
Tight Approximation Algorithms For
Geometric Bin Packing with Skewed Items
Arindam Khan #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Eklavya Sharma #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Abstract
In the Two-dimensional Bin Packing (2BP) problem, we are given a set of rectangles of height and
width at most one and our goal is to find an axis-aligned nonoverlapping packing of these rectangles
into the minimum number of unit square bins. The problem admits no APTAS and the current best
approximation ratio is 1.406 by Bansal and Khan [SODA’14]. A well-studied variant of the problem
is Guillotine Two-dimensional Bin Packing (G2BP), where all rectangles must be packed in such
a way that every rectangle in the packing can be obtained by recursively applying a sequence of
end-to-end axis-parallel cuts, also called guillotine cuts. Bansal, Lodi, and Sviridenko [FOCS’05]
obtained an APTAS for this problem. Let λ be the smallest constant such that for every set I of
items, the number of bins in the optimal solution to G2BP for I is upper bounded by λ opt(I) + c,
where opt(I) is the number of bins in the optimal solution to 2BP for I and c is a constant. It is
known that 4/3 ≤ λ ≤ 1.692. Bansal and Khan [SODA’14] conjectured that λ = 4/3. The conjecture,
if true, will imply a (4/3 + ε)-approximation algorithm for 2BP. According to convention, for a given
constant δ > 0, a rectangle is large if both its height and width are at least δ, and otherwise it is
called skewed. We make progress towards the conjecture by showing λ = 4/3 for skewed instance,
i.e., when all input rectangles are skewed. Even for this case, the previous best upper bound on λ

was roughly 1.692. We also give an APTAS for 2BP for skewed instance, though general 2BP does
not admit an APTAS.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Geometric bin packing, guillotine separability, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.22

Category APPROX

Related Version ArXiv: https://arxiv.org/abs/2105.02827

1 Introduction

Two-dimensional Bin Packing (2BP) is a well-studied problem in combinatorial optimization.
It finds numerous applications in logistics, databases, and cutting stock. In 2BP, we are given
a set of n rectangular items and square bins of side length 1. The ith item is characterized
by its width w(i) ∈ (0, 1] and height h(i) ∈ (0, 1]. Our goal is to find an axis-aligned
nonoverlapping packing of these items into the minimum number of square bins of side length
1. There are two well-studied variants: (i) where the items cannot be rotated, and (ii) they
can be rotated by 90 degrees.

As is conventional in bin packing, we focus on asymptotic approximation algorithms.
For any optimization problem, the asymptotic approximation ratio (AAR) of algorithm
A is defined as limm→∞ supI:opt(I)=m(A(I)/opt(I)), where opt(I) is the optimal objective
value and A(I) is the objective value of the solution output by algorithm A, respectively, on
input I. Intuitively, AAR captures the algorithm’s behavior when opt(I) is large. We call a

© Arindam Khan and Eklavya Sharma;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
mailto:eklavyas@iisc.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.22
https://arxiv.org/abs/2105.02827
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Geometric Bin Packing with Skewed Items

bin packing algorithm α-asymptotic-approximate iff its AAR is at most α. An Asymptotic
Polynomial-Time Approximation Scheme (APTAS) is an algorithm that accepts a parameter
ε and has AAR of (1 + ε).

2BP is a generalization of classical 1-D bin packing problem [24, 15]. However, unlike
1-D bin packing, 2BP does not admit an APTAS unless P=NP [5]. In 1982, Chung, Garey,
and Johnson [13] gave an approximation algorithm with AAR 2.125 for 2BP. Caprara [9]
improved the AAR to T∞(≈ 1.691). After a series of works [4, 25, 7], the AAR was gradually
improved to 1 + ln(1.5) + ε ≈ 1.405 (for both the rotational and non-rotational versions of
2BP). The best-known lower bounds on the AAR for 2BP are 1 + 1/3792 and 1 + 1/2196
[11], for the versions with and without rotations, respectively.

In the context of geometric packing, guillotine cuts are well-studied and heavily used in
practice [41]. The notions of guillotine cuts and k-stage packing were introduced by Gilmore
and Gomory in their seminal paper [22] on the cutting stock problem. In k-stage packing,
the items can be separated from each other using k stages of axis-parallel end-to-end cuts,
also called guillotine cuts, where in each stage, either all cuts are vertical or all cuts are
horizontal. In each stage, each rectangular region obtained in the previous stage is considered
separately and can be cut again using guillotine cuts. Note that in the cutting process we
change the orientation (vertical or horizontal) of the cuts k − 1 times. 2-stage packing, also
called shelf packing, has been studied extensively. A packing is called guillotinable iff it is a
k-stage packing for some integer k. See Figure 1 for examples. Caprara et al. [10] gave an
APTAS for 2-stage 2BP. Bansal et al. [8] showed an APTAS for guillotine 2BP.

✂

✂

✂

✂ ✂ ✂

✂

(a) The items can be separated using 3 stages of guillotine cuts,
so this is a guillotinable packing.

(b) Two non-guillotinable bins.

Figure 1 Examples of guillotinable and non-guillotinable packing.

The presence of an APTAS for guillotine 2BP raises an important question: can the
optimal solution to guillotine 2BP be used as a good approximate solution to 2BP? Formally,
let opt(I) and optg(I) be the minimum number of bins and the minimum number of
guillotinable bins, respectively, needed to pack items I. Let λ be the smallest constant
such that for some constant c and for every set I of items, we get optg(I) ≤ λ opt(I) + c.
Then λ is called the Asymptotic Price of Guillotinability (APoG). It is easy to show that

A. Khan and E. Sharma 22:3

APoG ≥ 4/31. Bansal and Khan [7] conjectured that APoG = 4/3. If true, this would imply
a (4/3 + ε)-asymptotic-approximation algorithm for 2BP [8]. However, the present upper
bound on APoG is only T∞ (≈ 1.691), due to Caprara’s HDH algorithm [9] for 2BP, which
produces a 2-stage packing.

APTASes are known for some special cases for 2BP, such as when all items are squares [5]
or when all rectangles are small in both dimensions [14]. Another important class is skewed
rectangles. We say that a rectangle is δ-large if, for some constant δ > 0, its width and height
are more than δ; otherwise, the rectangle is δ-skewed. We just say that a rectangle is large or
skewed when δ is clear from the context. An instance of 2BP is skewed if all the rectangles in
the input are skewed. Skewed instances are important in geometric packing (see Section 1.1).
This special case is practically relevant [18]: e.g., in scheduling, it captures scenarios where
no job can consume a significant amount of a shared resource (energy, memory space, etc.)
for a significant amount of time. Even for skewed instance for 2BP, the best known AAR is
1.406 [7]. Also, for skewed instance, the best known upper bound on APoG is T∞ ≈ 1.691.

1.1 Related Works
Multidimensional packing problems are fundamental in combinatorial optimization [12].
Vector packing (VP) is another variant of bin packing, where the input is a set of vectors
in [0, 1]d and the goal is to partition the vectors into the minimum number of parts (bins)
such that in each part, the sum of vectors is at most 1 in every coordinate. The present
best approximation algorithm attains an AAR of (0.807 + ln(d + 1)) [6] and there is a
matching Ω(ln d)-hardness [37]. Generalized multidimensional packing [33, 32] generalizes
both geometric and vector packing.

In two-dimensional strip packing (2SP) [14, 40], we are given a set of rectangles and a
bounded width strip. The goal is to obtain an axis-aligned nonoverlapping packing of all
rectangles such that the height of the packing is minimized. The best-known approximation
ratio for 2SP is 5/3 + ε [23] and it is NP-hard to obtain better than 3/2-approximation.
However, there exist APTASes for the problem [28, 26]. In two-dimensional knapsack (2GK)
[27], the rectangles have associated profits and our goal is to pack the maximum profit subset
into a unit square knapsack. The present best polynomial-time (resp. pseudopolynomial-time)
approximation ratio for 2GK is 1.809 [20] (resp. 4/3 [21]). These geometric packing problems
have also been studied for d-dimensions (d ≥ 2) [39].

2SP and 2GK are also well-studied under guillotine packing. Seiden and Woeginger [38]
gave an APTAS for guillotine 2SP. Khan et al. [29] recently gave a pseudopolynomial-time
approximation scheme for guillotine 2GK. Recently, guillotine cuts [35] have received attention
due to their connection with the maximum independent set of rectangles (MISR) problem [2].
In MISR, we are given a set of possibly overlapping rectangles and the goal is to find the
maximum cardinality set of rectangles so that there is no pairwise overlap. It was noted in
[30, 1] that for any set of n non-overlapping axis-parallel rectangles, if there is a guillotine
cutting sequence separating αn of them, then it implies a 1/α-approximation for MISR.

Skewed instance is an important special case in these problems. In some problems, such
as MISR and 2GK, if all items are δ-large then we can solve them exactly in polynomial time.
So, the inherent difficulty of these problems lies in skewed instances. For VP, hard instances
are again skewed, e.g., Bansal, Eliáš and Khan [6] showed that hard instances for 2-D VP

1 Consider a set I of items containing 2m rectangles of width 0.6 and height 0.4 and 2m rectangles of
width 0.4 and height 0.6. Then opt(I) = m and optg(I) = ⌈4m/3⌉.

APPROX/RANDOM 2021

22:4 Geometric Bin Packing with Skewed Items

(for a class of algorithms called rounding based algorithms) are skewed instances, where one
dimension is 1 − ε and the other dimension is ε. Galvez el al. [18] recently studied strip
packing when all items are skewed. For skewed instances, they showed (3/2 − ε) hardness
of approximation and a matching (3/2 + ε)-approximation algorithm. For 2GK, when the
height of each item is at most ε3, a (1 − 72ε)-approximation algorithm is known [17].

1.2 Our Contributions
We study 2BP for the special case of δ-skewed rectangles, where δ ∈ (0, 1/2] is a constant.

First, we make progress towards the conjecture [7] that APoG = 4/3. Even for skewed
rectangles, we only knew 4/3 ≤ APoG ≤ T∞(≈ 1.691). We resolve the conjecture for skewed
rectangles, by giving lower and upper bounds of roughly 4/3 when δ is a small constant.

Specifically, we give an algorithm for 2BP, called skewed4Packε, that takes a parameter
ε ∈ (0, 1) as input. For a set I of δ-skewed rectangles, we show that when δ and ε are close
to 0, skewed4Packε(I) outputs a 4-stage packing of I into roughly 4 opt(I)/3 + O(1) bins.

▶ Theorem 1. Let I be a set of δ-skewed items, where δ ∈ (0, 1/2]. Then skewed4Packε(I)
outputs a 4-stage packing of I in time O((1/ε)O(1/ε) + n log n). Furthermore, the number of
bins used is at most (4/3)(1 + 8δ)(1 + 7ε) opt(I) + (8/ε2) + 30.

The lower bound of 4/3 on APoG can be extended to skewed items. We formally prove
this in Appendix D. Hence, our bounds are tight for skewed items. Our result indicates that
to improve the bounds on APoG in the general case, we should focus on δ-large items.

Our other main result is an APTAS for 2BP for skewed items. Formally, we give an
algorithm for 2BP, called skewedCPack, and show that for every constant ε ∈ (0, 1), there
exists a constant δ ∈ (0, ε) such that the algorithm has an AAR of 1 + ε when all items in
the input are δ-skewed rectangles. skewedCPack can be extended to the rotational version of
2BP. The best-known AAR for 2BP is 1 + ln(1.5) + ε. Our result indicates that to improve
upon algorithms for 2BP, one should focus on δ-large items.

In Section 3, we describe the skewed4Pack algorithm and prove Theorem 1. In Section 4,
we describe the skewedCPack algorithm and prove that it has an AAR of 1 + ε.

2 Preliminaries

Let [n] := {1, 2, . . . , n}, for n ∈ N. For a rectangle i, its area a(i) := w(i)h(i). For a set
I of rectangles, let a(I) :=

∑
i∈I a(i). An axis-aligned packing of an item i in a bin is

specified by a pair (x(i), y(i)), where x(i), y(i) ∈ [0, 1], so that i is placed in the region
[x(i), x(i)+w(i)]× [y(i), y(i)+h(i)]. A packing of rectangles in a bin is called nonoverlapping
iff for any two distinct items i and j, the rectangles (x(i), x(i) + w(i)) × (y(i), y(i) + h(i)) and
(x(j), x(j) + w(j)) × (y(j), y(j) + h(j)) are disjoint. Equivalently, items may only intersect
at their boundaries.

Next-Fit Decreasing Height (NFDH). NFDH [14] is a simple algorithm for 2SP and 2BP.
We will use the following results on NFDH (cf. Appendix B in [31]).

▶ Lemma 2. Let I be a set of items where each item i has w(i) ≤ δW and h(i) ≤ δH . NFDH
can pack I into a bin of width W and height H if a(I) ≤ (W − δW)(H − δH).

▶ Lemma 3. NFDH uses less than (2a(I) + 1)/(1 − δ) bins to pack I when h(i) ≤ δ for each
item i and less than 2a(I)/(1 − δ) + 3 bins when w(i) ≤ δ for each item i.

A. Khan and E. Sharma 22:5

If we swap the coordinate axes in NFDH, we get the Next-Fit Decreasing Width (NFDW)
algorithm. Analogs of the above results hold for NFDW.

Slicing Items. We will consider variants of 2BP where some items can be sliced. Formally,
slicing a rectangular item i using a horizontal cut is the operation of replacing i by two items
i1 and i2 such that w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2). Slicing using vertical cut
is defined analogously. Allowing some items to be sliced may reduce the number of bins
required to pack them.

Variants of 2SP where items can be sliced using vertical cuts find applications in resource
allocation problems [3, 16, 19]. Many packing algorithms [28, 25, 8] solve the sliceable version
of the problem as a subroutine.

3 Guillotinable Packing of Skewed Rectangles

An item is called (δW , δH)-skewed iff its width is at most δW or its height is at most δH . In
this section, we consider the problem of obtaining tight upper and lower bounds on APoG for
(δW , δH)-skewed items. We will describe the skewed4Pack algorithm and prove Theorem 1.

3.1 Packing With Slicing
Before describing skewed4Pack, let us first look at a closely-related variant of this problem,
called the sliceable 2D bin packing problem, denoted as S2BP. In this problem, we are given
two sets of rectangular items, W̃ and H̃, where items in W̃ have width more than 1/2, and
items in H̃ have height more than 1/2. W̃ is called the set of wide items and H̃ is called the
set of tall items. We are allowed to slice items in W̃ using horizontal cuts and slice items
in H̃ using vertical cuts, and our task is to pack W̃ ∪ H̃ into the minimum number of bins
without rotating the items.

We first describe a 4/3-asymptotic-approximation algorithm for S2BP, called greedyPack,
that outputs a 2-stage packing. Later, we will use greedyPack to design skewed4Pack.

We assume that the bin is a square of side length 1. Since we can slice items, we allow
items in W̃ to have height more than 1 and items in H̃ to have width more than 1.

For X ⊆ W̃ , Y ⊆ H̃, let hsum(X) :=
∑

i∈X h(i); wsum(Y) :=
∑

i∈Y w(i); wmax(X) :=
maxi∈X w(i) if X ̸= ∅, and 0 if X = ∅; hmax(Y) := maxi∈Y h(i) if Y ̸= ∅, and 0 if Y = ∅.

In the algorithm greedyPack(W̃ , H̃), we first sort items W̃ in decreasing order of width
and sort items H̃ in decreasing order of height. Suppose hsum(W̃) ≥ wsum(H̃). Let X be
the largest prefix of W̃ of total height at most 1, i.e., if hsum(W̃) > 1, then X is a prefix of
W̃ such that hsum(X) = 1 (slice items if needed), and X = W̃ otherwise. Pack X into a bin
such that the items touch the right edge of the bin. Then we pack the largest possible prefix
of H̃ into the empty rectangular region of width 1 − wmax(X) in the left side of the bin. We
call this a type-1 bin. See Figure 2a for an example. If hsum(W̃) < wsum(H̃), we proceed
analogously in a coordinate-swapped way, i.e., we first pack tall items in the bin and then
pack wide items in the remaining space. Call this bin a type-2 bin. We pack the rest of the
items into bins in the same way.

▷ Claim 4. greedyPack(W̃ , H̃) outputs a 2-stage packing of W̃ ∪ H̃ in O(m + |W̃ | log |W̃ | +
|H̃| log |H̃|) time, where m is the number of bins used. It slices items in W̃ by making at
most m − 1 horizontal cuts and slices items in H̃ by making at most m − 1 vertical cuts.

Since items in W̃ have width more than 1/2, no two items can be placed side-by-side.
Hence, ⌈hsum(W̃)⌉ = opt(W̃) ≤ opt(W̃ ∪ H̃). Similarly, ⌈wsum(H̃)⌉ ≤ opt(W̃ ∪ H̃). So, if
all bins have the same type, greedyPack uses max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) = opt(W̃ ∪ H̃)
bins. We will now focus on the case where some bins have type 1 and some have type 2.

APPROX/RANDOM 2021

22:6 Geometric Bin Packing with Skewed Items

(a) A type-1 bin produced
by greedyPack. Wide items
are packed on the right. Tall
items are packed on the left.

(b) A type-2 bin produced by
greedyPack. Tall items are
packed above. Wide items are
packed below.

(c) A type-1 bin in the packing
of Î computed by skewed4Pack (see
Section 3.2). The packing contains 5
tall containers in 2 tall shelves and
18 wide containers in 8 wide shelves.

▶ Definition 5. In a type-1 bin, let X and Y be wide and tall items, respectively. The bin is
called full iff hsum(X) = 1 and wsum(Y) = 1 − wmax(X). Similarly define full for type 2.

We first show that full bins pack items of large total area, and then show that if some
bins have type 1 and some have type 2, then there are at most 2 non-full bins. This helps us
upper-bound the number of bins used by greedyPack(W̃ , H̃) in terms of a(W̃ ∪ H̃).

▶ Lemma 6. Let there be m1 type-1 full bins, containing items J1. Then m1 ≤ 4a(J1)/3+1/3.

Proof. In the jth full bin of type 1, let Xj be the items from W̃ and Yj be the items from H̃.
Let ℓj := wmax(Xj) if j ≤ m1 and ℓm1+1 := 1/2. Since all items have their larger dimension
more than 1/2, ℓj ≥ 1/2 and hmax(Yj) > 1/2, for any j ∈ [m1].

a(Xj) ≥ ℓj+1, since Xj has height 1 and width at least ℓj+1. a(Yj) ≥ (1 − ℓj)/2,
since Yj has width 1 − ℓj and height more than 1/2. So, a(J1) =

∑m1
j=1(a(Xj) + a(Yj)) ≥∑m1

j=1(ℓj+1 + (1 − ℓj)/2) ≥
∑m1

j=1 ((ℓj+1/2) + (1/4) + (1/2) − (ℓj/2)) ≥ (3m1 − 1/4).
In the above inequalities, we used ℓj+1 ≥ 1/2 and ℓ1 ≤ 1.

Therefore, m1 ≤ 4a(J1)/3 + 1/3. ◀

An analog of Lemma 6 can be proven for type-2 bins. Lemma 6 implies that very few full
bins can have items of total area significantly less than 3/4.

Suppose greedyPack(W̃ , H̃) uses m bins. After j bins are packed, let Aj be the height
of the remaining items in W̃ and Bj be the width of the remaining items in H̃. Let tj be
the type of the jth bin (1 for type-1 bin, 2 for type-2 bin). So tj = 1 ⇐⇒ Aj−1 ≥ Bj−1.

We first show that |Aj−1−Bj−1| ≤ 1 =⇒ |Aj −Bj | ≤ 1, i.e., once | hsum(W̃)−wsum(H̃)|
becomes at most 1 during greedyPack, it continues to stay at most 1. Next, we show
that tj ̸= tj+1 =⇒ |Aj−1 − Bj−1| ≤ 1, i.e., if all bins don’t have the same type, then
| hsum(W̃) − wsum(H̃)| eventually becomes at most 1 during greedyPack. In the first non-
full bin, we use up all the wide items or all the tall items. We will show that the remaining
items have total height or total width at most 1, so we have at most 2 non-full bins.

In the jth bin, let aj be the height of items from W̃ and bj be the width of items from H̃.
Hence, for all j ∈ [m], Aj−1 = Aj + aj and Bj−1 = Bj + bj .

▶ Lemma 7. |Aj−1 − Bj−1| ≤ 1 =⇒ |Aj − Bj | ≤ 1.

Proof. W.l.o.g., assume Aj−1 ≥ Bj−1. So, tj = 1. Suppose aj < bj . Then aj < 1, so we
used up W̃ in the jth bin. Therefore, Aj = 0 =⇒ Aj−1 = aj < bj ≤ bj + Bj = Bj−1,
which contradicts. Hence, aj ≥ bj . As 0 ≤ (Aj−1 − Bj−1), (aj − bj) ≤ 1, we get Aj − Bj =
(Aj−1 − Bj−1) − (aj − bj) ∈ [−1, 1]. ◀

A. Khan and E. Sharma 22:7

▶ Lemma 8. tj ̸= tj+1 =⇒ |Aj−1 − Bj−1| ≤ 1.

Proof. W.l.o.g., assume tj = 1 and tj+1 = 2. Then

Aj−1 ≥ Bj−1 and Aj < Bj =⇒ Bj−1 ≤ Aj−1 < Bj−1+aj −bj =⇒ Aj−1−Bj−1 ∈ [0, 1).◀

▶ Lemma 9. If all bins don’t have the same type, then there can be at most 2 non-full bins.

Proof. Let there be p full bins. Assume w.l.o.g. that in the (p + 1)th bin, we used up all
items from W̃ but not H̃. Hence, Ap+1 = 0 and ∀i ≥ p + 2, ti = 2. Since all bins don’t
have the same type, ∃k ≤ p + 1 such that tk = 1 and tk+1 = 2. By Lemmas 7 and 8, we get
|Ap+1 − Bp+1| ≤ 1, implying Bp+1 ≤ 1. Hence, the (p + 1)th bin will use up all tall items,
implying at most 2 non-full bins. ◀

▶ Theorem 10. The number of bins m used by greedyPack is at most
max

(
⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉, 4

3 a(W̃ ∪ H̃) + 8
3

)
.

Proof. If all bins have the same type, then m ≤ max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉).
Let there be m1 (resp. m2) full bins of type 1 (resp. type 2) and let J1 (resp. J2)

be the items inside those bins. Then by Lemma 6, we get m1 ≤ 4a(J1)/3 + 1/3 and
m2 ≤ 4a(J2)/3 + 1/3. Hence, m1 + m2 ≤ 4a(W̃ ∪ H̃)/3 + 2/3. If all bins don’t have the
same type, then by Lemma 9, there can be at most 2 non-full bins, so greedyPack(W̃ , H̃)
uses at most 4a(W̃ ∪ H̃)/3 + 8/3 bins. ◀

3.2 The skewed4Pack Algorithm
We now return to the 2BP problem. skewed4Pack is an algorithm for 2BP takes as input a
set I of rectangular items and a parameter ε ∈ (0, 1) where ε−1 ∈ Z. It outputs a 4-stage
bin packing of I. skewed4Pack has the following outline:
A. Use linear grouping [15, 28] to round up the width or height of each item in I. This gives

us a new instance Î.
B. Pack Î into 1/ε2 + 1 shelves, after slicing some items. A shelf is a rectangular region

with width or height more than 1/2 and is fully packed, i.e., the area of items in a shelf
equals the area of the shelf. If we treat each shelf as an item, we get a new instance Ĩ.

C. Compute a packing of Ĩ into bins, after possibly slicing some items, using greedyPack.
D. Repack most items of Î without slicing into the shelves. We will prove that the remaining

items have very small area, so they can be packed separately using NFDH.

A. Item Classification and Rounding. Define W := {i ∈ I : h(i) ≤ δH} and H := I − W .
Items in W are called wide and items in H are called tall. Let W (L) := {i ∈ W : w(i) > ε}
and W (S) := W − W (L). Similarly, let H(L) := {i ∈ H : h(i) > ε} and H(S) := H − H(L).

We will use linear grouping [15, 28] to round up the widths of W (L) and the heights of
H(L) to get items Ŵ (L) and Ĥ(L), respectively. By Claim 27 in Appendix A, items in Ŵ (L)

have at most 1/ε2 distinct widths and items in Ĥ(L) have at most 1/ε2 distinct heights.
Let Ŵ := Ŵ (L) ∪ W (S), Ĥ := Ĥ(L) ∪ H(S), Î := Ŵ ∪ Ĥ. For X̂ ⊆ Î, let fopt(X̂) be

the minimum number of bins needed to pack X̂ when items in X̂ ∩ Ŵ (L) can be sliced
using horizontal cuts, items in X̂ ∩ Ĥ(L) can be sliced using vertical cuts, and items in
X̂ ∩ (W (S) ∪ H(S)) can be sliced both vertically and horizontally. The following lemma
follows from Lemma 28 in Appendix A.

▶ Lemma 11. fopt(Î) < (1 + ε) opt(I) + 2.

APPROX/RANDOM 2021

22:8 Geometric Bin Packing with Skewed Items

B. Creating Shelves. We will use ideas from Kenyon and Rémila’s 2SP algorithm [28] to
pack Î into shelves. Roughly, we solve a linear program to compute an optimal strip packing
of Ŵ , where the packing is 3-stage. The first stage of cuts gives us shelves and the second
stage gives us containers. From each shelf, we trim off space that doesn’t belong to any
container. See Section 3.3 for details. Let W̃ be the shelves thus obtained. Analogously, we
can pack items Ĥ into shelves H̃. Shelves in W̃ are called wide shelves and shelves in H̃

are called tall shelves. Let Ĩ := W̃ ∪ H̃. We can interpret each shelf in Ĩ as a rectangular
item. We allow slicing W̃ and H̃ using horizontal cuts and vertical cuts, respectively. In
Section 3.3, we prove the following facts.

▶ Lemma 12. Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃| ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than 1/2;
(c) a(Ĩ) = a(Î); (d) max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) ≤ fopt(Î).

C. Packing Shelves into Bins. So far, we have packed Î into shelves W̃ and H̃. We will now
use greedyPack(W̃ , H̃) to pack the shelves into bins. By Claim 4, we get a 2-stage packing
of W̃ ∪ H̃ into m bins, where we make at most m − 1 horizontal cuts in W̃ and at most m − 1
vertical cuts in H̃. The horizontal cuts (resp. vertical cuts) increase the number of wide shelves
(resp. tall shelves) from at most 1 + 1/ε2 to at most m + 1/ε2. By Theorem 10, Lemma 12(d)
and Lemma 12(c), we get m ≤ max

(
⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉, 4

3 a(Ĩ) + 8
3

)
≤ 4

3 fopt(Î) + 8
3 .

D. Packing Items into Containers. So far, we have a packing of shelves into m bins, where
the shelves contain slices of items Î. We will now repack a large subset of Î into the shelves
without slicing Î. See Figure 2c for an example output. We do this using a standard greedy
algorithm. See Appendix B for details of the algorithm and proof of the following lemma.

▶ Lemma 13. Let P be a packing of Ĩ into m bins, where we made at most m − 1 horizontal
cuts in wide shelves and at most m − 1 vertical cuts in tall shelves. Then we can (without
slicing) pack a large subset of Î into the shelves in P such that the unpacked items (also
called discarded items) from Ŵ have total area less than ε hsum(W̃) + δH(1 + ε)(m + 1/ε2),
and the unpacked items from Ĥ have area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

We pack wide discarded items into new bins using NFDH and pack tall discarded items
into new bins using NFDW. Finally, we prove the performance guarantee of skewed4Packε(I).

▶ Lemma 14. Let I be a set of (δW , δH)-skewed items. Then skewed4Packε(I) outputs a
4-stage packing of I in time O((1/ε)O(1/ε) + n log n) and uses less than α(1 + ε) opt(I) + 2β

bins, where ∆ := 1
2

(
δH

1−δH
+ δW

1−δW

)
, α := 4

3 (1+4∆)(1+3ε), β := 2∆(1+ε)
ε2 + 10

3 + 19∆
3 + 16∆ε

3 .

Proof. The discarded items are packed using NFDH or NFDW, which output a 2-stage
packing. Since greedyPack outputs a 2-stage packing of the shelves and the packing of items
into the shelves is a 2-stage packing, the bin packing of non-discarded items is a 4-stage
packing. The time taken by skewed4Pack is at most O((1/ε)O(1/ε) + n log n).

Suppose greedyPack uses at most m bins. By Theorem 10, m ≤ 4 fopt(Î)/3+8/3. Let W d

and Hd be the items discarded from W and H, respectively. By Lemma 13 and Lemma 12(d),
a(W d) < ε fopt(Î) + δH(1 + ε)(m + 1/ε2) and a(Hd) < ε fopt(Î) + δW (1 + ε)(m + 1/ε2).

A. Khan and E. Sharma 22:9

By Lemmas 3 and 11, the number of bins used by skewed4Packε(I) is less than

m + 2a(W d) + 1
1 − δH

+ 2a(Hd) + 1
1 − δW

≤ (1 + 4∆(1 + ε))m + 4ε(1 + ∆) fopt(Î) + 2(1 + ∆) + 4∆(1 + ε)/ε2

≤ α fopt(Î) + 2(β − 1) < α(1 + ε) opt(I) + 2β. ◀

Now we conclude with the proof of Theorem 1.

Proof of Theorem 1. This is a simple corollary of Lemma 14, where δ ≤ 1/2 gives us ∆ ≤ 2δ,
α(1 + ε) ≤ (4/3)(1 + 8δ)(1 + 7ε), and β ≤ 4/ε2 + 15. ◀

3.3 Creating Shelves
Here we will describe how to obtain shelves W̃ and H̃ from items Ŵ and Ĥ, respectively.
Let optSP(Ŵ) denote the optimal strip packing of Ŵ where items in Ŵ can be sliced
using horizontal cuts. Then fopt(Ŵ) = ⌈optSP(Ŵ)⌉. Hence, we will now try to compute a
near-optimal strip packing of Ŵ .

Define a horizontal configuration S as a tuple (S0, S1, S2, . . .) of 1/ε2 + 1 non-negative
integers, where S0 ∈ {0, 1} and

∑1/ε2

j=1 Sjwj ≤ 1. For any horizontal line at height y in a
strip packing of Ŵ , the multiset of items intersecting the line corresponds to a configuration.
S0 indicates whether the line intersects items from W (S), and Sj is the number of items from
Ŵ

(L)
j that the line intersects. Let S be the set of all horizontal configurations. Let N := |S|.
To obtain an optimal packing, we need to determine the height of each configuration.

This can be done with the following linear program.

min
x∈RN

∑
S∈S

xS

where
∑
S∈S

SjxS = h(Ŵ (L)
j) ∀j ∈ [1/ε2]

and
∑

S:S0=1

1 −
1/ε2∑
j=1

Sjwj

 xS = a(W (S))

and xS ≥ 0 ∀S ∈ S

Let x∗ be an optimal extreme-point solution to the above LP. This gives us a packing where
the strip is divided into rectangular regions called shelves that are stacked on top of each other.
Each shelf has a configuration S associated with it and has height h(S) := x∗

S and contains
Sj containers of width wj . Containers of width wj only contain items from Ŵ

(L)
j , and we call

them type-j containers. If S0 = 1, S also contains a container of width 1 −
∑1/ε2

j=1 Sjwj that
contains small items. We call this container a type-0 container. Each container is fully filled
with items. Let w(S) denote the width of shelf S, i.e., the sum of widths of all containers in
S. Note that if S0 = 1, then w(S) = 1. Otherwise, w(S) =

∑1/ε2

j=1 Sjwj .

▶ Lemma 15. x∗ contains at most 1/ε2 + 1 positive entries.

Proof sketch. Follows by applying Rank Lemma2 to the linear program. ◀

2 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [34, Lemma 2.1.4].

APPROX/RANDOM 2021

22:10 Geometric Bin Packing with Skewed Items

▶ Lemma 16. x∗
S > 0 =⇒ w(S) > 1/2.

Proof. Suppose w(S) ≤ 1/2. Then we could have split S into two parts by making a
horizontal cut in the middle and packed the parts side-by-side, reducing the height of the
strip by x∗

S/2. But that would contradict the fact that x∗ is optimal. ◀

Treat each shelf S as an item of width w(S) and height h(S). Allow each such item to
be sliced using horizontal cuts. This gives us a new set W̃ of items such that Ŵ can be
packed inside W̃ . By applying an analogous approach to Ĥ, we get a new set H̃ of items.
Let Ĩ := W̃ ∪ H̃. We call the shelves of W̃ wide shelves and the shelves of H̃ tall shelves.
The containers in wide shelves are called wide containers and the containers in tall shelves
are called tall containers.

▶ Lemma 12. Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃| ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than 1/2;
(c) a(Ĩ) = a(Î); (d) max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) ≤ fopt(Î).

Proof. Lemma 15 implies (a) and Lemma 16 implies (b). a(Î) = a(Ĩ) as the shelves are tightly
packed. Since x∗ is an optimal solution to the linear program, ⌈hsum(W̃)⌉ = ⌈

∑
S∈S x∗

S⌉ =
⌈optSP(Ŵ)⌉ = fopt(Ŵ) ≤ fopt(Î). Similarly, ⌈wsum(H̃)⌉ = fopt(Ĥ) ≤ fopt(Î). ◀

4 Almost-Optimal Bin Packing of Skewed Rectangles

In this section, we will describe the algorithm skewedCPack. skewedCPack takes as input a
set I of items and a parameter ε ∈ (0, 1/2], where ε−1 ∈ Z. We will prove that skewedCPack
has AAR 1 + 20ε when δ is sufficiently small. skewedCPack works roughly as follows:
1. Invoke the subroutine round(I) (cf. Section 4.1). round(I) returns a pair (Ĩ , Imed). Here

Imed, called the set of medium items, has low total area, so we can pack it in a small
number of bins. Ĩ, called the set of rounded items, is obtained by rounding up the width
or height of each item in I − Imed, so that Ĩ has properties that help us pack it easily.

2. Compute the optimal fractional compartmental bin packing of Ĩ (we will define fractional
and compartmental later).

3. Use this packing of Ĩ to obtain a packing of I that uses slightly more number of bins.

To bound the AAR of skewedCPack, we will prove a structural theorem (Section 4.2),
which says that the optimal fractional compartmental packing of Ĩ uses close to opt(I) bins.

4.1 Classifying and Rounding Items
We now describe the algorithm round and show that its output satisfies important properties.

First, we will find a set Imed ⊆ I and positive constants ε1 and ε2 such that a(Imed) ≤
εa(I), ε2 ≪ ε1, and I − Imed is (ε2, ε1]-free, i.e., no item in I − Imed has its width or height
in the interval (ε2, ε1]. Then we can remove Imed from I and pack it separately into a small
number of bins using NFDH. We will see that the (ε2, ε1]-freeness of I − Imed will help us
pack I − Imed efficiently. Specifically, we require ε1 ≤ ε, ε−1

1 ∈ Z, and ε2 = f(ε1), where
f(x) := εx/

(
104(1 + 1/(εx))2/x−2)

. We explain this choice of f in Section 4.3.4. Intuitively,
such an f ensures that ε2 ≪ ε1 and ε−1

2 ∈ Z. For skewedCPack to work, we require δ ≤ ε2.
Finding such an Imed and ε1 is a standard technique [25, 7], so we defer the details to
Appendix C.1.

Next, we classify the items in I − Imed into three disjoint classes:
Wide items: W := {i ∈ I : w(i) > ε1 and h(i) ≤ ε2}.
Tall items: H := {i ∈ I : w(i) ≤ ε2 and h(i) > ε1}.
Small items: S := {i ∈ I : w(i) ≤ ε2 and h(i) ≤ ε2}.

A. Khan and E. Sharma 22:11

We will now use linear grouping [15, 28] to round up the widths of items W and the
heights of items H to get items W̃ and H̃, respectively. By Claim 27 in Appendix A, items
in W̃ have at most 1/(εε1) distinct widths and items in H̃ have at most 1/(εε1) distinct
heights. Let Ĩ := W̃ ∪ H̃ ∪ S.

▶ Definition 17 (Fractional packing). Suppose we are allowed to slice wide items in Ĩ using
horizontal cuts, slice tall items in Ĩ using vertical cuts and slice small items in Ĩ using both
horizontal and vertical cuts. For any X̃ ⊆ Ĩ, a bin packing of the slices of X̃ is called a
fractional packing of X̃. The optimal fractional packing of X̃ is denoted by fopt(X̃).

▶ Lemma 18. fopt(Ĩ) < (1 + ε) opt(I) + 2.

Proof. Directly follows from Lemma 28 in Appendix A. ◀

4.2 Structural Theorem
We will now define compartmental packing and prove the structural theorem, which says
that the number of bins in the optimal fractional compartmental packing of Ĩ is roughly
equal to fopt(Ĩ).

We first show how to discretize a packing, i.e., we show that given a fractional packing of
items in a bin, we can remove a small fraction of tall and small items and shift the remaining
items leftwards so that the left and right edges of each wide item belong to a constant-sized
set T , where |T | ≤ (1 + 1/εε1)2/ε1−2. Next, we define compartmental packing and show how
to convert a discretized packing to a compartmental packing.

For any rectangle i packed in a bin, let x1(i) and x2(i) denote the x-coordinates of its left
and right edges, respectively, and let y1(i) and y2(i) denote the y-coordinates of its bottom
and top edges, respectively. Let R be the set of distinct widths of items in W̃ . Given the
way we rounded items, |R| ≤ 1/εε1. Recall that ε1 ≤ ε ≤ 1/2 and ε−1

1 , ε−1 ∈ Z.

▶ Theorem 19. Given a fractional packing of items J̃ ⊆ Ĩ into a bin, we can remove tall
and small items of total area less than ε and shift some of the remaining items to the left
such that for every wide item i, we get x1(i), x2(i) ∈ T .

Proof. For wide items u and v in the bin, we say that u ≺ v iff the right edge of u is to
the left of the left edge of v. Formally u ≺ v ⇐⇒ x2(u) ≤ x1(v). We call u a predecessor
of v. A sequence [i1, i2, . . . , ik] such that i1 ≺ i2 ≺ . . . ≺ ik is called a chain ending at ik.
For a wide item i, define level(i) as the number of items in the longest chain ending at i.
Formally, level(i) := 1 if i has no predecessors, and (1 + maxj≺i level(j)) otherwise. Let Wj

be the items at level j, i.e., Wj := {i : level(i) = j}. Note that the level of an item can be at
most 1/ε1 − 1, since each wide item has width more than ε1.

We will describe an algorithm for discretization. But first, we need to introduce two
recursively-defined set families (S1, S2, . . .) and (T0, T1, . . .). Let T0 := {0} and t0 := 1. For
any j > 0, define tj := (1 + 1/εε1)2j , δj := εε1/tj−1, Sj := Tj−1 ∪ {kδj : k ∈ Z, 0 ≤ k <

1/δj}, Tj := {x + y : x ∈ Sj , y ∈ R ∪ {0}}. Note that ∀j > 0, we have Tj−1 ⊆ Sj ⊆ Tj and
δ−1

j ∈ Z. Define T := T1/ε1−1.
Our discretization algorithm proceeds in stages, where in the jth stage, we apply two

transformations to the items in the bin, called strip-removal and compaction.
Strip-removal: For each x ∈ Tj−1, consider a strip of width δj and height 1 in the bin
whose left edge has coordinate x. Discard the slices of tall and small items inside the strips.
Compaction: Move all tall and small items as much towards the left as possible (imagine a
gravitational force acting leftwards on the tall and small items) while keeping the wide items
fixed. Then move each wide item i ∈ Wj leftwards till x1(i) ∈ Sj .

APPROX/RANDOM 2021

22:12 Geometric Bin Packing with Skewed Items

Observe that the algorithm maintains the following invariant: after k stages, for each
j ∈ [k], each item i ∈ Wj has x1(i) ∈ Sj (and hence x2(i) ∈ Tj). This ensures that after the
algorithm ends, x1(i), x2(i) ∈ T . All that remains to prove is that the total area of items
discarded during strip-removal is at most ε and that compaction is always possible.

▶ Lemma 20. For all j ≥ 0, |Tj | ≤ tj.

Proof by induction. |T0| = t0 = 1, so the base case holds. Now assume |Tj−1| ≤ tj−1. Then

|Tj | ≤ (|R| + 1)|Sj | ≤
(

1
εε1

+ 1
) (

|Tj−1| + 1
δj

)
≤

(
1

εε1
+ 1

)2
tj−1 = tj . ◀

Therefore, |T | ≤ t1/ε1−1 = (1 + 1/εε1)2/ε1−2.

▶ Lemma 21. Discarded items (across all stages) have total area less than ε.

Proof. In the jth stage, we create |Tj−1| strips, and each strip has total area at most δj .
Therefore, the area discarded in the jth stage is at most |Tj−1|δj ≤ tj−1δj = εε1. Since there
can be at most 1/ε1 − 1 stages, we discard a total area of less than ε across all stages. ◀

▶ Lemma 22. Compaction always succeeds, i.e., in the jth stage, while moving item i ∈ Wj

leftwards, no other item will block its movement.

Proof. Let i ∈ Wj . Let z be the x-coordinate of the left edge of the strip immediately
to the left of item i, i.e., z := max({x ∈ Tj−1 : x ≤ x1(i)}). For any wide item i′, we
have x2(i′) ≤ x1(i) ⇐⇒ i′ ≺ i ⇐⇒ level(i′) ≤ j − 1. By our invariant, we get
level(i′) ≤ j − 1 =⇒ x2(i′) ∈ Tj−1 =⇒ x2(i′) ≤ z. Therefore, for every wide item i′,
x2(i′) ̸∈ (z, x1(i)].

In the jth strip-removal, we cleared the strip [z, z + δj] × [0, 1]. If x1(i) ∈ [z, z + δj], then
i can freely move to z, and z ∈ Tj−1 ⊆ Sj . Since no wide item has its right edge in (z, x1(i)],
if x1(i) > z + δj , all the tall and small items whose left edge lies in [z + δj , x1(i)] will move
leftwards by at least δj during compaction. Hence, there would be an empty space of width
at least δj to the left of item i. Therefore, we can move i leftwards to make x1(i) a multiple
of δj , and then x1(i) would belong to Sj . ◀

Hence, compaction always succeeds and we get x1(i), x2(i) ∈ T for each wide item i. ◀

▶ Definition 23 (Compartmental packing). Consider a packing of some items into a bin.
A compartment C is defined as a rectangular region in the bin satisfying the following
properties:

x1(C), x2(C) ∈ T .
y1(C), y2(C) are multiples of εcont := εε1/6|T |.
C does not contain both wide items and tall items.
If C contains tall items, then x1(C) and x2(C) are consecutive values in T .

If a compartment contains a wide item, it is called a wide compartment. Otherwise it is
called a tall compartment. A packing of items into a bin is called compartmental iff there
is a set of non-overlapping compartments in the bin such that each wide or tall item lies
completely inside some compartment, and there are at most nW := 3(1/ε1 − 1)|T | + 1 wide
compartments and at most nH := (1/ε1 − 1)|T | tall compartments in the bin. A packing of
items into multiple bins is called compartmental iff each bin is compartmental.

A. Khan and E. Sharma 22:13

Note that small items can be packed both inside and outside compartments.
The following lemma states that a discretized packing can be converted to a compartmental

packing. It can be proved using standard techniques (e.g., Section 3.2.3 in [36]). See Appendix
G.2 in [31] for a formal proof.

▶ Lemma 24. If x1(i), x2(i) ∈ T for each wide item i in a bin, then by removing wide and
small items of area less than ε, we can get a compartmental packing of the remaining items.

▶ Theorem 25. For a set Ĩ of δ-skewed rounded items, define fcopt(Ĩ) as the number of bins
in the optimal fractional compartmental packing3 of Ĩ. Then fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2.

Proof. Consider a fractional packing of Ĩ into m := fopt(Ĩ) bins. From each bin, we can
discard items of area at most 2ε and get a compartmental packing of the remaining items by
Theorem 19 and Lemma 24.

Let X be the set of wide and small discarded items and let Y be the set of tall discarded
items. For each item i ∈ X, if w(i) ≤ 1/2, slice it using a horizontal cut in the middle
and place the pieces horizontally next to each other to get a new item of width 2w(i) and
height h(i)/2. Repeat until w(i) > 1/2. Now pack the items in bins by stacking them
one-over-the-other so that for each item i ∈ X, x1(i) = 0. This will require less than
2a(X) + 1 bins, and the packing will be compartmental.

Similarly, we can get a compartmental packing of Y into 2a(Y)+1 bins. Since a(X ∪Y) <

2εm, we will require less than 4εm + 2 bins. Therefore, the total number of compartmental
bins used to pack Ĩ is less than (1 + 4ε)m + 2. ◀

4.3 Packing Algorithm
We now describe the skewedCPack algorithm for packing a set I of n δ-skewed items.

1. Classifying and Rounding Items (see Section 4.1): Compute (Ĩ , Imed) := round(I).
Recall that Imed, called the set of medium items, has low total area, and Ĩ, called the set
of rounded items, is obtained by rounding up the width or height of each item in I − Imed.

2. Enumerating Packing of Compartments: Compute all possible packings of empty
compartments into at most n bins.

3. Fractionally Packing Items into Compartments: For each packing P of empty
compartments, fractionally pack Ĩ into P using a linear program.

4. Converting a Fractional Packing to a Non-Fractional Packing: Discard a small set
D ⊆ Ĩ of items and use an extreme-point solution to the linear program to non-fractionally
pack Ĩ − D into P .

5. Pack Imed ∪ D into bins using NFDH.

See Figure 3 for a visual overview of skewedCPack. We describe steps 2, 3 and 4 in
Sections 4.3.1–4.3.3, respectively. In Section 4.3.4, we bound the AAR of skewedCPack.

4.3.1 Enumerating Packing of Compartments
We will now describe a subroutine, called iterPackings(Ĩ), that outputs all packings of
empty compartments into at least ⌈a(Ĩ)⌉ bins and at most n bins. A packing of empty
compartments in a bin is called a configuration. We will first enumerate all configurations
and then output multisets of configurations of cardinality ranging from ⌈a(Ĩ)⌉ to n.

3 A fractional compartmental packing of Ĩ is a fractional packing of Ĩ that is also compartmental.

APPROX/RANDOM 2021

22:14 Geometric Bin Packing with Skewed Items

(a) Guess the packing of
empty compartments in each
bin (Section 4.3.1).

(b) Fractionally pack wide and tall
items into compartments. This
partitions each compartment into
containers (Section 4.3.2).

(c) Pack the items non-
fractionally (Section 4.3.3).

Figure 3 Major steps of skewedCPack after rounding I.

There can be at most nW := 3(1/ε1 − 1)|T | + 1 wide compartments in a bin. Each wide
compartment can have (1/εcont)2 y-coordinates of the top and bottom edges and at most
|T |2/2 x-coordinates of the left and right edges, where εcont := εε1/6|T |. The rest of the
space is for tall compartments. Therefore, the number of configurations is at most

nC :=
(
(1/εcont)2|T |2/2

)nW ≤
(

3|T |2

εε1

)6|T |/ε1

≤
(

1 + 1
εε1

)(
1+ 1

εε1

)2/ε1+1

.

Since each configuration can have at most n bins, the number of combinations of configurations
is at most (n+1)nC . Therefore, we can output all possible bin packings of empty compartments
in O(nnC) time. This completes the description of iterPackings.

4.3.2 Fractionally Packing Items into Compartments

For each bin packing P of empty compartments, we will try to fractionally pack the items
into the bins. To do this, we will create a feasibility linear program, called FP(Ĩ , P), that is
feasible iff wide and tall items in Ĩ can be packed into the compartments in P . If FP(Ĩ , P) is
feasible, then small items can also be fractionally packed since P contains at least a(Ĩ) bins.

Let w′
1, w′

2, . . . , w′
p be the distinct widths of wide compartments in P . Let Uj be the

set of wide compartments in P having width w′
j . Let h(Uj) be the sum of heights of the

compartments in Uj . By Definition 23, we know that p ≤ |T |2/2. Let w1, w2, . . . , wr be
the distinct widths of items in W̃ (recall that W̃ is the set of wide items in Ĩ). Let W̃j be
the items in W̃ having width wj . Let h(W̃j) be the sum of heights of all items in W̃j . By
Claim 27, we get r ≤ 1/εε1.

Let C := [C0, C1, . . . , Cr] be a vector, where C0 ∈ [p] and Cj ∈ Z≥0 for j ∈ [r]. C is
called a wide configuration iff w(C) :=

∑r
j=1 Cjwj ≤ w′

C0
. Intuitively, a wide configuration

C represents a set of wide items that can be placed side-by-side into a compartment of width
w′

C0
. Let C be the set of all wide configurations. Then |C| ≤ p/εr

1, which is a constant. Let
Cj := {C ∈ C : C0 = j}.

To pack W̃ into wide compartments, we must determine the height of each configuration.
Let x ∈ R|C|

≥0 be a vector where xC denotes the height of configuration C. Then W̃ can be
packed into wide compartments according to x iff x is a feasible solution to the following

A. Khan and E. Sharma 22:15

feasibility linear program, named FPW (Ĩ , P):∑
C∈C

CjxC ≥ h(W̃j) ∀j ∈ [r] (W̃j should be covered)

∑
C∈C and C0=j

xC ≤ h(Uj) ∀j ∈ [p] (Cj should fit in Uj)

xC ≥ 0 ∀C ∈ C

Let x∗ be an extreme point solution to FPW (Ĩ , P) (if FPW (Ĩ , P) is feasible). By Rank
Lemma4, at most p + r entries of x∗ are non-zero. Since the number of variables and
constraints is constant, x∗ can be computed in constant time.

Let H̃ be the set of tall items in Ĩ. Items in H̃ have at most 1/εε1 distinct heights. Let
there be q distinct heights of tall compartments in P . By Definition 23, we get q ≤ 1/εcont =
6|T |/εε1. We can similarly define tall configurations and define a feasibility linear program
for tall items, named FPH(Ĩ , P). H̃ can be packed into tall compartments in P iff FPH(Ĩ , P)
is feasible. Let y∗ be an extreme point solution to FPH(Ĩ , P). Then y∗ can be computed in
constant time and y∗ has at most q + 1/εε1 positive entries.

Hence, Ĩ can be packed into P iff FP(Ĩ , P) := FPW (Ĩ , P) ∧ FPH(Ĩ , P) is feasible. The
solution (x∗, y∗) shows us how to split each compartment into shelves, where each shelf
corresponds to a configuration C and the shelf can be split into Cj containers of width
wj and one container of width w′

C0
− w(C). Let there be m bins in P . After splitting the

configurations across compartments, we get at most p + q + 2/εε1 + m(nW + nH) shelves.

4.3.3 Converting a Fractional Packing to a Non-Fractional Packing
Consider a packing P of empty compartments into m bins. Let x∗ and y∗ be extreme-point
solutions to FPW (Ĩ , P) and FPH(Ĩ , P), respectively (assuming Ĩ can fit into P). Then
(x∗, y∗) gives us a fractional compartmental packing of Ĩ into m bins. We now show how to
convert this to a non-fractional compartmental packing by removing some items from Ĩ.

Formally, we give an algorithm called greedyCPack(Ĩ , P, x∗, y∗). It returns a pair
(Q, D), where Q is a (non-fractional) compartmental bin packing of items Ĩ − D, where the
compartments in the bins are as per P . D is called the set of discarded items.

greedyCPack is based on standard techniques. We prove in Appendix C.2 that

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
. (1)

We give an outline of greedyCPack here and defer the details to Appendix C.2.
1. For each j, iteratively assign wide items from W̃j to a container of width wj . When the

total height of assigned items exceeds the height of the container, discard the last-assigned
item and switch to a new container and repeat.

2. Similarly assign tall items to tall containers.
3. Identify rectangular regions where we can pack small items:

For each configuration C, there is a free region of width w′
C0

− w(C) and height x∗
C in

a wide compartment. Similarly, we get free regions in tall compartments.

4 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [34, Lemma 2.1.4].

APPROX/RANDOM 2021

22:16 Geometric Bin Packing with Skewed Items

In each bin, the number of compartments is constant, so the space outside compartments
be divided into a constant number of rectangular regions (see Lemma 29).

Pack most of the small items into these free regions using NFDH. Discard the rest.

4.3.4 Summary
See Appendix C.3 for a precise description of skewedCPack.

Recall the function f from Section 4.1. Since ε2 := f(ε1), we get

ε2 = f(ε1) = εε1
104(1 + 1/εε1)2/ε1−2 ≤ εε1

104|T |
. (2)

The last inequality follows from the fact that |T | ≤ (1 + 1/εε1)2/ε1−2.

▶ Theorem 26. The number of bins used by skewedCPackε(Ĩ) is less than

(1 + 20ε) opt(I) + 1
13

(
1 + 1

εε1

)2/ε1−2
+ 23.

Proof. In an optimal fractional compartmental bin packing of Ĩ, let P ∗ be the corresponding
packing of empty compartments into bins. Hence, P ∗ contains m := fcopt(Ĩ) bins. Since
iterPackings(Ĩ) iterates over all bin packings of compartments, P ∗ ∈ iterPackings(Ĩ).
Since wide and tall items in Ĩ can be packed into the compartments of P ∗, we get that x∗

and y∗ are not null. By Lemma 3, the number of bins used by NFDH to pack Imed ∪ D

is less than 2a(Imed ∪ D)/(1 − δ) + 3 + 1/(1 − δ). Therefore, the number of bins used by
skewedCPack(I) is less than

m + 2a(Imed ∪ D)
1 − δ

+ 3 + 1
1 − δ

< m + 2ε

1 − δ
a(I) + 2ε2

1 − δ

(
52|T |

ε1
m + 4

(
|T |2

2 + 6|T | + 2
εε1

))
+ 3 + 1

1 − δ

(by Equation (1) and a(Imed) ≤ εa(I))

=
(

1 + 104ε2|T |
ε1(1 − δ)

)
m + 2ε

1 − δ
a(I) + 3 + 1

1 − δ
+ 8ε2

1 − δ

(
|T |2

2 + 6|T | + 2
εε1

)
=

(
1 + ε

1 − δ

)
m + 2ε

1 − δ
a(I) + 3 + 1

13(1 − δ)

(
εε1|T |

2 + 19 + 2
|T |

)
.

(by Equation (2))

By Theorem 25 and Lemma 18, we get

m = fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2 < (1 + 4ε)(1 + ε) opt(I) + 4 + 8ε.

Therefore, the number of bins used by skewedCPack(I) is less than(
(1 + 4ε)(1 + ε)

(
1 + ε

1 − δ

)
+ 2ε

1 − δ

)
opt(I)

+ (4 + 8ε)
(

1 + ε

1 − δ

)
+ 3 + 1

13(1 − δ)

(
εε1|T |

2 + 19 + 2
|T |

)
≤ (1 + 20ε) opt(I) + 1

13

(
1 + 1

εε1

)2/ε1−2
+ 23. (since δ ≤ ε1 ≤ ε ≤ 1/2)

◀

A. Khan and E. Sharma 22:17

References
1 Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero,

José A Soto, and Andreas Wiese. On guillotine cutting sequences. In International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
1–19, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.1.

2 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for
independent set and sparse subsets of polygons. Journal of the ACM, 66(4):29:1–29:40,
2019. doi:10.1145/3326122.

3 Soroush Alamdari, Therese Biedl, Timothy M Chan, Elyot Grant, Krishnam Raju Jampani,
Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak. Smart-grid electricity allocation via
strip packing with slicing. In Workshop on Algorithms and Data Structures (WADS), pages
25–36. Springer, 2013. doi:10.1007/978-3-642-40104-6_3.

4 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2010. doi:10.1137/080736831.

5 Nikhil Bansal, José R Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: Inapproximability results and approximation schemes. Mathematics of Operations
Research, 31(1):31–49, 2006. doi:10.1287/moor.1050.0168.

6 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561–1579. SIAM,
2016. doi:10.1137/1.9781611974331.ch106.

7 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 13–25, 2014.
doi:10.1137/1.9781611973402.2.

8 Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin packing.
In Symposium on Foundations of Computer Science (FOCS), pages 657–666. IEEE, 2005.
doi:10.1109/SFCS.2005.10.

9 Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, February 2008. doi:10.1287/moor.1070.0289.

10 Alberto Caprara, Andrea Lodi, and Michele Monaci. Fast approximation schemes for two-
stage, two-dimensional bin packing. Mathematics of Operations Research, 30(1):150–172, 2005.
doi:10.1287/moor.1040.0112.

11 Miroslav Chlebík and Janka Chlebíková. Hardness of approximation for orthogonal rectangle
packing and covering problems. Journal of Discrete Algorithms, 7(3):291–305, 2009. doi:
10.1016/j.jda.2009.02.002.

12 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017. doi:10.1016/j.cosrev.2016.12.001.

13 Fan RK Chung, Michael R Garey, and David S Johnson. On packing two-dimensional bins.
SIAM Journal on Algebraic Discrete Methods, 3(1):66–76, 1982. doi:10.1137/0603007.

14 Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808–826, 1980. doi:10.1137/0209062.

15 W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1 + ε in
linear time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456.

16 Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak demand
minimization via sliced strip packing, 2021. arXiv:2105.07219.

17 Aleksei V Fishkin, Olga Gerber, and Klaus Jansen. On efficient weighted rectangle packing
with large resources. In International Symposium on Algorithms and Computation (ISAAC),
pages 1039–1050. Springer, 2005. doi:10.1007/11602613_103.

18 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and
Malin Rau. A tight (3/2 + ε) approximation for skewed strip packing. In International

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.1145/3326122
https://doi.org/10.1007/978-3-642-40104-6_3
https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1109/SFCS.2005.10
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1287/moor.1040.0112
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/0603007
https://doi.org/10.1137/0209062
https://doi.org/10.1007/BF02579456
http://arxiv.org/abs/2105.07219
https://doi.org/10.1007/11602613_103

22:18 Geometric Bin Packing with Skewed Items

Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.44.

19 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi.
Approximation algorithms for demand strip packing, 2021. arXiv:2105.08577.

20 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In Symposium on
Foundations of Computer Science (FOCS), pages 260–271. IEEE, 2017. doi:10.1109/FOCS.
2017.32.

21 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramirez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
L-shapes, spirals and more. In International Symposium on Computational Geometry (SoCG),
volume 189, pages 39:1–39:17, 2021. doi:10.4230/LIPIcs.SoCG.2021.39.

22 Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more
dimensions. Operations Research, 13(1):94–120, 1965. doi:10.1287/opre.13.1.94.

23 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob Van Stee. A (5/3 + ε)-approximation for
strip packing. In Workshop on Algorithms and Data Structures (WADS), pages 475–487.
Springer, 2011. doi:10.1007/978-3-642-22300-6_40.

24 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2616–2625, 2017.
doi:10.1137/1.9781611974782.172.

25 Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 919–936, 2013. doi:
10.1007/s00453-014-9943-z.

26 Klaus Jansen and Rob van Stee. On strip packing with rotations. In ACM Symposium on
Theory of Computing (STOC), pages 755–761, 2005. doi:10.1145/1060590.1060702.

27 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), volume 4, pages 204–213, 2004.

28 Claire Kenyon and Eric Rémila. Approximate strip packing. In Symposium on Foundations of
Computer Science (FOCS), pages 31–36, 1996. doi:10.1109/SFCS.1996.548461.

29 Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In International Symposium on
Computational Geometry (SoCG), volume 189, pages 48:1–48:17, 2021. doi:10.4230/LIPIcs.
SoCG.2021.48.

30 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47.

31 Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin
packing with skewed items. ArXiv, 2105.02827, 2021. arXiv:2105.02827.

32 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for
generalized multidimensional knapsack. ArXiv, 2102.05854, 2021. arXiv:2102.05854.

33 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Geometry meets vectors:
Approximation algorithms for multidimensional packing. ArXiv, 2106.13951, 2021. arXiv:
2106.13951.

34 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative Methods in Combinatorial
Optimization, volume 46. Cambridge University Press, 2011.

35 János Pach and Gábor Tardos. Cutting glass. In International Symposium on Computational
Geometry (SoCG), pages 360–369, 2000. doi:10.1145/336154.336223.

36 Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD thesis,
Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/
dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N.

37 Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. ArXiv,
2101.02854, 2021. arXiv:2101.02854.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
http://arxiv.org/abs/2105.08577
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1007/978-3-642-22300-6_40
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.4230/LIPIcs.SoCG.2021.48
https://doi.org/10.4230/LIPIcs.SoCG.2021.48
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2105.02827
http://arxiv.org/abs/2102.05854
http://arxiv.org/abs/2106.13951
http://arxiv.org/abs/2106.13951
https://doi.org/10.1145/336154.336223
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
http://arxiv.org/abs/2101.02854

A. Khan and E. Sharma 22:19

38 Steven S. Seiden and Gerhard J. Woeginger. The two-dimensional cutting stock
problem revisited. Mathematical Programming, 102(3):519–530, 2005. doi:10.1007/
s10107-004-0548-1.

39 Eklavya Sharma. Harmonic algorithms for packing d-dimensional cuboids into bins. ArXiv,
2011.10963, 2020. arXiv:2011.10963.

40 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

41 Paul E. Sweeney and Elizabeth Ridenour Paternoster. Cutting and packing problems: A
categorized, application-orientated research bibliography. Journal of the Operational Research
Society, 43(7):691–706, 1992. doi:10.1057/jors.1992.101.

A Linear Grouping

In this section, we describe the linear grouping technique [15, 28] for wide and tall items.
Let ε and ε1 be constants in (0, 1). Let W be a set of items where each item has width

more than ε1. We will describe an algorithm, called lingroupWide that takes W , ε and ε1
as input and returns the set Ŵ as output, where Ŵ is obtained by increasing the width of
each item in W . lingroupWide(W, ε, ε1) first arranges the items W in decreasing order of
width and stacks them one-over-the-other (i.e., the widest item in W is at the bottom). Let
hL be the height of the stack. Let y(i) be the y-coordinate of the bottom edge of item i.
Split the stack into sections of height εε1hL each. For j ∈ [1/εε1], let wj be the width of the
widest item intersecting the jth section from the bottom, i.e.,

wj := max({w(i) : i ∈ W and (y(i), y(i) + h(i)) ∩ ((j − 1)εε1hL, jεε1hL) ̸= ∅}).

Round up the width of each item i to the smallest wj that is at least w(i) (see Figure 4).
Let Wj be the items whose width got rounded to wj and let Ŵj be the resulting rounded
items. (There may be ties, i.e., there may exist j1 < j2 such that wj1 = wj2 . In that case,
define Wj2 := Ŵj2 = ∅. This ensures that all Wj are disjoint.) Finally, define Ŵ :=

⋃
j Ŵj .

w1 w2 w3w4

εε1hL

Figure 4 Example invocation of lingroupWide for ε = ε1 = 1/2.

We can similarly define the algorithm lingroupTall. Let H be a set of items where each
item has height more than ε1. lingroupTall that takes H, ε and ε1 as input and returns
Ĥ, where Ĥ is obtained by increasing the height of each item in H.

▷ Claim 27. Items in lingroupWide(W, ε, ε1) have at most 1/(εε1) distinct widths.
Items in lingroupTall(H, ε, ε1) have at most 1/(εε1) distinct heights.

APPROX/RANDOM 2021

https://doi.org/10.1007/s10107-004-0548-1
https://doi.org/10.1007/s10107-004-0548-1
http://arxiv.org/abs/2011.10963
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1057/jors.1992.101

22:20 Geometric Bin Packing with Skewed Items

▶ Lemma 28. Let W , H and S be sets of items, where items in W have width more
than ε1 and items in H have height more than ε1. Let Ŵ := lingroupWide(W, ε, ε1) and
Ĥ := lingroupTall(H, ε, ε1). If we allow slicing items in Ŵ and Ĥ using horizontal and
vertical cuts, respectively, then we can pack Ŵ ∪Ĥ ∪S into less than (1+ε) opt(W ∪H ∪S)+2
bins.

Proof. (cf. Appendix C in [31]) ◀

B skewed4Pack: Packing Items into Containers

▶ Lemma 13. Let P be a packing of Ĩ into m bins, where we made at most m − 1 horizontal
cuts in wide shelves and at most m − 1 vertical cuts in tall shelves. Then we can (without
slicing) pack a large subset of Î into the shelves in P such that the unpacked items (also
called discarded items) from Ŵ have total area less than ε hsum(W̃) + δH(1 + ε)(m + 1/ε2),
and the unpacked items from Ĥ have area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

Proof. For each j ∈ [1/ε2], number the type-j wide containers arbitrarily, and number the
items in Ŵ

(L)
j arbitrarily. Now greedily assign items from Ŵ

(L)
j to the first container C until

the total height of the items exceeds h(C). Then move to the next container and repeat. As
per the constraints of the linear program, all items in Ŵ

(L)
j will get assigned to some type-j

wide container. Similarly, number the type-0 wide containers arbitrarily and number the
items in W (S) arbitrarily. Greedily assign items from W (S) to the first container C until the
total area of the items exceeds a(C). Then move to the next container and repeat. As per
the constraints of the linear program, all items in W (S) will get assigned to some type-0 wide
container. Similarly, assign all items from Ĥ to tall containers.

Let C be a type-j wide container and Ĵ be the items assigned to it. If we discard the
last item from Ĵ , then the items can be packed into C. The area of the discarded item is at
most w(C)δH . Let C be a type-0 wide container and Ĵ be the items assigned to it. Arrange
the items in Ĵ in decreasing order of height and pack the largest prefix Ĵ ′ ⊆ Ĵ into C using
NFDW (Next-Fit Decreasing Width).

Discard the items Ĵ − Ĵ ′. By Lemma 2, a(Ĵ − Ĵ ′) < εh(C) + δHw(C) + εδH . Therefore,
for a wide shelf S, the total area of discarded items is less than εh(S) + δH(1 + ε).

After slicing the shelves in Ĩ to get P , we get at most m + 1/ε2 wide shelves and at
most m + 1/ε2 tall shelves. Therefore, the total area of discarded items from W is less than
ε hsum(W̃) + δH(1 + ε)(m + 1/ε2), and the total area of discarded items from H is less than
ε wsum(H̃) + δW (1 + ε)(m + 1/ε2). ◀

C Details of skewedCPack

C.1 Removing Medium Items
Let T := ⌈2/ε⌉. Let µ0 = ε. For t ∈ [T], define µt := f(µt−1) and define

Jt := {i ∈ I : w(i) ∈ (µt, µt−1] or h(i) ∈ (µt, µt−1]}.

Let r := argminT
t=1 a(Jt), Imed := Jr, ε1 := µr−1. Each item belongs to at most 2 sets Jt, so

a(Imed) =
T

min
t=1

a(Jt) ≤ 1
T

T∑
t=1

a(Jt) ≤ 2
⌈2/ε⌉

a(I) ≤ εa(I).

A. Khan and E. Sharma 22:21

C.2 Converting a Fractional Packing to a Non-Fractional Packing
▶ Lemma 29. Let there be a set I of rectangles packed inside a bin. Then there is a
polynomial-time algorithm that can decompose the empty space in the bin into at most 3|I| + 1
rectangles by making horizontal cuts only.

Proof. Extend the top and bottom edge of each rectangle leftwards and rightwards till they
hit another rectangle or an edge of the bin. This decomposes the empty region into rectangles
R. See Figure 5.

For each rectangle i ∈ I, the top edge of i is the bottom edge of a rectangle in R, the
bottom edge of i is the bottom edge of two rectangles in R. Apart from possibly the rectangle
in R whose bottom edge is at the bottom of the bin, the bottom edge of every rectangle in
R is either the bottom or top edge of a rectangle in I. Therefore, |R| ≤ 3|I| + 1. ◀

1
2 3

4
5

6
7

8
9

Figure 5 Horizontal cuts partition empty space around the 3 items into 9 rectangular regions.

Let (Q, D) := greedyCPack(Ĩ , P, x∗, y∗), where P is a packing of empty compartments
into m bins. We will describe greedyCPack and show that

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
.

For a configuration C in a wide compartment, there is a container of width w′
C0

− w(C)
available for packing small items. Hence, there are p + q + 2/εε1 + m(nW + nH) containers
available inside compartments for packing small items. By Lemma 29, we can partition the
space outside compartments into at most m(3(nW + nH) + 1) containers. Therefore, the
total number of containers available for packing small items is at most

mS := (p + q + 2/εε1) + m(4(nW + nH) + 1) ≤
(

|T |2

2 + 6|T |
εε1

+ 2
εε1

)
+ 16|T |

ε1
m.

Greedily assign small items to small containers, i.e., keep assigning small items to a
container till the area of items assigned to it is at least the area of the container, and then
resume from the next container. Each small item will get assigned to some container. For
each container C, pack the largest possible prefix of the assigned items using the Next-Fit
Decreasing Height (NFDH) algorithm. By Lemma 2, the area of unpacked items would be
less than ε2 + δ + ε2δ. Summing over all containers, we get that the unpacked area is less
than (ε2 + δ + ε2δ)mS ≤ 3ε2mS .

For each j, greedily assign wide items from W̃j to containers of width wj , i.e., keep
assigning items till the height of items exceeds the height of the container. Each wide item
will get assigned to some container. Then discard the last item from each container. For
each shelf in a wide compartment having configuration C, the total area of items we discard
is at most δw(C). Similarly, we can discard tall items of area at most δh(C) from each shelf
in a tall compartment having configuration C.

APPROX/RANDOM 2021

22:22 Geometric Bin Packing with Skewed Items

Hence, across all configurations, we discard wide and tall items of area at most

δ((p + q + 2/εε1) + m(nW + nH)) ≤ δ

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
+ 4δ|T |

ε1
m.

Therefore, for (Q, D) := greedyCPack(Ĩ , P, x∗, y∗), we get

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
.

C.3 Pseudocode for skewedCPack

Algorithm 1 skewedCPackε(I): Packs a set I of δ-skewed rectangular items into bins without
rotating the items.

1: (Ĩ , Imed) = roundε(I).
2: Initialize Qbest to null.
3: for P ∈ iterPackings(Ĩ) do // iterPackings is defined in Section 4.3.1.
4: x∗ = opt(FPW (Ĩ , P)). // FPW and FPH are defined in Section 4.3.2.
5: // If FPW (Ĩ , P) is feasible, x∗ is an extreme-point solution to FPW (Ĩ , P).
6: // If FPW (Ĩ , P) is infeasible, x∗ is null.
7: y∗ = opt(FPH(Ĩ , P)).
8: if x∗ ̸= null and y∗ ̸= null then // if Ĩ can be packed into P

9: (Q, D) = greedyCPack(Ĩ , P, x∗, y∗). // greedyCPack is defined in Section 4.3.3.
10: QD = NFDH(D ∪ Imed).
11: if Q ∪ QD uses less bins than Qbest then
12: Qbest = Q ∪ QD.
13: end if
14: end if
15: end for
16: return Qbest

D Lower Bound on APoG

In this section, we prove a lower bound of roughly 4/3 on the APoG for skewed rectangles.

▶ Lemma 30. Let m and k be positive integers and ε ∈ (0, 1). Let J be a set of items packed
into a bin, where each item has the longer dimension equal to (1 + ε)/2 and the shorter
dimension equal to (1 − ε)/2k. If the bin is guillotine-separable, then a(J) ≤ 3/4 + ε/2 − ε2/4.

Proof sketch. For an item packed in the bin, if the height is (1 − ε)/2k, call it a wide item,
and if the width is (1 − ε)/2k, call it a tall item. Let W be the set of wide items in J .

We can rearrange the items in the bin so that all wide items touch the left edge of the
bin and all tall items touch the bottom edge of the bin. See Appendix E in [31] for a formal
proof and Figure 6 for an example.

Therefore, the square region of side length (1 − ε)/2 at the top-right corner of the bin is
empty. Hence, the area occupied in each bin is at most 3/4 + ε/2 − ε2/4. ◀

A. Khan and E. Sharma 22:23

Figure 6 Structuring a guillotine-separable packing.

▶ Theorem 31. Let m and k be positive integers and ε ∈ (0, 1). Let I be a set of 4mk items,
where 2mk items have width (1 + ε)/2 and height (1 − ε)/2k, and 2mk items have height
(1 + ε)/2 and width (1 − ε)/2k. Let opt(I) be the number of bins in the optimal packing of I

and optg(I) be the number of bins in the optimal guillotinable packing of I. Then

optg(I)
opt(I) ≥ 4

3(1 − ε).

This holds true even if items in I are allowed to be rotated.

Proof. For an item i ∈ I, if h(i) = (1 − ε)/2k, call it a wide item, and if w(i) = (1 − ε)/2k,
call it a tall item. Let W be the set of wide items and H be the set of tall items.

Partition W into groups of k elements. In each group, stack items one-over-the-other.
This gives us 2m containers of width (1 + ε)/2 and height (1 − ε)/2. Similarly, get 2m

containers of height (1 + ε)/2 and height (1 − ε)/2 by stacking items from H side-by-side.
We can pack 4 containers in one bin, so I can be packed into m bins. See Figure 7 for an
example. Therefore, opt(I) ≤ m.

Figure 7 Packing 4k items in one bin. Here k = 7.

We will now show a lower-bound on optg(I). In any guillotine-separable packing of
I, the area occupied by each bin is at most 3/4 + ε/2 − ε2/4 (by Lemma 30). Note that
a(I) = m(1 − ε2). Therefore,

optg(I) ≥ m(1 − ε2)
3/4 + ε/2 − ε2/4

=⇒
optg(I)
opt(I) ≥ 4

3 × 1 − ε2

1 + 2ε/3 − ε2/3 = 4
3 × 1 − ε

1 − ε/3 ≥ 4
3(1 − ε). ◀

APPROX/RANDOM 2021

	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	3 Guillotinable Packing of Skewed Rectangles
	3.1 Packing With Slicing
	3.2 The skewed4Pack Algorithm
	3.3 Creating Shelves

	4 Almost-Optimal Bin Packing of Skewed Rectangles
	4.1 Classifying and Rounding Items
	4.2 Structural Theorem
	4.3 Packing Algorithm
	4.3.1 Enumerating Packing of Compartments
	4.3.2 Fractionally Packing Items into Compartments
	4.3.3 Converting a Fractional Packing to a Non-Fractional Packing
	4.3.4 Summary

	A Linear Grouping
	B skewed4Pack: Packing Items into Containers
	C Details of skewedCPack
	C.1 Removing Medium Items
	C.2 Converting a Fractional Packing to a Non-Fractional Packing
	C.3 Pseudocode for skewedCPack

	D Lower Bound on APoG

