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Abstract
We study the problem of deterministically approximating the number of satisfying assignments of
a polynomial threshold function (PTF) over Boolean space. We present and analyze a scheme for
transforming such algorithms for PTFs over Gaussian space into algorithms for the more challenging
and more standard setting of Boolean space. Applying this transformation to existing algorithms
for Gaussian space leads to new algorithms for Boolean space that improve on prior state-of-the-art
results due to Meka and Zuckerman [19] and Kane [13]. Our approach is based on a bias-preserving
derandomization of Meka and Zuckerman’s regularity lemma for polynomials [19] using the [23]
pseudorandom generator for PTFs.
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1 Introduction

Unconditional derandomization has emerged as a major topic of inquiry in complexity theory
over the past several decades. One important strand in this study is the development of
deterministic algorithms that can perform approximate counting for various function classes:
given the description of a function f ∈ C and an accuracy parameter ϵ > 0, deterministically
output an estimate of the acceptance probability of f (i.e. Prx←{−1,1}n [f(x) = 1]) that is
additively accurate to within ±ϵ. This problem is trivially easy to solve with a randomized
algorithm, but is much more challenging if a deterministic algorithm is required. Indeed,
recall that the P vs. BPP problem is essentially equivalent to solving the deterministic
approximate counting problem for C being the class of all polynomial-size circuits (and
ϵ = 0.1).

In this work we focus on the class of low-degree polynomial threshold functions, an
important class of functions that has been the subject of intensive study in unconditional
derandomization in recent years [5, 12, 11, 13, 16, 19, 14, 3, 4, 15, 9, 10, 17, 23, 22].
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37:2 Deterministic Approximate Counting of Polynomial Threshold Functions

1.1 Background: Deterministic approximate counting algorithms for
PTFs

A degree-d polynomial threshold function (PTF) is a function f(x) = sign(p(x)) where
p(x1, . . . , xn) is a polynomial of degree at most d and sign : R → {−1, 1} outputs 1 iff its
argument is nonnegative. Deterministic approximate counting algorithms for PTFs have
been well studied in a number of different works, and the following table summarizes the
runtimes of the fastest known algorithms prior to this work:

Table 1 Prior work on deterministic approximate counting algorithms for degree-d PTFs. In
the runtime of [13], Od(·) hides an Ackermann-type dependence on d, and likewise, in the runtime
of [4], Od,ϵ(·) hides an Ackermann-type dependence on d and 1/ϵ. With the exception of [4], all
these algorithms are based on the construction of pseudorandom generators for PTFs.

Reference Runtime

[19] n(d/ϵ)O(d)

[13] nOd(poly(1/ϵ))

[4] Od,ϵ(1) · nO(d)

[17] poly(n) · exp(2Õ(
√

log(1/ϵ))) for d = 2

[23] exp(2
√

d log n) · quasipoly(1/ϵ)

1.1.1 Algorithms for PTFs over Gaussian space
A fruitful theme that has emerged in the study of PTFs concerns the relationship between
PTFs in the standard setting of Boolean space – PTFs over {−1, 1}n endowed with the
uniform distribution – and PTFs in the setting of Gaussian space: PTFs over Rn endowed
with the Gaussian measure N(0, 1)n.

The Gaussian setting enjoys numerous useful features that are not afforded by the Boolean
setting, most of them owing to the continuous nature of Rn and the rotational invariance of
the Gaussian measure. In fact, the problem of approximate counting of degree-d PTFs over
Gaussian space (i.e. approximating Prg←N(0,1)n [f(g) = 1] where f is a degree-d PTF) can
be seen to be a special case of the same problem over Boolean space, in the sense that an
algorithm for the latter setting can be used to obtain an algorithm with a comparable runtime
for the former setting. (This is a consequence of the invariance principle [20].) For this
reason, many works have focused on the special case of designing deterministic approximate
counting algorithms for PTFs over Gaussian space. There are by now a number of results
in this setting for which no counterparts are yet known for the more challenging Boolean
setting:

Contrasting the state of the art over Boolean and Gaussian space. Comparing Tables 1
and 2, we note that the runtime of [12] is strictly better than those of [19]’s and [13]’s
algorithms for the Boolean setting; the runtime of [14] is strictly better than that of [13];
the runtime of [3] is strictly better than that of [17]; and the runtime of [22] remains
subexponential for d = 2Ω̃(

√
log n), whereas all algorithms for the Boolean setting trivialize

once d = Ω(log n).
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Table 2 Current best deterministic approximate counting algorithms for degree-d PTFs over
Gaussian space. With the exception of [3], all these algorithms are based on the construction of
pseudorandom generators for PTFs over Gaussian space.

Reference Running time

[12] n2O(d)·poly(1/ϵ)

[14] nOd,κ(1/ϵ)κ

for all κ > 0

[3] poly(n, 1/ϵ) for d = 2

[22] n(d/ϵ)O(log d)

1.2 This work: Upgrading algorithms for Gaussian space into ones for
Boolean space

In this work we establish a new connection between the derandomization of PTFs over
Boolean and Gaussian space. We leverage this connection to transform existing deterministic
approximate counting algorithms for the Gaussian setting (i.e. those summarized in Table 2)
into new state-of-the-art deterministic algorithms for approximate counting of PTFs for the
more challenging Boolean setting, improving upon those summarized in Table 1.

The runtimes of our new algorithms improve upon the prior state of the art for a broad
range of parameters. For d = Θ(1), we obtain a strict improvement for all ϵ satisfying
2−Θ(

√
log n) ≤ ϵ ≤ on(1). For d = ωn(1), we obtain a strict improvement for all ϵ satisfying

d log(d/ϵ) ≤ Θ(log n). We now give precise statements of the runtimes of our new algorithms,
and provide example parameter settings that highlight the main qualitative advantages of
these new runtimes.

1.3 Our results: New deterministic approximate counting algorithms for
PTFs over Boolean space

First, by instantiating our framework with [12]’s algorithm for the Gaussian setting, we
obtain the following algorithm for the Boolean setting:

▶ Theorem 1. There is a deterministic algorithm for ϵ-approximate counting n-variable
degree-d PTFs over Boolean space that runs in time

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ).

This runtime is a strict improvement of [19]’s runtime and very nearly matches the
n2O(d)·poly(1/ϵ) running time of the [12] algorithm for Gaussian space. For any ϵ =
Θ(1/polylog(n)), our runtime remains npolylog(n) for d as large as Ω̃(log log n), whereas
the runtimes of all previous algorithms for the Boolean setting exceed npolylog(n) once d is
even a slightly superconstant function of n.

Next, by instantiating our framework with [14]’s algorithm for the Gaussian setting, we
obtain the following algorithm for the Boolean setting:

APPROX/RANDOM 2021



37:4 Deterministic Approximate Counting of Polynomial Threshold Functions

▶ Theorem 2. For all κ > 0, there is a deterministic algorithm for ϵ-approximate counting
n-variable degree-d PTFs over Boolean space that runs in time

nOd,κ(1/ϵ)κ

.

This runtime is a strict improvement of [13]’s runtime and matches that of [14]’s algorithm
for the Gaussian setting. For arbitrarily large constants c, d ∈ N and ϵ = 1/(log n)c, our
runtime is barely superpolynomial, nO((log n)κ) for any arbitrarily small constant κ > 0,
whereas all previous algorithms for the Boolean setting run in time at least n(log n)Ω(c) or
n(log n)Ω(d) .

Table 3 Our new algorithms for deterministic approximate counting of degree-d PTFs over
Boolean space. The runtime of Theorem 1 is a strict improvement of [19]’s; the runtime of Theorem 2
is a strict improvement of [13]’s, and matches that of [14]’s algorithm for Gaussian space.

Runtime
Follows by instantiating

our framework with:

Theorem 1 exp
(
2O(d

√
log(d/ϵ))) · n2O(d)·poly(1/ϵ) [12]’s Gaussian PRG

Theorem 2 nOd,κ(1/ϵ)κ

[14]’s Gaussian PRG

Finally, we remark that:
Our framework can also be instantiated with [3]’s algorithm for degree-2 PTFs in the
Gaussian setting to recover [17]’s PRG-based algorithm for degree-2 PTFs in the Boolean
setting (and in fact, we are able to improve it slightly by eliminating the polylog(1/ϵ)
factor suppressed by the Õ(·) in its runtime);
Our framework can also be instantiated with [22]’s algorithm for degree-d PTFs in the
Gaussian setting, yielding a deterministic algorithm for degree-d PTFs over Boolean space
that runs in time exp

(
2O(d
√

log(d/ϵ))) · n(d/ϵ)O(log d)
. Like Theorem 1, this runtime is a

strict improvement of [19]’s runtime.

1.4 Our approach: Derandomizing Meka and Zuckerman’s regularity
lemma

Our main new tool is a derandomization of the [19] regularity lemma. To explain what this
means, we begin by recalling the basics of the original [19] regularity lemma.

A multivariate polynomial p is said to be regular if, intuitively, no variable has high
influence (we give precise definitions in Section 2). Let us recall the original [19] regularity
lemma: given any degree-d polynomial over {−1, 1}n, it gives an efficient (deterministic)
algorithm which builds a not-too-large decision tree such that at almost every leaf ρ, the
resulting polynomial pρ (p restricted according the partial assignment corresponding to that
leaf) is such that either (i) pρ is regular, or (ii) sign(pρ) is close to either the constant +1
function or the constant −1 function.1

1 We note that a similar regularity lemma was given in simultaneous work of [6] (see also [18]); that work
employed a slightly different technical definition of what it means for a polynomial to be “regular”,
and it gave a similar algorithm to build a decision tree with similar properties for that related notion.
However, in the current work for technical reasons it is essential that we use the [19] notion of regularity;
we explain this in more detail in Remark 22 in Appendix B.2.
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The [19] regularity lemma is useful for derandomization because it lets one reduce the
general Boolean case to the “regular” Boolean case, which can be easier because sophisticated
mathematical tools like central limit theorems and invariance principles can be brought to
bear on regular polynomials over {−1, 1}n to relate them to the corresponding polynomials
over the Gaussian domain. Indeed, the [19] regularity lemma and related results play an
important role in a number of PRG and approximate counting results for polynomial threshold
functions, including the works of [19, 13, 4] mentioned above. However there is often a
substantial algorithmic cost associated with the use of a regularity lemma, because building
the decision tree (or equivalently, exploring all of its leaves) can be relatively expensive.

Our derandomization of the regularity lemma. The above-described standard strategy of
building and visiting all of the leaves of a decision tree corresponds to using true uniform
randomness to choose a path through the decision tree. The intuition behind our derandom-
ized version of the regularity lemma is as follows: by choosing a path through the decision
tree according to a suitable pseudorandom distribution, it is possible, from an algorithmic
perspective, to “build and visit only a tiny fraction of the leaves of the decision tree.” This
can be much more efficient than visiting all leaves.

Intuitively, the leaves that our derandomized regularity lemma constructs are determined
by the output of a PRG for degree-d PTFs over m variables where m is the depth of the
decision tree.2 As our analysis shows, for the purpose of deterministic approximate counting
for the original PTF sign(p), it suffices to do deterministic approximate counting on just the
PTFs sign(pρ) for these (relatively few) leaves ρ.

More precisely, we prove a general result, Theorem 15, which encapsulates the above
approach. It outputs a collection of restrictions (which can be thought of as a very small
subset of the leaves of the decision tree that the original regularity lemma constructs) with
the following property: given an accurate estimate of the fraction of assignments satisfying
sign(pρ) for each restriction ρ in the collection, combining these estimates in the obvious way
gives an accurate estimate of the overall fraction of inputs in {−1, 1}n that satisfy the original
PTF sign(p). Moreover (and crucially), each restriction ρ in the collection is such that either
the restricted polynomial pρ is highly regular, or else sign(pρ) is a close-to-constant function.

For the purpose of deterministic approximate counting, restrictions where sign(pρ) is
a close-to-constant function are easy to handle, and thanks to the invariance principle, at
restrictions where pρ is regular we can do Gaussian deterministic approximate counting
and the resulting estimate of Prg←N(0,1)n [sign(pρ(g)) = 1] will be an accurate estimate
of Prx←{−1,1}n [sign(pρ(x))] for the Boolean problem. Thus, the overall running time of
the deterministic approximate counting algorithm we obtain from the regularity lemma is
essentially the running time of (i) “fooling Boolean PTFs over few variables” (to build the
tree) times the running time of (ii) “Gaussian determinstic approximate counting” (to handle
the regular leaves).

1.4.1 Applying the derandomized regularity lemma
To obtain an efficient deterministic approximate counting algorithm from this approach, in
part (i) above it is okay to use a PRG with a relatively poor dependence on the number of
variables, since the number of variables is quite small. Such a generator is provided for us by

2 This is actually an oversimplification: the regularity lemma works in a sequence of “atomic stages” to
build a tree, and our approach actually works by derandomizing each atomic stage separately. The cost
of a single atomic stage provides the dominant contribution to the overall cost, though, so the intuition
is correct.

APPROX/RANDOM 2021



37:6 Deterministic Approximate Counting of Polynomial Threshold Functions

the [23] PRG (or rather a slight variant of it which we need for technical reasons); we can
afford this generator’s poor dependence on the number of variables, and using it lets us take
advantage of its better dependence on the other parameters (it is clear from Table 1 that [23]
has a better dependence on both d and ϵ than any of the other algorithms in that table).

By applying our derandomized regularity lemma with (essentially) the [23] PRG for part
(i) and the Gaussian result of [12] for part (ii), we obtain Theorem 1. By using instead [14]’s
algorithm for the Gaussian setting for part (ii), we obtain Theorem 2.

2 Preliminaries

We start by establishing some basic notation. We write [n] to denote {1, 2, . . . , n} and
[k, ℓ] to denote {k, k + 1, . . . , ℓ}. We use bold font to denote random variables. We write
E[X] and Var[X] to denote expectation and variance of a random variable X and write
EX←D[X], VarX←D[X], and the like to indicate that the random variable X has distribution
D. If S is a finite set then “X ← S” means that X is distributed uniformly over S; if no
distribution is specified for a random variable taking values in {−1, 1}n then the implied
distribution is uniform over {−1, 1}n. For x ∈ {−1, 1}n and A ⊆ [n] we write xA to denote
(xi)i∈A.

For a function f : {−1, 1}n → R and q ≥ 1, we denote by ∥f∥q its ℓq norm with
respect to the uniform distribution, i.e., ∥f∥q

def= E[|p(x)|q]1/q = Ex←{−1,1}n [|p(x)|q]1/q.

We write ∥f∥q,D to denote its ℓq norm with respect to the distribution D, i.e. ∥f∥q,D
def=

Ex←D[|p(x)|q]1/q.

For Boolean-valued functions f, g : {−1, 1}n → {−1, 1} the distance between f and g,
denoted dist(f, g), is Pr[f(x) ̸= g(x)].

2.1 Fourier analysis of Boolean functions
Fourier Analysis over {−1, 1}n and Influences. We consider functions f : {−1, 1}n → R,
and we think of the inputs x to f as being distributed according to the uniform probability
distribution. The set of such functions forms a 2n-dimensional real inner product space
with inner product given by ⟨f, g⟩ = E[f(x)g(x)]. The set of functions (χS)S⊆[n] defined
by χS(x) =

∏
i∈S xi forms a complete orthonormal basis for this space. Given a function

f : {−1, 1}n → R we define its Fourier coefficients by f̂(S) def= E[f(x)χS(x)], and we have
that f(x) =

∑
S f̂(S)χS(x). We refer to the maximum |S| over all nonzero f̂(S) as the

Fourier degree of f.

As a consequence of orthonormality we have Plancherel’s identity ⟨f, g⟩ =
∑

S f̂(S)ĝ(S),
which has as a special case Parseval’s identity, E[f(x)2] =

∑
S f̂(S)2. From this it follows

that for every f : {−1, 1}n → {−1, 1} we have
∑

S f̂(S)2 = 1. We recall the well-known
fact that the total influence Inf(f) of any Boolean function equals

∑
S f̂(S)2|S|. Note that,

in this setting, the expectation and the variance can be expressed in terms of the Fourier
coefficients of f by E[f ] = f̂(∅) and Var[f ] =

∑
∅̸=S⊆[n] f̂(S)2.

Let f : {−1, 1}n → R and f(x) =
∑

S f̂(S)χS(x) be its Fourier expansion. The
influence of variable i on f is Infi(f) def=

∑
S∋i f̂(S)2, and the total influence of f is Inf(f) =∑n

i=1 Infi(f).

Bounded independence and bounded uniformity distributions. A distribution D on
{−1, 1}n is said to be k-wise independent if any collection of k distinct coordinates i1, . . . , ik

are such that xi1 , . . . , xik
are independent when x← D. If each xi additionally is uniform
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over {−1, 1}, then the distribution D is said to be k-wise uniform. We note that if D is a
k-wise uniform distribution over {−1, 1}n, then for any degree-k polynomial p, it holds by
linearity of expectation that

E
z←D

[p(z)] = E
x←{−1,1}n

[p(x)], (1)

and hence if D is (qk)-wise uniform for even q, it holds that

∥p∥q = ∥p∥q,D. (2)

Useful probability bounds. We first recall the (2,4)-Hypercontractivity theorem of [2, 7]:

▶ Theorem 3 ((2,4)-Hypercontractivity, special case of Theorem 9.21 of [21] / Lemma 4.3 of
[8]). Let p : {−1, 1}n → R be a degree-d multilinear polynomial. Then

∥p∥4 ≤ 3d/2 · ∥p∥2.

For our purposes we will need a derandomized version of Theorem 3, where the expectations
are with respect to a suitable pseudorandom distribution. As an immediate consequence of
Equation (2), we obtain the following corollary of Theorem 3:

▶ Corollary 4 ((2,4)-Hypercontractivity for bounded-uniformity distributions). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial. If D is a 4d-wise uniform distribution
over {−1, 1}n, then

∥p∥4,D ≤ 3d/2 · ∥p∥2,D.

We will need the following fact, which is a consequence of (2, 4)-hypercontractivity
and states that a low-degree polynomial must exceed its expectation with nonnegligible
probability:

▶ Fact 5 (Lemma 5.4 of [8]). Let p : {−1, 1}n → R be a degree-d multilinear polynomial
normalized so that Var[p] = 1. Then there is an absolute constant C > 0 such that

Pr
x←{−1,1}n

[
p(x) ≥ E[p] + 2−Cd

]
≥ 2−O(d).

We will also need a derandomized version of Fact 5:

▶ Fact 6 (Fact 5 for bounded-uniformity distributions). Let p : {−1, 1}n → R be a degree-d
multilinear polynomial normalized so that Var[p] = 1. If D is a 4d-wise uniform distribution
over {−1, 1}n, then there is an absolute constant C > 0 such that

Pr
x←{−1,1}n

[
p(x) ≥ E[p] + 2−Cd

]
≥ 2−O(d).

For the sake of completeness, we include the short proof of Fact 6 in Appendix A.

Invariance. We recall the invariance principle of Mossel, O’Donnell and Oleszkiewicz,
specifically Theorem 3.19 under hypothesis H4 in [20]:

▶ Theorem 7 ([20]). Let p(x) =
∑

S⊆[n],|S|≤d p̂(S)χS(x) be a degree-d multilinear polynomial
with Var[p] = 1. Suppose each coordinate i ∈ [n] has Infi(p) ≤ τ . Then,

sup
t∈R

∣∣∣∣ Pr
x←{−1,1}n

[p(x) ≤ t]− Pr
G←N(0,1)n

[p(G) ≤ t]
∣∣∣∣ ≤ O(dτ1/(8d)).

APPROX/RANDOM 2021



37:8 Deterministic Approximate Counting of Polynomial Threshold Functions

2.2 PTFs, regularity, and the critical index
▶ Definition 8 (Regularity). We say that a degree-d polynomial p is τ -regular if√√√√ n∑

j=i

Infi(p)2 ≤ τ

n∑
j=1

Infj(p).

▶ Definition 9 (τ -critical index). Let p be a degree-d polynomial, and assume (without loss
of generality) that the variables of p are ordered so that Inf1(p) ≥ Inf2(p) ≥ . . . ≥ Infn(p).
The τ -critical index of p is the least i such that

Infi+1(p) ≤ τ2
n∑

j=i+1
Infj(p).

3 Derandomizing Meka and Zuckerman’s regularity lemma

3.1 Overview of [19]’s regularity lemma and its proof
In this subsection we state Meka and Zuckerman’s regularity lemma for low-degree polyno-
mials [19], and recall its key elements at a level of detail which will enable us to build on
those elements.

▶ Lemma 10 (Implicit in the proof of Lemma 5.17 of [19]). There is a deterministic algorithm
which, on input a degree-d polynomial p and parameters τ, ϵ, δ, outputs a decision tree of
depth

depth(d, τ, ϵ, δ) := 2O(d)

τ2 · log( 1
δ ) log( 1

ϵ )

with the following property: with probability 1− ϵ, a random path down the tree reaches a
leaf ρ such that pρ is either
1. τ -regular, or
2. the PTF sign(pρ) is δ-close to the constant function sign(E[pρ]).

The running time of this tree construction algorithm is poly(nd, 2depth(d,τ,ϵ,δ)).

The algorithm of [19] recursively constructs the tree in a sequence of simple “atomic
steps”. We now describe how a single atomic step works. Consider a leaf ρ of the decision
tree; initially the leaf ρ is simply the root of the tree corresponding to the empty restriction.
The algorithm behaves differently depending on how large the τ -critical index of pρ is:

Large critical index. If the polynomial pρ has “large” τ -critical index (larger than a
parameter K which is 2O(d) log(1/δ)/τ2) then an “atomic step” consists of fixing the K

variables which have the highest influence in pρ, i.e. replacing the current leaf with a complete
depth-K decision tree that exhaustively queries those variables. The key to the analysis of
this case is the following structural result, which is Lemma 5.2 of [8]:

▶ Lemma 11 (restatement of [8]’s Lemma 5.2: Large critical index). There is a universal
constant C1 > 0 such that the following holds. Let p : {−1, 1}n → R be a degree-d multilinear
polynomial with τ -critical index at least K := 2C1d log(1/δ)/τ2. Then

Pr
ρ←{−1,1}[K]

[
Var[pρ] ≤ δ E[pρ]2

]
≥ 2−O(d),

and consequently by Chebyshev’s inequality,

Pr
ρ←{−1,1}[K]

[
sign(pρ) is δ-close to sign(E[pρ])

]
≥ 2−O(d).
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Small critical index. If the polynomial has small τ -critical index (smaller than K), then
an “atomic step” consists of fixing the “head” variables [k] up to the critical index (again
building a complete decision tree over those k ≤ K variables). The key to the analysis of
this case is the following structural result, which is Lemma 5.1 of [8]:

▶ Lemma 12 (restatement of [8]’s Lemma 5.1: Small critical index). Let p : {−1, 1}n → R be
a degree-d multilinear polynomial with τ -critical index k ∈ [n]. Then

Pr
ρ←{−1,1}[k]

[
pρ is τ ′-regular

]
≥ 2−O(d), where τ ′ ≤ 2O(d) · τ .

Given these two results, a relatively straightforward analysis (which is in fact a special case
of the analysis we give in the subsequent subsections) shows that after at most 2O(d) log(1/ϵ)
levels of these “atomic steps”, at most an ϵ fraction of paths will not have terminated either
in a close-to-constant leaf or a regular leaf.

3.2 The high level idea of our approach: Derandomizing each “atomic
step” in a bias-preserving manner

The first important technical ingredient of our approach is in the following two lemmas,
Lemma 13 and 14, which give derandomized versions of Lemma 11 and 12 respectively.
Intuitively, these results say that in each of Lemma 11 and 12, rather than considering the
uniform distribution over all restrictions fixing [K] and [k] respectively, it suffices to consider
instead a suitable pseudorandom distribution over restrictions.

▶ Lemma 13 (Bounded uniformity suffices for Lemma 11: Large critical index). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial with τ -critical index at least K :=
2C1d log(1/δ)/τ2, where C1 is the universal constant from Lemma 11. Let D be a 4d-wise
uniform distribution over {−1, 1}K . Then

Pr
ρ←D

[
Var[pρ] ≤ δ E[pρ]2

]
≥ 2−O(d),

and consequently by Chebyshev’s inequality,

Pr
ρ←D

[
sign(pρ) is δ-close to sign(E[pρ])

]
≥ 2−O(d).

▶ Lemma 14 (Bounded uniformity suffices for Lemma 12: Small critical index). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial with τ -critical index k ∈ [n]. Let D be a
4d-wise uniform distribution over {−1, 1}k. Then

Pr
ρ←D

[
pρ is τ ′-regular

]
≥ 2−O(d), where τ ′ ≤ 2O(d) · τ .

We prove Lemma 13 in Appendix B.1 and prove Lemma 14 in Appendix B.2. Combining
these results with a PRG that fools degree-d PTFs over m variables (where “m” should be
thought of as ≪ n), we establish our bias-preserving derandomized regularity lemma:

▶ Theorem 15 (Bias-preserving derandomization of [19]’s regularity lemma, Lemma 10). Let
GPTF be a PRG with seed length s(m, d, η) that

(i) is 4d-wise uniform and
(ii) η-fools degree-d PTFs over m variables.

APPROX/RANDOM 2021
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There is a deterministic algorithm Build-Restrictions which, on input a degree-d polyno-
mial p : {−1, 1}n → R and parameters ϵ, δ, and τ , outputs a collection R of restrictions,

|R| ≤ exp(s(m, d, η) · 2O(d) log( 1
ϵ ))

where

m ≤ 2O(d)

τ2 log( 1
δ ) and η = ϵ

2O(d) log( 1
ϵ )

with the following property: with probability 1−ϵ over a draw ρ← R, the restricted polynomial
pρ is either
1. τ -regular, or
2. the PTF sign(pρ) is δ-close to the constant function sign(E[pρ]).
Furthermore the collection of restrictions R is bias-preserving, in the sense that∣∣∣ E

ρ←R

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ ϵ. (3)

The running time of Build-Restrictions is poly(nd, |R|).

We prove Theorem 15 in Section 3.3. At a high level, the argument is an extension of the
analysis that establishes the original regularity lemma of [19] from Lemma 11 and 12.

In Section 4 we apply Theorem 15 to obtain new deterministic approximate counting
results for degree-d Boolean PTFs. We do this by instantiating the pseudorandom generator
GPTF using (a slight variant of) the [23] pseudorandom generator, and by using invariance
principles and pseudorandom generators for Gaussian PTFs to obtain the required estimates
of Ex←{−1,1}n [sign(pρ)] for the regular polynomials pρ.

3.3 Proof of Theorem 15: Bias-preserving derandomization of [19]’s
regularity lemma

We start with a simple fact about bias preservation:

▶ Fact 16 (Bias preservation). Let p : {−1, 1}n → R be a degree-d polynomial and let H⊔T be
a partition of [n] into two disjoint sets. Let D be a pseudorandom distribution over {−1, 1}H

that η-fools degree-d PTFs over the variables in H. Then∣∣∣∣∣∣∣ E
x←{−1,1}H

y←{−1,1}T

[sign(p(x, y)]− E
z←D

y←{−1,1}T

[sign(p(z, y)]

∣∣∣∣∣∣∣ ≤ η. (4)

Proof. This follows directly from the fact that for any fixed outcome y ∈ {−1, 1}T , the
function sign(py(x)) = sign(p(x, y)) is a degree-d PTF over the variables in H (i.e. the class
of degree-d PTFs is closed under restrictions). ◀

The following will be the key subroutine for our algorithm:

▶ Lemma 17 (Single atomic step). Let GPTF be a PRG with seed length s(m, d, η) that
(i) is 4d-wise uniform and
(ii) η-fools degree-d PTFs over m variables.
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There is a universal constant C2 > 0 such that the following holds. There is a deter-
ministic algorithm Build-Restrictions-Atomic which, on input a degree-d polynomial
p : {−1, 1}n → R and parameters δ, η, and τ , outputs a collection Ratomic(p) of restrictions,

|Ratomic(p)| ≤ exp(s(m, d, η)), m ≤ 2O(d)

τ2 log( 1
δ )

with the following property: with probability ≥ 2−C2d over a draw ρ ← Ratomic(p), the
restricted polynomial pρ is either
1. τ -regular, or
2. satisfies Var[pρ] ≤ δ E[pρ]2, and consequently by Chebyshev’s inequality, the PTF sign(pρ)

is δ-close to the constant function sign(E[pρ]).
Furthermore, this collection of restrictions Ratomic(p) is bias-preserving, in the sense that:∣∣∣ E

ρ←Ratomic(p)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ η. (5)

The running time of Build-Restrictions-Atomic is poly(nd, |Ratomic(p)|).

Proof. Define τ := τ · 2−C3d where C3 > 0 is a universal constant that we will set later. The
algorithm Build-Restrictions-Atomic begins by computing Infi(p) for all i ∈ [n], which
can be done deterministically in time poly(nd) via the Fourier formula Infi(p) =

∑
S∋i p̂(S)2.

With these values, the algorithm then determines whether the τ -critical index of p is large
(i.e. at least K := 2C1d log(1/δ)/τ2 where C1 is the universal constant from Lemma 11) or
small (i.e. at most k < K). Let H ⊆ [n] be the K most influential variables of p in the
case where p has large τ -critical index and the k most influential ones otherwise, and let
T := [n] \H.

We define Ratomic(p) to be the set of all restrictions ρ ∈ {−1, 1}H × {∗}T such that
ρH ∈ range(GPTF), where GPTF is a PRG with seed length s(|H|, d, η) that is 4d-wise uniform
and η-fools degree-d PTFs over {−1, 1}H . Note that the size of Ratomic(p) is indeed as
claimed in the statement of the lemma:

|Ratomic(p)| ≤ exp(s(|H|, d, η)),

where |H| ≤ |range(GPTF)| ≤ 2O(d)

τ2 log( 1
δ ) = 2O(d)

τ2 log( 1
δ ).

By the 4d-uniformity of GPTF and our definition of H, it follows from Lemma 13 and 14 that
with probability ≥ 2−O(d) over a draw ρ← Ratomic, the restricted polynomial pρ is either
1. (2O(d) · τ)-regular, or
2. satisfies Var[pρ] ≤ δ E[pρ]2, and consequently by Chebyshev’s inequality, the PTF

sign(pρ) is δ-close to the constant function sign(E[pρ]).
We choose the universal constant C3 to ensure that 2O(d) · τ = 2O(d) · τ · 2−C3d ≤ τ .
Finally, using the fact that GPTF η-fools degree-d PTFs over {−1, 1}H , Equation (5) follows
from Fact 16 and this completes the proof. ◀

3.3.1 Composing single atomic steps: Proof of Theorem 15 given
Lemma 17

At a very high level, Theorem 15 follows by recursive applications of Lemma 17.
Given a degree-d polynomial p, Build-Restrictions begins by calling the subroutine
Build-Restrictions-Atomic of Lemma 17, which returns a set Ratomic(p) =: R(1) of
exp(s(m, d, η)) many restrictions satisfying the conclusion of Lemma 17. We call a restriction
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ρ ∈ Ratomic(p) good if pρ is either τ -regular or satisfies Var[pρ] ≤ δ E[pρ]2 (i.e. if pρ satisfies
the conclusion of Lemma 17), and we call ρ bad otherwise. By Lemma 17, we have that

Pr
ρ←R(1)

[ ρ is good ] ≥ 2−C2d

and∣∣∣ E
ρ←R(1)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ η.

Build-Restrictions cycles through all ρ ∈ Ratomic(p) and determines if each is good or bad.
Note that this can be done deterministically in overall time |Ratomic(p)| · poly(nd) via the
Fourier formulas Infi(q) =

∑
S∋i q̂(S)2 and Var(q) =

∑
S ̸=∅ q̂(S)2. For each bad restriction

ρ, Build-Restrictions recursively calls the subroutine Build-Restrictions-Atomic
on the restricted polynomial pρ, obtaining another set Ratomic(pρ) of exp(s(m, d, η)) many
restrictions satisfying the conclusion of Lemma 17. Consider the overall set of restrictions
comprising of the good restrictions in Ratomic(p), along with the the bad ρ ∈ Ratomic(p)
extended by those in Ratomic(pρ), i.e.

R(2) := {ρ : ρ ∈ Ratomic(p) is good} ∪ {ρ ◦ ρ′ : ρ ∈ Ratomic(p) is bad, ρ′ ∈ Ratomic(pρ)}.

We have that

Pr
ρ←R(2)

[ ρ is good ] = 1− Pr
ρ←R(2)

[ ρ is bad ]

= 1− Pr
ρ←R(1)

[ ρ is bad ] · Pr
ρ←R(1)

ρ′←Ratomic(pρ)

[ ρ′ is bad | ρ is bad ]

≥ 1− (1− 2−C2d)2,

where C2 is the universal constant from Lemma 17, and∣∣∣ E
ρ←R(2)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ 2η.

Iterating this argument and defining R(j) analogously for j > 2, we have that

Pr
ρ←R(j)

[ ρ is good ] ≥ 1− (1− 2−C2d)j (6)

and∣∣∣ E
ρ←R(j)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ jη. (7)

By choosing j = 2O(d) log(1/ϵ) we can make the RHS of Equation (6) at least 1 − ϵ, and
by our choice of η = ϵ/2O(d) log(1/ϵ) we have that the RHS of Equation (7) is at most ϵ.
Finally, we note that

|R(j)| ≤ exp(s(m, d, η) · j) = exp(s(m, d, η) · 2O(d) log( 1
ϵ ))

and this completes the proof of Theorem 15 given Lemma 17. ◀
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4 Instantiating our derandomized regularity lemma: Proofs of
Theorems 1 and 2

4.1 The GPTF PRG
To apply Theorem 15 we need a PRG GPTF that (i) is 4d-wise uniform, and (ii) η-fools degree-
d PTFs over {−1, 1}m. Since m (the number of variables) is quite small in Theorem 15, the
idea is to use a PRG which has a poor dependence on this parameter but a good dependence
on the error parameter η and the degree parameter d, since we will be able to take advantages
of these good dependences on η and d while not having to “pay too much” for the poor
dependence on m.

As mentioned earlier, the PRG for degree-d PTFs from [23] is well suited to the purpose of
achieving item (ii) above with good parameters for us. We recall the performance guarantee
of [23]:

▶ Theorem 18 (Special case3 of Theorem 2 of [23]). There is an efficient explicit PRG with
seed length 2O(

√
d log m) + polylog(1/η) that η-fools the class of degree-d PTFs over {−1, 1}m.

Regarding item (i), it is not clear that the [23] PRG is 4d-wise uniform but we can
easily augment it to be 4d-wise uniform by simply performing a bitwise XOR with a 4d-wise
uniform distribution. The correctness of this is ensured by the following simple lemma:

▶ Lemma 19. Let G1 : {−1, 1}s1 → {−1, 1}m be a PRG that ϵ-fools the class of degree-d
PTFs over {−1, 1}m. Let G2 : {−1, 1}s2 → {−1, 1}m be such that the distribution of G2(r)
is k-wise uniform for r uniform random over {−1, 1}s2 . Define G : {−1, 1}s1+s2 → {−1, 1}m

by

(G(r1, r2))j = (G(r1))j · (G(r2))j for j ∈ [m].

Then (i) G ϵ-fools the class of degree-d PTFs over {−1, 1}m, and (ii) G(r1, r2) is k-wise
uniform for (r1, r2) uniform random over {−1, 1}s1+s2 .

Proof. For (i), observe that if p(x1, . . . , xm) is a degree-d polynomial, then for any fixed
a ∈ {−1, 1}m the function q(x1, . . . , xm) = p(a1x1, . . . , amxm) is also a degree-d polynomial.
It follows that for any fixed setting of r1 ∈ {−1, 1}s2 , the distribution

(G(r1, r2))r1←{−1,1}s1 = ((G(r1))1 · (G(r2))1, . . . , (G(r1))m · (G(r2))m)r1←{−1,1}s1

ϵ-fools the class of degree-d PTFs over {−1, 1}m, and (i) follows directly from this.
For (ii), similarly observe that if X = (X1, . . . , Xm) is a k-wise uniform random variable

over {−1, 1}m then for any fixed a ∈ {−1, 1}m, the random variable (a1X1, . . . , amXm) is
also k-wise uniform. It follows that for any fixed setting of r1 ∈ {−1, 1}s1 , the distribution

(G(r1, r2))r2←{−1,1}s2 = ((G(r1))1 · (G(r2))1, . . . , (G(r1))m · (G(r2))m)r2←{−1,1}s2

is k-wise uniform, and (ii) follows directly from this. ◀

3 Theorem 2 of [23] gives a PRG with seed length 2O(
√

log S) + polylog(1/η) that η-fools the class of size-S
Threshold-of-AC0 circuits. The current statement follows as a special case of this by observing that
any degree-d m-variable PTF can be viewed as a Threshold-of-AND circuit of size at most S = O(md),
since there are at most

(
m
0

)
+ · · · +

(
m
d

)
many ANDs over at most d out of m input variables.
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Recalling the well-known fact (see e.g. [24]) that there are simple explicit pseudorandom
generators with seed length O(k log m) that output k-wise independent distributions over
{−1, 1}m, we get the following corollary of Theorem 18:

▶ Corollary 20. There is an efficient explicit PRG GPTF with seed length s(m, d, η) =
2O(
√

d log m) + polylog(1/η) that is 4d-wise uniform and η-fools the class of degree-d PTFs
over {−1, 1}m.

4.2 Proof of Theorem 1
Recall that to prove Theorem 1, we must give a deterministic algorithm for ϵ-approximate
counting n-variable degree-d PTFs over Boolean space that runs in time

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ).

The algorithm operates in two stages. In the first stage, it runs the Build-Restrictions
procedure given in Theorem 15 with its “ϵ” and “δ” parameters both set to ϵ, its “τ” parameter
set to (ϵ/d)O(d), and GPTF being the PRG given in Corollary 20. With these parameter
settings the “m” of Theorem 15 is m = (d/ϵ)O(d) and the “η” is η = ϵ

2O(d) log( 1
ϵ )

. Recall that

the running time of Build-Restrictions is

poly(nd, exp(s(m, d, η) · 2O(d) log( 1
ϵ )))

= poly(nd, exp((2O(d
√

log(d/ϵ)) + poly(d, log(1/ϵ))) · 2O(d) log( 1
ϵ )))

= poly(nd, exp(2O(d
√

log(d/ϵ)))), (8)

and that Build-Restrictions outputs a set R of at most

exp(s(m, d, η) · 2O(d) log( 1
ϵ )) = exp(2O(d

√
log(d/ϵ)))

many restrictions.
In the second stage, the algorithm exhaustively iterates over each restriction ρ ∈ R. For

each ρ ∈ R it computes a value vρ as follows:

1. First, it computes Infi(pρ) for all variables i that were not fixed by the restriction ρ

(recall that this can be done deterministically in time poly(nd) via the Fourier formula
Infi(pρ) =

∑
S∋i p̂ρ(S)2. It uses these computed influences to determine whether or not

pρ is τ -regular according to Definition 8 (recall that τ = (ϵ/d)O(d)).
2. If pρ is τ -regular, then it runs the [12] deterministic PRG-based algorithm for Gaussian

space (recall Table 2) to obtain a ±ϵ-accurate estimate of Eg∼N(0,1)n [sign(pρ(g)]. (Recall
that the [12] algorithm takes time n2O(d)·poly(1/ϵ).) It sets vρ to be the output of this
algorithm.

3. Otherwise, if pρ is not τ -regular, it simply sets vρ to be the value sign(E[pρ]) =
sign(p̂ρ(∅)) ∈ {−1, 1}.

The final value v returned by the algorithm is the average over all ρ ∈ R of the values vρ.

From Equation (8) and item (2) above we have that the running time of the algorithm is

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ),

as claimed in Theorem 1. To conclude the proof it remains only to argue that v is indeed
within an additive ±O(ϵ) of the true value of Ex←{−1,1}n [sign(p(x))]. Recalling Equation (3)
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and the fact that at most an ϵ fraction of restrictions ρ ∈ R are such that neither is pρ

τ -regular nor is sign(pρ) δ-close (i.e. ϵ-close) to the constant function sign(E[pρ]), using item
(2) above it suffices to show that for every ρ such that pρ is τ -regular, it holds that∣∣∣∣ E

g∼N(0,1)
[sign(pρ(g)]− E

x∼{−1,1}n
[sign(pρ(x)]

∣∣∣∣ ≤ O(ϵ).

Since pρ is τ -regular, we have that

max
i∈[n]

Infi(pρ) ≤

√√√√ n∑
j=i

Infi(pρ)2 ≤ τ

n∑
j=1

Infj(pρ) ≤ τd ·Var[pρ],

where the last inequality uses that the total influence of a degree-d polynomial is at most d

times its variance. Hence by the invariance principle (Theorem 7), we have that∣∣∣∣ E
g∼N(0,1)

[sign(pρ(g)]− E
x∼{−1,1}n

[sign(pρ(x)]
∣∣∣∣ ≤ O(d(τd)1/8d) = O(ϵ)

as desired, where the last inequality is by our choice of τ = (ϵ/d)O(d). This concludes the
proof of Theorem 1. ◀

4.3 Proof of Theorem 2
To prove Theorem 2, we must give a deterministic algorithm for ϵ-approximate counting
n-variable degree-d PTFs over Boolean space that runs in time nOd,κ(1/ϵ)κ

.

The first stage of the algorithm here is identical to the first stage of the algorithm in
the previous subsection, with the same parameter settings and running time. The second
stage differs only in item (2), where now in the τ -regular case we run the [14] deterministic
PRG-based algorithm for Gaussian space, which runs in time nOd,κ(1/ϵ)κ

.

The analysis of correctness (showing that the output of this algorithm is ±O(ϵ)-close to
the right value) is identical to the previous subsection. The running time of the algorithm is
exp

(
2O(d
√

log(d/ϵ))) · nOd,κ(1/ϵ)κ , where we recall that the function of d and 1/κ hidden by
the big-Oh notation is very fast-growing, in fact of Ackermann type. We now observe that
the first component of the running time, exp

(
2O(d
√

log(d/ϵ))), is asymptotically dominated
by the second nOd,κ(1/ϵ)κ component, which gives us the final claimed nOd,κ(1/ϵ)κ runtime.
We establish this by comparing d and ϵ as follows:

If d is less than (log(1/ϵ))1/3, then the first component exp
(
2O(d
√

log(d/ϵ))) is less than
exp(2(log(1/ϵ))0.9), whereas the second expression is nOd,κ(1)·(1/ϵ)κ ≥ exp(Od,κ(1) · (1/ϵ)κ).
For (1/ϵ)κ to be as small as 2(log(1/ϵ))0.9 we would need κ ≤ (log(1/ϵ))−0.1, but having κ

be this small means that the Od,κ(1) factor will make Od,κ(1) · (1/ϵ)κ much bigger than
2(log(1/ϵ))0.9 .
If d is larger than (log(1/ϵ))1/3, then the first expression exp

(
2O(d
√

log(d/ϵ))) is less than
exp(2d3), whereas the second expression is still at least exp(Od,κ(1) · (1/ϵ)κ). Irrespective
of the value of κ, the Od,κ(1) in this second expression asymptotically dominates exp(2d3).

This concludes the proof of Theorem 2. ◀
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A Proof of Fact 6

Let p : {−1, 1}n → R be a degree-d multilinear polynomial normalized so that Var[p] (which is
equal to

∑
∅̸=S,|S|≤d p̂(S)2) equals 1, and let D be a 4d-wise uniform distribution over {−1, 1}n.

We consider the mean-zero random variable p(z)−E[p(z)] = p(z)− p̂(∅), where z ← D. We
have that E[p(z)] = 0, E[p(z)2] = Varz[p(z)] = Varx←{−1,1}n [p(x)] = 1, and by Corollary 4
(derandomized (2,4)-Hypercontractivity), we further have that E[p(z)4] ≤ 9d E[p(z)2]2 = 9d.

Fact 6 now follows from the following simple fact:

▶ Fact 21 ([1], Lemma 3.2). Let A be a real valued random variable satisfying E[A] =
0, E[A2] = 1 and E[A4] ≤ b. Then Pr[A ≥ 1/(4

√
b)] ≥ 1/(44/3b).

B Proof of Lemma 13 and Lemma 14

B.1 Proof of Lemma 13 (derandomized Lemma 5.2 of [8]: large critical
index)

We express p(x) as q(x) + r(x) + E[p], where

q(x) =
∑

S ̸⊆K

p̂(S)χS(x) and r(x) =
∑

S⊆K

S ̸=∅

p̂(S)χS(x).

[8]’s Lemma 5.2 follows from the following two claims:
1. For every constant c there is a sufficiently large constant C1 such that if K :=

2C1d log(1/δ)/τ2, then

E
ρ←{−1,1}K

[Var(pρ)] ≤ δ · 2−cd · E
ρ←{−1,1}K

[r(ρ)2]. (9)

(This is [8]’s Claim 5.6.) Consequently, by Markov’s inequality, for all constants c and c′

we can again choose C1 to be sufficiently large to ensure that

Pr
ρ←{−1,1}K

[
Var(pρ) ≤ δ · 2−cd E

ρ←{−1,1}K
[r(ρ)2]

]
≥ 1− 2−c′d. (10)

2. There are constants b and b′ such that

Pr
ρ←{−1,1}K

[
E[pρ]2 ≥ 2−bd E

ρ←{−1,1}K
[r(ρ)2]

]
≥ 2−b′d, (11)

which follows from an application of Lemma 5.4 of [8].
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The proof of Lemma 13 follows [8]’s proof of their Lemma 5.2 almost exactly. The only
changes are that:

the functions ρ 7→ Var(pρ) and ρ 7→ r(ρ)2 are degree 2d polynomials in ρ, and hence Equa-
tions (9) and (10) both hold for ρ drawn from any 2d-wise independent distribution over
{−1, 1}K ;
we use our derandomized version of Lemma 5.4 of [8], namely Fact 6, in place of Lemma 5.4
of [8] to deduce that Equation (11) also holds for ρ drawn from any 2d-wise independent
distribution over {−1, 1}K .

The rest of the proof is unchanged.

B.2 Proof of Lemma 14 (derandomized Lemma 5.1 of [8]: small critical
index)

The proof of Lemma 14 follows [8]’s proof of their Lemma 5.1 almost exactly. The only
changes are that

we use our derandomized version of (2,4)-Hypercontractivity, namely Corollary 4, in
place of (2,4)-Hypercontractivity (Lemma 4.3 of [8], which is used in the line immediately
following Equation (5.1) of their paper);
we use our derandomized version of Lemma 5.4 of [8], namely Fact 6, in place of Lemma 5.4
of [8], which is used two lines after Equation (5.2) of their paper.

The rest of the proof is unchanged.
▶ Remark 22 (Motivating our notion of regularity). Recall from Section 1.4 that the works of
[6, 18] use a technically slightly different notion of “regularity.” In those works an n-variable
multivariate polynomial p is considered to be τ -regular if for every i ∈ [n] we have that
Infi(p) ≤ τ ·

∑n
i=1 Infi(p). Intuitively, we may view this as a notion of “regularity-in-ℓ∞”,

and the notion used in the current paper and in [8, 19] as a notion of “regularity-in-ℓ2”.
We remark here that the small critical index case (the subject of Lemma 14 and of

Lemma 5.1 of [8]) is the reason why we need to work with the [8] notion of regularity-in-ℓ2
given in Definition 8 rather than the regularity-in-ℓ∞ notion used in [6, 18]. In more detail,
to handle the small critical index case using the regularity-in-ℓ∞ notion, the analysis of [6, 18]
uses an exponential tail bound for degree-d polynomials (the “degree-d Chernoff bound”,
see Theorem 9.23 of [21]). However, derandomizing this degree-d Chernoff bound requires
dq-wise uniform distributions, where q depends on the parameters with which the degree-d
Chernoff bound is being applied, and it turns out that because of the way that the [6, 18]
arguments employ the degree-d Chernoff bound, this can be prohibitively expensive in our
context. In contrast, recall from Section 2.1 that derandomizing Theorem 3 and Fact 5
(which is all that is needed to establish a derandomized version of the small critical index
case using the regularity-in-ℓ2 notion, as outlined above) can be done using only 4d-wise
uniformity.
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