Revenue Maximization in Transportation Networks
Kshipra Bhawalkar &
Google Research, Mountain View, CA, USA

Kostas Kollias &
Google Research, Mountain View, CA, USA

Manish Purohit &
Google Research, Mountain View, CA, USA

—— Abstract

We study the joint optimization problem of pricing trips in a transportation network and serving the

induced demands by routing a fleet of available service vehicles to maximize revenue. Our framework
encompasses applications that include traditional transportation networks (e.g., airplanes, buses)
and their more modern counterparts (e.g., ride-sharing systems). We describe a simple combinatorial
model, in which each edge in the network is endowed with a curve that gives the demand for traveling
between its endpoints at any given price. We are supplied with a number of vehicles and a time
budget to serve the demands induced by the prices that we set, seeking to maximize revenue. We
first focus on a (preliminary) special case of our model with unit distances and unit time horizon.
We show that this version of the problem can be solved optimally in polynomial time. Switching to
the general case of our model, we first present a two-stage approach that separately optimizes for
prices and routes, achieving a logarithmic approximation to revenue in the process. Next, using the
insights gathered in the first two results, we present a constant factor approximation algorithm that
jointly optimizes for prices and routes for the supply vehicles. Finally, we discuss how our algorithms
can handle capacitated vehicles, impatient demands, and selfish (wage-maximizing) drivers.

2012 ACM Subject Classification Theory of computation — Graph algorithms analysis
Keywords and phrases Pricing, networks, approximation algorithms
Digital Object Identifier 10.4230/LIPIcs. APPROX/RANDOM.2021.26

Category APPROX

1 Introduction

The increasing popularity of ride-sharing systems has inspired renewed interest on questions
of pricing and routing transportation requests in networks [2, 4, 6, 12, 16]. Typically, such
ride sharing platforms have an abundance of data at their disposal, which offers them a good
understanding of the market. These data offer insights which can lead to reasonable estimates
of the supply of drivers expected at a given time, as well as the number of customers who
would be interested in taking a given trip at a given time and price. Similar data is available
for more traditional transportation companies, such as airlines and bus agencies. In all these
settings it is natural to ask the question:

How do we mazximize revenue in a transportation network, given a) a supply of vehicles
and b) demand curves for the possible trips?

This question appears at face value to be (primarily) a pricing problem. While this is
true to a large extent, there is a latent scheduling/routing aspect of how one can serve these
demands with an available supply of vehicles. This connection implies that any approach in
this setting has to address difficulties encountered both in pricing and in routing problems.

Various efforts have been made at tackling aspects of pricing and routing in ride-sharing
platforms. These include queueing approaches [4], mechanism design [6, 12, 16], and Markov
chain models [2]. In this work we formulate and study a simple combinatorial model of the

© Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit;
37 licensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanita; Article No. 26; pp. 26:1-26:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:kshipra@google.com
mailto:kostaskollias@google.com
mailto:mpurohit@google.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2

Revenue Maximization in Transportation Networks

TRANSPORTATION NETWORK PRICING problem. In our model, the problem is studied on a
graph where distances are symmetric (i.e., the distance from node u to node v is the same as
the distance from node v to node u) but demands are asymmetric (i.e., the demand from
node u to node v at a price p is not necessarily the same as the demand from node v to
node u at the same price p). We consider this assumption to be reasonable in real world
scenarios but also note that our results hold within a constant approximation when the
distance between any w and v is within constant bounds of the distance between v and wu.
An available supply of k vehicles can move from node to node in the graph serving demands
in the process.

It is not hard to observe that pricing decisions are interconnected with routing decisions.
Knowing how many times vehicles will travel from u to v gives insights on how to price
the trip from u to v. In such a case, we would want to charge as much as possible while
still maintaining a demand high enough to utilize the vehicles that make the trip. Similarly,
knowing that a specific trip has a large number of customers who are willing to travel at a high
price hints that we should send a large number of vehicles their way. This interconnection
makes the problem challenging and interesting.

1.1 OQur Contributions

In Section 3 we attempt to disentangle the pricing component from the routing aspect and
understand their difficulties separately. We explore the pricing and supply assignment aspect
by abstracting away the routing component in a special case of the model. We show that
this pricing and assignment version of the problem can be solved in polynomial time. In
Section 4, we transition to the general graph model and present an approach that handles
pricing and routing as separate stages, achieving a logarithmic approximation to the revenue
in the process. In Section 5, applying the insights gathered in the first two, we bring the
pricing and routing components back together in a joint optimization stage and provide a
constant factor approximation algorithm for general graphs. In Section 6 of the paper we
explain how our solution can handle selfish drivers with a small loss in the approximation
factor. In Section 7, we show that our techniques generalize to the setting where edges have
different demands depending on the time of the day, a setting that can also handle impatient
demands that disappear after a certain period. Finally, in Section 8, we discuss how the
capacitated version of the problem reduces to the unit capacity case.

1.2 Related Work

Various previous works study pricing in ride-sharing systems. The papers most closely related
to ours are [6, 16] who also study a network with price dependent demand curves and seek
to maximize revenue. A significant difference in our model is that we consider a general
network with arbitrary distances as opposed to the unit distances studied in these two models.
The work in [6] considers an infinite supply setting and proves that price discrimination
can significantly improve revenue over uniform pricing. The work in [16] considers drivers
with preferences for one location over the other and takes a mechanism design approach to
achieve incentive compatibility. We note that in our final section we also consider a special,
well-motivated, form of driver preferences: wage maximization.

Other papers study more dynamic aspects of ride-sharing platforms such as spatial
imbalance and temporal variation [12], dynamic pricing [8], Markov models [2], and queueing
models [4]. Other studies focus on market segmentation [1, 3] and car pooling aspects [14].

K. Bhawalkar, K. Kollias, and M. Purohit

On the routing side, our work is related to the vehicle routing problem [10, 11] and, more
closely, to prize collecting traveling salesperson problems in graphs. Most relevant is work on
the orienteering problem, the best known algorithms for variants of which are given in [15]
and [9]. The work in [15] achieves a 2 approximation for single path orienteering on undirected
graphs via a primal-dual algorithm. The work in [9] presents dynamic programming based
algorithms, following up on work in [5, 7]. A particular result from [7] that is relevant in our
proofs is that undirected orienteering with k paths can be approximated within a factor 3.

2 Model and Preliminaries

In this section we define the specifics of TRANSPORTATION NETWORK PRICING.

Consider a set of locations V' and the possible trips between them F =V x V. Let [,
be the length (in time) of trip e € E. We assume trip times are symmetric and I, = [/ for
e = (u,v) and ¢’ = (v,u). For each trip e, we are also given a demand curve d.(p) that gives
the number of agents who are willing to pay a price p for trip e. Naturally, we assume that
de(p) is a non-increasing function of p. For convenience, for each trip e, we also define the
price curve

Pe(d) = max{p | d.(p) > d}

as the maximum price p such that at least d agents are willing to pay p for the trip e. To
serve these demands, we have a supply of k service vehicles who can move from location to
location and transport the demands. The total trips a service vehicle can make are limited
by a time horizon T' which is an upper bound on the total length of trips a service vehicle can
do. For simplicity and without loss of generality we assume that all edge lengths, demand
values, and possible prices are integers.

A solution consists of: (a) a price ¢. for each trip e and (b) a path P; of length at most
T for each service vehicle 7. A path is a sequence of trips P = {e1, €2, ..., e} such that the
destination of trip e; is the source of trip e;;1. The set of service vehicle paths induces a
supply s, for trip e, defined as the number of times e appears in all paths (note that a path
might repeat e multiple times). The revenue for trip e is then equal to:

Te = (e min{sea de(qe)}'

Our objective is to provide prices and paths that maximize the total revenue:

R:Zre.

ecE

We assume throughout the paper that the number of agents k£ and the time horizon T are
both polynomial in the size of the graph G. We will design (approximation) algorithms that
are polynomial in k, T, and the size of the graph. Figure 1 illustrates a simple instance of
the TRANSPORTATION NETWORK PRICING problem and its optimal solution.

A key component of our algorithms is the revenue function of an edge e € V x V that
expresses the maximum amount of revenue that can be obtained from the edge e for a given
supply. Mathematically, we define

re(l) = Orgggg{j “pe(4)}

26:3

APPROX/RANDOM 2021

26:4

Revenue Maximization in Transportation Networks

Figure 1 An instance of the TRANSPORTATION NETWORK PRICING problem. Each edge in the
digraph represents a trip e of unit length. The maps labeling each edge represent the corresponding
price curve, for instance, p(y,)(1) = 20 and p(, .)(2) = 15. For a time horizon of T'= 3 and k = 3
service vehicles, the figure illustrates an optimal solution that assigns two vehicles to the path
((u,v), (v,w), (w,u)) and one vehicle to the path ((u,v), (v,z), (z,u)) for a total revenue of 82.

3 Node Model: One Trip Per Vehicle

We begin with a warm-up setting in which each vehicle only makes one trip and our decisions
amount to pricing edges and assigning vehicles to them. To fit this framework in our model,
we can think of the special case with unit edge lengths and a unit time horizon. Since edges
have no interaction with each other in this setting, we may equivalently think of them as
simply unconnected nodes. For ease of notation, for this special case, we define a demand
curve d;(+) for each node i. The price curve p;(-) and revenue curve r;(-) are defined similarly.
We term this special case as the TRANSPORTATION NODE PRICING PROBLEM. We show
that the problem is poly-time solvable.

» Theorem 1. TRANSPORTATION NODE PRICING can be solved in polynomial time when
the number k of service vehicles is polynomial in the size of the graph.

Proof. Consider an arbitrary ordering of the nodes. Let Opt(i,j) denote the revenue
extracted by the optimal solution for the first ¢ nodes with j vehicles. Thus Opt(n, k) denotes
the revenue extracted by the optimal solution for an instance. The following recurrence
shows how one can compute this optimal solution via dynamic programming.

Opt(i, j) = e hax }{Opt(i —Lj—0+ri(0)} (1)

EERREV)

Intuitively, the recurrence searches over all possible number of vehicles to assign to the "
node and solves the residual problem optimally. While Opt(n, k) only yields the optimal
revenue, it is also easy to obtain the actual optimal solution by tracing the path taken by
the dynamic program. <

As a side-note, we prove that the problem is NP-Hard when k is super-polynomial. We
note though that a FPTAS is possible with an approach similar to the one for KNAPSACK.

» Theorem 2. TRANSPORTATION NODE PRICING is NP-Hard.

Proof. We will prove this by reducing KNAPSACK to our problem. The KNAPSACK problem
has a collection of n items with sizes s; and values v; for ¢ = 1,2,...,n and a knapsack of
size B. The goal is to pack items of total size at most B and maximize the total value picked.

K. Bhawalkar, K. Kollias, and M. Purohit

Our reduction is as follows. For each item ¢, we construct a node ¢ with the following
demands: for a given large number L, the demand for the trip to 7 is one when the price
is Ls;v; and Ls; when the price is v;. There are no others interested in the trip to i. In
other words, we set r;(1) = Ls;v; and r(Ls; + 1) = Ls;v; + v;. The total supply of vehicles
isk=n+LB.

Observe that in the induced TRANSPORTATION NODE PRICING instance there are, in
effect, two possible prices for each node: either set price p; = Ls;v; and serve the unique
customer at that price, or set p; = v; and serve all Ls; + 1 customers. This means we have
the option to either extract total revenue Ls;v; spending supply 1 or spend an additional
supply of Ls; to extract an extra v;. When L is high enough, it is clear that any optimal
solution spends the first n of the n + LB supply units to secure the Ls;v; from every node,
before considering any of the additional v;’s. Then the solution will have to allocate the
remaining LB supply units to get additional revenue v; from any node ¢ to which it allocates
Ls;. This is precisely the original KNAPSACK problem where all the sizes are scaled by L,
which implies that any optimal solution to this TRANSPORTATION NODE PRICING instance
recovers an optimal solution to the corresponding KNAPSACK instance. |

4 Separate Price & Route Optimization

In this section we consider the general TRANSPORTATION NETWORK PRICING model and
present an approach that first attempts to determine prices and then to compute routes
for the supply vehicles. We show that this algorithm achieves a logarithmic approximation.
This section is of interest in itself, but also a warm-up for various aspects we will encounter
in our main technical result in the next section (a constant approximation for the same
problem that jointly optimizes for prices and routes) such as a reduction to the UNDIRECTED
ORIENTEERING PROBLEM:

» Definition 3. In the UNDIRECTED ORIENTEERING problem we are given an undirected
graph G = (V, E) with costs on the edges and values on the nodes, and a cost budget T. We
seek to find k paths each of cost at most T that mazimize the total value of nodes visited.

Our algorithm proceeds in two steps as follows:

Guess a revenue target and set prices accordingly. We guess a target revenue 7 € R and
attempt to extract a revenue of 7 from each edge e in the network. For every edge e, set the
price that would achieve the revenue target 7 with the smallest supply possible. If 7 is not
achievable on some edge e, give up on e and set an infinite price.

Construct and solve an undirected orienteering instance. Since prices have been deter-
mined, each crossing of an edge by a supply vehicle extracts a known revenue. We formulate
and solve an UNDIRECTED ORIENTEERING instance based on this information. Good constant
factor approximation algorithms are known for UNDIRECTED ORIENTEERING, something that
is the raison d’etre of the graph transformation we perform in this stage. In more detail, we
construct an auxiliary undirected graph in which we move the value from edges (i.e., the trips
in the transportation graph) to new nodes that we introduce between the trip’s endpoints.
Every time such a node is visited will represent the corresponding trip being performed once.
Hence, the value of such a node is equal to the price set for the corresponding trip. The
edge lengths in the auxiliary graph are scaled so that the paths returned by the orienteering
algorithm can be converted into sequences of trips in the original network.

26:5

APPROX/RANDOM 2021

26:6

Revenue Maximization in Transportation Networks

4.1 Price Setting

Our algorithm begins with a guess 7 that is the revenue we will try to extract from every edge
(i.e., every trip) in the network. Let R = {r.(¢)}ccp 0<i<kr denote the set of all possible
revenue values that can be extracted from any edge (note that no trip can be made more than
kT times even if all service vehicles perform that one trip). The algorithm will ultimately be
run for all possible guesses 7 € R. Since |R| < n?kT, trying all possible revenues in R can
be done in polynomial time.

Once 7 is fixed, the price that we should set at any edge e can be computed as follows.
Let s¢ = min{¢ : r.(£) > 7} be the minimum supply we need to extract value 7 at e. Then
Ge = Pe(8e) is the price we set for edge e. We now make the following claim.

» Lemma 4. Let (¢*, P*) be an optimal solution with ¢* the vector of prices and P* the
paths of the service vehicles. Also, let T be the guess that, with induced prices ¢ and the
same paths P*, mazimizes the revenue among all guesses. The revenue extracted by solution
(G, P*) is an H,-approzimation to the revenue extracted by the solution (¢*, P*), where m is
the number of edges in the graph and H,, the m-th harmonic number.

Proof. Order the edges as 1,2, ..., m, in order of non-increasing revenue extracted in (¢*, P*).

*

Call these revenues ri,73,...,ry,. Consider the guess 7 = r} for our algorithm. Fix the paths
P* and set the price that achieves 7 in each edge e (or infinite price if not possible) as per
our algorithm. Consider any edge e < j. We know that 7 = r} is achievable on these edges,
since the optimal solution extracts at least that on each one. Moreover, we have enough
supply to achieve 7
Hence, when the guess is 7 = r}, the solution (g, P*) extracts value at least Jr;-

Let j* = argmax;{jr;} be the guess that yields the maximum value. Thus, we have

on these edges, since P* allocates enough supply for at least that much.

sk Lk =/ %k -/ __ .
Jirie = j'r, forall j' =1,2,... . m. Then:

m *
J T« .
R = g i < E = = Hpj*r;. < HnR,

with R* the optimal revenue and R the revenue of (g, P*). This proves the lemma.
We also proceed to prove that this factor is tight. Consider the case when r} =1 /3.
Every jr is unit, whereas their sum is Hp,. |

4.2 Construction of the Orienteering Instance

Given the prices fixed in the previous stage of the algorithm, our goal is to route the k
supply vehicles so that they can extract as much value as possible. This task is similar to
the UNDIRECTED ORIENTEERING problem, for which a 2-approximation algorithm exists
[15]. The main difference in our setting is that the values are on the trips between nodes and
not on the nodes. Moreover, these trips are directed. We now describe a transformation to
the graph that handles these issues with a small loss in approximation.

We construct an undirected graph H = (N, A) with values on the nodes and costs on
the edges as follows. We begin with the nodes of the input transportation network V. All
these nodes have value 0. For every ordered pair of nodes e = (u,v) € E, we construct
min{kT,d.(q.)} nodes z%,i = 1,2,..., min{kT, d.(qe)}, with value g, i.e., the price of the
trip from u to v. For every such node z!, we add an (undirected) edge between it and u and
an (undirected) edge between it and v. Both these edges have length equal to I, the length
of the trip from u to v. Figure 2 shows an example of the construction of the orienteering
instance.

K. Bhawalkar, K. Kollias, and M. Purohit

~. -

D O O

~

value = ¢,

Figure 2 Construction of the orienteering instance with fixed prices.

» Lemma 5. FEvery path of length at most T* in the input graph G that extracts revenue R
can be expressed as a path of length at most 2T in H that picks value R.

Proof. Let P be a path of length at most 7" in G. Consider the order in which nodes
are visited by the path P in G. We visit the same nodes in the same order in the graph
H to obtain a path P’. The i*" time we cross an edge from u to v (in G), we go via the
intermediate node 2% in H. For 4 larger than d.(q.), we go via any of the intermediate nodes
(since they all have already been visited). Since the original path P in G has length at most
T*, and every edge e = (u,v) of length I, in G corresponds to a walk (u — z{ — v) of length
21, in H, the new path P’ in H has a total length of at most 27™*. Let us now compute the
value picked up by the path P’ in H. Let s, be the number of times that path P passes
through edge e. Then, by definition, the total revenue extracted by P is given by:

R = Z Ge min{5€7 de(qe)}'

On the other hand, for every edge e = (u,v) in G, by construction the path P’ passes through
min{s.,d.(q.)} distinct intermediate vertices (z¢) each having value q.. Thus path P’ picks
up value at least R in H. <

» Lemma 6. Every path of length at most T in graph H that picks value R can be expressed
as a path of length at most T in G that extracts at least revenue R.

Proof. Let P’ be a path in H of length at most 7" that picks value R. Let v be the first
vertex on path P’. Then the path P’ departs from node v, visits an intermediate node z!

(where e = (u,v) or e = (v,u)) and either returns back to v or moves to the opposite node w.

In the former case, it pays a cost of 2/, and extracts value g.. We can construct a path P in
G in exactly the same way as follows - starting from node v, visit node u and come back to

v paying a total cost of 2[. (since lengths are symmetric) and extracting at least ¢. revenue.

In the latter case P’ visits v — 2! — u and again pays a cost of 2/, and extracts a revenue
of q. (unless of course all intermediate nodes 2 have already been visited earlier). In this
case, if e = (v,u), then we simply cross from node v to node u in the path P to earn revenue
ge and a cost of only l.. On the other hand, if e = (u,v), then in path P, we first take edge
(v, u), then take (u,v), and then again take (v, u) so that we end up on the same node on

both P and P’. In this step, path P extracts a revenue of at least g, but pays a cost of 3l,.

Let P!

rev

but in the reverse order. Let P, be the path in G constructed as above starting from P/,

denote a path in H that is the reverse of P/, i.e., it visits the same set of nodes

By construction, both P and P, extract a revenue of at least R. However, since for any

rev:

26:7

APPROX/RANDOM 2021

26:8

Revenue Maximization in Transportation Networks

step v — 2! — u in P, exactly one of P and P,., pay a cost of [, while the other pays 3l..
Thus, we have:

length(P) + length(Prey) = Z 4], = 2length(P")

and hence at least one of P and P, have length of at most 7', proving the lemma. |

» Lemma 7. For a set of fized prices, solving the UNDIRECTED ORIENTEERING problem
on graph H with budget T and translating the paths of graph H to paths of graph G as in
Lemma 6, gives a 6-approximation to revenue.

Proof. By Lemma 5 we get that each one of the optimal paths in G can be expressed as
a path of length at most 27" in H. We solve UNDIRECTED ORIENTEERING with a budget
of T. We note that the optimal solution with budget 7" will have at least half the value
of the optimal solution with budget 27 since we can simply take the better half. This
implies the optimal solution for the instance we solve will have value at least half the optimal
revenue. By the fact that UNDIRECTED ORIENTEERING with k£ paths can be solved within a
3-approximation, our paths in H will be within 6 of the optimal revenue. Applying Lemma
6 completes the proof. |

Putting Lemma 4 with Lemma 7 together, we get the main theorem of the section. More
precisely, Lemma 4 suggests that some prices given by our first stage are such that the
optimal paths for them will give an H,,-approximation to revenue. Lemma 7 proves that,
when we try these prices, we will find paths that approximate the optimal paths within a
factor 6. We then get the following theorem.

» Theorem 8. Our separate pricing & routing optimization algorithm gives a 6H,y,-
approximation to revenue, where m is the number of edges.

5 Joint Price and Route Optimization

In this section we use the insights obtained in the previous two sections to come up with a
joint pricing and routing optimization algorithm. The algorithm in effect combines the main
ideas of the previous two approaches to price and route at the same time. The algorithm
proceeds in the following stages.

Concave approrimate revenue curve construction. First, we process all demand curves
to obtain the corresponding revenue functions r.(¢) (recall that these give the maximum
possible revenue that can be achieved at edge e with supply ¢), which in turn we process to
obtain approzimate revenue functions 7.(¢) that are concave. We prove that we can always
find a concave function that satisfies r.(¢) < 7. (¢) < 2r.(¢) for every ¢. The main reason for
performing this step is that the concave approximate revenue functions 7. (¢) satisfy the nice
property that the marginal increase:

A"A’e(g) = 7/28(6) - fe(g - 1)

that is caused by the ¢-th supply on edge e is decreasing. This proves useful when we place
these marginal contributions as values to be collected from a graph in the second stage. We
will also refer to 7(-) as the perceived revenue.

Auziliary graph construction. The main idea of the second stage of our algorithm is to
construct an auxiliary graph that, similarly to our approach in the previous section, a) is
undirected, b) has values only on nodes, and ¢) there is an equivalence between paths in the

K. Bhawalkar, K. Kollias, and M. Purohit

auxiliary graph and sequences of trips in the input transporation network. Again, the value is
moved from edge e, to a collection of nodes z¢,i = 1,2,..., kT, that are introduced between
its endpoints. This time however, the values of these nodes are not the same. Instead, the
value of z¢ is precisely the marginal perceived revenue A7, (¢). The transformation of edge
lengths is exactly as in the previous section. We then proceed as in the previous section,
to solve the induced UNDIRECTED ORIENTEERING instance and translate the paths of the
auxiliary graph H to paths of the input graph G. Once this is done, the paths induce supplies
on the edges which we can use to infer the prices.

5.1 Concave Approximate Revenue Functions

As we also discussed in the preliminary node model, we can express the maximum revenue
we can extract from an edge, given supply ¢, as:

re(l) = max {jpe(j)},
with p.(j) the maximum price that induces demand at least j. As can be seen in Figure 3,
we note that r.(-) need not be a concave function.

However, we can define a concave function 7.(-) as the concave envelope of r(-). In other
words, 7.(-) is the lowest-valued concave function such that #.(¢) > r.(¢). Concretely, let
[¢1,¢3] be a maximal interval such that the function r.(-) in this interval is bounded above by
the linear interpolation of r.(¢1) and r.(¢2). Then V¢ € [¢1,45], 7.(€) is obtained by linearly
interpolating between (¢1,7.(¢1) and (f2,7.(¢2)), i.e.,

() = (S ())

revenue

(0,0) 2 £y
demand

Figure 3 Example revenue function and its concave approximation. The bold line shows the
original revenue function r.(-) for some edge e, and the green dashed line shows its concave
approximation ().

We now show that 7.(-) point-wise approximates r.(-) within a factor of 2.
> Claim 9. For all 0 < ¢ <k, 7(£) < 2r.(¢)

Proof. Let [¢1, f2] be a maximal interval such that 7.(¢) > r.(f), V£ € ({1,¢2). Note that by
definition of 5, we have r.(¢3) = lap.(¢2). Otherwise, if r.(¢2) = jp.(j) for some j < lo, then
we have r.(¢3) = r.(j) and we cannot have 7.(j) > r.(j). Now, since p.(-) is a non-increasing
function, we have

) = masx {pe(i)} > ap.(£2) e)

26:9

APPROX/RANDOM 2021

26:10

Revenue Maximization in Transportation Networks

Hence, we have the following,

re(la) —1e(fy) . 7e(la) — l1pe(la) 3)
ly — 1y - fy — ¥y
_ 321’6(52 - 2““2) = pe(t) (4)

Now, for any ¢ € ({1,£3), by definition of 7.(-) we have,

o) = (=2 () o) 9

by — 1y
Spe(EQ)(E_gl)"_re(gl) (6)
< 2max{lp.(¢2),r.(¢1)} (7)

However, since the revenue function 7.(-) is non-decreasing and the price function p.(-) is
non-increasing, we have

re(f) > max{lp.(l2),r.(¢1)} (8)

The claim now follows from equations (7) and (8). <

5.2 Construction of the Orienteering Instance

As in the previous section, we will construct an undirected graph H = (N, A) with values
on the nodes and costs on the edges. Here also, we begin with the nodes of the input
transportation network V which again have value 0. For every ordered pair of nodes
e = (u,v) € E, we construct kT nodes z¢,i = 1,2,...,kT. The value of z¢ is Af.(i), i.e., the
marginal increase in perceived total revenue (as given by the concave approximate revenue
functions 7.(-)) offered by the i-th trip from u to v. For every such node z%, we add an
(undirected) edge between it and u and an (undirected) edge between it and v. Both these
edges have length equal to ., the length of the trip from u to v. Figure 4 shows an example
of the construction of the orienteering instance.

N -,
~ ,°

I : revenue func = re(-) i :g
. length = £, .

~ ~

val = A7 (kT)

Figure 4 Construction of the orienteering instance with approximate revenues.

» Lemma 10. Every path of length at most T™ in the input graph G that extracts perceived
revenue R can be expressed as a path of length at most 2T in H that picks value R.

K. Bhawalkar, K. Kollias, and M. Purohit

Proof. Let P be a path in G of length at most T that extracts a perceived revenue of R.

We construct a path P’ in H as follows - when P uses the edge (u,v) for the i*" time, our
path in H moves from node u to node v via the intermediate node zfu’v). Thus, if P passes
through an edge e exactly [times to extract a perceived revenue of #.(l), the path P’ also
picks up a value of 2221 Af.(i) = 7e(l). Thus P’ also picks up a total value of R. The
length argument follows precisely as in Lemma 5. <

» Lemma 11. Every path of length at most T' in graph H that picks value R can be expressed
as a path of length at most T in G that extracts perceived revenue at least R.

Proof. The path construction and length arguments follow exactly as in Lemma 6. The
revenue argument is as follows: Say the path P’ in H visits z intermediate nodes corresponding
to edge e = (u,v). Then our constructed path P in G crosses edge e at least x times and
extracts a perceived revenue of at least 7.(x). On the other hand, since A#.(-) is the
non-increasing, the value earned by P’ from edge e is at most >_;_; Afc(i) = fe(x). <

Lemmas 10 and 11 together imply that the UNDIRECTED ORIENTEERING problem with
k paths is equivalent to the TRANSPORTATION NETWORK PRICING problem with concave
revenue functions up to a factor of 2 in the approximation ratio. We can thus directly use
a 3-approximation algorithm for UNDIRECTED ORIENTEERING as in Lemma 7 to obtain
a 6G-approximation to the TRANSPORTATION NETWORK PRICING with concave revenue
functions. However, since arbitrary revenue functions can be approximated within a factor
of 2 by concave functions, Claim 9 then yields our main result.

» Theorem 12. QOur joint pricing & routing optimization algorithm gives a 6-approzimation
to revenue for concave revenue functions and a 12-approximation to revenue for general
revenue functions.

6 Selfish drivers

An additional layer of complexity in the ride-sharing context is added by the fact that drivers
are independent and will not follow the paths dictated by our algorithm when this is not the
behavior that maximizes their total wages. In this section we discuss the presence of selfish
drivers in the TRANSPORTATION NETWORK PRICING setting. We assume that wages are a
fixed « fraction of the revenue (i.e., the drivers and the platform share the earnings with
a fixed ratio) and argue that, for any given prices, letting the drivers reach an equilibrium
is within a factor 2 of the optimal path selections. In this sense, with a small loss in the
approximation factor, we may use our algorithms to compute prices assuming the drivers
will comply, advertise them, and let the drivers reach an equilibrium.

For the purposes of our argument, we will need to introduce some additional notation
and definitions. First, for simplicity of exposition, we set @ = 1, i.e., assume the drivers
receive all revenue. Let z¢ be the number of times driver i crosses edge e and 2% = (z¢)ccr
the vector for driver 7 over all edges which we will refer to as the driver’s strategy. Let x be
the vector of all driver strategies. Let d. be the demand under the current price vector (note
that, for simplicity, we have dropped dependence of d. on ¢, in the notation, since prices are
considered fixed throughout this section) and s.(z) the supply under . We are now ready
to define the (expected) wage of i on e as:

26:11

APPROX/RANDOM 2021

26:12

Revenue Maximization in Transportation Networks

The interpretation of this expression is that i has probability 1 to get a ride (and hence
a payment of ¢.) every time she crosses the edge when the demand is at least the supply
and probability d./z. when the demand is less than the supply. Another interpretation is
that drivers share the total revenue on the edge r. = g. min{s.(x), d.} proportionally to the
number of times they cross it.

A collection of strategies is a Nash equilibrium when for every driver i, it is the case that
a unilateral deviation to some other vector 3¢, induced by a different path selection will not
increase her total wages:

S k)= Xt '

ecE ecE

The price of anarchy is the ratio of the total wages in the optimal solution over the total
wages in the worst Nash equilibrium. We get the following observation.

» Observation 13. The price of anarchy in the TRANSPORTATION NETWORK PRICING
problem after prices have been fized is 2.

Proof. The upper bound follows by the fact that the game we have described is a utility
game with a submodular utility function (since the drivers cover demands with their path
selections). The upper bound then follows from the main result in [18].

The lower bound follows from the following simple instance of the TRANSPORTATION
NODE PRICING submodel. Node 1 has a single demand which is priced at 1 4+ €. Node 2
has 1/e demands priced at e. There are 1/e drivers in the game. If all of them head to node
1, their expected wage will be € + €2, which is larger than the e they can get from a ride
at node 2. Hence, this is a Nash equilibrium with total wages 1 + €. The optimal solution
assigns 1 driver to node 1 and the rest of them to node 2 for total wages 2. |

Hence, we reach the conclusion that, in the presence of selfish drivers, our approximation
will be a factor 2 away of the ones achieved by our algorithms, i.e., we achieve a 24-
approximation using our joint price and route optimization algorithm.

7 Transportation Network Pricing with Dynamic Demands

In this section we consider a natural extension of the TRANSPORTATION NETWORK PRICING
problem where the demands on an edge can now vary as a function of time. We let d.(p, t)
denote the demand on edge e at time ¢t when the price is p. The demand that applies is
determined at the moment in time when an agent starts traversing an edge. For ease of
notation, we assume that the lengths on edges are specified in the units of time. Since all
edge lengths are integral we can assume that the demand changes only at integral time steps.
In this section we prove the following theorem.

» Theorem 14. The Tranportation Network pricing problem with dynamic demands can be
solved in time polynomial in n,k, and T to obtain an approxzimation of O(logn).

To obtain the best possible result, we proceed in two steps. In step 1, we reduce the
TRANSPORTATION NETWORK PRICING WITH DYNAMIC DEMAND problem to single agent
TRANSPORTATION NETWORK ROUTING WITH UNIT TIME WINDOWS. In step 2, we reduce
the single agent TRANSPORTATION NETWORK ROUTING WITH UNIT TIME WINDOWS
problem to DIRECTED ORIENTEERING WITH UNIT TIME WINDOWS problem. In the end, we
obtain an approximation factor of O(logn).

K. Bhawalkar, K. Kollias, and M. Purohit

7.1 Step 1: Transportation Network Pricing to Transportation Network
Routing

This reduction is similar to section 5.2. We present an additional step where we reduce the
problem from k agents to a single agent.

First since the demand varies with time, we redevelop some of the notation to de-
pend on time. The price curve p.(d,t) = max{p|d.(p,t) > d} is the price at which
the demand is at least d. The revenue from assigning [agents to edge e at time ¢ is
re(l,t) = mazo<j<i{jpe(j,t)}. We approximate the revenue curve using a concave function
7e(t,4) constructed similar to Lemma 9 with the guarantee that r.(I,t) < 7.(l,t) < 2r.(l,t).

Using the concave revenue functions 7, we reduce the problem to one of constructing paths
on a graph. We will call this the Transportation Network Routing with Unit Time Windows
problem.

» Definition 15. In TRANSPORTATION NETWORK ROUTING WITH UNIT TIME WINDOWS
problem, we are given a directed graph G(V, E) with values v, and time window of unit length
[te,te + 1] associated with each edge. The goal is to find k paths such that each path has
length at most T and the sum of values ve of all edges that appear in at least one path is
maximized. The value ve on an edge is only collected if the path starts on the edge e during
the time window [te,t. + 1]. If the same edge e appears in multiple paths, its value v, is
collected only once.

Given our input instance G = (V, E) of the TRANSPORTATION NETWORK PRICING WITH
DyNAMIC DEMANDS problem, we construct an instance G’ = (V, E’) of the TRANPORTATION
NETWORK ROUTING WITH UNIT TIME WINDOWS problem as follows. This graph has
the same set of vertices V. For each edge (u,v) in the original graph G, we construct
kT parallel edges between u and v. The value of the (I,t)’th edge for I € {0,1,...k}
and t €0,1,...,T —1is Ar(l,t) = 7#(l,t + 1) — #(I,t). Then similar arguments as section
5.2 guarantee that an a-approximation to TRANSPORTATION NETWORK ROUTING WITH
UNiT TIME WINDOWS problem yields a 2a-approximation to TRANSPORTATION NETWORK
PriciING wiITH DyNAMIC DEMANDS. Note that since the paths map one-to-one in time
between the two instances the time windows do not create any new challenge.

Next we show that an approximation algorithm for the TRANSPORTATION NETWORK
RouTtiNG WITH TIME WINDOWS problem with one agent can be used to obtain a slightly
worse approximation for k agents. The proof is similar to an analogous result by [7] for
orienteering problem.

» Theorem 16. An a-approximation algorithm for the transportation network problem with
time windows for a single agent can be used to obtain an («a + 1)-approzimation for the
transportation network problem with time windows for k agents.

Proof. Given an a-approximation algorithm for the transportation network problem for a
single agent, we use it repeatedly to solve the problem for k agents. After the algorithm has
selected path A; for the i’th agent. We set the value on all edges used by the path A; to
zero before calling the algorithm for the next agent. This ensures that all paths constructed
by the algorithm are edge disjoint. Let O = (O1,0s,...,0Oy) denote the optimal solution
with k agents decomposed into the k agents’ paths. Let A; denote the edges from path
O; that have already been used by some path A; (where j <) by algorithm before path
A; is chosen. There is a feasible path using all the edges of O; \ A;. Thus we have that
v(A;) > 2{v(0;) — v(A;)}. Summing these over all agents, av(A) > v(0) — v(A). Moreover
v(A) < wv(A). Hence we conclude that («+ 1)v(A) > v(O). <

26:13

APPROX/RANDOM 2021

26:14

Revenue Maximization in Transportation Networks

With this result, it suffices to obtain an approximation for the TRANSPORTATION NETWORK
ROUTING WITH TIME WINDOWS problem for a single agent.

7.2 Step 2: Transportation Network Routing to Directed Orienteering

We next reduce TRANSPORTATION NETWORK ROUTING WITH TIME WINDOWS to directed
orienteering with fixed start locations and unit time windows.

» Definition 17. In DIRECTED ORIENTEETING WITH UNIT TIME WINDOWS AND FIXED
START we are given a directed graph G = (V, E) with costs on the edges and values on the
nodes, and a cost budget T'. There is also a time-window of unit length associated with each
node. The value from a node is only collected if it is visited within the time window. We seek
to find a path of cost at most T that starts at node s € V' such that the value collected is
mazximized.

This problem can be solved in polynomial time to obtain an approximation of O(logn).
This follows from [9] that provide an approximation of O(«) where « is approximation for
directed orienteering, [13] that provides an O(flogn) approximation for directed orienteering
where f is the integrality gap for asymmetric TSP, and [17] that provides a constant factor
integrality gap for asymmetric TSP.

We start with the TRANSPORTATION NETWORK ROUTING instance G’ = (V, E’) with
length I, value v, and unit time window [t.,t. + 1] associated with each edge. We construct
a directed graph H = (N, A) with values on the nodes and costs on the edges. The set
of vertices N = V UI. The set V is the set of original vertices. The set I is the set of
intermediate vertices, with one vertex z. for each edge e in E’. In the graph H, for each edge
e = (u,v) € E', we add an edge (u, z.) of length [, and an edge (z.,v) of length zero. We
associate value v, and time window [te + l¢, e + o + 1] with each intermediate node z, and
value 0 with nodes in V.

We prove the following lemmas to obtain the final result:

» Lemma 18. Any path of length at most T* in graph G’ that picks value V' can be expressed
as a path of length T in H that picks value V

Proof. Consider edge e = (u,v) in the path. We map it to the edges (u, z¢), (z¢,v). The
path collects the value if it starts traversing the edge during [t,t. + 1]. In the orienteering
instance the path will get to the intermediate node z, in time window [t. + l¢,t. + . + 1] so
the same value v, can be collected. |

For mapping a solution in graph H to a solution in graph G’ the main blocker is that the
path may start or end at one of the z, nodes. To tackle this we call the orienteering problem
with a fixed start node. We prove the following lemma.

» Lemma 19. Given a path of length T* that starts at a node a non-intermediate node s in
H and collects value V', we can construct a path of length T* in the graph G' with value V
starting at node s in graph G’

Proof. If the path in H ends at an intermediate node z., it can be extended to the next
non-intermediate node without increasing its length. We can assume that the path begins
and ends in non-intermediate nodes. After that there is one-to-one mapping between the
portions of the path. An intermediate node z. only connects to the end node v of the edge e.
So we can always find pairs of segments (u, ze), (2¢,v) in the path. These can be mapped to
e = (u,v) in graph G’. The value v, is the same, the lengths of the segments are the same
and the time window [te + I, te +lo 4+ 1] in the graph H maps to [t., te + 1] which is precisely
when the constructed path will begin traversing edge e. |

K. Bhawalkar, K. Kollias, and M. Purohit

To complete the proof of Theorem 14, we need to call the orienteering subroutine with all
possible start nodes in the set V. We can choose the best solution among those and it will be
an O(logn)-approximation to the optimal solution to the SINGLE AGENT TRANSPORTATION
NETWORK ROUTING problem. Trying different start nodes does not degrade the running
time by more than a factor of n.

8 Capacitated Vehicles

For the sake of simplicity, we have studied the problem in terms of unit capacity vehicles
that can serve a single demand when crossing an edge. We now explain that a simple
transformation can reduce the capacitated version of the problem where each vehicle can
serve up to a fixed number ¢ of demands to the unit capacity case. The main idea is as
follows: We will transform any given demand curve into an equivalent one such that a) for
any given price, the number of buyers that is willing to buy is a multiple of ¢ and b) the
revenue functions remain intact. Achieving that would then allow us to change the units
of measurement by a factor ¢ and have each unit of demand correspond to a number of
buyers equal to the vehicle capacity, in effect recovering the unit capacity model. Note
that the revenue functions that give the optimal revenue of an edge as a function of the
supply assigned to it are the only input given to our main algorithms. This implies our
approximation results are preserved by such a reduction.
Consider a given price curve p.(-). For any given integer s, let,

Ps = max d - pe (d)v (9)

(s—1)c<d<s-c

be the maximum revenue obtained when using exactly s service vehicles. Our modified curve
is such that:

3 Ps+1 Ps
de(p) = s- ¢, for all — —|. 10
(p) =s-c fora pe((s—i—l)c s.c] (10)

The following lemma proves that the modified demand curve is well defined.

» Lemma 20.

Ps+1 < ps'
(s+1)c ™ s-c

Proof. Note that ps > p.(s-¢)s - ¢, since using d = s - ¢ is an option in (9). Also, ps11 <
Pe(s-¢)(s+ 1)c, since the highest price for which supply s + 1 is needed is at most p.(s - ¢)
and the highest demand for which supply s + 1 is needed is (s + 1)c. The two inequalities
can be combined to give:

Ps+1 14
— < s-c) < —,
(s—|—1)c_pe()_s-c
which completes the proof. <

The demand curve (10) by definition satisfies the property that only a multiple of ¢
buyers will show up under any price. Then, the j-th such group of ¢ buyers can be replaced
with a single buyer with value p;/j. By Lemma 20 these p;/j values are nonincreasing, as
necessary for demand curves. Moreover, the optimal revenue obtained by any given number
of supply vehicles remains the same, which suggests the revenue curves are unchanged and
our transformation is completed as desired.

26:15

APPROX/RANDOM 2021

26:16

Revenue Maximization in Transportation Networks

—— References

1

10

11

12

13

14

15

16

17

18

Reza Alijani, Siddhartha Banerjee, Sreenivas Gollapudi, Kostas Kollias, and Kamesh Munagala.
The segmentation-thickness tradeoff in online marketplaces. POMACS, 3(1):18:1-18:26, 2019.
Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and optimization in
shared vehicle systems: An approximation framework. In Proceedings of the 2017 ACM
Conference on Economics and Computation, EC 17, Cambridge, MA, USA, June 26-30, 2017,
page 517, 2017.

Siddhartha Banerjee, Sreenivas Gollapudi, Kostas Kollias, and Kamesh Munagala. Segmenting
two-sided markets. In Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 63-72, 2017.

Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. Pricing in ride-sharing platforms:
A queueing-theoretic approach. In Proceedings of the Sizteenth ACM Conference on Economics
and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, page 639, 2015.

Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-tsp and vehicle routing with time-windows. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
166—-174, 2004.

Kostas Bimpikis, Ozan Candogan, and Daniela Saban. Spatial pricing in ride-sharing networks.
Operations Research, 67(3):744-769, 2019.

Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. STAM J.
Comput., 37(2):653-670, 2007.

Juan-Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge pricing solves the wild goose
chase. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17,
Cambridge, MA, USA, June 26-30, 2017, pages 241-242, 2017.

Chandra Chekuri, Nitish Korula, and Martin Pal. Improved algorithms for orienteering and
related problems. ACM Trans. Algorithms, 8(3):23:1-23:27, 2012.

George B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6(1):80-91, 1959.

Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. Furopean Journal of Operational Research, 59:345-358, 1992.

Hongyao Ma, Fei Fang, and David C. Parkes. Spatio-temporal pricing for ridesharing platforms.
In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoeniz,
AZ, USA, June 24-28, 2019., page 583, 2019.

Viswanath Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica, 60(4):1017—
1030, 2011.

Michael Ostrovsky and Michael Schwarz. Carpooling and the economics of self-driving cars. In
Proceedings of the 2019 ACM Conference on Economics and Computation, EC' 2019, Phoeniz,
AZ, USA, June 24-28, 2019., pages 581-582, 2019.

Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson. Prize-
collecting TSP with a budget constraint. In 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, pages 62:1-62:14, 2017.

Duncan Rheingans-Yoo, Scott Duke Kominers, Hongyao Ma, and David C. Parkes. Ridesharing
with driver location preferences. In Proceedings of the Twenty-FEighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages
557-564, 2019.

Ola Svensson, Jakub Tarnawski, and Laszl6 A. Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. J. ACM, 67(6):37:1-37:53, 2020.
Adrian Vetta. Nash equilibria in competitive societies, with applications to facility location,
traffic routing and auctions. In 43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, page 416, 2002.

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Model and Preliminaries
	3 Node Model: One Trip Per Vehicle
	4 Separate Price & Route Optimization
	4.1 Price Setting
	4.2 Construction of the Orienteering Instance

	5 Joint Price and Route Optimization
	5.1 Concave Approximate Revenue Functions
	5.2 Construction of the Orienteering Instance

	6 Selfish drivers
	7 Transportation Network Pricing with Dynamic Demands
	7.1 Step 1: Transportation Network Pricing to Transportation Network Routing
	7.2 Step 2: Transportation Network Routing to Directed Orienteering

	8 Capacitated Vehicles

