—73) "% We now define some
vectors and matrices by fixing an arbitrary order on the elements of {0,...,d}™.

Let V := (vp: b e {0,...,d}") and U := (ue:e € {0,...,d}"); V is a row vector
in A[r]@tD™ whereas U is a row vector in ATD™ | Let C := diag(r® : b € {0,...,d}™)
and D := diag(r=°: e € {0,...,d}"); both C and D are (d + 1)™ x (d + 1)™ diagonal
matrices. Let M be a (d+ 1)™ x (d + 1)™ matrix whose rows and columns are indexed by
b€ {0,...,d}"™" and e € {0,...,d}" respectively. The entry of M indexed by (b, e) contains
(2) We now make the following claim which is proved in the full version [64].

> Claim 24. Let U, V, C, M and D be as defined above. Then, U = VCMD.

In [6], a very similar equation was called the transfer equation and we will refer
to U = VCMD by the same name. Let F := {b € {0,...,d}" : Supp(b) = m}; clearly,
|F| = d™. Also, let us call the set of all vectors (ne : e € {0,...,d}™) € F@+D™ for which
ZeG{O,.H,d}m nette = 0 the null space of U. Then, we have the following lemma.

» Lemma 25. There are vectors {ny : b € F'} in the null space of U such that the following
holds: Let N be the (d + 1)™ x d™ matriz whose rows are indexed by e € {0,...,d}" and
whose columns are indexed by b € F and whose column indexed by b is ny,. Then, the square
matriz ([CMDN| is invertible, where [CMDN| is the sub-matriz of CM DN consisting
of only those rows of CM DN that are indexed by b € F.

We need the value of m in the proof of the lemma which is given in Appendix A. For now,
observe that det([CMDN]r) € F[r]: Every entry of [CMDN]p is a F-linear combination
of some entries of the matrix CM D. The entry of CM D indexed by (b, e) is (2) rP.re,
which is non-zero only if b; > e, for all i € [m]. In this case, r°® . r—° is a monomial in the
r-variables. Thus, det([CM DN]r) — which is a polynomial in the entries of [CMDN]p —
is a polynomial in the r-variables. This observation leads to the following corollary of the
above lemma, which immediately gives a way to satisfy condition 1 of Lemma 23.

» Corollary 26. Let h(r) := det([CMDN]p). Then, for every b € F,
h(r) - vp € F[t]-span {vp, : b" € {0,...,d}"™ and Supp (b') < m}.

The above corollary is proved in the full version [64]. The following claim about h(r)
gives us a way to satisfy condition 2 of Lemma 23. It’s proof can be found in the full version
[64].

> Claim 27. The polynomial h(r), when viewed as a polynomial in the t-variables after
setting r; = ¢;(t), has a t-monomial of support at most m.

By substituting G5V for t, the polynomial h(r) remains non-zero, satisfying condition 2.
The number of variables in G5V, i.e., |z| = 2m and its degree is n. The proofs of Theorems
21 and 6 using Lemma 23 can be found in Appendix A.
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4 Hitting sets for the orbits of multilinear constant-width ROABPs

The strategy. (Recap) Let f =17 - M;(x1)My(x3) - -- My (x,) -1 be a multilinear, width-w
ROABP; here M;(z;) € F¥**[z;] for all ¢ € [n]. Also, let F' = My (z1)Ma(x2) - M, (x,).
For any A € GL(n,F), let ¢ = f(Ax) and G = F(Ax). For i € [n], suppose that A
maps x; — £;(x), where ¢; is a linear form, and let y; = ¢;(x) and y = {y1,...,Yn}
Then, g = 17 - My(y1)Ma(y2) -+~ My (yn) - 1 and G = My (y1)Ma(y2) - - My (yn). Just
like in the previous section, we will show that if g # 0, then there exist explicit “low”
degree polynomials t1(z),...,t,(z), where z is a “small” set of variables such that G(xz; +
t1(z),...,Tn + tn(2z)) has “low” support rank concentration in the “y-variables”. While in
the rank concentration argument in the previous section the x-variables were translated
only once, here the translations can be thought of as happening sequentially and in stages.
There will be [logn| stages with each stage also consisting of multiple translations. After
the p-th stage, the product of any 2P consecutive matrices in G will have low support rank
concentration in the y-variables. Thus, after [logn| stages, we will have low support rank
concentration in the y-variables for G(z1 + t1(2), ..., 2, + tn(2)).

Notations and conventions. Much like in the previous section, we will first translate the
x-variables by the t-variables and then substitute the t-variables by low degree polynomials
in a small set of variables. We will translate the x-variables by [logn] groups of t-variables,
t1,...,trogn). For all p € [logn], the group t, will have p := w? + [log 'wz} sub-groups
of t-variables, tp1,..., t, .. For all p € [logn] and ¢ € [u], tpq = {tp.q.15---tp.gn}-

Thus, finally the translation will look like ; — @i + >_ c10gn],qe(u) tpa.i f0r all @ € [n].

Finally, we will substitute the t-variables as t, ¢ ; + sp.q - zﬁﬁqu, where 8, (i) will be fixed
later in the analysis. Let rp, 4, := {; (t, q); notice that for all ¢ € [n], y; is translated as
Yi >y + Zpeﬂog nl,q€u] li(tp,q) = yi + Zpeflog nl.q€u) "Pasi-

For the purpose of analysis, we will think of the translation as happening sequentially in
the order t1 1,...,t1 4 t01,...,ta 4, o, by 1,0 by, de., we will first translate by tq,1, then
by t1,2, and so on. We denote the order thus imposed on the set {(p, q) : p € [[logn]],q € [u]}
by <.

For a set S = {i1,42,...,05;} C [n], where i1 < iy < ... < 4{g|, the vector
(biy,s bigs -+, biyg,) will be denoted by (b; : i € S). Let Supp (b) denote the support of
the vector b which is defined as the number of non-zero elements in it. The inductive

argument given on the next two subsections is inspired by the “merge-and-reduce” idea from
[21,23].

4.1 Low support rank concentration: an inductive argument

In this and the next sections, we will prove the following lemma. Let A := F**%,

» Lemma 28. There exist {Bp4(i) : p € [[logn]],q € [p],i € [n]} C Z>o, such that when

Bp,q(1) Bp,q(n)
we treat G ($1 + ZpeﬂOgnLqE[u] Spa i s Tn e log n],q€[u] Spa * Zpid" ) ,as a

polynomial in the y-variables over Alrp q; : p € [[logn]],q € [u],i € [n]], has support-u
rank concentration in y-variables over F (sp q, 2pq : D € [[logn]],q € [u]). The By 4(i)s can

be found in time n°(") and each Bp.q(t) < nO ().

We will prove this lemma by induction on (p, ¢). Let us call 8, ,(i)s efficiently computable

and good if they can be found in time n°(") and each Bp.q(i) < nO(w"), Precisely, the
induction hypothesis is as follows.

50:13
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Induction hypothesis. Just before translating by t,- ,«-variables, assume that there exist
efficiently computable and good {8, 4(i) : (p,q) < (p*,¢*)} such that the product of any 27
consecutive matrices in

G|z + Z Spq - zﬁﬁf(l) yeeey Tp + Z Sp.q - 2524(")
(p,a)=(p*.q*) (p,a)=(p*.q%)

has support-(2p — (¢* — 1)) rank concentration over F (s, q,2p.q: (P,q) < (p*,¢*)) in y-
variables.

Base case. In the base case, (p*,¢*) = (1,1). Observe that we can assume that w > 2; if
w = 1, then ¢ is a product of univariates and the existence of a polynomial time hitting set
follows from Observation 13. For any w > 2, 2 < 2u. As a product of any two consecutive
matrices in G has support 2 < 2p rank concentration in the y-variables over F, the base case
is satisfied.

Induction step. We need to show that there exist {5« 4« (7) : ¢ € [n]} which are efficiently
computable and good, such that after translating by t,- ,~ and substituting t,- ¢«; —

Sp*.q* zﬁfﬂ’fi ( ), the product of any 2P consecutive matrices in
1 n
G|z + g sp)q-zgf;f( ), T+ E sp7q-z£f’d‘7( )
(P.)=(p*,9%) (p,a)<(p*,q%)

has support- (21 —¢*) rank concentration in the y-variables over F (s, ¢, 2p.4 : (9, q) < (9%, ¢")).
If ¢* < p, then this would mean that the induction hypothesis holds immediately before
translation by ty,« ¢«41. Otherwise, if ¢* = p, then the following easy-to-verify observation
implies that the induction hypothesis holds immediately before translation by tp-41 1.

» Observation 29. Suppose that {8, 4(%) : (p,q) < (p*, 1)} are such that the product of any
2P consecutive matrices in

G|z1+ Z Sp.q - ng’qﬂ(l) ey T+ Z Sp.q - zgqum)

(p,0)=(p* 1) (p,0)<(p*,1)

has support-u rank concentration in y-variables over F (sp 4, 2p.q @ (0,q) < (p*,11)). Then the
product of any 2P 1 copsecutive matrices in

G|z + Z Sp.q - zgf;iq(l) ooy Tp Z Sp.q - zgf’(iq(")

(p.a)<(p*,1) (p.a)<(p*,1)
has support-2p, rank concentration in the y-variables over F (sp 4, 2p.q + (0,¢) < (P, 1))

Simplifying notations for the ease of exposition. By focusing on the induction step, we
will henceforth denote F (s,.4,2p.4 : (0, ¢) < (p*,¢*)) by F, and for all i € [n],

Mi yﬂ + Z EZ (sp,q : ZpB,pdq(l)7 RN spaq : Zgﬁ]Q(n))
(P, @)= (p*,q%)

by Mi(yi)a tp q* i by t;, T'p* q* i by 7, Sp*,q* by s, Zp*,q* by z and ﬁp*,q* (Z) by 6(2)
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Without loss of generality, we shall consider the product My (y; + 1) -+ My (yn + 7m)
of the first m = 2°" matrices. Our goal is to show that there exist efficiently computable and
good {$3(4) : i € [m]} such that after substituting t; — s-2°(*), the above product has support-
(21 — ¢*) rank concentration in the y-variables over F(s, z) assuming that Mi(y1) -+ My (ym)
has support-(2p — (¢* — 1)) rank concentration in the y-variables over F.

4.2 Details of the induction step

Recalling some notations. Before we show how to achieve rank concentration, let us
recall some notations defined in Section 3. While in Section 3, the individual degree is d,
here the individual degree is 1 and so, we modify the definitions accordingly. A is used
to denote the matrix algebra F***. For i € [m], M;(y;) = Ei,:o Ui, Ys', where u; o, € A
and M;(y; + ;) = leh:o i, Y0, where v; ., € Afr;] C A[t]. For b= (by,...,by) and e =
: m b b; — -
(e1s--wvem) in {0,137, (2) = Tlicpm (o) Also, v = [Ticpn) vip: and e = [Ticpn tie-
Moreover, T := (—71,...,—Tp), r° = Hie[m](—ri)bi and r™¢ := Hie[m](—ri)_ei. Let
t = (tl,... ;tn)

The following vectors and matrices are defined by fixing an arbitrary order on the
elements of {0,1}". V := (vp : b € {0,1}") and U := (ue : € € {0,1}"); V is a row vector
in A[r]?" whereas U is a row vector in A?”. Both C := diag(r® : b € {0,1}™) and
D := diag(r™° : e € {0,1}"") are 2™ x 2™ diagonal matrices. Finally, M is a 2™ x 2™
numeric matrix whose rows and columns were indexed by b € {0,1}" and e € {0,1}",
respectively. The entry of M indexed by (b, e) contains (le’) The proof of the following
transfer equation is same as the proof of Claim 24.

> Claim 30. Let U, V, C, M and D be as defined above. Then, U = VCMD.

Let F:={b € {0,1}" : Supp(b) > 2u — ¢*}. Also, recall that the the null space of U
is the set of all vectors (ne : € € {0,1}™) € F2" for which > ecqo,1}m Nelle = 0. We have the
following lemma.

» Lemma 31. There are vectors {np, : b € F} in the null space of U such that the following
holds: Let N be the 2™ x |F| matriz whose rows are indezed by e € {0,1}" and whose
columns are indexed by b € F and whose b-th column is ny,. Then, the square matriz
[CMDN]. is invertible, where [CMDN] . is the sub-matriz of CMDN consisting of only
those rows of CM DN that are indexed by F. Also, det ((CMDN]r) € F[r] C F[t] can be
expressed as the ratio of a polynomial in F[t] that contains a monomial of degree at most
2w?p in the t-variables and a product of linear forms in F[t].

The proof of this lemma, which uses the value of p, is given in the full version [64]. We
now complete the induction step using this lemma. As det([CMDN]p) is a polynomial in
F[r] we get the following corollaries.

» Corollary 32. Let h(r) := det([CMDN]p). Then, for every b € F,
h(r) - vp € F[t]-span {vp, : b’ € {0,1}"" and Supp (b') < 2u — ¢*}. (1)
Proof. Same as the proof of Corollary 26. <

» Corollary 33. Suppose {3(i) :i € [n]} are such that the substitution t; — s - 2°0) keeps
all non-zero polynomials in F[t] containing a monomial of degree at most 2wy in the t-
variables non-zero. Then, the product My(y1 +71) -+ - My (Ym + 7m) has support-(2u — q*)
rank concentration in the y-variables over F(s,z) after substituting t; — s - 2P,
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Proof. Multiply both sides of (1) by (h(r)) ™" after substituting ¢; — s - 28, <

The following claim, proved in the full version [64], allows us to compute {3(7) : i € [n]}
efficiently.

> Claim 34. There exist {$(i) : i € [n]} such that the substitution ¢; — s - 2°() keeps all
non-zero polynomials in F[t] containing a monomial of degree at most 2w?y in the t-variables

non-zero. Moreover, we can find all the () in time n®(**) and each B(i) < nO(*),

This completes the induction step. Lemma 28 and Theorem 8 are proved in Appendix B.

5 Conclusion

In this paper, we have given efficient hitting sets for orbits of several well-studied circuit
classes such as commutative ROABPs and constant-width ROABPs (under the low individual
degree restriction), and constant-depth constant-occur formulas and occur-once formulas.
In the process, we have obtained efficiently constructible hitting sets for the orbits of
the elementary symmetric and power symmetric and sum-product polynomials as well as
the iterated matrix multiplication polynomials of width-3, which is a complete family of
polynomials for arithmetic formulas under p-projections. The hitting set problem for the
orbits of these circuit classes and polynomial families is interesting as their affine projections
capture much larger circuit classes and orbits are a natural and dense subset of the set of
affine projections. However, the following questions still remain open:
Removing the low individual degree restriction. The low individual degree
restriction is natural as it subsumes the multilinear case. However, it would be ideal if
we get rid of this limitation of our results. In particular, can we give an efficient hitting-
set construction for the orbits of general commutative ROABPs and constant-width
ROABPs?
Lower bound and hitting set for the orbits of ROABPs. We would also like to
remove the requirements of commutativity and constant-width from our results on hitting
sets for the orbits of ROABPs. It is worth noting that an explicit hitting set for the
orbits of ROABPs implies a lower bound for the same model computing some explicit
polynomial [1]. To our knowledge, no explicit lower bound is known for the orbits of
ROABPs. Can we prove such a lower bound first?
Hitting sets for the orbits of Det and IMM. The determinant (Det) and the iterated
matrix multiplication (IMM) polynomial families are complete for the class of algebraic
branching programs under p-projections. Can we design efficiently constructible hitting
sets for the orbits of Det and IMM?
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A  Missing proofs from Section 3

A.1 Proof of Lemma 25

The entries of U, the columns of M, the rows and columns of D, and the rows of N are
indexed by e € {0,...,d}"™. Impose an order <, say the lexicographical order, on the
indices e € {0,...,d}"™ of U and the other three matrices. Pick the minimal basis of
the space spanned by the entries of U according to this order, i.e., consider the entries
of U in the order dictated by < while forming the basis. Let B := {e € {0,...,d}" :
Ue is in the minimal basis of U w.r.t. <}.

Construction of the matrix IN. The columns of NV are indexed by b € F. We will now
specify a set of column vectors {ny, : b € F'} in the null space of U such that the column of
N indexed by b € F is np. There are two cases for b € F:

Case 1: b € F\ B. In this case, up is dependent on {ue : e € B and e < b}. Pick this
dependence vector as ny,.

Case 2: b € FN B. Let there be p such b, where p < |[B| < w?. For a set E C [m] and
b €{0,...,d}™, let (b)g denote the vector obtained by projecting b to the coordinates
in E. Roughly speaking, the following claim which is proved in the full version [64] says
that each of these p vectors has a “small signature” that differentiates it from the other
p — 1 vectors.

> Claim 35. There exists a way of numbering all b € F'N B as by,...,b, and there

exist non-empty sets F1,..., E, C [m], each of size at most logp < logw? such that for all
ke [p - 1},
(br)s, # (be)s, VEe{k+1,....p} (2)
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We will call Ej, the signature of by, for k € [p]. The following claim tells us that for
each vector by, there is a vector that is not in B and has support at most m — 1, but agrees
with by on its signature and so in some sense can be used as a proxy for by.

> Claim 36. For every k € [p], there exists a vector b} € {0,...,d}"™ \ (F UB) such that
(b)) E, = (bk)E, and also b}, and by, agree on all locations where b), is non-zero.

A proof of the above claim is provided in the full version [64]. We will now use the
above two claims to construct ny,, for all & € [p]. We will use b), from Claim 36 as a proxy for
by, Notice that up, is dependent on {ue : e € B and e < by }. Let this dependence vector
be nyp, . This completes the construction of N. We will now show that [CMDN]p is an
invertible matrix.

[CMDN]|F is invertible. As C' is a diagonal matrix with non-zero entries, it is sufficient
to show that [M DN|p = [M]rDN is an invertible matrix, where [M]p is the sub-matrix of
M consisting of only those rows of M that are indexed by b € F. The following claim lets us
simplify the structure of [M]r so that it becomes easier to argue that [M]rDN is invertible.

> Claim 37. There is a row operation matrix R € GL(d™,F) with det(R) = 1 such that
R[M]F has the following structure: The rows of R[M]p are indexed by b = (by,...,by) € F
and its columns by e = (eq,...,en,) € {0,...,d}™. Its entry indexed by (b, e) is non-zero if
and only if for all i € [m], b; = ¢; if e; # 0. All the non-zero entries of R[M]p are £1.

The above claim is proved in the full version [64]. Because of this claim, showing that
R[M]rDN is invertible would suffice. Just like we did with M, we also impose the order
< on the columns of R[M]r that are indexed by e € {0,...,d}"™. Recall that the rows of
R[M]F and the columns of N are indexed by b € F. We order these indices as follows:
we keep the indices b € F \ B before by,...,b,. We will treat r~° as a monomial in
(—r1)~ Y, ..., (=)t “variables” and impose the order < on the monomials in these variables.
Let A:={b: be F\B}U{b},...,b}; notice that |[A] = |F|. Also, the elements of A
are ordered as the elements of F' but with b}, replacing by for & € [p]. Then, from the
Cauchy-Binet formula and the construction of the matrix N, det(R[M]rDN) equals

det ([R[M]r)e.a) [IN]a - H r~° + lower order monomials in the (—ry)™%, ..., (=rm) " .

)

ecA

Here [R[M]F]e, 4 denotes the restriction of R[M]r to the columns indexed by e € A, and [N]4
denotes the restriction of N to the rows indexed by e € A. Thus to show that R[M]rDN
(and therefore [CM DN]) is invertible, the following two claims, both of which are proved
in the full version [64], suffice.

> Claim 38. [N]4 is an identity matrix.

> Claim 39. The matrix [R[M]F]e 4 is an upper triangular matrix with 1 or —1 entries on
the diagonal.

A.2 Proof of Theorem 21

Let f = 17 - My(21)My(x3) - -- My(x,) - 1 be a width-w commutative ROABP having
individual degree at most d; here M; € F¥*%[x,] for all i € [n]. Also, let F' = M (x1)Ma(x2)
-+ My (zy,). For any A € GL(n,F), let g = f(Ax) and G = F(Ax). Suppose that A maps
x; = £;(x) and let y; = £;(x) for all i € [n]. Then, g = 17 - My (y1)Ma(y2) - - - My, (yn) - 1 and
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G = Mi(y1)M2(y2) - - My (yn). In Sections 3.1 and 3.2, we have shown that G (x + G3")
has support-(m — 1) rank concentration (for m = 2 [log w2] + 1) over F(z) in the y-variables;
the z-variables are the variables introduced by the G5V generator. From Observation 15,
if g(x) # 0, then g (x + ggV), when viewed as a polynomial over F[z] in the y-variables
(this we can do as g (x +G5V) =17 -G (x+G3Y) - 1, and G (x + G5V can be viewed as a
polynomial over A[z] in the y-variables), has a y-monomial of support at most m — 1. Let
the y-degree of this monomial be D’. As the individual degree of every x-variable in f is at
most d, the individual degree of every y-variable in g is also at most d. Thus, D’ < (m — 1)d.
As the homogeneous component of g (X + Q,iv) of y-degree D’ is non-zero, the homogeneous
component of g (x + G3") (now viewed as polynomial over F[z] in the x-variables) of x-
degree D' must also be non-zero, since {1, ..., ¥, are linearly independent. This means that
g(x + G2V, when viewed as a polynomial over F[z] in the x-variables, has an x-monomial
of support (in fact, degree) at most D’ < (m — 1)d. Thus, g (an‘{il)d + g,i") # 0. Now, it

follows directly from the definition of the SV generator that gfn‘{fl)d + G5V = gfx(mil)d

and so g (gi‘i(m_l)» # 0. Replacing m by its value 2 ﬂog wﬂ + 1 proves the theorem.
Note that the SV generator needs |F| > n.

A.3 Proof of Theorem 6

Let f be an n-variate polynomial computed by a width-w commutative ROABP of individual
degree at most d, and g € orb(f). Then, from Theorem 21, g (ggﬁong](dﬂm)) #0

whenever g # 0. Now, g(%‘[/logw2](d+l)+l) has 2(2 [logw?| (d+ 1) 4+ 1) variables, and is

of degree n. So g (ggﬁongw(dﬂm)) also has 2 (2 [logw?] (d+ 1) + 1) variables. Since

the individual degree of f is at most d, the deg(f) = deg(g) < nd. So the degree of
g (Q(%‘flong](dﬂ)ﬂ)) is at most n?d. Thus, as |F| > n%d, a hitting set for g can be

2
computed in time (n?d + 1) (2[logw] @+ +1) _ (nd)O(dlogw),

B Missing proofs from Section 4

B.1 Proof of Lemma 31

The entries of U, the columns of M, the rows and columns of D, and the rows of N are
indexed by e € {0,1}"™. Impose the degree lexicographic order, denoted by <gjex, on the
indices e € {0,1}" of U and the other three matrices (by identifying e with an m-variate
monomial) . Pick the minimal basis of the space spanned by the entries of U according to
this order, i.e., consider the entries of U in the order dictated by <giex While forming the
basis. Let B := {e € {0,1}" : u, is in the minimal basis of U w.r.t. <qjex}-

» Observation 40. By the induction hypothesis, for every e € FNB, Supp(e) =2u—(q¢* —1).

Construction of the matrix IN. The columns of N are indexed by b € F. We will now

specify a set of column vectors {ny, : b € F'} in the null space of U such that the column of

N indexed by b € F is ny. There are two cases for b € F:

Case 1: b € F'\ B. In this case, up is dependent on {ue : € € B and e <qjex b}. Pick this
dependence vector as ny,.

Case 2: b € FNB. Let there be p such b, by, ..., b,, where p < |B| < w?. For aset E C [m]
and b € {0,1}"™, let (b)g denote the vector obtained by projecting b to the coordinates

50:23

APPROX/RANDOM 2021



50:24

Hitting Sets for Orbits of Circuit Classes and Polynomial Families

in E. Roughly speaking, the following claim, which is proved in the full version [64], says
that each of these p vectors has a “small signature” that differentiates it from the other
p — 1 vectors.

> Claim 41. There exist sets E, ..., E, C [m], each of size w? — 1 such that for all k € [p],
1. Supp ((bx)g,) = w? — 1,

As before, we will call Ej, the signature of by. The following claim tells us that for
each vector by, there is a vector that is not in B and has support less than 2u — (¢* — 1),
but agrees with by on its signature and so in some sense can be used as a proxy for byg.

> Claim 42. For every k € [p], there exists a vector b} € {0,1}" \ (F U B) such that
(b)) E, = (bk)E, and also b}, and by, agree on all locations where b), is non-zero.

Proof. Similar to the proof of Claim 36. <

We will now use the above two claims to construct ny, for all & € [p]. We will use bj, from
Claim 42 as a proxy for by. Notice that Uy, is dependent on {ue : € € B and e <gjex b} }-
Let this dependence vector be nyp, . This completes the construction of N. We will now show
that [CM DN]F is invertible. In fact, we will show that det ((CMDN]F) is the ratio of a
polynomial in F[t] which contains a monomial of degree at most 2w?u and a product of a
bunch of non-zero linear forms in F[t].

[CM DN]F is invertible. Let [M]r be the restriction of M to the rows indexed by F, and
[C]F the restriction of C' to the rows and columns indexed by F.

» Observation 43. The matriz [M]p has the following structure: The rows of [M|r are
indexed by b = (b1,...,bm) € F and its columns by e = (e1,...,em) € {0,1}". Its entry
indezed by (b, e) is non-zero if and only if for all i € [m], b; = e; if e; # 0. All non-zero
entries are 1.

We order the indices b € F as follows: Let Fy := {b € F : Supp(b) > 2u — (¢* — 1)}
and F} := {b € F : Supp(b) = 2u — (¢* — 1)}. We first keep the b € Fp in (descending)
degree lexicographic order®, followed by b € Fy \ B in (reverse) lexicographic order®, and
then by,...,b,. Also, let A := (F\ B)w {b/,...,b/}. Notice that |A| = |F|. Also, the
elements of A are ordered as the elements of F' but with b), replacing by, for k € [p]. For
any S C {0,1}"™ of size |S| = |F|, let [M]p s denote the restriction of [M]p to the columns
indexed by e € S, and [N]g denote the restriction of N to the rows indexed by e € S. Now,

det([CM DN]r) = det([C]r) det([M]r DN)

T | 5 det(Mirs) - des(v)s) - [ e
beF SCAWB e€s
|S|=IF]|
I | 5 det(Mins)-det(N]s)- J] v T v
beF SCAWB eesnA eesne
|S|=IF]|

3 ie., b comes before b if Supp(b) > Supp(lf))7 or if Supp(b) = Supp(B) and b <jez b.
4 i.e., b comes before bifb <lez D.
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ST TL e | X det(ales)-aerqvls) - I« T |-

beF ec AWB SCAwWB ecA\S eeB\S
IS|=IF|

where the second equality follows from the Cauchy-Binet formula and the third equality
from the fact that for any S ¢ AwB, det([N]s) = 0. Now, notice that [[,c o P [Toc gus T °

is the reciprocal of a product of non-zero linear forms in t-variables, as FF C AW B. We shall
now prove that

> det([M]ps) - det([N]s)- J] - [] =° (3)
fsg‘él&ﬁ ecA\S eeB\S

has a t-monomial of degree at most w?(2u — (¢* — 1)).
> Claim 44. [N]4 is an identity matrix.

Proof. Same as that of Claim 38. <

> Claim 45. The matrix [M]p 4 is an upper triangular matrix with ones on the diagonal.
The proof of the above claim is provided in the full version [64].

> Claim 46. det ([M]p,a) - det([N]a) - [leep a T® = [leesr® # 0 and has t-degree at most
2w? .

Proof. det ([M]F,a) - det([N]a) - [leepaT® = lleesr® # 0 follows from Claims 44 and
45 and the fact that AN B is empty. For every e € B, deg,(r®) < 2u — (¢* — 1). So,
degg ([Toesr®) <w?- (2 — (¢" = 1)) < 2w?p, as |B| < w?. q

> Claim 47. For any S C AW B such that |S| = |F| and det([N]s) is non-zero, there is a
one-to-one correspondence between A\ S and S N B such that if e € A\ S corresponds to
e’ € SN B, then € <giex €.

The above claim, which is proved in the full version [64], implies that for every S € AWB
of size |F|, either det ([M]p,s) - det([N]s) - [leca\sT®  [leen s T® i85 0, o J[ocpT® <diex
HGGA\S re- HeEB\S r®. Hence, [[,.z1® is the smallest r-monomial in the polynomial given
in (3) w.r.t. <qiex order, and so, the homogeneous component of this polynomial that has the
same r-degree as that of [[,.;r® survives. Now, from Claim 46 and the fact that /1,..., £,
are linearly independent, the polynomial in (3) has a t-monomial of degree < 2w?y.

B.2 Proof of Lemma 28

So far we have proved that there exist {8, ,(¢) : p € [[logn]],q € [u],i € [n]]}, such that

(1 Bp,q (1)
G (ml + Zpe Mog n],q€lu] 5poa * Zpid e Ty T+ Zpe Mog n],q€[u] 5P+ ° 2pht ) has support-p

rank concentration in the y-variables over I (s, 4, 2p.q : p € [[logn]], ¢ € [p]). Moreover, for
each (p,q), we can find all 8, 4(7) in time nO@" and each Bp.q(i) < nOW?), However, since
the algorithm that follows from [45] is oblivious, the 8, ,(i) found for some fixed (p, ¢) can
be used for all values of (p,q). This proves the lemma.
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B.3 Proof of Theorem 8

Let f =17 My(z1)Ma(x3) - - My, (x,,) - 1 be a multilinear width-w ROABP; here M;(z;) €
Fwxwig,] for all ¢ € [n]. Also, let F' = My (z1)Mz(x2) - -- My (xy). For any A € GL(n,F), let
g = f(Ax) and G = F(Ax). For i € [n], suppose that A maps x; — ¢;(x), where ¢; is a linear
form, and let y; = £;(x) and y = {y1,...,yn}. Then, g = 17" My (y1) Mo (y2) - - My (yn) - 1
and G = My (y1)Mz(y2) -+ My (yn). Let p = w? + [logw?|. From Lemma 28, there exist
polynomials, say t1,...,tn, i F[sp g, 2p.q : 0 € [[logn]],q € []] of degree at most nOw")
such that G(x1 + t1,..., 2, + t,) has support-u rank concentration in the y-variables over

O(w*

F ({sp’q, Z;o,q}p,q)~ Moreover, these polynomials can be computed in time n ). Suppose

that g # 0. Then, from Observation 15, g(x1 + 1, ...,z + t,) has a support-u, y-monomial
when viewed as a polynomial over F |{s,, 4, zp,q}p ;| in the y-variables. Since f is multilinear,

as seen in the proof of Theorem 21, g(x1 +t1, ..., 2, +1,) has a support-y, x-monomial. Thus,
g (Q;?V + (t1,...,tn)) # 0. Now, g (QEV + (t1,...,t,)) is a polynomial in 24 + p - [logn]

variables over F. Also, its degree is at most nOw") So, if |F| > no(“"4), a hitting set for g

can be computed in time pOw' wlogn) — ,O(w’ logn) This, along with the time required to
O(wG-log n)

compute t1,...,t,, still gives a n -time hitting set for g.
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