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Abstract
A classical branch of graph algorithms is graph transversals, where one seeks a minimum-weight
subset of nodes in a node-weighted graph G which intersects all copies of subgraphs F from a
fixed family F . Many such graph transversal problems have been shown to admit polynomial-time
approximation schemes (PTAS) for planar input graphs G, using a variety of techniques like the
shifting technique (Baker, J. ACM 1994), bidimensionality (Fomin et al., SODA 2011), or connectivity
domination (Cohen-Addad et al., STOC 2016). These techniques do not seem to apply to graph
transversals with parity constraints, which have recently received significant attention, but for which
no PTASs are known.

In the even-cycle transversal (ECT) problem, the goal is to find a minimum-weight hitting set
for the set of even cycles in an undirected graph. For ECT, Fiorini et al. (IPCO 2010) showed that
the integrality gap of the standard covering LP relaxation is Θ(logn), and that adding sparsity
inequalities reduces the integrality gap to 10.

Our main result is a primal-dual algorithm that yields a 47/7 ≈ 6.71-approximation for ECT
on node-weighted planar graphs, and an integrality gap of the same value for the standard LP
relaxation on node-weighted planar graphs.
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1 Introduction

Transversal problems in graphs have received a significant amount of attention from the
perspective of algorithm design. Such problems take as input a node-weighted graph G,
and seek a minimum-weight subset S of nodes which intersect all graphs F from a fixed
graph family F that appears as subgraph in G. A prominent example in this direction
is the fundamental Feedback Vertex Set (FVS) problem, where F is the class of all
cycles. FVS is one of Karp’s 21 NP-complete problems [17]. It admits a 2-approximation in
polynomial time [2, 5], which cannot be improved to a (2− ε)-approximation for any ε > 0
assuming the Unique Games Conjecture [18].

Recently, several graph transversal problems have been revisited in the presence of
additional parity constraints [19, 21, 20, 23]. The natural parity variants of FVS are Odd
Cycle Transversal (OCT) and Even Cycle Transversal (ECT), where one wishes
to intersect the odd-length and even-length cycles of the input graph G, respectively. The
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25:2 Hitting Weighted Even Cycles in Planar Graphs

approximability of these problems is much less understood than that of FVS: for OCT,
only an O(

√
logn)-approximation is known [1], and for ECT, only a 10-approximation is

known [21].
Planar graphs are a natural subclass of graphs in which to consider graph transversal

problems. The interest goes back to Baker’s shifting technique [3], which yielded a PTAS for
Vertex Cover in planar graphs (where F is the single graph consisting of an edge). The
technique was generalized by Demaine et al. [8], who gave EPTASs for graph transversal
problems satisfying a certain bidimensionality criterion, including FVS in unweighted planar
graphs. That result was later extended to yield an EPTAS for FVS in unweighted H-minor
free graphs [13], for any fixed graph H. In edge-weighted planar graphs, PTAS are known for
edge-weighted Steiner Forest and OCT [4, 16, 10].

On node-weighted planar graphs, the situation appears to be more complex. First, the
existence of a PTAS for FVS on node-weighted planar graphs was a long-standing open
question which was resolved only recently in a paper of Cohen-Addad et al. [7]. The authors
presented a PTAS for FVS in node-weighted planar graphs, crucially exploiting the fact that
the treewidth of G− S is bounded for feasible solutions S. The existence of an EPTAS for
FVS in node-weighted planar graphs is still open.

To deal with cycle transversal problems (in node-weighted planar graphs) which are
more complex than FVS, Goemans and Williamson [14] first proposed a primal-dual based
framework. Their framework requires the cycle family F to satisfy a certain uncrossing
property. The latter property can be seen to be satisfied by OCT, Directed FVS in
directed planar graphs, and Subset FVS, which seeks a minimum-cost node set hitting
all cycles containing a node from a given node set T . For those problems, the authors
obtained 3-approximations1. The framework by Berman and Yaroslavtsev [14] also yields a
3-approximation for Steiner Forest in node-weighted planar graphs [9, 22]. Berman and
Yaroslavtsev [6] later improved the approximation factor for the same class of uncrossable
cycle transversal problems from 3 to 2.4. For none of those problems, though, the existence
of a PTAS is known.

The main question driving our work is whether the framework of Goemans and William-
son [14] (and its improvement by Berman and Yaroslavtsev [6]) can be extended to cycle
transversal problems that do not satisfy uncrossability. In this paper we focus on ECT in
node-weighted planar graphs as a natural such problem: even cycles are not uncrossable, and
hence the frameworks by Goemans and Williamson [14] does not apply. Furthermore, the
framework of Cohen-Addad et al. [7] requires that contracting edges only reduces the solution
value, which is not the case for even cycles either. For unweighted planar graphs, it is still
possible to obtain an EPTAS for ECT, by building on the work of Fomin et al. [12]. Their
main result are EPTASs for bidimensional problems, which ECT is not (as contracting edges
can change the parity of cycles). Yet, to obtain their result, they show that any transversal
problem that satisfies the “ν-transversability” and “reducibility” conditions has an EPTAS
on H-minor free graphs (cf. [12, Theorem 1]). Both conditions are met by unweighted ECT2,
which thus admits an EPTAS on H-minor free graphs. For ECT on node-weighted planar
graphs, though, reducibility fails, and the existence of a PTAS is unknown. The currently
best result for ECT is a 10-approximation, which was given by Fiorini et al. [11] for general
graphs. They showed that the integrality gap of the standard covering LP relaxation for
ECT is Θ(logn), but that adding sparsity inequalities reduces the integrality gap to 10. No
better than 10-approximation is known for ECT in node-weighted planar graphs.

1 18/7-approximations were claimed but later found to be incorrect [6].
2 ν-transversability follows from as graphs without even cycles have treewidth 2, and reducibility from

unit weights and connectedness of the to-be-hit subgraphs F .
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1.1 Our results
We prove an improved approximation algorithm for ECT in node-weighted planar graphs.

▶ Theorem 1. ECT has an efficient 47/7 ≈ 6.71-approximation on node-weighted planar
graphs.

This improves the previously best 10-approximation by Fiorini et al. [11] for planar graphs.
Our algorithm takes as input a node-weighted planar graph G with node weights cv ∈ N

for each v ∈ V (G). We then employ a primal-dual algorithm that is based on the following
natural covering LP for ECT and its dual, where C denotes the set of even cycles in G:

min cTx

s.t. x(C) ≥ 1 ∀ C ∈ C(PECT)
x ≥ 0

max 1
T y

s.t.
∑

C∈C,v∈C
yC ≤ cv ∀v ∈ V (G)

(DECT)
y ≥ 0

Fiorini et al. [11] proved that the integrality gap of this LP is Θ(logn). Our main result
is an improved integrality gap of this LP for ECT in planar graphs:

▶ Theorem 2. The integrality gap of the LP (PECT) is at most 47/7 ≈ 6.71 in planar graphs.

1.2 Our approach
Designing a primal-dual algorithm is far from trivial, as the imposed parity constraints rule
out a direct application of the framework proposed by Goemans and Williamson [14]. Unlike
in their work, face-minimal even cycles (even cycles containing a minimal set of faces in their
interior) are not necessarily faces, and may thus overlap. Indeed, increasing the dual variables
of face-minimal even cycles does not yield a constant-factor approximation in general.

Consider Figure 1, and let F be the inner face that is only incident to blue and black
nodes. For an even number of 5-cycles surrounding F , F is the only face-minimal even cycle

Figure 1 The bottom path has odd length, and the number of length-5 faces at the top is even.

in the graph. Using only F for the dual increase, even including a reverse-delete step, leaves
one blue node of each 5-cycle. Yet, an optimal solution would take a single red and blue
node from one 5-cycle.

To circumvent this impediment, we establish strong structural properties of planar graphs
related to ECT. Those properties along with results from matching theory allow us to
algorithmically find a large set of pairwise face-disjoint even cycles whose dual variables we
can then increment. Even with this set of cycles found, it remains technically challenging to
bound the integrality gap. For this purpose, we first use the structure of minimal hitting sets
of our graph to associate each such set with a hitting set in a subdivision of the so called
2-compression of our graph; the latter is a certain minor that we define in detail shortly.
We then show that faces that are contained in even cycles we increment are incident to few

APPROX/RANDOM 2021



25:4 Hitting Weighted Even Cycles in Planar Graphs

nodes on average. Crucial in this step is a technical result that is implicit in the work of
Berman and Yaroslavtsev [6]. Eventually, this approach leads to an integrality gap of 47/7,
and an algorithm with the same approximation guarantee.

Due to space constraints, we defer proofs of statements marked by (⋆) to the full version
of the paper [15].

2 Primal-dual algorithm for ECT on node-weighted planar graphs

We describe a primal-dual, constant-factor approximation for ECT on node-weighted planar
graphs. Our algorithm borrows some ideas from Fiorini et al. [11] for the Diamond Hitting
Set (DHS) problem, which seeks a minimum-cost set of nodes in a node-weighted graph G

that hits all diamonds (sub-divisions of the graph consisting of three parallel edges). For
DHS, Fiorini et al. [11] employ a primal-dual algorithm to prove that the natural covering
LP (PECT) (where C is replaced by the set of diamonds) has integrality gap Θ(logn). We
develop several new ideas to obtain a constant integrality gap.

We now outline the ideas of our primal-dual approach. Consider a planar input graph G
with node costs cv ∈ N for each v ∈ V (G). Given feasible dual solution y to (DECT), let the
residual cost of node v ∈ V (G) be cv −

∑
C∈C,v∈C yC . Our primal-dual method begins with

a trivial feasible dual solution y = 0, and the empty, infeasible hitting set S = ∅.
Then, in each iteration, we increase yC for all C in some carefully chosen subset C′ ⊆ C of

even cycles, while maintaining dual feasibility, and until some primary condition is achieved.
A common such primary condition is that some dual node-constraint becomes tight in the
increase process, and hence the corresponding node ends up having residual cost 0.

When this happens, we add the node to S. Once S is a feasible ECT, our algorithm ends
its first phase, and executes a problem-specific reverse-delete procedure. Here, we consider all
nodes in S in reverse order of addition to S, and we delete such a node if the feasibility of S
is maintained. We will later describe a subtle and crucial refinement of this reverse-delete
procedure. Call the resulting final output of the algorithm S′.

During our algorithm, we will use the term hitting set to refer to S, and during the
analysis we will use the term hitting set to refer to S′. We will say a hitting set is feasible if
it is a feasible ECT, and refer to nodes of the hitting set as hit nodes.

In the next subsections, we will fill in the details of the algorithm, and analyze the cost
of S′ compared to the value of an optimal solution. We begin by defining the concept of
“blended inequalities” and necessary graph compression operations. Blended inequalities were
used by Fiorini et al. [11], and our definitions follow their’s closely.

2.1 Blended inequalities and compression
A block of G is an inclusion-maximal 2-connected subgraph of G. The block graph of G is
the bipartite graph BG with bipartition V (BG) = B1 ∪ B2, where B1 are the blocks of G,
B2 are the cut nodes of G, and (b1, b2) ∈ B1 ×B2 is an edge if b2 is a node of b1.

Let S be a partial solution to the given ECT instance at some point during the execution
of our algorithm. Let GS be the corresponding residual graph that we obtain from G− S by
deleting all nodes that do not lie on even cycles. Our primal-dual algorithm first looks for an
even cycle C in GS such that at most two nodes of C have neighbours outside C. If such a
cycle C is found, we increment its dual variable yC until a node becomes tight. The reason
for doing this is that such C will pay for at most two hit nodes, which we will show later.

If there is no even cycle C in GS such that at most two nodes of C have neighbours
outside C, we successively compress the residual graph GS using two types of graph com-
pression. To this end, first note that any minimal solution will only contain one node in the
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interior of any induced path in GS . Suppose we contract some path P of GS of length at
least 2 down to an edge e. Choosing a node in the interior of P is “equivalent” to choosing
the edge e. This is the motivation for the 1-compression.

Suppose we contract two u-v paths P1, P2 with lengths of different parity down to
edges e1, e2, respectively. We will find it helpful to think of these edges as a single twin edge
between u and v whose parity is flexible. This is the motivation for the 2-compression.

Formally, we will successively compress GS as follows:
Obtain the 1-compression GS1 of GS by repeatedly folding degree-2 nodes v, as long as
they exist, which means to delete v and adding the edge uw between its neighbors u,w.
Note that no pair of nodes in GS1 is connected by more than two edges. Obtain ḠS1
from GS1 by replacing each pair of parallel edges by a twin edge. In ḠS1 , we now once
again fold degree-2 nodes as long as those exist. The resulting graph is the 2-compression
GS2 of GS .

See Figure 2 for examples of 1- and 2-compression of a graph. In the following, we will
omit the superscript S from GS1 , ḠS1 , and GS2 if this is clear from the context. Let G3 be
obtained from G2 by replacing every edge of G2 with a path of length two. If a twin edge
was replaced, call the two edges of the path added twin edges. By an abuse of notation, we
call a cycle of G1, G2 or G3 even if it contains a twin edge, or if its preimage in G is even.

G

v
′

v

e1

u

e2

w

G1

e

u

w

t

Ḡ1

u

w

t

u t

G2

Figure 2 The graph G and its 1- and 2-compression G1 and G2.

In the following, we will sometimes call the subgraph Q of G whose contraction yields a
subgraph R of G2 the preimage of R. If R is an edge, call Q a piece, and say Q corresponds
to R. Furthermore, call u, v ends of Q and other nodes of Q internal nodes. If the edge was
twin, call the piece twin, otherwise, call the piece single. The blocks of a piece are cycles and
paths, and the block graph of a piece is a path. Each cycle of a piece is called an elementary
cycle. For an elementary cycle C, call its two nodes uC and vC with neighbours outside C
branch nodes. Call the two uC − vC-paths P1, P2 in C the handles of C, which form the
handle pair (P1, P2). For an illustration, see the red and light blue edges in Figure 2.

The reason for defining G3 is that intuitively selecting a node inside a piece corresponds
to selecting the edge corresponding to the piece in G2. It will be simpler for us if our hitting
set consists of only nodes, so we subdivide each edge of G2. Suppose that S is the partial
(and infeasible) hitting set for the cycles in C at some point during the algorithm. Further,
assume that GS has even cycles, but none with at most two outside neighbours. In this case,
if an even cycle C ′ in GS contains an internal node of some piece Q, then C ′ ∩Q is a path
between the ends of Q; see Figure 3. It follows that C ′ has the form v1P1v2P2 . . . vkPkv1,
where for i = 1, . . . , k nodes vi, vi+1 mod k are ends of some piece Qi, and Pi is a vi-vi+1
path in Qi. For i = 1, . . . , k, pieces Qi, Qj for i ̸= j are disjoint except for their ends.

APPROX/RANDOM 2021
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u

e1

v

e2

w

v
′

t

Figure 3 The light blue cycle in G has two u-t paths lying in different pieces of G; the dashed
path has odd length.

We say that C ′ in GS corresponds to cycle C = (v1, . . . , vk) in GS2 . For such C, its blended
inequality is∑

v

aCv xv ≥ 1, (⊛)

where aCv ∈ {0, 1/2, 1} for all nodes v, and where the support of aC is contained in the node
set of the preimage of C. We next provide a precise definition of the coefficients of (⊛).
With those, one can show that (⊛) is dominated by a convex combination of inequalities
x(C) ≥ 1 in (PECT).

Consider an elementary cycle of the preimage of C and let h1, h2 be its two handles. For
each of these handles, we define its residual cost as the smallest residual cost of any of its
internal nodes. Suppose that the residual cost of h2 is at most that of h1. We will also call h1
the dominant, and h2 the non-dominant handle of this cycle. As an invariant, our algorithm
maintains that the designation of dominant and non-dominant handles of an elementary
cycle does not change throughout the algorithm’s execution.

Suppose first that the residual cost of h1 is strictly larger than that of h2. In this case, let
aCv = 1 for all internal nodes of handle h1, and let aCv = 0 of the internal nodes of h2. If the
residual cost of both handles is the same, we let aCv = 1/2 on internal nodes of both handles.

In certain cases, we need to correct the parity of the constructed inequality. This is
necessary if aC as defined above is 0, 1 (i.e., if all elementary cycles of C have a strictly
dominant handle), and if the cycle formed by all dominant handles is odd. In this case, we
pick an arbitrary elementary cycle on C, and declare it special. For this special cycle, we
then set aCv = 1 for the internal nodes on both handles. Following the same reasoning as
Fiorini et al. [11] for DHS, we can show the following for ECT:

▶ Lemma 3. Each feasible point of our LP (PECT) satisfies any blended inequality.

In our algorithm, we assume that inequalities (⊛) are part of (PECT). Throughout the
algorithm, we increase dual variables y⊛ of such inequalities.

We will sometimes say that variable y⊛ (or cycle C) pays for
∑
v∈S′ aCv hit nodes. It

is well-known (see, e.g., Goemans and Williamson [14]) that if during any iteration dual
variables for a family of blended inequalities are incremented uniformly, and the dual variables
pay for α hit nodes (of S′) on average, then the final solution produced by the algorithm is
α-approximate.

The motivation for blended inequalities is to pay for no more than one node in each piece.
Consider the example in Figure 1. Here, the bottom black dashed path is odd, there are
an even number of handle pairs in the top part, and ε is small. Suppose we set aCv = 1/2
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on internal nodes of each handle. If we were to increment the inequality (⊛), all the blue
nodes of weight 1 would become tight, and after reverse-delete, the algorithm would keep
one blue node for each handle pair. However, selecting a red node and a blue node would be
a cheaper solution. This could be achieved by setting aCv = 1 for red and black nodes, and
aCv = 0 on blue nodes, until the residual costs of the red nodes become 1, and afterwards
setting aCv = 1/2 on internal nodes of each handle.

During its execution, the algorithm carefully chooses a family of even cycles C in GS2 and
increments the dual variables of certain blended inequalities for each C ∈ C until a node
becomes tight, or the blended inequality changes; i.e. the residual costs of two handles of a
handle pair, which were previously not equal, become equal.

In their primal-dual algorithms for cycle transversal problems with uncrossing property,
Goemans and Williamson [14] started with the infeasible “hitting set” S = ∅. While S is
infeasible, the dual variables for faces of the residual digraph that are cycles are incremented.
A reverse-delete step is applied at the end. The authors show that tight examples for their
algorithm feature so called pocket subgraphs. Not surprisingly, the improved algorithm of
Berman and Yaroslavtsev [6] has to pay special attention to these pockets to obtain the
improvement in performance guarantee.

2.2 Pockets and their variants
The following definition of crossing cycles was elementary to the approach by Goemans and
Williamson [14] for cycle transversal problems in planar graphs.

▶ Definition 4. In an embedded planar graph, two cycles C1, C2 cross if Ci contains an edge
intersecting the interior of the region bounded by C3−i, for i = 1, 2. That is, the plane curve
corresponding to the embedding of the edge in the plane intersects the interior of the region
of the plane bounded by C3−i. A set of cycles C is laminar if no two elements of C cross.

Next, we formally define pockets, and we also introduce the new notion of “pseudo-
pockets”, the lack of which will help us “cover” our graph with even cycles.

▶ Definition 5. Let G be a graph and let C be a collection of cycles in G. A pseudo-pocket
of (G, C) is a connected subgraph G′ of G which contains a cycle such that at most two nodes
of G′ have neighbours outside G′. A pocket of (G, C) is a pseudo-pocket that contains a cycle
of C. A pocket is minimal if it contains no pocket as a proper induced subgraph.

a) b)

Figure 4 (a) Graph formed by red nodes is a pocket. (b) Crossing cycles in red and black.

2.3 Identifying families of even cycles via tilings
The 12/5-approximation algorithm of Berman and Yaroslavtsev [6] for Directed FVS in
node-weighted planar digraphs G proceeds roughly as follows.

APPROX/RANDOM 2021
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It starts with the empty hitting set S = ∅. As long as S is not a hitting set for the
directed cycles of G, it first looks for a pocket H of the residual digraph GS , that is the
digraph obtained from G−S by deleting all nodes not on a directed cycle. It then increments
the dual variables for the set of face minimal directed cycles of H, which happen to be faces.
It then adds any nodes that become tight to S. Once S is feasible, the algorithm performs a
reverse deletion step.

As pointed out, in our setting, face-minimal even cycles may not be faces, and may
cross. Following Berman and Yaroslavtsev [6], we wish to “cover” our residual graph with
face-minimal even cycles which do not cross, we call this a “tiling”; see Figure 5 iii). As we
will see, this tiling allows us to identify the dual variables to increase. Let us formalize the
correspondence between edges of the dual between odd faces and even faces.

▶ Definition 6. Let H be a plane graph without pseudo-pockets. For each face f of H,
let vf be the corresponding node of the planar dual H∗. A tile of H is an even cycle C of H
bounding one or two faces. If C is a single face f , we say that C corresponds to the node vf .
If C bounds two faces f and g, we say that C corresponds to the edge vfvg ∈ E(H∗). We
say that nodes vf , vg and the faces f, g are covered by the tile.

For a node v of H∗, let fv ⊂ E(H) be the edges on the boundary of the corresponding face
of H. Denote by h∞ the node of H∗ corresponding to the infinite face.

Given wh∞ ∈ E(H∗), a cycle C1 ⊂ E(H) corresponds to wv∞ if C1 is a cycle of fw∆fh∞ ,
or C1 = C ′∆fw and C ′ is a cycle of fw∆fh∞ . We also call such a cycle C1 a tile and say
that C1 covers h∞, w, and the corresponding faces.

Given a matching E′ ⊂ E(H∗) and V ′ ⊂ V (H∗), with E′ = {e1, . . . , eℓ} and V ′ =
{v1, . . . , vt}, a set of tiles T = {C1, . . . , Cℓ+t} corresponds to E′ ∪ V ′ if Ci corresponds to ei
for i = 1, . . . , ℓ and Cj+ℓ corresponds to vj for j = 1, . . . , t.

In Figure 5 i), cycle C bounds two faces f and g; see also Figure 5 ii).

i) ii)

Figure 5 Diagrams i) and ii) show cycles in green and corresponding edges of the dual graph
in red. (i) The red edge corresponds to the symmetric difference of two finite faces. (ii) The red
edge corresponds to the symmetric difference of a finite and infinite face. Diagrams iii) and iv) show
a tiling indicated by the boundaries of the various finite regions in white, light grey, etc and the
corresponding matching.

▶ Definition 7. For a plane graph H, a set T of tiles is a pseudo-tiling if no face of H is
covered by more than one tile. If the node vh∞ corresponding to the infinite face of H is not
covered by T , we call T a tiling.

Certain tilings are particularly desirable; we will define these the next.

▶ Definition 8. Let α ∈ (0, 1). A tiling is α-quasi-perfect if it covers all even finite faces,
a β-fraction of odd finite faces of GS, and a ψ-fraction of the finite faces of GS are even,
where β(1− ψ) + 2ψ ≥ α.
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Let C be an even cycle in GS2 , and recall that we say that C pays for
∑
v∈S a

C
v hit nodes.

For an even cycle in a tiling consisting of two faces, we bound the number of hit nodes it
pays for by the number of hit nodes each face pays for.

We will show that a finite face of our graph intersects at most 18/7 hit nodes on average
(over all finite faces). Ideally, we would want to cover all faces by a tiling. Then an even cycle
of our tiling is incident to at most 36/7 hit nodes on average, twice the amount a face of
our graph intersects on average. Alas, tilings covering all faces need not always exist. Thus,
we try to find a tiling that covers as many finite faces as possible. Suppose that we find
a tiling T that covers a set TFaces of finite faces consisting of α-fraction of the finite faces
of our graph. It follows that a face of TFaces will be incident to at most 18/7α hit nodes
on average, and so an even cycle of the tiling T is incident to at most 36/7α hit nodes on
average. Intuitively, even faces pay for fewer hit nodes than even cycles containing two faces,
so it is good if a tiling contains many even faces. The motivation for quasi-perfect tilings is
that it is good if a large fraction of faces are covered by the tiling and if the tiling contains a
lot of even faces. We prove the following key result in Appendix A.

▶ Theorem 9. Let H be a 2-compression of some planar graph G, that has an even cycle
and contains no pockets. Then H has a 2/3-quasi-perfect tiling.

2.4 The algorithm in detail
We formally state our algorithm. It takes as input a planar graph G with cost function
c : V (G)→ N. Let C(G) be the set of even cycles of G, and let opt(G, c) be the minimum
cost of an even cycle transversal of G, which is a set of nodes intersecting each cycle in C(G).

As we will see, the algorithm returns an even cycle transversal S of G whose cost is at
most (47/7)opt(G, c). We start with the empty candidate S := ∅. In each iteration, the
algorithm looks for an even cycle C in the residual graph GS such that at most two nodes of C
have outside neighbours. If we find such C, increment the variable yC until a node becomes
tight. If no such cycle exists, the algorithm computes the 2-compression of GS , and in it, we
find an inclusion-minimal pocket H of GS2 . Using Theorem 9, we find a 2/3-quasi-perfect
tiling TH of H and increments the dual variables for the blended inequalities for each C ∈ TH .
The algorithm then adds all nodes X that became tight to our candidate hitting set S.

During an iteration, for each handle pair (Q1, Q2) for which the set X of nodes that
became tight contains a node in the interior of each handle, our algorithm will choose two
nodes a, b ∈ X with a in the interior of Q1 and b in the interior of Q2 and define (a, b) to
be a node pair. For instance, in Figure 2 if v and v′ are the only nodes added during some
iteration then the algorithm would define (v, v′) to be a node pair. For a set of nodes X
added during the same iteration, nodes in a pair are considered to be added before any node
not in a pair.

At the end of the algorithm, we perform a non-trivial reverse-delete procedure. Formally,
let w1, . . . , wℓ be the nodes of S in the order they were added to S by the algorithm, where
for nodes wi, wj that were added during the same iteration if wi is in a pair and wj is not,
then i < j. That is, for reverse-delete purposes, nodes not in a pair are considered for deletion
first. For p = ℓ, ℓ− 1, . . . , 1, if wp is not in a node pair, then if S\{wp} is a feasible ECT, the
algorithm deletes wp from S; otherwise, it does not. If wp is in a node pair (wp, w′), then if
S\{wp, w′} is a feasible hitting set, then delete both wp, w

′ from S; else, keep both wp, w
′.

The intuition behind the caveat in our reverse-delete step is that node pairs are often very
useful to keep, because they disconnect a piece. Consider the example in Figure 6. There is
a piece with green nodes of cost 2, and an odd number of length-5 faces with red and blue
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25:10 Hitting Weighted Even Cycles in Planar Graphs

Algorithm 2.1 EvenCycleTransversal(G, c).

Input : A planar graph G with node costs c : V (G)→ N.
Output : An even cycle transversal S of G of cost at most 47

7 opt(G, c).
1 S ← ∅
2 while residual graph GS contains an even cycle do
3 if GS contains a cycle C with at most 2 outside neighbours then
4 increase the dual variable yC for C until a node v becomes tight.
5 else
6 compute the 2-compression GS2 of GS .
7 H ← minimal pocket of GS2 .
8 TH ← a 2/3-quasi-perfect tiling of H.
9 Increment dual variables of blended inequalities of all C ∈ TH until a node v

becomes tight or the blended inequality changes.
10 Denote by X the set of nodes that became tight, and add X to S.
11 for each handle pair (Q1, Q2) do
12 if X contains a node in the interior of each handle then
13 choose two nodes a, b ∈ X with a in the interior of Q1 and b in the interior

of Q2 and define (a, b) to be a node pair.

14 w1, . . . , wℓ ← nodes of S in the order they were added, where for nodes X added
during the same iteration, any node of X in a pair appears before others node of X
not in pairs.

15 for i = ℓ downto 1 do
16 if wi is not part of a pair then
17 if S\{wi} is feasible then
18 S ← S\{wi}.

19 else
20 Let (wi, wj) be the pair containing wi. if S\{wi, wj} is feasible then
21 S ← S\{wi, wj}.

22 return S

striped nodes of cost 1. The black nodes have cost infinity. The bottom dashed path has
odd length. In the 2-compression shown on the right, all length-5 faces in the figure belong
to one piece. Suppose the blended inequality chooses the length-5 face with the green nodes
as the special cycle, and increments the blended inequality for this graph. One sees that the
red, blue striped and green nodes become tight simultaneously.

To see that reverse delete orders need to be chosen carefully, consider the following
adversarial ordering: in reverse delete, consider the two green nodes other than v first, then
consider the red nodes, and then consider one blue striped node on each handle. Finally,
consider the remaining blue striped nodes. One can see that the algorithm would end up
with v and one blue striped node per handle, which is significantly more costly than the
optimum which selects the solution consisting of one red and one blue striped node on a
handle pair. This completes the description of our approximation algorithm for ECT, whose
complete pseudo-code is given as Algorithm 2.1.
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1 ∞

2

1

v

Figure 6 The red and blue striped nodes have weight 1, black nodes have infinite weight and
green nodes have cost 2. The bottom dashed black path has odd length. The number of length-5
faces at the top is assumed to be even.

2.5 Analysis of approximation ratio
We claim the algorithm to be a 47/7-approximation for ECT on node-weighted planar graphs.

Fix an input planar graph G with node costs cv ∈ N. Consider a set S ⊆ V (G) of
nodes and a node v ∈ S. A cycle C is a pseudo-witness cycle for v with respect to S if
C ∩ S = {v}. If C is additionally even, then C is a witness cycle for v. Note that if S is an
inclusion-minimal ECT for G, then there is a set Wv of witness cycles for each node in v ∈ S.
If the reverse-delete procedure does not delete any node of S, then each node not in a pair
has a witness cycle and for each pair, at least one of the nodes in the pair has a witness cycle.

The analyses of the algorithms by Goemans and Williamson [14] and by Berman and
Yaroslavtsev [6] for Subset FVS on planar graphs rely crucially on the fact that, each node
of an inclusion-wise minimal solution has a witness cycle. Goemans and Williamson [14]
showed that one can find a laminar collection A of witness cycles. Laminar families are
well-known to have a natural tree representation. The key argument of both algorithms is
that for each leaf cycle C of the laminar family, one can increment the dual variable of at
least one face contained in the region defined by C. Further, this dual variable pays only for
the hit node that C is a witness of. This is used to argue that a large portion of the dual
variables they incremented pay for a single hit node. An additional bound on how many
nodes the other dual variables pay for is proven exploiting the sparsity of planar graphs.

For ECT, however, we do not have laminar witness cycles. Instead, we must extend the
analysis of Berman and Yaroslavtsev [6] to find a set of laminar pseudo-witness cycles.

Consider some time t̄ during the algorithm when applied to (G, c). Let St̄ be the current
hitting set and GSt̄ the residual graph. Let {

∑
v∈V (G) a

C
v ≥ 1}C∈L be the set of inequalities

of the increased dual variables. Here, L will be either a single cycle of GSt̄ , or a tiling
of GSt̄

2 . We wish to show that the primal increase rate towards the final set S′ at time t̄,∑
C∈L

∑
v∈S′ aCv is at most 47/7 times the dual increase rate |L|.

If the algorithm incremented yC , where C was a cycle of G for which at most two nodes
have outside neighbours, then the inequality we increase is

∑
v∈C xv ≥ 1. As S′ is minimal

under reverse-delete, |C ∩ S′| ≤ 2, and hence the primal increase rate
∑
v∈S′ aCv = |C ∩ S′| is

at most twice the dual increase rate 1.
Otherwise, if the algorithm did not increment yC , then there is no cycle C of GSt̄ such that

at most two nodes of C have neighbours outside C. Hence, the set of increased inequalities
are the blended inequalities of a tiling TH of an inclusion-minimal pocket H of G

St̄
2 . For a

cycle C of GSt̄
2 , let

∑
v∈V (GSt̄ ) a

C
v ≥ 1 be the blended inequality C (see Equation ⊛).

Recall that informally speaking, we wish to pay for at most one hit node inside a piece.
To do this, we need the following theorem which generalizes a result by Fiorini et al. [11,
Theorem 5.7] and tells us the structure of a minimal solution within a piece.
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25:12 Hitting Weighted Even Cycles in Planar Graphs

▶ Theorem 10. Let S′ be the output of Algorithm 2.1 on input (G, c). Consider an edge
uw ∈ E(GSt̄

2 ) on the even cycle whose dual variable we increase, and let Q be the piece
corresponding to uw in G. Then exactly one of the following occurs:
(C1) S′ contains no internal node of Q,
(C2) S′ contains exactly one node of Q, and this node is a cut-node of Q,
(C3) S′ contains exactly two nodes of Q, and they belong to opposite handles of a cycle of Q,
(C4) S′ contains exactly one node per elementary cycle of Q, each belonging to the interior

of some handle of the corresponding cycle.

Proof. If S′ contains two nodes a and b in the interiors of different handles of a pair, then
since removing both a and b disconnects u from w in Q, our algorithm would delete all other
nodes of V (Q)\{u,w} from S′. If u or w were in S′, then our algorithm would delete both a
and b. Thus, u,w /∈ S′, and case (C3) holds.

Similarly, if S′ contains a cut node z, then since removing z disconnects from u from v

in Q, our algorithm would delete all other nodes of V (Q)\{u, v} from S′. If u or w were
in S′, then our algorithm would delete z. Thus, u,w /∈ S′, and case (C2) holds.

If u or w is in S′, then for any r ∈ S′ ∩ (V (Q)\{u,w}) there cannot be an even cycle
of G which intersects S′ only at r as such a cycle would have to go through u or w, and
thus S′ contains no internal node of Q and case (C1) holds.

Assume that cases (C1), (C2) and (C3) do not hold, so u,w /∈ S′. Let (P1, P2) be a
handle pair on Q such that P1 contains a hit node t in its interior and P2 does not. Suppose
that Y1, Y2 was another handle pair with no hit node on either of Y1 or Y2. By our deletion
procedure, there must be an even cycle C which intersects S′ at t only. Such a cycle C uses
the handle P1 and one handle Yi of the pair Y1, Y2. Let C ′ be the cycle obtained from C by
replacing the paths P1 and Yi in C by the paths P2 and Y3−i. Since the lengths of different
handles of a pair have different parity, C ′ is even. Since P2, Y1 and Y2 contain no nodes of
S′, C ′ contains no nodes of S′, which is a contradiction. Since a handle can only contain one
hit node of S′, this implies that case (C4) holds. ◀

Given a hitting set S′ output by Algorithm 2.1, we wish to construct a corresponding
hitting set for GSt̄

3 such that the primal increase rate of any particular blended inequality
(with respect to S′) is equals the number of nodes of S′

3 on the corresponding cycle of GSt̄
3 .

▶ Definition 11. Let S′ be a hitting set output by Algorithm 2.1. The corresponding hitting
set for GSt̄

3 is the set S′
3 ⊂ V (GSt̄

3 ) obtained by first taking the nodes of S′ ∩ V (GSt̄
3 ). Now,

consider an edge uv of GSt̄
2 with corresponding piece P . Replace uv by the path uwpv in G

St̄
3 ,

and add wp to S′
3 if P − S′ has two components.3

▷ Claim 12. Let C be the preimage of an even cycle in GSt̄
2 , and C3 the corresponding cycle

in G
St̄
3 . We claim

∑
v∈S′ aCv ≤ |C3 ∩ S′

3| + 1. Further, if C does not contain a twin edge,
then

∑
v∈S′ aCv ≤ |C3 ∩ S′

3|.

Proof. Define bC as follows: For a handle pair, while one handle has greater residual cost
than the other set bCv = 1 for v on the handle of greater residual cost bCv = 0 on internal
nodes of the other handle (change bC whenever residual costs become equal). Otherwise,
bCv = 1/2 on internal nodes of both handles. In short, bCv are the coefficients aCv if we had
not redefined aCv = 1 for nodes on the special cycle.

3 Note that the minimality of S′ implies that removing S′ from P yields at most two connected components.
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Let uw ∈ E(GSt̄
2 ), Q be the preimage of uw in GSt̄ and uwQw be the subdivision of uw

in GSt̄
3 . Let S′

3 be the corresponding hitting set of S′ for GSt̄
3 . We claim

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|. We decide which case of Theorem 10 is satisfied by uw and S′.

If uw and S′ satisfy (C1), then
∑
v∈S′∩(Q\{u,w} b

C
v = 0. Since S′ contains no internal node

of Q, Q\S is connected, and hence S′
3 does not contain wQ. Hence

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|.

If uw and S′ satisfy (C2) or (C3), then S′ does not contain either end node of Q, and
contains either a single cut node of Q, or exactly two nodes of Q in the interiors of two
handles of a handle pair of Q. Thus, S′ ∩Q consists either of a single node v for which
bCv = 1, or two nodes j, k for which bCj = bCk = 1/2, and so

∑
v∈S′∩Q b

C
v = 1.

In case (C2) or (C3), Q\S′ is disconnected, so |S′
3∩{wQ}| = 1. Hence,

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|.

Suppose S′ satisfies (C4). Suppose, for sake of contradiction that, Algorithm 2.1 added a
node pair (ℓ′,m) on some handle pair (P1, P2) of Q. It then follows from the reverse-delete
step that the final solution S′ contains both ℓ′ and m, or none of them. Since we do not
contain a node pair, the deletion procedure of Algorithm 2.1 implies the algorithm did
not add a node pair with nodes in Q. Hence, throughout the algorithm, for each handle
pair (P1, P2) of Q, the handle Pi, which contains a hit node in its interior must have
strictly less residual cost than the other. Hence bCv = 0 on handle Pi. This implies∑

v∈(V (Q)\{u,w})

bCv = 0 . (1)

Thus
∑
v∈S′∩(Q\{u,w} b

C
v = |S′

3 ∩ {wQ}|.
Let C = v1v2 . . . vℓv1. Let Qi be the piece corresponding to vivi+1 mod ℓ. Let qi

be the node resulting from subdividing vivi+1 mod ℓ in G
St̄
2 to obtain G

St̄
3 . Let C3 :=

v1q1v2, q2, . . . , vℓqℓ the cycle corresponding to C in G
St̄
3 . We showed∑

v∈S′∩(Qi\{u,w})

bCv = |S′
3 ∩ {qi}| . (2)

Summing (2) for i− 1, .., l yields
∑
v∈S′∩(∪ℓ

i=1Qi\{v1,v2,...,vℓ}) b
C
v = |{q1, q2, . . . , qℓ} ∩ C3|.

Noting bCvi
= 1 for each i and bCv = 0 for v /∈ ∪lj=1Qj , yields∑

v∈S′

bCv = |C3 ∩ S′
3| . (3)

Let us now relate aCv to bCv . If C has no twin edge, then the blended inequality coefficients aCv
are equal to bCv , therefore

∑
v∈S a

C
v = |C3 ∩ S′

3|.
In general, C may contain a twin edge. In this case, aCv differs from bCv only in the interior

of the handles H1, H2 of the special cycle: then either bCv = 1
2 in the interior of H1 and H2,

or bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.
If bCv = 1

2 in the interior of H1 and H2, then note from Theorem 10 there are at most
two nodes of S′ on H1 ∪H2. Thus,

∑
v∈S a

C
v ≤

∑
v∈S b

C
v + 1.

Otherwise, bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.
Since S contains at most one node from the dominant handle

∑
v∈S a

C
v ≤

∑
v∈S b

C
v + 1.

Thus,
∑
v∈S a

C
v ≤ |C3 ∩ S′

3|+ 1 completing the proof. ◁

To show that |C3 ∩ S′
3| + 1 is small on average we need the fact that S′

3 is a minimal
ECT, which is stated in the following remark.
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▶ Remark 13. Let S′ be the output of Algorithm 2.1 on input (G, c). Let S′
3 be the

corresponding hitting set for GSt̄
3 in Definition 11. Then each v ∈ S′

3 has a witness cycle.
For a node h and cycle C, denote by C ◦ h that h lies on C.

▶ Definition 14. Let R be a set of cycles of a graph G, and let S ⊂ V (G). The debit graph
for R and S is the bipartite graph DG = (R∪S,E) with edges ER = {(C, s) ∈ R×S | C ◦ s}.

Given an embedding of G and a set R of faces of G, we can obtain an embedding of DG
by placing a node vM inside the face R for each R ∈ R. This shows the following observation.

▶ Observation 15 ([14, 6]). If R is a set of faces of G, then the debit graph is planar.

Note that for R a set of cycles, a cycle R ∈ R, the number of nodes |R ∩ S| that R pays
for in the hitting set is the degree of R in the debit graph.

Recall the definition of the Subset FVS problem, which seeks a minimum-weight node
set X which intersects all cycles from CT , the collection of cycles in G which contain some
node from a given set T ⊆ V (G). Observe that each node of S′

3 has a witness cycle in G
St̄
3 ;

therefore, it is an inclusion-minimal hitting set for the collection CT with T = S′
3. Goemans

and Williamson [14, Lemma 4.2] showed that any inclusion-minimal hitting set for CT has
a laminar set of witness cycles, which implies that there is a laminar set of pseudo-witness
cycles A for hitting set S′

3.

▶ Proposition 16 ([14, Lemma 4.2 specialized for Subset FVS]). Let G′ be a planar graph
and let T ⊆ V (G′). Let CT be the set of cycles of G′ containing at least one node of T ,
and let X be an inclusion-minimal hitting set for CT . Then there is a laminar set of cycles
A = {Ax | x ∈ X}, satisfying Ax ∈ CT and Ax ∩X = {x}.

Applying Proposition 16 to G′ = G3 and X = T = S′
3 implies there is a laminar set

A = {Ax | x ∈ S′
3} of cycles satisfying Ax ∩ S′

3 = {x}. In other words, A is a laminar set of
pseudo-witness cycles for S′

3. Note that cycles of A may not be even, hence they may be
pseudo-witness cycles for S′

3, but not necessarily witness cycles for nodes of S′
3.

Recall that, during the current iteration, our algorithm incremented the blended inequal-
ities of the cycles in a 2/3-quasi-perfect tiling TH of H. Recall H is an inclusion-minimal
pocket of GSt̄

2 . By abuse of notation, let TH be the corresponding cycles of GSt̄
3 . Let D be

the debit graph formed using GSt̄
3 , the cycle set TH and hitting set S′

3.
Obtain graph D′ from D by replacing each even cycle C containing two faces with the two

faces that compose it. To be precise, construct D′ by first taking all nodes of S′
3 and all faces

of H that lie inside some even cycle of TH as the vertex set. For each edge (C, v) ∈ E(D), if
the cycle C consist of two faces f1, f2 add the edges (f1, v) and (f2, v) to D′, otherwise add
the edge (C, v) to D′ (see Figure 7). Delete isolated vertices from D′. If fi is not incident to
any hit nodes v, we remove fi from D′. Let TFaces(H) be the “face nodes” of D′. Let Fall(H)
denote the finite faces of H. Let FH denote the set of finite faces of H that contain a hit
node. Observe that M ∩ S′

3 = ∅ for each M ∈ Fall(H)\FH . Now

∑
M∈TH

|M ∩ S′
3| ≤

∑
M∈TFaces(H)

|M ∩ S′
3|

≤
∑

M∈Fall(H)

|M ∩ S′
3| − |FH\TFaces(H)| =

∑
M∈F

|M ∩ S′
3| − |FH\TFaces(H)| . (4)
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Figure 7 Left: A possible debit graph D with the cycles of the tiling in Figure 5. Right: the
graph D′ obtained by replacing each cycle with the faces that compose it.

Figure 8 A graph consisting of a tessellation of the plane with twice as many triangles as
dodecagons. None of the triangles are adjacent, so a maximum tiling covers only the even dodecagons.

The first inequality holds, because for each cycle C consisting of two faces f1 and f2 we
have |C ∩ S′

3| ≤ |f1 ∩ S′
3|+ |f2 ∩ S′

3|. The second inequality holds, because each face of FH
contains a hit node, and so |C ∩ S′

3| ≥ 1 for each C ∈ FH . The last inequality holds, because
by definition |M ∩ S′

3| = 0 for all M ∈ Fall(H)\FH .
If our tiling covers 2/3 of all finite faces, then |TFaces(H)| ≤ 2|TH | and (2/3)|FH | ≤

|TFaces(H)|, so |FH | ≤ 3|TH |. Alas, one can show that a tiling that covers 2/3 of all finite
faces does not always exist; see Figure 8. To overcome this impediment, we will show
that |FH | ≤ 3|TH | holds for a 2/3-quasi-perfect tiling. Suppose that our 2/3-quasi-perfect
tiling covers a b-fraction of the odd faces in FH , and a c-fraction of the faces in FH which
are even. Let Feven(H) be the even finite faces of FH . Then, as FH\Feven(H) are the odd
faces of FH , and TFaces(H)\Feven(H) are the odd faces covered by our tiling, it holds that
b|FH\Feven(H)| = |TFaces(H)\Feven(H)|. Simplifying, we get

b|FH |+ (1− b)|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | − |Feven(H)| .

By rearranging, we get b|FH\Feven(H)|+ 2|Feven(H)| ≤ 2|TH |. Noting that b(1− c) + 2c ≥ 2/3,
and rearranging once more, yields

2
3 |FH | ≤ b|FH\Feven(H)|+ 2|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | .

Noting that |Feven(H)|/|FH | = c and b(1− c) + 2c ≥ 2/3, we get

3|TH | ≥
3
2(b(1− c) + 2c)|FH | ≥ |FH | . (5)

By (4), in order to bound
∑
M∈TH

|M ∩S′
3|, it suffices to bound

∑
M∈F |M ∩S′

3|. To do this,
we prove the following extension of the work by Berman and Yaroslavtsev [6, Theorem 4.1].
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▶ Theorem 17. Let H be an inclusion-wise minimal pocket of G. Let S ⊂ V (G) be a set of
nodes with some set A of laminar pseudo-witness cycles. Let R be a set of finite faces of H
such that each cycle of A contains a face of R in its interior. Then

∑
M∈R |M ∩ S| ≤

18
7 |R|.

We defer the proof of Theorem 17 to Subsection A.1.
Let A be a set of laminar witness cycles for S′

3. If we were to set R = FH (the set of
finite faces of H incident to a hit node), then each cycle A ∈ A contains a face of R in its
interior, namely any face inside A that is incident to the hit node of S′

3 on A. Thus, S′
3,A

and R meet the conditions of Theorem 17.
To recap, we wish to bound the primal increase rate

∑
M∈TH

∑
v∈S a

M
v , so we analyze the

expression
∑
M∈TH

|M ∩ S′
3|. Recall from Claim 12 that

∑
v∈S a

M
v is at most one more than

|M ∩S′
3| and

∑
v∈S a

M
v = |M ∩S′

3| if M contains no twin edge. We bound
∑
M∈TH

|M ∩S′
3|

by looking at the quantity
∑
M∈FH

|M ∩ S′
3|, because FH fits the conditions of Theorem 17.

One could then use |FH | ≤ 3|TH | (by (5)), to bound
∑
M∈TH

∑
v∈S a

M
v in terms of the dual

increase rate |TH |. We will use 3|TH | ≥ 3
2 (b(1− c) + 2c)|FH | to obtain a stronger bound.

Let T be our 2/3-quasi-perfect tiling from Theorem 9. Recall from Definition 8 that
the fraction β of odd finite faces that are covered by the tiling, and the fraction ψ of finite
faces of H, that are even satisfy β(1− ψ) + 2ψ ≥ α. Let A be a set of pseudo-witness cycles
in H for S′

3, the corresponding set for the hitting set S′ returned by our algorithm. Define
R = FH . We have that every cycle of A contains a face of R in its interior. Thus, R,A
and S′

3 satisfy the conditions of Theorem 17. Therefore,

∑
M∈TH

|M ∩ S′
3| ≤

( ∑
M∈FH

|M ∩ S′
3|

)
− |FH\TFaces(H)| ≤

18
7 |FH | − |FH\TFaces(H)| . (6)

Note that
∑
v∈S a

M
v ≤ |M ∩ S|, unless M contains a twin edge. If M ∈ T is the disjoint

union of two odd faces which share an edge, then M will not contain a twin edge. That
is, M can only contain a twin edge if M ∈ Feven(H), so M is an even face then. So∑

M∈TH

∑
v∈S

aMv ≤
∑
M∈TH

|M ∩ S|+ |Feven(H)| ≤
18
7 |FH | − |FH\TFaces(H)|+ |Feven(H)| . (7)

Recall that c = |Feven(H)|/|FH | is the fraction of finite faces of FH which are even, and that
b = |TFaces(H)\Feven(H)|/|FH\Feven(H)| is the fraction of odd finite faces of FH covered by
our tiling. Note that

|F\TFaces(H)| = |FH Feven(H)| − |TFaces(H)\Feven(H)|
= |F\Feven(H)| − b|FH\Feven(H)| = (1− b)(1− c)|FH | .

We now recall (5), by which 3|TH | ≥ 3
2 (b(1− c) + 2c)|FH |.

Substituting these bounds for |FH | and |FH\TFaces(H)| into (7), we obtain∑
M∈TH

∑
v∈S

aMv ≤ c|FH |+
18
7

(
2

b(1− c) + 2c |TH |
)
− (1− b)(1− c)|FH |

= 2c
b(1− c) + 2c |TH |+

18
7

(
2

b(1− c) + 2c |TH |
)
− 2(1− b)(1− c)

b(1− c) + 2c |TH | .

If we maximize the right-hand side factor 2c
(b(1−c)+2c) + 36

7(b(1−c)+2c) −
2(1−b)(1−c)
(b(1−c)+2c) subject to

b(1− c) + 2c ≥ 2/3, we obtain that the right-hand side is bounded by 47
7 |TH |.

This completes the proof of Theorem 1 modulo the proof of Theorem 9; i.e., the fact that
large quasi-perfect tilings can be computed efficiently. We deal with this in the appendix.
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A Obtaining a 2/3-quasi-perfect tiling

We now show how to find the 2/3-quasi perfect tiling in line 8 of Algorithm 2.1. The following
result states that the minimal pockets picked by the algorithm have such tilings.

▶ Theorem 9. Let H be a 2-compression of some planar graph G, that has an even cycle
and contains no pockets. Then H has a 2/3-quasi-perfect tiling.

To prove this theorem we will use the following lemma.

▶ Lemma 18. For any set S, any pseudo-pocket contained in GS2 contains an even cycle.

Proof. Informally speaking, the proof will show that any pseudo-pocket without even cycles
contains an odd cycle for which only two nodes have outside neighbours; this, however,
cannot appear in the 2-compression, as we would have replaced this cycle by an edge in GS2 .

Suppose, for sake of contradiction, that GS2 contained a pseudo-pocket Q without even
cycles. Since each node of Q is in an even cycle of G2 and Q contains no even cycle, Q
contains exactly two nodes u and v with neighbours outside Q, and each node of Q lies on a
u-v path of Q. Let Bu and Bv be the blocks of Q containing u and v in the block graph B
of Q, respectively (see Figure 9).

If B is not a path, then there would be some block B1 that does not lie on a Bu-Bv
path in B, and thus there would be a node of B1 that would not lie on a u-v path in Q –
a contradiction. Hence, B is a path. Let B be a block of Q. Suppose for a contradiction

GS

2
\Q

Bu

B2

B3

B4 Bv

vu

B1

Figure 9 Graph Q consisting of blocks labelled B1, B2, B3, B4, Bu, Bv. Block B1 depicted in blue
contains nodes not on any u-v path, which is a contradiction.

that B contains a cycle C and a node v′ of C with a neighbour u′ ∈ V (B) outside C. Since
v′ is not a cut node, there is a path P from u′ to C\v′. Construct the u′-v′ path P ′ from P

by traversing P from u′ to the first node w′ of C\v′ and appending to that a w′-v′ path in C.
Since Q contains no even cycles, the cycles P ′ ∪ v′u′ and C are odd. Then the cycle formed
by the edges E(C)∆E(P ′ ∪ v′u′), that is edges of C or P ′ ∪ v′u′, but not both, has length
|E(C)|+ |E(P ′ ∪ v′u′)| − 2|E(C) ∩ E(P ′ ∪ v′u′)| which is even, and hence a contradiction.
Thus if B contains a cycle then it does not contain nodes outside the cycle, or put simply B
is a cycle. Since we assume B contains no even cycles, B is an odd cycle. Thus, the blocks
of Q are odd cycles or edges. Since Q contains at least one cycle, there is an odd cycle C ′.
Since B is a path, C ′ contains 2 nodes a and b with neighbours outside C ′. However, GS2
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cannot contain such an odd cycle, as that we would have contracted the two a-b paths of C ′

to parallel edges and then replaced them by a twin edge; see Figure 10. This completes the
proof. ◀

G Ḡ1G1

Figure 10 Cycle is replaced by an edge in 2-compression.

For any set S, if GS3 contained a pseudo-pocket Q without even cycles, then Q was obtained
from a subgraph Q′ of GS2 by subdividing edges. Then Q′ would be a pseudo-pocket of GS2
without even cycles. This contradicts Lemma 18. This shows the following corollary.

▶ Corollary 19. For any set S, any pseudo-pocket of GS3 contains an even cycle.

Recall from Definition 6 and the paragraph afterwards, that a pseudo-tiling of our graph
corresponds to the union of a matching of the dual graph and a set of even faces. A tiling
corresponds to the union of a matching of the dual graph not containing any edge incident
to the infinite face and a set of even finite faces. Under this correspondence, the existence of
large pseudo-tilings is a much more natural thing to prove. Let us first formally define a
large pseudo-tiling.

▶ Definition 20. Let α ∈ (0, 1). A pseudo-tiling T is α-pseudo-perfect if it covers all
even faces (including the infinite face if it is even) and a β-fraction of the odd faces, and a
ψ-fraction of the faces of H are even, where β(1− ψ) + 2ψ ≥ α.

We will first prove the existence of large pseudo-perfect pseudo-tilings. We fix an embedding
of H. For any multigraph W , let oc(W ) be the number of odd components of W . Recall
pseudo-tilings correspond to matchings. Our proof will use Tutte’s Theorem stated below,
which informally speaking, says that the absence of a large matching implies the existence of
a small set of vertices whose removal results in a graph with a large number of connected
components of odd size.

▶ Theorem 21 (Tutte’s Theorem). For any graph G, the number of nodes of G which are
not covered by a maximum size matching of G is at most

oc(G\X)− |X| . (8)

for some X ⊂ V (G). Further, if some node v ∈ V (G) is covered by every maximum matching
of G, then (8) holds for some X ⊂ V (G) containing v.

The main idea of why such large pseudo-perfect pseudo-tilings should exist is that by
Tutte’s Theorem, the absence of a large pseudo-tiling implies that for some set X of nodes of
the dual graph H∗, the set of odd components of H∗\X is large relative to |X|.

Construct a new graph H1 as follows. Start with the graph H∗ and add as many edges as
possible between nodes of X while preserving planarity and not creating any faces of length
two (see Figure 11). We will show that each odd component of H1\X lies in a different
face of H1[X] and that H1 contains at most two faces of length two. Thus using Euler’s
formula, |E(H1[X])| ≤ 3|V (H1[X])| − 4, H1[X] does not have too many edges. The crucial
observation is that since each odd component of H1\X lies in a different face of H1[X], each

APPROX/RANDOM 2021
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X E(H1)\E(H∗)

X

Figure 11 The graph H∗ with set X ⊂ V (H∗) (depicted in blue) on the left. On the right, the
graph H1 obtained from H∗ by adding edges (dashed) between X.

node x ∈ X is adjacent to more other nodes of X in H1 than there are odd components of
H1\X which contain a neighbour of x. By facial region, we mean the region of the plane
bounded by a face. We will also show there are at most two odd components J1, J2 for which
at most two nodes of X have neighbours in Ji. We can then show that the number of odd
components is at most 2/3 the number of edges of H1[X] plus 2

3 , which will contradict that
the set of odd components is large.

▶ Lemma 22 (⋆). Let H be as in Algorithm 2.1, that is, H is a minimal pocket of GS2 .
Then H has a 2/3-pseudo-perfect pseudo-tiling.

So let T be a 2/3-pseudo-perfect pseudo-tiling of H. Let β′ be the fraction of odd faces
of H which are covered by T , and let ψ′ be the fraction of even faces of H. Next, we will show
that if T covers more faces than a maximum tiling of H, then T satisfies a slightly stronger
condition than 2/3-pseudo-perfect, namely, β′(1−ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2

3 |V (H∗)|+ 4
3 .

Formally, this means:

▶ Lemma 23 (⋆). Let H be as in Algorithm 2.1, that is, H is a minimal pocket of GS2 .
Suppose that any maximum size pseudo-tiling of H covers the infinite face. Then H has a
pseudo-tiling covering a β′-fraction of all odd faces such that

β′(1− ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2
3 |V (H∗)|+ 4

3 . (9)

▶ Theorem 24. Let H be an inclusion-minimal pocket of GS2 . Then we can obtain 2/3-quasi-
perfect tiling of H in polynomial time.

Proof. We first show that H admits a 2/3-quasi-perfect tiling. Let us show that if some
tiling T is 2/3-pseudo-perfect, then it is 2/3-quasi-perfect. Let β′ be the fraction of odd
faces of H that are covered by T and ψ′ the fraction of faces of H, that are even. As T is
2/3-pseudo-perfect, it covers all even faces. Since T is a tiling, the infinite face is odd. As
the number of even finite faces is ψ′|V (H∗)|, so ψ′|V (H∗)|

|V (H∗)|−1 is the fraction of finite faces of H
that are even. (1− ψ′)|V (H∗)| is the number of odd faces of H, so β′(1− ψ′)|V (H∗)| is the
number of odd faces of H covered by T . Since the infinite face is odd, (1−ψ′)|V (H∗)| − 1 is
the number of odd finite faces. Thus β′(1−ψ′)|V (H∗)|

(1−ψ′)|V (H∗)|−1 is the fraction of odd finite faces of H
covered by T . Since
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β′(1 − ψ′)|V (H∗)|
(1 − ψ′)|V (H∗)| − 1(1 − ψ′|V (H∗)|

|V (H∗)| − 1) + 2ψ′|V (H∗)|
|V (H∗)| − 1

= β′(1 − ψ′)|V (H∗)|
(1 − ψ′)|V (H∗)| − 1(1 − ψ′) + 2ψ′ +

(
2 − β′(1 − ψ′)|V (H∗)|

(1 − ψ′)|V (H∗)| − 1

)(
ψ′ − ψ′|V (H∗)|

|V (H∗)| − 1

)
≤ β′(1 − ψ′)|V (H∗)|

(1 − ψ′)|V (H∗)| − 1(1 − ψ′) + 2ψ′ ≤ 2
3 ,

it holds that T is 2/3-quasi-perfect.
If there is a maximum size pseudo-tiling that is also a tiling, then it follows from Lemma 22

that such a tiling is 2/3-quasi-perfect.
Otherwise, if no pseudo-tiling exists, the largest pseudo-tiling is larger than the largest

tiling. Let T be a maximum size pseudo-tiling.
If the infinite face of T is even, consider the tiling T ′ obtained by removing the infinite

face from T . Let ψ(1) := (ψ′|V (H∗)| − 1)/(|V (H∗)| − 1) be the fraction of finite faces of H
which are even. As the infinite face is even, β′ is the fraction of odd finite faces of H which
are covered by T ′. It holds that

β′(1 − ψ(1))(|V (H∗)| − 1) + 2ψ(1)(|V (H∗)| − 1) = β′|V (H∗)|(1 − ψ′) + ψ′|V (H∗)| − 1

≥ 2
3 |V (H∗)| + 4

3 − 1 = 2
3(|V (H∗)| − 1) .

So T ′ is 2/3-quasi-perfect.
If the infinite face is odd, consider the tiling T ′ obtained by removing the even cycle

covering the infinite face from T . Let ψ(2) := ψ′|V (H∗)|/(|V (H∗)| − 1) be the fraction
of finite faces of H that are even. At least β′|V (H∗)| − 2 of the finite faces of H are
covered by T ′ so the fraction β′′′ of finite odd faces of H that are covered satisfies b′′ ≥
(β′|V (H∗)| − 1)/(1− ψ(2))(|V (H∗)| − 1). Therefore,

b′′(1 − ψ(2))(|V (H∗)| − 1) + 2ψ(2)(|V (H∗)| − 1) ≥ (β′|V (H∗)| − 1) + 2c|V (H∗)|

≥ 2
3 |V (H∗)| + 4

3 − 1 = 2
3(|V (H∗)| − 1) .

Hence also in this case, T ′ is 2/3-quasi-perfect.
Finally, since a tiling corresponds to the union of a matching and a set of even faces,

finding a maximum tiling of H corresponds to finding a maximum matching of the odd finite
faces of H. Computing such a maximum matching can be done in polynomial time. ◀

A.1 Proof of Theorem 17
In this section we will prove Theorem 17. Let G,H,R, S,A be as in the statement of
Theorem 17. Let DG be the debit graph of G with respect to S.

We introduce the notion of “balance”, which captures for subsets R′ ⊆ R of cycles are
incident to more or less than 18/7 nodes of S on average.

▶ Definition 25. For each subset R′ ⊆ R, its balance bal(R′) is the quantity |R′| − 7
18 |E

′
R|.

Our proof follows the same methodology as Berman and Yaroslavtsev [6]. First, it shows a
pseudo-witness cycle that is not a face and is minimally so, that is any pseudo-witness cycle
lying in the finite region bounded by it is a face, has balance at least 1− 7

18 . Then it uses
this to apply a reduction on G. We will use the following result of theirs.

APPROX/RANDOM 2021
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R0 R1 R2 R3 R4 R5

C5 C4 C3 C2 C1

Figure 12 Pseudo-witness cycles C1, . . . , C5 divide H into regions R0, R1, . . . , R5.

▶ Proposition 26 ([6, Lemma 4.3]). Let W be a planar graph, Ŝ be a set of nodes of W and
Q ⊂ Ŝ be a set of nodes of W that we call outer nodes. Let RW be a set of faces of W such
that each non-outer node of Ŝ ∩W has a pseudo-witness cycle in RW . If W contains a ≤ 2
outer nodes, then bal(RW ) ≥ 1− 7

18a.

If all nodes of a pseudo-witness cycle A are contained in H, call A a hierarchical pseudo-
witness cycle. Otherwise, call A a crossing pseudo-witness cycle. Denote the set of crossing
pseudo-witness cycles by Â. We are now ready to complete the proof of Theorem 17. We
begin by reductions on our instance (G,H,R,A, S) which simplify our instance and do not
increase the balance. If after applying this reduction our instance has positive balance, then
our instance had positive balance before the reduction. We define the reduction below.

▶ Definition 27. We define the following reduction on our instance (G,H,R,A, S). If H
contains a hierarchical pseudo-witness cycle A that is not a face of R, delete all nodes, edges
and faces of R inside A from H and add A to R. If H does not contain a hierarchical witness
cycle, we call the instance (G,H,R,A, S) reduced.

Let RC be the faces in R contained in the region bounded by C. Let H1,R1 be the result
of applying the reduction in Definition 27 on H,R. The balance of H1,R1 is equal to

|(R\RC) ∪ {C}| −
∑

M∈(R\RC )∪{C}

|M ∩ S|

= |R| −
∑

M∈R

|M ∩ S| − (|RC | + 1 − (
∑

M∈RC

|M ∩ S|) + 1) = bal(H) + 1 − bal(RC) − 7
18 .

That is to say, the reduction changes the balance by 1−bal(RC)− 7
18 , which by Proposition 26

is non-positive. Thus, if after applying the reduction in Definition 27, our instance has
positive balance then it initially had positive balance. We know apply the reduction in
Definition 27 until our instance is reduced, for simplicity we will continue to call this graph H.

The crossing pseudo-witness cycles Â partition H into regions, see Figure 12. That is,
consider the subgraph K ⊂ H consisting of nodes and edges lying on a witness cycle of Â or
on the outside face of H. The regions are defined as the portions of the plane bounded by
the finite faces of K. Define a subpocket [6] as the subgraph of H consisting of the nodes
and edges lying in or on the boundary of a region.

▶ Proposition 28 ([6]). The regions that the set of crossing cycles Â partition the plane into
satisfy the following. For each region, there is a set Ã of at most two pseudo-witness cycles
of Â such that each node bounding the region either does not lie on a pseudo-witness cycle
in Â or lies on a cycle of Ã.
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By the reduction described in Definition 27 each non-crossing cycle of A is a face. Since
by Proposition 28, the outside face of each subpocket W contains nodes from at most two
crossing pseudo-witness cycles, and contains all nodes that belong to pseudo-witness cycles lie
on the outside face, there are at most two hit nodes of W whose pseudo-witness is not a face
and they must lie on the outside face of W . Hence, each subpocket satisfies the conditions
of Proposition 26 and hence has positive balance. Thus, H has positive balance, that is,
0 ≤ |R| − 7

18 |ER| = |R| −
∑
M∈R |M ∩ S|. Rearranging,

∑
M∈R |M ∩ S| ≤

18
7 |R|, which

completes the proof of Theorem 17. ◀
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