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Abstract
Greedy decision tree learning heuristics are mainstays of machine learning practice, but theoretical
justification for their empirical success remains elusive. In fact, it has long been known that there
are simple target functions for which they fail badly (Kearns and Mansour, STOC 1996).

Recent work of Brutzkus, Daniely, and Malach (COLT 2020) considered the smoothed analysis
model as a possible avenue towards resolving this disconnect. Within the smoothed setting and
for targets f that are k-juntas, they showed that these heuristics successfully learn f with depth-k
decision tree hypotheses. They conjectured that the same guarantee holds more generally for targets
that are depth-k decision trees.

We provide a counterexample to this conjecture: we construct targets that are depth-k decision
trees and show that even in the smoothed setting, these heuristics build trees of depth 2Ω(k) before
achieving high accuracy. We also show that the guarantees of Brutzkus et al. cannot extend to the
agnostic setting: there are targets that are very close to k-juntas, for which these heuristics build
trees of depth 2Ω(k) before achieving high accuracy.
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1 Introduction

Greedy decision tree learning heuristics are among the earliest and most basic algorithms
in machine learning. Well-known examples include ID3 [28], its successor C4.5 [29], and
CART [6], all of which continue to be widely employed in everyday ML applications. These
simple heuristics build a decision tree for labeled dataset S in a greedy, top-down fashion.
They first identify a “good” attribute to query as the root of the tree. This induces a partition
of S into S0 and S1, and the left and right subtrees are built recursively using S0 and S1
respectively.

In more detail, each heuristic is associated with an impurity function G : [0, 1] → [0, 1]
that is concave, symmetric around 1

2 , and satisfies G(0) = G(1) = 0 and G( 1
2 ) = 1. Examples

include the binary entropy function G(p) = H(p) that is used by ID3 and C4.5, and the Gini
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impurity function G(p) = 4p(1−p) that is used by CART; Kearns and Mansour [21] proposed
and analyzed the function G(p) = 2

√
p(1 − p). For a target function f : Rn → {0, 1} and a

distribution D over Rn, these heuristics build a decision tree hypothesis for f as follows:
1. Split: Query 1[xi ≥ θ] as the root of the tree, where xi and θ are chosen to (approximately)

maximize the purity gain with respect to G:

G-purity-gainD(f, xi) := G(E [f ])−
(

Pr [xi ≥ θ] ·G(E [fxi≥θ])+Pr [xi < θ] ·G(E [fxi<θ])
)
,

where the expectations and probabilities above are with respect to randomly drawn
labeled examples (x, f(x)) where x ∼ D, and fxi≥θ denotes the restriction of f to inputs
satisfying xi ≥ θ (and similarly for fxi<θ).

2. Recurse: Build the left and right subtrees by recursing on fxi≥θ and fxi<θ respectively.
3. Terminate: The recursion terminates when the depth of the tree reaches a user-specified

depth parameter. Each leaf ℓ of the tree is labeled by round(E [fℓ]), where we associate ℓ

with the restriction corresponding to the root-to-ℓ path within the tree and round(p) :=
1[p ≥ 1

2 ].

Given the popularity and empirical success of these heuristics1, it is natural to seek
theoretical guarantees on their performance:

Let f : Rn → {0, 1} be a target function and D be a distribution over Rn. Can
we obtain a high-accuracy hypothesis for f by growing a depth-k′ tree using these
heuristics, where k′ is not too much larger than k, the optimal decision tree depth
for f? (♢)

1.1 Background and prior work
A simple and well-known impossibility result

Unfortunately, it has long been known [21, 20] that no such guarantee is possible even under
favorable feature and distributional assumptions. Consider the setting of binary features
(i.e. f : {0, 1}n → {0, 1}) and the uniform distribution U over {0, 1}n, and suppose f is the
parity of two unknown features xi ⊕ xj for i, j ∈ [n]. It can be easily verified that for all
impurity functions G, all features have the same purity gain: G-purity-gainU (f, xℓ) = 0 for
all ℓ ∈ [n], regardless of whether ℓ ∈ {i, j}. Therefore, these heuristics may build a tree of
depth Ω(n), querying irrelevant variables xℓ where ℓ /∈ {i, j}, before achieving any nontrivial
accuracy. This is therefore an example where the target f is computable by a decision tree of
depth k = 2, and yet these heuristics may build a tree of depth k′ = Ω(n) before achieving
any nontrivial accuracy.

Smoothed analysis

In light of such impossibility results, a line of work has focused on establishing provable
guarantees for restricted classes of target functions [13, 25, 7, 3, 2]; we give an overview of
these results in Section 1.3.

1 CART and C4.5 were named as two of the “Top 10 algorithms in data mining” by the International
Conference on Data Mining (ICDM) community [33]; other algorithms on this list include k-means,
k-nearest neighbors, Adaboost, and PageRank, all of whose theoretical properties are the subjects of
intensive study. C4.5 has also been described as “probably the machine learning workhorse most widely
used in practice to date” [32].
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The focus of our work is instead on smoothed analysis as an alternative route towards
evading these impossibility results, an approach that was recently considered by Brutzkus,
Daniely, and Malach [8]. Smoothed analysis is by now a standard paradigm for going
beyond worst-case analysis. Roughly speaking, positive results in this model show that “hard
instances are pathological.” Smoothed analysis has been especially influential in accounting
for the empirical effectiveness of algorithms widely used in practice, a notable example being
the simplex algorithm for linear programming [31]. The idea of analyzing greedy decision
tree learning heuristics through the lens of smoothed analysis is therefore very natural.

A smoothed product distribution over {0, 1}n, a notion introduced by Kalai, Samrodnitsky,
and Teng [19], is obtained by randomly and independently perturbing the bias of each marginal
of a product distribution. For smoothed product distributions, Brutzkus et al. proved strong
guarantees on the performance of greedy decision tree heuristics when run on targets that are
juntas, functions that depend only on a small number of its features. For a given impurity
function G, let us write AG to denote the corresponding decision tree learning heuristic.

▶ Theorem 1 (Performance guarantee for targets that are k-juntas [8]). For all impurity
functions G and for all target functions f : {0, 1}n → {0, 1} that are k-juntas, if AG is trained
on examples drawn from a smoothed product distribution, it learns a decision tree hypothesis
of depth k that achieves perfect accuracy.

(Therefore Theorem 1 shows that the smoothed setting enables one to circumvent the
impossibility result discussed above, which was based on targets that are 2-juntas.)

Every k-junta is computable by a depth-k decision tree, but a depth-k decision tree can
depend on as many as 2k variables. Brutzkus et al. left as an open problem of their paper a
conjecture that the guarantees of Theorem 1 hold more generally for targets that are depth-k
decision trees:

▶ Conjecture 2 (Performance guarantee for targets that are depth-k decision trees). For all
impurity functions G and for all target functions f : {0, 1}n → {0, 1} that are depth-k decision
trees, if AG is trained on examples drawn from a smoothed product distribution, it learns a
decision tree hypothesis of depth O(k) that achieves high accuracy.

In other words, Conjecture 2 states that for all targets f : {0, 1}n → {0, 1}, the sought-for
guarantee (♢) holds if the heuristics are trained on examples drawn from a smoothed product
distribution.

1.2 This work: Lower bounds in the smoothed setting
Our main result is a counterexample to Conjecture 2. We construct targets that are depth-k
decision trees for which all greedy impurity-based heuristics, even in the smoothed setting,
may grow a tree of depth 2Ω(k) before achieving high accuracy. This lower bound is close
to being maximally large since Theorem 1 implies an upper bound of O(2k). Our result is
actually stronger than just a lower bound in the smoothed setting: our lower bound holds
with respect to any product distribution that is balanced in the sense that its marginals are
not too skewed.

▶ Theorem 3 (Our main result: a counterexample to Conjecture 2; informal). Conjecture 2
is false: For all k = k(n), there are target functions f : {0, 1}n → {0, 1} that are depth-k
decision trees such that for all impurity functions G, if AG is trained on examples drawn from
any balanced product distribution, its decision tree hypothesis does not achieve high accuracy
unless it has depth 2Ω(k).

APPROX/RANDOM 2021
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By building on our proof of Theorem 3, we also show that the guarantees of Brutzkus et
al. for k-juntas cannot extend to the agnostic setting:

▶ Theorem 4 (Theorem 1 does not extend to the agnostic setting; informal). For all ε and
k = k(n), there are target functions f : {0, 1}n → {0, 1} that are ε-close to a k-junta such
that for all impurity functions G, if AG is trained on examples drawn from any balanced
product distribution, its decision tree hypothesis does not achieve high accuracy unless it has
depth ε · 2Ω(k).

In particular, there are targets that are 2−Ω(k)-close to k-juntas, for which these heuristics
have to construct a decision tree hypothesis of depth 2Ω(k) before achieving high accuracy.
Taken together with the positive result of Brutzkus et al., Theorems 3 and 4 add to our
understanding of the strength and limitations of greedy decision tree learning heuristics.

Our lower bounds are based on new generalizations of the addressing function. Since
the addressing function is often a useful extremal example in a variety of settings, we are
hopeful that these generalizations and our analysis of them will see further utility beyond
the applications of this paper.

1.3 Related Work
As mentioned above, there has been a substantial line of work on establishing provable
guarantees for greedy decision tree heuristics when run in restricted classes of target functions.
Fiat and Pechyony [13] considered the class of read-once DNF formulas and halfspaces; the
Ph.D. thesis of Lee [25] considered the class of monotone functions; Brutzkus, Daniely, and
Malach [7] considered conjunctions and read-once DNF formulas; recent works of [3, 2] build
on the work of Lee and further studied monotone target functions. (All these works focus on
the case of binary features and product distributions over examples.)

Kearns and Mansour [21], in one of the first papers to study these heuristics from a
theoretical perspective, showed that they can be viewed as boosting algorithms, with internal
nodes of the decision tree hypothesis playing the role of weak learners. Their subsequent work
with Dietterich [11] provide experimental results that complement the theoretical results
of [21]; see also the survey of Kearns [20].

Finally, we mention that decision trees are one of the most intensively studied concept
classes in learning theory. The literature on this problem is rich and vast (see e.g. [12, 30,
5, 15, 9, 24, 4, 16, 22, 26, 18, 27, 14, 23, 19, 19, 17, 10, 1]), studying it from a variety of
perspectives and providing both positive and negative results. However, the algorithms
developed in these works do not resemble the greedy heuristics used in practice, and indeed,
most of them are not proper (in the sense of returning a hypothesis that is itself a decision
tree).2

2 Preliminaries

Recall that an impurity function G : [0, 1] → [0, 1] is concave, symmetric with respect to
1
2 , and satisfies G(0) = G(1) = 0 and G( 1

2 ) = 1. We further quantify the concavity and
smoothness of G as follows:

2 Quoting [21], “it seems fair to say that despite their other successes, the models of computational
learning theory have not yet provided significant insight into the apparent empirical success of programs
like C4.5 and CART.”
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▶ Definition 5 (Impurity functions). G is an (α, L)-impurity function if G is α-strongly concave
and L-smooth, i.e., G is twice-differentiable and G′′(x) ∈ [−L, −α] for every x ∈ [0, 1].

For a boolean function f : {0, 1}n → {0, 1} and index i ∈ [n], we write fxi=0 and fxi=1
to denote the restricted functions obtained by fixing the i-th input bit of f to either 0 or 1.
Formally, each fxi=b is a function over {0, 1}n defined as fxi=b(x) = f(xi→b), where xi→b

denotes the string obtained by setting the i-th bit of x to b. More generally, a restriction
π is a list of constraints of form “xi = b” in which every index i appears at most once.
For restriction π = (xi1 = b1, xi2 = b2, . . .), the restricted function fπ : {0, 1}n → {0, 1} is
similarly defined as fπ(x) = f(xi1→b1,i2→b2,...).

▶ Definition 6 (Purity gain). Let D be a distribution over {0, 1}n and pi = Prx∼D [xi = 1].
The G-purity gain of querying variable xi on boolean function f is defined as

G-purity-gainD(f, xi) := G
(

E
x∼D

[f(x)]
)

−piG
(

E
x∼D

[fxi=1(x)]
)

−(1−pi)G
(

E
x∼D

[fxi=0(x)]
)

.

In a decision tree, each node v naturally corresponds to a restriction πv formed by the
variables queried by the ancestors of v (excluding v itself). We use fv as a shorthand for fπv

.
We say that a decision tree learning algorithm is impurity-based if, in the tree returned by
the algorithm, every internal node v queries a variable that maximizes the purity gain with
respect to fv.

▶ Definition 7 (Impurity-based algorithms). A decision tree learning algorithm is G-impurity-
based if the following holds for every f : {0, 1}n → {0, 1} and distribution D over {0, 1}n:
When learning f on D, the algorithm outputs a decision tree such that for every internal node
v, the variable xi that is queried at v satisfies G-purity-gainD(fv, xi) ≥ G-purity-gainD(fv, xj)
for every j ∈ [n].

The above definition assumes that the algorithm exactly maximizes the G-purity gain at
every split, while in reality, the purity gains can only be estimated from a finite dataset. We
therefore consider an idealized setting that grants the learning algorithm with infinitely many
training examples, which, intuitively, strengthens our lower bounds. (Our lower bounds show
that in order for an algorithm to recover a good tree – a high-accuracy hypothesis whose
depth is close to that of the target – it would need to query a variable that has exponentially
smaller purity gain than that of the variable with the largest purity gain. Hence, if purity
gains are estimated using finitely many random samples as is done in reality, the strength of
our lower bounds imply that with extremely high probability, impurity-based heuristics will
fail to build a good tree; see Remark 15 for a detailed discussion.)

When a decision tree queries variable xi on function f , it naturally induces two restricted
functions fxi=0 and fxi=1. The following lemma states that the purity gain of querying xi is
roughly the squared difference between the averages of the two functions, up to a factor that
depends on the impurity function G and the data distribution D. We say that a product
distribution over {0, 1}n is δ-balanced if the expectation of each of the n coordinates is in
[δ, 1 − δ].

▶ Lemma 8. For any f : {0, 1}n → {0, 1}, δ-balanced product distribution D over {0, 1}n

and (α, L)-impurity function G, it holds for κ = max
(

2
αδ(1−δ) , L

8

)
and every i ∈ [n] that

1
κ

≤ G-purity-gainD(f, xi)
[Ex∼D [fxi=0(x)] − Ex∼D [fxi=1(x)]]2

≤ κ.

APPROX/RANDOM 2021
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Proof of Lemma 8. Let pi = Prx∼D [xi = 1] and µb = Ex∼D [fxi=b(x)] respectively. Then,
we have Ex∼D [f(x)] = piµ1 + (1 − pi)µ0, and the purity gain can be written as

G-purity-gainD(f, xi) = G(piµ1 + (1 − pi)µ0) − piG(µ1) − (1 − pi)G(µ0).

Since G is α-strongly concave and L-smooth, the above is bounded between α
2 ·pi(1−pi) ·(µ0 −

µ1)2 and L
2 · pi(1 − pi) · (µ0 − µ1)2. Since D is δ-balanced, we have δ(1 − δ) ≤ pi(1 − pi) ≤ 1

4 .
It follows that

α

2 · δ(1 − δ) ≤ α

2 · pi(1 − pi) ≤ G-purity-gainD(f, xi)
(µ0 − µ1)2 ≤ L

2 · pi(1 − pi) ≤ L

8 .

Thus, the ratio is bounded between 1/κ and κ. ◀

Our lower bounds hold with respect to all δ-balanced product distributions. We compare
this to the definition of a c-smoothened δ-balanced product distribution from [8].

▶ Definition 9 (Smooth distributions). A c-smoothened δ-balanced product distribution is a
random product distribution over {0, 1}n where the marginal for the ith bit is 1 with probability
p̂i + ∆i for fixed p̂i ∈ (δ + c, 1 − δ − c) and ∆i drawn i.i.d. from Uniform([−c, c]).

Since our lower bounds hold against all δ-balanced product distributions, it also holds
against all c-smoothened δ-balanced product distributions.

3 Proof overview and formal statements of our results

Our goal is to construct a target function that can be computed by a depth-k decision tree,
but on which impurity-based algorithms must build to depth 2Ω(k) or have large error. To
do so, we construct a decision tree target T where the variables with largest purity gain are
at the bottom layer of T (adjacent to its leaves). Intuitively, impurity-based algorithms will
build their decision tree hypothesis for T by querying all the variables in the bottom layer of
T before querying any of the variables higher up in T . Our construction will be such that
until the higher up variables are queried, it is impossible to approximate the target with any
nontrivial error. Summarizing informally, we show that impurity-based algorithms build its
decision tree hypothesis for our target by querying variables in exactly the “wrong order”.

The starting point of our construction is the well known addressing function. For k ∈ N,
the addressing function f : {0, 1}k+2k → {0, 1} is defined as follows: Given “addressing bits”
z ∈ {0, 1}k and “memory bits” y ∈ {0, 1}2k , the output f(y, z) is the zth bit of y, where “zth

bit” is computed by interpreting z as a base-2 integer. Note that the addressing function is
computable by a decision tree of depth k + 1 that first queries the k addressing bits, followed
by the appropriate memory bit.

For our lower bound, we would like the variables with the highest purity gain to be the
memory bits. However, for smoothed product distributions, the addressing bits might have
higher purity gain than the memory bits, and impurity-based algorithms might succeed in
learning the addressing function. We therefore modify the addressing function by making
each addressing bit the parity of multiple new bits. We show that by making each addressing
bit the parity of sufficiently many new bits, we can drive the purity gain of these new bits
down to the point where the memory bits have the highest purity gain as desired – in fact,
larger than the addressing bits by a multiplicative factor of eΩ(k). (Making each addressing
bit the parity of multiple new bits increases the depth of the target, so this introduces
technical challenges we have to overcome in order to achieve the strongest parameters.)

Our main theorem is formally restated as follows.
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▶ Theorem 10 (Formal version of Theorem 3). Fix L ≥ α > 0 and δ ∈ (0, 1
2 ]. There

are boolean functions f1, f2, . . . such that: (1) fk is computable by a decision tree of depth
O(k/δ); (2) For every δ-balanced product distribution D over the domain of fk and every
(α, L)-impurity function G, any G-impurity based decision tree heuristic, when learning fk on
D, returns a tree that has either depth ≥ 2k or an Ω(δ) error.

An extension of our construction and its analysis shows that the guarantees of Brutzkus
et al. for targets that are k-juntas cannot extend to the agnostic setting. Roughly speaking,
while our variant of the addressing function from Theorem 10 is far from all k-juntas, it can
be made close to one by fixing most of the memory bits. We obtain our result by showing
that our analysis continues to hold under such a restriction.

▶ Theorem 11 (Formal version of Theorem 4). Fix L ≥ α > 0, δ ∈ (0, 1
2 ] and ε ∈ (0, 1].

There are boolean functions f1, f2, . . . such that for every δ-balanced product distribution D
over the domain of fk: (1) fk is ε-close to an O(k/δ)-junta with respect to D; (2) For every
(α, L)-impurity function G, any G-impurity based decision tree heuristic, when learning fk on
D, returns a tree that has either a depth of Ω(ε · 2k) or an Ω(1) error.

4 Warm-Up: A Weaker Lower Bound

We start by giving a simplified construction that proves a weaker version of Theorem 10,
in which the O(k/δ) depth in condition (1) is relaxed to O(k2/δ). For integers c, k ≥ 1,
we define a boolean function fc,k : {0, 1}ck2+2k → {0, 1} as follows. The input of fc,k is
viewed as two parts: ck2 addressing bits xi,j indexed by i ∈ [k] and j ∈ [ck], and 2k memory
bits ya indexed by a ∈ {0, 1}k. The function value fc,k(x, y) is defined by first computing
zi(x) =

⊕ck
j=1 xi,j for every i ∈ [k], and then assigning fc,k(x, y) = yz(x).

In other words, fc,k is a disjoint composition of the k-bit addressing function and the
parity function over ck bits. Given addressing bits x and memory bits y, the function first
computes a k-bit address by taking the XOR of the addressing bits in each group of size
ck, and then retrieves the memory bit with the corresponding address. Clearly, fc,k can be
computed by a decision tree of depth ck2 + 1 that first queries all the ck2 addressing bits
and then queries the relevant memory bit in the last layer.

4.1 Address is Almost Uniform
Drawing input (x, y) from a distribution D naturally defines a distribution over {0, 1}k of the
k-bit address z(x) = (z1(x), z2(x), . . . , zk(x)). The following lemma states that when D is a
δ-balanced product distribution, the distribution of z(x) is almost uniform in the ℓ∞ sense.
Furthermore, this almost uniformity holds even if one of the addressing bits xi,j is fixed.

▶ Lemma 12. Suppose that c ≥ ln 5
δ and D is a δ-balanced product distribution over the

domain of fc,k. Then,∣∣∣∣ Pr
(x,y)∼D

[z(x) = a] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

Furthermore, for every i ∈ [k], j ∈ [ck] and b ∈ {0, 1},∣∣∣∣ Pr
(x,y)∼D

[z(x) = a|xi,j = b] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

The proof of Lemma 12 uses the following simple fact, which states that the XOR of
independent biased random bits is exponentially close to an unbiased coin flip.

APPROX/RANDOM 2021
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▶ Lemma 13. Suppose that x1, x2, . . . , xn are independent Bernoulli random variables,
each with an expectation between δ and 1 − δ. Then,

∣∣Pr [x1 ⊕ x2 ⊕ · · · ⊕ xn = 1] − 1
2
∣∣ ≤

1
2 (1 − 2δ)n ≤ 1

2 exp(−2δn).

Proof of Lemma 12. Since zi(x) =
⊕ck

j=1 xi,j and D is δ-balanced, Lemma 13 gives∣∣∣∣ Pr
(x,y)∼D

[zi(x) = 1] − 1
2

∣∣∣∣ ≤ 1
2 exp(−2δck) ≤ 1

2 · 5−k.

Note that the bits of z(x) are independent, so Pr(x,y)∼D [z(x) = a] is given by
k∏

i=1
Pr

(x,y)∼D
[zi(x) = ai] ≤

(
1
2 + 1

2 · 5−k

)k

= 2−k ·(1+5−k)k ≤ 2−k ·(1+(2/5)k) = 2−k +5−k,

where the third step applies (1 + x)k ≤ 1 + 2kx for x ∈ [0, 1] and integers k ≥ 1. Similarly,

Pr
(x,y)∼D

[z(x) = a] ≥
(

1
2 − 1

2 · 5−k

)k

≥ 2−k · (1 − k · 5−k) ≥ 2−k − 5−k,

where the last two steps apply (1 − x)k ≥ 1 − kx and k · 2−k ≤ 1. This proves the first part.
The proof of the “furthermore” part is essentially the same, except that conditioning on

xi,j = b, zi(x) becomes the XOR of ck − 1 independent bits and b. By Lemma 13, we have∣∣∣∣ Pr
(x,y)∼D

[zi(x) = 1|xi,j = b] − 1
2

∣∣∣∣ ≤ 1
2 exp(−2δ(ck − 1)) ≤ 1

2 exp(−δck) ≤ 1
2 · 5−k,

and the rest of the proof is the same. ◀

4.2 Memory Bits are Queried First
The following technical lemma states that the purity gain of fc,k is maximized by a memory
bit, regardless of the impurity function and the data distribution. Therefore, when an
impurity-based algorithm (in the sense of Definition 7) learns fc,k, the root of the decision
tree will always query a memory bit. Furthermore, this property also holds for restrictions of
fc,k as long as the restriction only involves the memory bits.

▶ Lemma 14. Fix L ≥ α > 0 and δ ∈ (0, 1
2 ]. Let c0 = ln 5

δ and k0 = ln(2κ)
ln(5/4) + 1, where κ is

chosen as in Lemma 8. The following holds for every function fc,k with c ≥ c0 and k ≥ k0:
For any (α, L)-impurity function G, δ-balanced product distribution D and restriction π of
size < 2k that only contains the memory bits of fc,k, the purity gain G-purity-gainD((fc,k)π, ·)
is maximized by a memory bit.

Proof of Lemma 14. Fix c ≥ c0 and k ≥ k0 and shorthand f for fc,k. We will prove a
stronger claim: with respect to fπ, every memory bit (that is not in π) gives a much higher
purity gain than every addressing bit does.

Purity gain of the memory bits

Fix a memory bit ya (a ∈ {0, 1}k) that does not appear in restriction π. Let µb =
E(x,y)∼D [fπ,ya=b(x, y)] for b ∈ {0, 1}. By the law of total expectation,

µb = Pr
(x,y)∼D

[z(x) = a] · E
(x,y)∼D

[fπ,ya=b(x, y)|z(x) = a]

+ Pr
(x,y)∼D

[z(x) ̸= a] · E
(x,y)∼D

[fπ,ya=b(x, y)|z(x) ̸= a]

= Pr
(x,y)∼D

[z(x) = a] · b + Pr
(x,y)∼D

[z(x) ̸= a] · E
(x,y)∼D

[fπ(x, y)|z(x) ̸= a] .
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Here the second step holds since fπ,ya=b(x, y) evaluates to b when the address z(x) equals a,
and fπ,ya=b agrees with fπ when z(x) ̸= a. Since only the first term above depends on b, we
have

|µ0 − µ1| = Pr
(x,y)∼D

[z(x) = a] ≥ 2−k − 5−k ≥ 1
2 · 2−k,

where the second step follows from c ≥ c0 and Lemma 12. Finally, by Lemma 8,
G-purity-gainD(fπ, ya) ≥ 1

κ (µ0 − µ1)2 ≥ 1
4κ · 2−2k.

Purity gain of the addressing bits

Similarly, we fix an addressing bit xi,j and define the average µb = E(x,y)∼D
[
fπ,xi,j=b(x, y)

]
.

Since D is a product distribution, µb is equal to the conditional expectation
E(x,y)∼D [fπ(x, y)|xi,j = b]. Then, by the law of total expectation, we can write µb as

µb =
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a|xi,j = b] · E
(x,y)∼D

[fπ(x, y)|z(x) = a, xi,j = b]

=
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a|xi,j = b] · E
(x,y)∼D

[fπ(x, y)|z(x) = a] .

Here the second step holds since fπ(x, y) and xi,j are independent conditioning on the address
z(x); in other words, once we know the value of z(x), it doesn’t matter how x is set in
determining the output of f .

Let ca denote E(x,y)∼D [fπ(x, y)|z(x) = a], and let Pb be the distribution of z(x) condi-
tioning on xi,j = b. Then, µb is exactly given by Ea∼Pb

[ca]. Since each ca is in [0, 1], |µ0 −µ1|
is upper bounded by the total variation distance between P0 and P1:

|µ0 − µ1| ≤ 1
2

∑
a∈{0,1}k

|P0(a) − P1(a)|

≤ 1
2

∑
a∈{0,1}k

(
|P0(a) − 2−k| + |P1(a) − 2−k|

)
≤ 1

2 · 2k · 2 · 5−k = (2/5)k. (Lemma 12)

Finally, applying Lemma 8 shows that G-purity-gainD(fπ, xi,j) ≤ κ(µ0 − µ1)2 ≤ κ · (2/5)2k.
Recall that k ≥ k0 > ln(2κ)

ln(5/4) , so we have κ · (2/5)2k < 1
4κ · 2−2k. Therefore, the purity

gain of every memory bit outside the restriction is strictly larger than that of any addressing
bit, and the lemma follows immediately. ◀

▶ Remark 15. The proof above bounds the purity gain of each memory bit and each addressing
bit by Ω((1/2)2k) and O((2/5)2k) respectively. For Lemma 14 to hold when the purity gains
are estimated from a finite dataset, it suffices to argue that each estimate is accurate up to
an O((2/5)2k) additive error. By a standard concentration argument, to estimate the purity
gains for all restriction π of size ≤ h, 2O(h+k) training examples are sufficient. When applied
later in the proof of Theorem 10, this finite-sample version of Lemma 14 would imply that
impurity-based algorithms need to build a tree of depth h as soon as the sample size reaches
2Ω(h+k).
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4.3 Proof of the Weaker Version
Now we are ready to prove the weaker version of Theorem 10. We will apply Lemma 14 to
argue that the tree returned by an impurity-based algorithm never queries an addressing bit
(unless all the 2k memory bits have been queried), and then show that every such decision
tree must have an error of Ω(δ).

Proof of Theorem 10 (weaker version). Fix integer c ≥ ln 5
δ and consider the functions

fc,1, fc,2, . . .. Since each fc,k is represented by a decision tree of depth ck2 + 1 = O(k2/δ), it
remains to show that impurity-based algorithms fail to learn fc,k. Fix integer k ≥ k0 (where
k0 is chosen as in Lemma 14) and δ-balanced product distribution D over the domain of fc,k.
In the following, we use shorthand f for fc,k.

Small trees never query addressing bits

Let T be the decision tree returned by a G-impurity-based algorithm when learning f on
D. If T has depth > 2k, we are done, so we assume that T has depth at most 2k. We claim
that T never queries the addressing bits of f . Suppose otherwise, that an addressing bit
is queried at node v in T , and no addressing bits are queried by the ancestors of v. Then,
the restriction πv associated with node v only contains the memory bits of f . Since T has
depth ≤ 2k, the size of πv is strictly less than 2k. Then, by Lemma 14, the G-purity gain
with respect to fv is maximized by a memory bit. This contradicts the assumption that the
algorithm is G-impurity-based.

Trivial accuracy if no addressing bits are queried

We have shown that T only queries the memory bits of f . We may further assume that T

queries all the 2k memory bits before reaching any of its leaves, i.e., T is a full binary tree of
depth 2k. This assumption is without loss of generality because we can add dummy queries
on the memory bits to the leaves of depth < 2k, and label all the resulting leaves with the
same bit. This change does not modify the function represented by T .

Assuming that T is full, every leaf ℓ of T is labeled by 2k bits (ca)a∈{0,1}k , meaning that
each memory bit ya is fixed to ca on the root-to-ℓ path. The expectation of the restricted
function fℓ is then given by µℓ := E(x,y)∼D

[
cz(x)

]
. Clearly, the error of T is minimized

when each leaf ℓ is labeled with 1
[
µℓ ≥ 1

2
]
, and the conditional error when reaching leaf ℓ is

min(µℓ, 1 − µℓ).
It remains to show that for a large fraction of leaves ℓ, µℓ is bounded away from 0 and 1,

so that min(µℓ, 1 − µℓ) is large. When leaf ℓ is randomly chosen according to distribution D,
the corresponding µℓ is given by

µℓ =
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a] · ca, (1)

where (ca)a∈{0,1}k are 2k independent Bernoulli random variables with means in [δ, 1 − δ].
By Lemma 12 and our choice of c ≥ c0, Pr(x,y)∼D [z(x) = a] ≤ 2 · 2−k holds for every

a ∈ {0, 1}k. Thus, each term in (1) is bounded between 0 and 2 · 2−k. Furthermore, since
each ca has expectation at least δ, E [µℓ] ≥ δ. Then, Hoeffding’s inequality guarantees
that over the random choice of (ca)a∈{0,1}k , µℓ ≥ δ/2 holds with probability at least
1 − exp

(
− 2·(δ/2)2

2k·(2·2−k)2

)
= 1 − exp(−2kδ2/8), which is lower bounded by 2/3 for all sufficiently

large k. By a symmetric argument, µℓ ≤ 1−δ/2 also holds with probability ≥ 2/3. Therefore,
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with probability ≥ 1/3 over the choice of leaf ℓ, µℓ ∈ [δ/2, 1 − δ/2] holds and thus the
conditional error on leaf ℓ is at least δ/2. This shows that the error of T over distribution D
is lower bounded by δ/6, which completes the proof. ◀

5 Proof of Theorem 10

When proving the weaker version of Theorem 10, each hard instance fc,k has Θ(k2) addressing
bits grouped into k disjoint subsets, and the k-bit address is defined by the XOR of bits in
each subset. We will prove Theorem 10 using a slightly different construction that computes
address from k overlapping subsets of only O(k) addressing bits.

For integers c, k ≥ 1 and a list of k sets S = (S1, S2, . . . , Sk) where each Si ⊆ [ck], we
define a boolean function fc,k,S : {0, 1}ck+2k → {0, 1} as follows. The input of fc,k,S is again
divided into two parts: ck addressing bits x1, x2, . . . , xck and 2k memory bits ya indexed by
a k-bit address a. The function value f(x, y) is computed by taking zi(x) =

⊕
j∈Si

xj and
then f(x, y) = yz(x). Clearly, fc,k,S can be computed by a decision tree of depth ck + 1 that
first queries all the ck addressing bits x1, x2, . . . , xck, and then queries the relevant memory
bit yz(x).

Let △k
i=1 Si denote the k-ary symmetric difference of sets S1 through Sk, i.e., the set of

elements that appear in an odd number of sets. We say that a list of sets S = (S1, S2, . . . , Sk)
has distance d, if any non-empty collection of sets has a symmetric difference of size at least
d, i.e., |△i∈I Si| ≥ d for every non-empty I ⊆ [k]. In the following, we prove analogs of
Lemmas 12 and 14 for function fc,k,S assuming that S has a large distance; Theorem 10
would then follow immediately.

▶ Lemma 16. Suppose that D is a δ-balanced product distribution over the domain of fc,k,S

and S has distance d ≥ ln 5
δ · k. Then,∣∣∣∣ Pr

(x,y)∼D
[z(x) = a] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

Furthermore, for every i ∈ [ck] and b ∈ {0, 1},∣∣∣∣ Pr
(x,y)∼D

[z(x) = a|xi = b] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

We prove Lemma 16 by noting that the distribution of z(x) has exponentially small
Fourier coefficients (except the degree-0 one) under the assumptions, and is thus close to the
uniform distribution over {0, 1}k. More concretely, our goal is to show that, for every I ⊆ [k]
the quantity

⊕
i∈I zi(x) is 1 with probability nearly exactly 1

2 . Afterwards, we will show this
is sufficient to guarantee that the distribution of z(x) is close to the uniform distribution.

Proof of Lemma 16. Since zi(x) =
⊕

j∈Si
xj , we have

⊕
i∈I zi(x) =

⊕
j∈SI

xj for every
I ⊆ [k], where SI = △i∈I Si is the symmetric difference of the corresponding sets. Since S

has distance d, |SI | ≥ d for every non-empty I ⊆ [k] and thus
⊕

i∈I zi(x) is the XOR of at
least d independent bits. Note that 1 − 2

⊕
i∈I zi(x) =

∏
i∈I(1 − 2zi(x)). By Lemma 13 and

d ≥ ln 5
δ · k,∣∣∣∣∣ E

(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣ = 2 ·

∣∣∣∣∣ Pr
(x,y)∼D

[⊕
i∈I

zi(x) = 1
]

− 1
2

∣∣∣∣∣ ≤ exp(−2δd) ≤ 5−k. (2)
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Note that for b1, b2 ∈ {0, 1}, we have 1 [b1 = b2] = (1−2b1)(1−2b2)+1
2 . Therefore, for every

a ∈ {0, 1}k,∣∣∣∣ Pr
(x,y)∼D

[z(x) = a] − 2−k

∣∣∣∣ =

∣∣∣∣∣ E
(x,y)∼D

[
k∏

i=1

(1 − 2ai)(1 − 2zi(x)) + 1
2

]
− 2−k

∣∣∣∣∣
= 2−k

∣∣∣∣∣∣
∑

I⊆[k]

E
(x,y)∼D

[∏
i∈I

(1 − 2ai)(1 − 2zi(x))
]

− 1

∣∣∣∣∣∣
(expansion of product and linearity)

= 2−k

∣∣∣∣∣∣
∑

I⊆[k]:I ̸=∅

E
(x,y)∼D

[∏
i∈I

(1 − 2ai)(1 − 2zi(x))
]∣∣∣∣∣∣

(empty product equals 1)

≤ 2−k
∑

I⊆[k]:I ̸=∅

∣∣∣∣∣∏
i∈I

(1 − 2ai)

∣∣∣∣∣ ·

∣∣∣∣∣ E
(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣

(triangle inequality and linearity)

= 2−k
∑

I⊆[k]:I ̸=∅

∣∣∣∣∣ E
(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣ (|1 − 2ai| = 1)

≤ 2−k · (2k − 1) · 5−k < 5−k. (Inequality (2))

The proof of the “furthermore” part is the same, except that after conditioning on xi = b,
each

⊕
j∈I zj(x) is now the XOR of at least d − 1 independent bits, and the remaining proof

goes through. ◀

We note that the proof of Lemma 14 depends on the definition of z(x) only through
the application of Lemma 12. Thus, Lemma 16 directly implies the following analog of
Lemma 14:

▶ Lemma 17. Fix L ≥ α > 0 and δ ∈ (0, 1
2 ]. Let c0 = ln 5

δ and k0 = ln(2κ)
ln(5/4) + 1, where κ is

chosen as in Lemma 8. The following holds for every function fc,k,S such that k ≥ k0 and
S has distance c0k: For any (α, L)-impurity function G, δ-balanced product distribution D
and restriction π of size < 2k that only contains the memory bits of fc,k,S, the purity gain
G-purity-gainD((fc,k,S)π, ·) is maximized by a memory bit.

Finally, we prove Theorem 10 by showing the existence of a set family S with a good
distance.

Proof of Theorem 10. Fix δ ∈ (0, 1
2 ]. The Gilbert–Varshamov bound for binary linear

codes implies that for some c = Θ(1/δ), there exists a binary linear code with rate 1
c

and relative distance ln 5
δc . It follows that for every sufficiently large k, there exists S(k) =

(S(k)
1 , S

(k)
2 , . . . , S

(k)
k ) such that each S

(k)
i ⊆ [ck] and S(k) has distance ln 5

δ · k. This can be
done by using the i-th basis of the linear code as the indicator vector of subset S

(k)
i for each

i ∈ [k].
We prove Theorem 10 using functions fc,1,S(1) , fc,2,S(2) , . . .. Since each fc,k,S(k) can be

represented by a decision tree of depth ck + 1 = O(k/δ), it remains to prove that impurity-
based algorithms fail to learn fc,k,S(k) . Lemma 17 guarantees that the tree returned by such
algorithms either has depth > 2k, or never queries any addressing bits. In the latter case, by
the same calculation as in the proof of the weaker version, the decision tree must have an
Ω(δ) error on distribution D. ◀
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6 Proof of Theorem 11

We prove Theorem 11 using the construction of fc,k,S in Section 5, where S = (S1, S2, . . . , Sk)
is a list of k subsets of [ck] and each Si specifies how the i-th bit of the address, zi(x),
is computed from the addressing bits x1 through xck. Note that fc,k,S itself depends on
Ω(2k) input bits and is thus not an O(k)-junta. Nevertheless, we will show that, after we fix
most of the memory bits of fc,k,S , the function is indeed close to a (ck)-junta with relevant
inputs being the ck addressing bits. Then, as in the proof of Theorem 10, we will argue that
impurity-based heuristics still query the (unfixed) memory bits before querying any of the
addressing bits, resulting in a tree that is either exponentially deep or far from the target
function.

Proof of Theorem 11. As in the proof of Theorem 10, we can find functions
fc,1,S(1) , fc,2,S(2) , . . . for some c = Θ(1/δ) such that each S(k) has distance ≥ ln 5

δ · k. We fix
a sufficiently large integer k and shorthand f for fc,k,S(k) in the following.

Partition {0, 1}k into three sets A0, A1 and Afree such that |A0| = |A1| and ε · 2k−2 ≤
|Afree| ≤ ε · 2k−1. Consider the restriction π of function f such that the memory bit ya is
fixed to be 0 for every a ∈ A0 and fixed to be 1 for every a ∈ A1; the memory bits with
addresses in Afree are left as “free” variables. We will prove the theorem using fπ as the k-th
function in the family.

fπ is close to a junta

Consider the function g : {0, 1}ck+2k → {0, 1} defined as g(x, y) = 1
[
z(x) ∈ A1]

, where z(x)
denotes (z1(x), z2(x), . . . , zk(x)) and each zi(x) =

⊕
j∈S

(k)
i

xj . Clearly, g(x, y) only depends
on x ∈ {0, 1}ck and is thus a (ck)-junta. Furthermore, for every input (x, y) such that
z(x) ∈ A0 (resp. z(x) ∈ A1), both fπ and g evaluate to 0 (resp. 1). Thus, fπ and g may
disagree only if z(x) ∈ Afree. It follows that for every δ-balanced product distribution D,

Pr
(x,y)∼D

[fπ(x, y) ̸= g(x, y)] ≤ Pr
(x,y)∼D

[
z(x) ∈ Afree]

≤ |Afree| · (2−k + 5−k) (Lemma 16)
≤ ε · 2k−1 · (2−k + 5−k) < ε. (|Afree| ≤ ε · 2k−1)

Therefore, fπ is ε-close to an O(k/δ)-junta (namely, g) with respect to distribution D.

Impurity-based algorithms fail to learn fπ

Let T be the decision tree returned by an G-impurity based algorithm when learning fπ on
distribution D. By Lemma 17, T must query all the free memory bits with addresses in Afree

before querying any of the addressing bits. Thus, either T has depth > |Afree| = Ω(ε · 2k), or
T only queries the free memory bits of fπ.

In the latter case, we may again assume without loss of generality that T queries all the
free memory bits (ya)a∈Afree before reaching any of its leaves, i.e., T is a full binary tree of
depth |Afree|. Then, every leaf ℓ naturally specifies 2k bits (ca)a∈{0,1}k defined as

ca =


0, a ∈ A0,

1, a ∈ A1,

b, a ∈ Afree, ya is fixed to b on the root-to-ℓ path.
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Let µℓ := E(x,y)∼D
[
cz(x)

]
. Again, the minimum possible error conditioning on reaching leaf

ℓ is min(µℓ, 1 − µℓ), achieved by labeling ℓ with 1
[
µℓ ≥ 1

2
]
. On the other hand, we have

µℓ ≥ Pr
(x,y)∼D

[
z(x) ∈ A1]

≥ |A1| · (2−k − 5−k) (Lemma 16)

≥ 2k − |Afree|
2 · 2−(k+1) (2|A1| + |Afree| = 2k)

≥ 2k − 2k−1

2 · 2−(k+1) = 1
8 , (|Afree| ≤ ε · 2k−1 ≤ 2k−1)

and a similar calculation shows µℓ ≤ 7
8 . We conclude that the error of the decision tree T

over distribution D is at least 1
8 = Ω(1). ◀

7 Conclusion

We have constructed target functions for which greedy decision tree learning heuristics
fail badly, even in the smoothed setting. Our lower bounds complement and strengthen
the parity-of-two-features example discussed in the introduction, which showed that these
heuristics fail badly in the non-smoothed setting.

It can be reasonably argued that real-world data sets do not resemble the target functions
considered in this paper or the parity-of-two-features example. Perhaps the sought-for
guarantee (♢), while false for certain target functions even in the smoothed setting, is
nonetheless true for broad and natural classes of targets? It would be interesting to reexamine,
through the lens of smoothed analysis, provable guarantees for restricted classes of functions
that have been established. For example, can the guarantees of [3, 2] for monotone target
functions and product distributions be further strengthened in the smoothed setting? The
target functions considered in this paper, as well as the parity-of-two-features example, are
non-monotone.
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