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—— Abstract

We initiate the study of fine-grained completeness theorems for exact and approximate optimization
in the polynomial-time regime.

Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova,
Williams, TALG 2019) as well as the classic class MAXSNP and MAXSNP-completeness for NP
optimization problems (Papadimitriou, Yannakakis, JCSS 1991), we define polynomial-time analogues
MAXxSP and MINSP, which contain a number of natural optimization problems in P, including
Maximum Inner Product, general forms of nearest neighbor search and optimization variants
of the k-XOR problem. Specifically, we define MAXSP as the class of problems definable as
maXe, ...z #{(Y1,---,ye) : ¢(x1, ..., Tk, Y1, ..,Ye)}, where ¢ is a quantifier-free first-order property
over a given relational structure (with MINSP defined analogously). On m-sized structures, we can
solve each such problem in time O(m***~!). Our results are:

We determine (a sparse variant of) the Maximum/Minimum Inner Product problem as com-

plete under deterministic fine-grained reductions: A strongly subquadratic algorithm for Max-

imum/Minimum Inner Product would beat the baseline running time of O(m*™*~1) for all
problems in MAXSP/MINSP by a polynomial factor.

This completeness transfers to approximation: Maximum/Minimum Inner Product is also

complete in the sense that a strongly subquadratic c-approzimation would give a (¢ + €)-

approzimation for all MAXSP/MINSP problems in time O(mF¢179)
chosen arbitrarily small. Combining our completeness with (Chen, Williams, SODA 2019), we

, where ¢ > 0 can be

obtain the perhaps surprising consequence that refuting the OV Hypothesis is equivalent to
giving a O(1)-approximation for all MINSP problems in faster-than-O(m”***~!) time.

By fine-tuning our reductions, we obtain mild algorithmic improvements for solving and ap-
proximating all problems in MAXSP and MINSP, using the fastest known algorithms for

Maximum/Minimum Inner Product.
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Fine-Grained Completeness for Optimization in P

1 Introduction

For decades, increasingly strong hardness of approximation techniques have been developed
to pinpoint the best approximation guarantees achievable in polynomial time. Among the
early successes of the field, we find the MAXSNP completeness theorems by Papadimitriou
and Yannakakis [24], giving the first strong evidence against PTASes for MAX-SAT and
related problems. Such completeness theorems constitute valuable tools in complexity theory:
Generally speaking, proving a problem A to be complete for a class C shows that A is the
representing problem for C. The precise notion of completeness is typically chosen such that
a certain algorithm for A would yield unexpected algorithms for the whole class C — thus
establishing that A is unlikely to admit such an algorithm. However, a completeness result
may also open up algorithmic uses. Namely, since any problem in C can be reduced to its
complete problem A, we may find (possibly mildly) improved algorithms for all problems
in C by making algorithmic progress on the single problem A.

Given this usefulness, it may be surprising that there are currently no completeness results
for studying optimization barriers within the polynomial-time regime, e.g., for approximability
in strongly subquadratic time (in fact, even for studying decision problems, completeness
results are an exception rather than the norm, see [29] for a recent survey of the field). Thus,
this work sets out to initiate the quest for completeness results for optimization in P, which
corresponds to studying the (in-)approximability of problems on large data sets.

Previous Completeness Results in P

The essentially only known completeness result in fine-grained complexity theory in P is a
recent result by Gao, Impagliazzo, Kolokolova, and Williams [18]: The orthogonal vectors
problem (OV)! is established as complete problem for the class of model-checking first-order
properties? under fine-grained reductions®. From this completeness, they derive in particular:

Hardness: If there are v, > 0 such that OV with moderate dimension d = n” can
be solved in time O(n?7?), then there is some ¢’ > 0 such that all (k + 1)-quantifier
first-order properties can be model-checked in time O(m*~?") for k > 2. The negation
of this statement’s premise is known as the moderate-dimensional OV Hypothesis; the
consequence would be very surprising, as model-checking first-order properties is a very
general class of problems for which no O(m*~%)-time algorithm is known. This result
can be seen as support for the moderate-dimensional OV Hypothesis.

Algorithms: Using a stronger notion than fine-grained reductions, Gao et al. also prove
that mildly subquadratic algorithms for OV have algorithmic consequences for model-
checking first-order properties. Specifically, by combining their reductions with the
fastest known algorithm for OV [4, 12], they obtain an m*/ 29y logm)_time algorithm for
model-checking any (k 4 1)-quantifier first-order property.

L Given two sets of n vectors in {0, l}d, determine whether there exists a pair of vectors, one of each set,
that are orthogonal.

Let ¢ be a first-order property (in prenex normal form) over a relational structure of size m. Given the
structure, determine whether ¢ holds. See Section 2 for details.

For a formal definition of fine-grained reductions, see [11, 18]. For this paper, the reader may think of
the following slightly simpler notion: A fine-grained reduction from a problem P; with presumed time
complexity T1 to a problem P> with presumed time complexity 75 is an algorithm A for P; that has
oracle access to P> and whenever we use an O(T» (n)lfé) algorithm for the calls to the P»-oracle (for

some § > 0), there is a &’ > 0 such that A runs in time o(Ty (n)l_‘sl).

2

3
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No comparable fine-grained completeness results are known for polynomial-time optimization
problems, raising the question: Can we give completeness theorems also for a general class of
optimization problems in P, both for exact and approximate computation?

Hardness of Approximation in P

Studying the fine-grained approximability of polynomial-time optimization problems (hard-
ness of approximation in P), is a recent and influential trend: After a breakthrough result
by Abboud, Rubinstein, and Williams [3] establishing the Distributed PCP in P frame-
work, a number of works gave strong conditional lower bounds, including results for nearest
neighbor search [28] or a tight characterization of the approximability of maximum inner prod-
uct [13, 15]. Further results include work on approximating graph problems [25, 6, 10, 22], the
Fréchet distance [7], LCS [1, 2], monochromatic inner product [23], earth mover distance [26],
as well as equivalences for fine-grained approximation in P [15, 14, 10]. Related work studies
the inapproximability of parameterized problems, ruling out certain approximation guarantees
within running time f(k)n9*) under parameter k (such as FPT time f(k) poly(n), or n°®*)),
see [17] for a recent survey.*

An Optimization Class: Polynomial-Time Analogues of MaxSNP

We define a natural and interesting class of polynomial-time optimization problems, inspired
by the approach of Gao et al. [18] as well as the classic class MAXSNP introduced by
Papadimitriou and Yannakakis [24] to study the approximability of NP optimization problems.

The definition of MAXSNP is motivated by Fagin’s theorem (see, e.g., [20, 19]), which
characterizes NP as the family of problems expressible as 35 Vy 3z ¢(y, z, G, S) where G is
a given relational structure, 35 ranges over a relational structure S and Vy 3z ¢(y, z, G, S)
is a V*3I*-quantified first-order property. A subclass of this is SNP, which consists of those
problems expressible without the Jz-part. Its natural optimization variant is MAXSNP,
defined as the set of problems expressible as maxg #{y : ¢(y,G,S)}. Notably, this class
of problems contains central optimization problems (MaAXx-3-SAT, Max-Cur, etc.), all
of which admit a constant-factor approximation in polynomial time. Using a notion of
MAaXSNP-completeness, Papadimitriou and Yannakakis identified several problems (including
MAX-3-SAT and MAX-CuT) as hardest-to-approximate in this class, giving a justification
for the lack of a PTAS for these problems.’

To study the same type of questions in the polynomial-time regime, the perhaps most
natural approach is to restrict the syntax defining MAXSNP problems such that it solely
contains polynomial-time problems. Specifically, we replace maxg by a maximization over
a bounded number of k variables z1,...,z; and restrict the counting operator to tuples
¥ = (y1,-..,ys) of bounded length ¢. The resulting formula max,, . ., #{(y1,...,9¢) :
d(x1,. .., Zp, Y1, ..., Ye)} can be easily seen (see the full version of the paper [8, Appendix A])
to be solvable in time O(m***~1), where m denotes the problem size. We define MAXSPy,
to denote the class of these optimization problems and let MAXSP = [, 55 s MAXSPy 4.
Note that here, “SP” stands for “strict P” in analogy to the name “strict NP” of SNP. We
refer to Section 2 for more details.

4 Note that these parameterized inapproximability results do not necessarily apply to the case of a fixed
parameter k, which would correspond to our setting. See [22] for an interesting exception.

5 A stronger justification was later given by the PCP theorem, establishing inapproximability even
under P # NP. In general, these two approaches (approximation-preserving completeness theorems as
well as proving inapproximability under established assumptions on exact computation) can result in
incomparable hardness of approximation results.
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9:4 Fine-Grained Completeness for Optimization in P

We obtain an analogous minimization class MINSP by replacing max by min everywhere.
These classes include interesting problems:

Vector-definable problems: Let ¥ = {0,...,c} be a fixed alphabet and f : ©*¥ — {0,1}

be an arbitrary Boolean function. Then we can express the following problem: Given

sets X1, ..., X}, in X% of vectors, maximize (or minimize) 2?21 f(z1[d], ..., xli]) over all

x1 € X1,...,2, € Xj. Each such problem is definable in MAXSPy, 1 /MINSPy, 1, e.g.:
Maximum Inner Product (MAXIP): Given sets X, Xz C {0,1}%, maximize the inner
product z; - 2 over x; € X;,22 € Xo. To see that this problem is in MAXSP; 1,
consider the formula max,, e x, sex, #{Y € Y : E(z1,y) A E(z2,y)}, where E(z,y)
indicates that the y-th coordinate of x is equal to 1.
Consider minimization with k¥ = 2 and view f : £2 — {0, 1} as classifying pairs of
characters as similar (0) or dissimilar (1). This expresses the following problem that
generalizes the nearest-neighbor problem over the Hamming metric: Given a set of
length-d strings over ¥, determine the most similar pair of strings by minimizing the
number of dissimilar characters.
View X as the finite field F, and let f(z1,...,2;) =1 iff Zle z; =0 (mod ¢). This
gives optimization variants of the k-XOR, problem [21, 16], generalized to arbitrary
finite fields.

Beyond vector-definable problems, in MAXSP3 _» we can express the graph problem of

computing, over all edges e, the maximum number of length-¢ circuits containing e:
max #{(y1,...,ye—2) : E(x1,22) AN E(z2,y1) A+ AN E(ye—3,Yo—2) N E(ye—2,21)}.

Z1,T2

In fact, MAXSP also contains generalizations of this problem to other pattern graphs
than length-¢ circuits (e.g., length-£ cycles or ¢-cliques), even arbitrary fixed patterns in
hypergraphs.

We let m denote the size of the relational structure, that is, the number of tuples in an explicit
representation of all relations. For vector-definable examples, the input can be represented
as a relational structure of size m = O(ndlog|X|), which is the natural input size. Note,
however, that the relational structure also allows us to succinctly encode sparse vectors in
very large dimension (such as d = ©(n)), which is why we often refer to MAXSP and MINSP
as describing a sparse setting. It is easy to see that each MAXSP or MINSP formula ¢ can
be solved in time O(m*FT*~1) (see [8, Appendix A] in the full version); note that for a fixed
¥, k and ¢ always denote the number of maximization/minimization and counting variables,
respectively. Can we obtain completeness results with respect to improvements over this
baseline running time?

(Sparse) Maximum Inner Product

Our results prove the Maximum Inner Product problem (MAXIP) as representative for the
class MAXSP. We will formally introduce two important variants of this problem.

» Problem 1 (MAXIP). Given two sets of n vectors X1, Xo C {0,1}¢, the task is to compute
the maximum inner product (x1,xs) = Zj x1[j] - x2[j] for x1 € X1, 29 € Xa.

When d = n? for some (small) v > 0, we speak of the moderate-dimensional MAXIP
problem. In this paper, we also use MAXIP in another context, depending on the input
format. To make the distinction explicit, let us formally introduce the Sparse Maximum
Inner Product problem (SPARSE MAXIP):

» Problem 2 (SPaRSE MAXIP). Given two sets of n vectors X1, Xo C {0,1}%, sparsely
represented as a list of pairs (x;,j) which represent the one-coordinates x;[j] = 1, the task is
to compute the mazimum inner product (x1,x2) for 1 € X1,29 € Xs.
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For moderate-dimensional MAXIP we measure the complexity in n and for SPARSE
MAXIP we measure the complexity in m, the total number of one-coordinates. We note that
SPARSE MAXIP is also special in our setting as this problem can be seen as a member of
MAXSP5 ;. Indeed, SPARSE MAXIP is the same problem as maximizing the formula

v meax_ gy € ld: Elzy) A E(w )},

where E(z;,y) indicates that the y-th coordinate of z; is equal to 1. We also define the
(Sparse) Minimum Inner Product problems (MINIP, SPARSE MINIP) as the analogous
problems with the task to minimize (x1,x2).

1.1 Our Results

Our first main result is a completeness theorem for exact optimization, establishing Maximum
Inner Product as complete for MAXSP (and Minimum Inner Product for MINSP).

» Theorem 3 (SPARSE MAXIP is MAXSP-complete). SPARSE MAXIP is complete for the
class MAXSP under fine-grained reductions: If there is some 6 > 0 such that SPARSE MAXIP
can be solved in time O(m?>~?), then for every MAXSPy, ¢ formula 1, there is some §' > 0
such that 1 can be solved in time O(mF+t=1-9").

The analogous statement holds for minimization, if we replace SPARSE MAXIP and
MAaxSP by SPARSE MINIP and MINSP, respectively.

Turning to the approximability of MAXSP and MINSP, we show how to obtain a fine-
grained completeness that even preserves approximation factors (up to an arbitrarily small
blow-up). Here and throughout the paper, we say that an algorithm gives a c-approximation
for a maximization problem if it outputs a value in the interval [¢c~! - OPT, OPT], where
OPT is the optimal value. For minimization, the algorithm computes a value in the interval
[OPT,c- OPT].

» Theorem 4 (SPARSE MAXIP is MAXSP-complete, (almost) approximation preserving). Let
c>1 and e > 0. If there is some > 0 such that SPARSE MAXIP can be c-approximated in
time O(m2~%), then for every MAXSPy, ; formula 1), there is some 8’ > 0 such that 1) can be
(¢ + €)-approzimated in time O(m*+-1-0"),

The analogous statement for minimization holds for SPARSE MINIP and MINSP.

As a key technical step to obtain Theorems 3 and 4, we prove a universe reduction for
MaXSP/MINSP formulas (detailed in Sections 3 and 4.3). Along the way, this universe
reduction establishes the following fine-grained equivalence between the sparse and moderate-
dimensional settings of MAXIP /MINIP.

» Theorem 5 (Equivalence between MAXIP and SPARSE MAXIP).
There are some v,0 > 0 such that MAXIP with dimension d =n" can be solved in time
O(n27%) if and only if there is some &' > 0 such that SPARSE MAXIP can be solved in
time O(m2~%").
Let ¢ > 1 and € > 0. If there are some v,6 > 0 such that MAXIP with dimension d = n"
can be c-approzimated in time O(n?~%) then there is some &' > 0 such that SPARSE
MAXIP can be (¢ + €)-approzimated in time O(m>~"). Conversely, if there is some
§ > 0 such that SPARSE MAXIP can be c-approzimated in time O(m?~%) then there are
some 7,8 > 0 such that MAXIP with dimension d =n" can be c-approzimated in time
O(n>=".

The analogous statements for minimization hold for MINIP.

We prove Theorems 3, 4 and 5 in Section 4.1.

9:5
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Consequences for Hardness of Approximation

As a consequence of the above completeness results and dimension reduction, we obtain the

following statements.
Since Maximum Inner Product and Minimum Inner Product are subquadratic equivalent
in moderate dimensions [15, Theorem 1.6], we obtain from Theorems 3 and 5 that a
strongly subquadratic algorithm solving moderate-dimensional Maximum Inner Product
ezactly would give a polynomial-factor improvement over the O(m*+~1) running time for
all MAXSP and MINSP formulas. This adds an additional surprising consequence of fast
Maximum Inner Product algorithms, besides refuting the Orthogonal Vectors Hypothesis.
There is a O(1)-approximation beating the quadratic baseline for moderate-dimensional
Maximum Inner Product if and only if there is a O(1)-approximation beating the
O(m**¢~1) time baseline for all MAXSP formulas. To obtain this result combine the
fine-grained equivalence of O(1)-approximation of moderate-dimensional MAXIP and
SPARSE MAXIP (Theorem 5) with the completeness of SPARSE MAXIP (Theorem 4).
This adds an additional consequence of fast Maximum Inner Product approximation,
besides refuting SETH [3, 13].
In the minimization world, we obtain a tight connection between approximating MINSP
formulas and OV: The (moderate-dimensional) OV hypothesis is equivalent to the non-
existence of a O(1)-approximation for all MINSP formulas in time O(m**+*~1). To obtain
this result, combine the equivalence of moderate-dimensional OV Hypothesis and non-
existence of a O(1)-approximation for moderate-dimensional MINIP [15, Theorem 1.5]
with the equivalence of O(1)-approximation algorithms for moderate-dimensional MINIP
and MINSP (Theorem 4 and Theorem 5). Interestingly, this can be seen as additional
support for the Orthogonal Vectors Hypothesis.

Algorithms: Lower-Order Improvements

Since Maximum Inner Product has received significant interest for improved algorithms (see
particularly [13, 15]), we turn to the question whether our completeness result also yields
lower-order algorithmic improvements for all problems in the class. Indeed, by combining the
best known Maximum/Minimum Inner Product algorithms with our reductions, we obtain
the following general results for MAXSP and MINSP. We give the proofs for both theorems
in Section 4.1.

» Theorem 6 (Lower-Order Improvement for Exact MAXSP and MINSP). We can ezactly
optimize any MAXSPy, o and MINSPy, ¢ formula in randomized time mkH’l/logQ(l) m.

Interestingly, for constant-factor approximations, a complete shave of logarithmic factors
is possible.

» Theorem 7 (Lower-Order Improvement for Approximate MAXSP and MINSP). For every
constant ¢ > 1, we can c-approximate every MAXSPy , and MINSPy ¢ formula in time
mk+€*1/29( logm) — For MAXSPy, ¢ the algorithm is deterministic; for MINSPy , it uses
randomization.

2 Preliminaries

For an integer k > 1, we set [k] = {1,...,k}. Moreover, we write O(T') = T log®® T,
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First-Order Model-Checking

A relational structure (X, Ry, ..., R,) consists of n objects X and relations R; C X% (of
arbitrary arities a;) between these objects. A first-order formula is a quantified formula of
the form

Y= (Qiz1) ... (Qrwg) d(w1,. .., T8),

where Q; € {3,V} and ¢ is a Boolean formula over the predicates R;(x;,,. .. T, ). Given a
relational structure, the model-checking problem (or query evaluation problem) is to check
whether 1 holds on the given structure, that is, for xi,...,x; ranging over X and by
instantiating the predicates R;(z;,, ... ,:viaj) in ¢ according to the structure, v is valid.

Following previous work in this line of research [18, 9], we assume that the input is
represented sparsely — that is, we assume that the relational structure is written down as
an exhaustive enumeration of all records in all relations; let m denote the total number of
such entries. This convention is reasonable as this data format is common in the context of
database theory and also for the representation of graphs (where it is called the adjacency
list representation). By ignoring objects not occurring in any relation, we may always assume
that n < O(m).

It is often convenient to assume that each variable x; ranges over a separate set X;. We
can make this assumption without loss generality, by introducing some additional unary
predicates.

MaxSPy , and MinSPy, ,

In analogy to first-order properties with quantifier structure 3*v¢ (with maximization instead
of 3 and counting instead of V), we now define a class of optimization problems: Let MAXSPy,
be the class containing all formulas of the form

¢: max # ¢(xla"'axk7y1a"'ayf)7 (1)

Ty gy, y

where, as before, ¢ is a Boolean formula over some predicates of arbitrary arities. We
similarly define MINSP, , with “min” in place of “max”. Occasionally, we write OPTSPy, ¢
to refer to both of these classes simultaneously, and we write “opt” as a placeholder for
either “max” or “min”. In analogy to the model-checking problem for first-order properties,
we associate to each formula ¢ € OPTSPy ¢ an algorithmic problem:

» Definition 8 (MAX(¢)) and MIN(¢))). Let ¢ € MAXSPy ¢ be as in (1). Given a relational
structure on objects X, the MAX()) problem is to compute

OPT = max # ¢(x17"'7$k’y17""y4)'
T,k €X gy yEeX

We similarly define MIN(y) for i € MINSPy, ;. Occasionally, for ¢ € OPTSPy, 4, we write
OPT(v)) to refer to both problems simultaneously.

As before, we usually assume (without loss of generality) that each variable ranges over a
separate set: x; € X, y; € Y;. In particular, as claimed before we can express the SPARSE
MaXIP formula

V=, s #Hy €l B y) A B )

9:7
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in a way which is consistent with Definition 8 by introducing three unary predicates for
X1, X5 and [d]. For convenience, we introduce some further notation: For objects 1 €
Xi,..., 75 € Xy, we denote by Val(zy,...,zx) =4, ., &(T1,. ., Tk, Y1, .., ye) the value
of (z1,...,zk).

Definition 8 introduces MAX(1)) and MIN(%)) as ezact optimization problems (i.e., OPT is
required to be computed exactly). We say that an algorithm computes a c-approzimation for
Max (1)) if it computes any value in the interval [¢=*-OPT, OPT]. Similarly, a c-approximation
for MIN(%)) computes any value in [OPT, ¢ - OPT].

The problem OPT(1)) can be solved in time O(m**¢~1) for all OPTSPy, , formulas 1, by
a straightforward extension of the model-checking baseline algorithm; see the full version of
our paper [8, Appendix A] for details. As this is clearly optimal for k + ¢ = 2, we will often
implicitly assume that k£ + ¢ > 3 in the following.

As we show in the full version of the paper [8, Appendix B, we can ezactly solve OPTSPy, ¢
in time O(mk+e—3/2) when ¢ > 2. Thus, in the remaining sections we will be working with
the hardest case £ = 1. For convenience we write MAXSP} := MAXSPy, 1, and similarly
for MINSP; and OpTSPj. Since for a fixed formula ¢ € OpTSP, k£ and ¢ are constants,
f(k, £)-factors are hidden in the O-notation throughout the paper.

3 Technical Overview

In this section we give an overview of the main technical ideas used to give our completeness
result (Theorem 3). Let ¢ be a MAXSPy, ¢ formula. We will outline the reduction from
MaX(t)) to SPARSE MAXIP. Since for £ > 2 we can solve MAX(¢) in time O(m*+¢=3/2)
(see the full version of our paper [8, Appendix B]) we focus on the case of £ = 1. The
reduction consists of two phases. In the first phase (Appendix A), we reduce ¥ to an
intermediate problem called the Hybrid Problem which captures the core hardness, but is
more restricted. For now, the reader can think of the Hybrid Problem as a vector-definable
problem (as introduced in the introduction) max,, ex, ... z,eXx Zle f(z1]d], ..., xx[d]) with
X1,..., X, €{0,1}%; we define it formally in Section 4.2. Since a Hybrid Problem is more
restricted than the general problem MAX(v), the first phase consists of the following 4 steps
in which we progressively restrict the shape of :
1. Remove all hyperedges, that is, ¥ no longer contains predicates of arity > 3 so an instance
of Max(%)) can be thought of as a graph with parallel (or alternatively, colored) edges.
2. Remove all edges between vertices z; and z; that we maximize over. We will call these
cross edges. After this step the only remaining edges are between vertices x; and the
counting variable y.
3. Remove all parallel edges (or alternatively, colored edges), that is, we combine parallel
edges into simple edges.
4. Remove unary predicates, finally turning the MAX(¢)) instances into graphs. At this
point it becomes simple to rewrite MAX(¢)) as a Hybrid Problem.

The second phase of the reduction is to reduce the Hybrid Problem to a SPARSE MAXIP
instance (Section 4.3). The general idea of this step seems straightforward: For simplicity
again let us focus on a vector-definable problem max,, ex,, . zreXs Zgzl f(xald], ..., xx[d])
with Xi,..., X}, C {0,1}4. We can precisely “cover” each f(z1[i],...,zx[i]) by at most 2¥
summands expressing

Do (@il mali) = (s,
ay,...,ap€{0,1}
f(ocl,“.,ak):l
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where the outer [] denotes the Iverson brackets. Observe that each such summand is
equivalent to the MAXIP function, up to complementing some x;[i]’s (i.e. each summand can
be expressed as MAXIP by setting x;[i] := 1 — x[i] whenever a; = 0). The issue, however, is
that complementing x;[i]’s means complementing a binary relation of size O(m) (between n
vectors and d coordinates). Since complementing a sparse relation generally produces a dense
relation (here: of size Q(nd)), this will produce a prohibitively large problem size for the
SPARSE MAXIP formulation if d is large.

The natural approach to overcome this issue is to reduce the dimension of the Hybrid
Problem, so that we can afford the complementation step. One challenge in this is that
MAXSP formula might have its optimal objective value anywhere in {0, ..., m*}, but reducing
the dimension from d < m?’ to, say, d = m” also reduces the range of possible objective values
to {0,...,m7}. It appears counter-intuitive that such a “compression” of objective values
should be possible while allowing us to reconstruct the optimum value ezactly. Perhaps
surprisingly, we are able to achieve this by a simple deterministic dimension reduction.

The idea of our dimension reduction is as follows. For concreteness, focus on the SPARSE
MAXIP problem. Starting from a SPARSE MAXIP instance X;, X5 C {0,1}%, we construct a
hash function & : {0,1}4 — {0,1} with d’ < d, which maps every one-entry to ¢ coordinates
in [d']. More precisely, for every coordinate i € [d], we deterministically choose an auxiliary
vector w; € {0, 1}‘1/ with exactly ¢ one-entries for some parameter ¢t. Then, the hash function
is defined as h(z) =\, ,(;—; w; (here the OR is applied coordinate-wise).

We say that there is a collision between two vectors x1, x5 if there are distinct 4, j € [d]
such that z1[i] = x2[j] = 1 and the auxiliary vectors w; and w; share a common one-
entry. Ideally, every pair of vectors z; € X,z € X5 is hashed perfectly, meaning that no
collision takes place. In that case, it holds that (h(x1), h(z2)) =t (z1,22) and thus also
OPT’ =t - OPT, where OPT and OPT’ are the objective values of the original and the
hashed instance, respectively. However, in reality we cannot expect the hashing to be perfect.
Note that nevertheless the difference |(h(x1), h(x2)) — ¢ - (x1,z2)| is at most the number of
collisions between x; and xs.

We will construct h in such a way that for all pairs z1,z2, the number of collisions is
small, say at most C. Then by setting ¢t > 2C, we ensure that |t - OPT — OPT'| < /2 so
we can recover t - OPT by computing OPT’ and rounding to the closest multiple of ¢. In
particular, the optimal pair of vectors in the hashed instance correspond to the pair with
maximum inner product in the original instance. Note that we crucially use the fact that
MAXIP is expressive enough to compute the value of the inner product, which allows us to
get rid of the small additive error introduced by the hashing (after rounding).

In Section 4.3 we show that the desired hash function exists and is in fact deterministic:
Pick any ¢ primes py,...,p; of size ©(tlogt) and let d = p; + -+ + p;. We identify [d’]
with {(7,p;) : 1 <j <t,0<1i< p,} and assign the auxiliary vector w; to have one-entries
exactly at all coordinates (¢ mod p;,p;), 1 < j <t. A simple calculation shows that with
this construction the number of collisions between 1 and zs is at most ||z1||1 - |21 - logd,
see Lemma 15. With some additional tricks, we can control this quantity.

Our analysis allows us to even maintain c-approximate solutions, albeit with an arbitrarily
small blow-up due to the small error introduced by rounding. Finding a fully approximation-
preserving reduction remains a challenge for future work. Additionally, we need to take
great care that our reductions are efficient enough to even transfer log®! n-improvements, to
obtain our speed-up for exact optimization (Theorem 6).
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Comparison to Gao et al.'s Work

Our reduction is similar to the work of Gao, Impagliazzo, Kolokolova and Williams [18],
showing that the sparse version of Orthogonal Vectors is complete for model checking
first-order properties. Here we discuss the key differences.

This first phase of our reduction follows the same structure as in Gao et al., but we
simplify the proof significantly: One major difference is that they define a more complicated
version of the Hybrid Problem including cross predicates [18, Section 5.2]. Borrowing ideas
from [9], we remove the cross predicates at an earlier stage of the reduction (Step 2), which
simplifies the remaining Steps 3 and 4. The absence of cross predicates also simplifies the
baseline algorithm (see [8, Appendix A] in the full version). More generally, by splitting
the reduction into a chain of four steps we cleanly separate the main technical ideas used in
the first phase; see Appendix A for more details. In the same spirit we simplify Gao et al’s
improved algorithm [18, Section 9.2] for all problems with more than 1 counting quantifier
avoiding their case distinction of 9 different cases by using a simple basis to represent all
Boolean functions ¢ : {0,1}3 — {0, 1}; see [8, Appendix B] in the full version.

In the second phase of the reduction, their work faces the same main challenge as ours.
Specifically, reducing their Hybrid Problem to OV naively requires complementing a sparse
binary relation, possibly resulting in a large dense complement. They solve this issue
by designing a similar dimension reduction as ours using a Bloom filter. Naturally their
dimension reduction is randomized, but they also provide a derandomization. However, note
that there is a crucial difference: They reduce to OV which is a decision problem, while
we reduce to the optimization problem MAXIP. For this reason, the dimension reductions
differ in nature: One the one hand, we exploit that MAXIP is more expressive than OV —
namely that MAXIP can handle a small number of errors if we round the result, while for
OV any introduced error would result in vectors that are not orthogonal anymore. On the
other hand, by reducing to OV, Gao et al. do not have to worry about “compressing” the
range of possible optimal values, or making the reduction approximation-preserving. For
these reasons, their dimension reduction would be unsuitable in our work, and ours would be
unsuitable in their work.

4 The Reduction

In this section we give the proofs of our main results. The following lemma captures
our reduction in all generality. Let k-MAXIP denote the generalization of the MAXIP
problem with the objective to compute max,, ex,,. .. zpexy{(Z1,- .., Tk), Wwhere (x1,...,zx) =
>y lyl ... zklyl. We define k-MINIP analogously.

» Lemma 9. Let s(n) < nt/® pe q nondecreasing function and let ¢ > 1 be constant. Assume
that k-MAXIP in dimension d = O(s(n)*log?n) can be c-approzimated in time O(n*/s(n)),
and let ¥ be an arbitrary MAXSPy, formula.
If ¢ =1 (i.e., we are in the case of exact computation), then Max(y) can be exactly
solved in time O(mF/s(*/m)).
If ¢ > 1, then MaX(v)) can be (c + €)-approzvimated in time O(mF/s(*/m)), for any
constant € > 0.
The analogous statement holds for k-MINIP and MINSPj,.

The outline for this section is as follows. First we show how to derive the completeness
result (Theorems 3 and 4) and the lower-order improvements (Theorems 6 and 7) from
Lemma 9 in Section 4.1. Then we present the proof of Lemma 9, which is carried out in
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two phases as explained in the technical overview. In Section 4.2 we formally introduce
the intermediate problem called the Hybrid Problem. In Section 4.3 we give a fine-grained
reduction from the Hybrid Problem to Maximum or Minimum Inner Product (Lemma 14).
Finally, in Appendix A we reduce any OPTy ¢ formula to the Hybrid Problem (Lemma 17),
thus finishing the proof of Lemma 9. We will pay particularly close attention to the exact
savings s in every step.

4.1 Consequences
First we derive the completeness Theorems 3 and 4 from Lemma 9.

Proof of Theorems 3 and 4. Let ¢ > 1 denote the approximation ratio (that is, ¢ =1 for
Theorem 3 and ¢ > 1 for Theorem 4). Assuming that SPARSE MAXIP can be c-approximated
in time O(m?~%) for some § > 0, we obtain an algorithm for c-approximating MAXIP in
dimension d = n*/? in time O((nd)?>~%) = O(n*°d?) = O(n?>7%/?). We also obtain an
algorithm for c-approximating k-MAXIP in the same dimension in time O(n*~%/) (brute-
force all options for the first k — 2 vectors, then use the 2-MAXIP algorithm). We can
now plug this improved algorithm into our reduction: Setting s(n) = n%/?/polylog(n)
we have that k-MAXIP in dimension d = O(s(n)*log? n) can be c-approximated in time
O(n*/s(n)). Thus, if ¢ = 1 we obtain by Lemma 9 that OPT(¢)) can be exactly solved in time
O(m*/s(*/m)) = O(m*=P) for B = 9(k+1) > 0. If ¢ > 1, we obtain that OPT(%)) can be
(¢ + e)-approximated in the same running time, for an arbitrarily small constant € > 0. <

Next, we prove Theorem 5.

Proof of Theorem 5. The reductions from SPARSE MAXIP to MAXIP and from SPARSE
MINIP to MINIP for both the exact and approximate settings are a direct consequence
of Lemma 9.

For the other direction, assume there exists some ¢ > 0 such that SPARSE MAXIP can
be c-approximated in time O(m?2~?). Set v := §/2 and observe that any MAXIP instance
with d = n? yields a SPARSE MAXIP instance of size m = O(nd) = O(n'*7). Since we can
solve this instance in time O(m2=9) = O(n(+M2=9)) = O(n(1+6/22=9)) = O(n2-9"/2), we
obtain a O(n?~?")-algorithm for MAXIP with d = n” and &' = §2/2. Note that this works
for both the exact (¢ = 1) and approximate (¢ > 1) settings. The proof for the minimization
case is analogous. |

To prove Theorems 6 and 7, we make use of the following state-of-the-art algorithms for
MAXIP and MINIP, established in three previous papers [5, 13, 15].

» Theorem 10 (Improved Algorithms for MAXIP and MINIP [5, 13, 15]).
k-MAXIP and k-MINIP in dimension d = O(log>® n) can be exactly solved in randomized
time O(n*/1og'® n) [5].
For any constant ¢ > 1, k-MAXIP in dimension d = 90(v/logn) can be c-approximated in
deterministic time nk/QQ(\/@) [13, Theorem 1.5].

For any constant ¢ > 1, k-MINIP in dimension d = 2°0V1°8™) can be c-approzimated in
randomized time n* /2XV1°8™) [15 Theorem 1.7].

Proof of Theorems 6 and 7. To prove Theorem 6, we plug in the first algorithm from
Theorem 10 into Lemma 9 and choose s(n) = log”'n. We obtain an exact OPTSP
algorithm in time m*/log™™® m
For Theorem 7, we \[}Lthhe second and third algorithms from Theorem 10 into Lemma 9
logn

and choose s(n) = 29 ). We get a c-approximation for OPTSPy, in time m* /2 \/@),
for any constant c> 1. |
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Note that only one of these algorithms is deterministic; other known deterministic
algorithms are not efficient enough for our reduction®.

4.2 The Hybrid Problem

We start with another problem definition.

» Definition 11 (Basic Problem). Given set families Sy, ...,Sy over a universe U, the Basic
Maximization Problem of type 7 € {0, 1}’f is to to compute

L)yl

For example, the Basic Problem of type 7 = 11 is to maximize the common intersection of
two sets S7 and S5, the Basic Problem of type 7 = 10 is to maximize the number of elements
in S7 not contained in S5 and the Basic Problem of type 7 = 00 is to maximize the number
of universe elements contained in neither S; nor Ss.

OPT =
S1 631, SkESk

Note that every Basic Problem can be seen as an OPTSPy, formula: We introduce objects
for all sets S; and all universe elements u, and connect S; to v via an edge E(S;, v) if and
only if u € S;. Consistent with this analogy, we define n as the total number of sets S; and
m as the total cardinality of all sets S; and, as before, study the Basic Problem with respect
to the sparsity m.

» Definition 12 (Hybrid Problem). Given set families Sy, ...,Sk over a universe U, which is
partitioned into 28 parts U = UTE{O,l}’”’ U, the Hybrid Maximization Problem is to compute

(0 (0]
7 [i]=1 2:7[1]=0

We similarly define Basic Minimization Problems and define c-approximations of Ba-
sic Problems in the obvious way. For any Si,...,S; and 7 € {0,1}k we denote by

OPT = max E
S1€81,...,S, €Sk
7€{0,1}*

Val,(S1,...,Sk) the value of the Basic Problem constraint of type 7:

(0 ()
7 [i]=1 4:7[4]=0

And we use Val(Si,...,S;) := >._Val.(Si,...,Sk) to denote the total value of the sets
S1,-..,Sk in a Hybrid Problem instance.

Intuitively, the Hybrid Problem simultaneously optimizes Basic Problem constraints of
different types. If we could afford to complement (parts of) the sets .S;, then there is a
straightforward reduction from the Hybrid Problem to a Basic Problem of arbitrary type 7:
For each constraint of type 7/ # 7, we simply complement all sets S; with 7[i] # 7/[i] (more
precisely, construct sets S, such that U NS, = U, \ S;) and reinterpret the 7/-constraint as
type 7. In summary:

Val (S1,...,S) =

6 Focus on exact MAXSP}, for illustration: To obtain the same savings as in Theorem 6, we would need
a deterministic algorithm for MAXIP in dimension d = O(log?° n) running in time O(n?/log'%° n).
However, for this speed-up the current best algorithm [5] requires d = O(log!- n), so one needs to either
improve the algorithm or improve our dimension reduction (Lemma 9) to dimension d = poly(s(n))logn,
say.
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» Observation 13. In time O(n|U|), any Hybrid Problem instance can be converted into
an equivalent Basic Problem instance of arbitrary type 7. The sparsity of the constructed
instance is up to n|U]|.

However, being in the sparse setup we cannot tolerate the blow-up in the sparsity.
Therefore, in order to efficiently apply Observation 13, we first have to control the universe
size |U|.

4.3 Universe Reduction

The goal of this section is to reduce the Hybrid Problem to k-MAXIP. We give a reduc-
tion which closely preserves the savings s(n) achieved by exact or approximate k-MAXIP
algorithms (losing only polynomial factors in s(n)). As a drawback, the reduction slightly
worsens the approximation factor, turning a c-approximation into a (¢ + €)-approximation.

» Lemma 14. Let s(n) < n'/% be a nondecreasing function and assume that k-MAXIP in
dimension d = O(s(n)*log?n) can be c-approzimated in time O(n*/s(n)).
If c=1 (i.e., we are in the case of exact computation), then the Hybrid Problem can be
exactly solved in time O(mF/s(m)).
If ¢ > 1, then the Hybrid Problem can be (c + €)-approzimated in time O(m* /s(m)), for
any constant € > 0.
The analogous statement holds for k-MINIP and MINSP;,.

On a high level, we prove Lemma 14 by first using a deterministic construction to reduce
the universe size, and then reducing further to k-MAXIP as in Observation 13. The following
lemma provides our universe reduction in the form of a hash-like function h.

» Lemma 15. Let U be a universe and let t be a parameter. There exists a universe U’ of
size at most 4t>logt and a function h mapping elements in U to size-t subsets of U', such
that the following properties hold. By abuse of notation, we write h(S) = J,cg h(u) for sets
SCU.

1. (Hashing.) For all sets S C U, it holds that |h(S)| > t|S| — |S|? log |U].

2. (Efficiency.) Evaluating h(u) takes time O(t).

Proof. We start with the construction of h. By the Prime Number Theorem, there exist ¢
primes pq,...,p; in the interval [2tlogt, 4tlogt] (for large enough ¢, see [27, Corollary 3|
for the quantitative version). Let U’ = {(i,) : 1 <i < t,0 < j < p;}, then |U’| < 4t%logt.
We identify U with [|U]] in an arbitrary way and define h(u) = {(¢,u mod p;) : 1 < i < ¢}
foru e U.

In order to prove the first property, let us define the collision number of two distinct
elements u, v’ € U as |h(u) N h(u')|. It is easy to see that the collision number of any such
pair is at most log |U|: For any prime p;, we have that « mod p; = «’ mod p; if and only if p;
divides u —u/. Since u—wu’ has absolute value at most U, there can be at most log |U| distinct
prime factors p; of u —'. Tt follows that ¢|S| — |h(S)| < 3, cg [h(w) NA(W')] < [S[*log [U].

Finally, the function can be efficiently evaluated: Computing the primes p1, ..., p; takes
time O(tlogtloglogt) using Eratosthenes’ sieve, for example. After this precomputation,
evaluating h(u) in time O(¢) is straightforward. <

» Lemma 16 (Universe Reduction). Let Si,...,Sy over the universe U = J, U, be a Hybrid
Problem instance of mazimum set size s = maxg,es, |Si|, and let t be a parameter. In time

O(mt) we can compute a number A > 0 and a new Hybrid Problem instance Si,...,S;, over
a small universe U' =, UL of size |U'| = O(t*logt) such that:
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1. The sets S; € S; and the sets S; € S] stand in one-to-one correspondence.
2. Forall S1 € Sy,...,S, € Sy, it holds that:

|t - Val(Sy,...,Sk) — Val(S},...,S;) — A = O(s* log |U]).

Proof. We first describe how to construct the new instance. The first goal is to design
individual universe reductions for all subuniverses U, that is, we construct new universes U
and functions h, mapping U, to size-t subsets of U,. We distinguish two cases:

If |U-| < 4tlogt, then we simply take U’ as t copies of U, and let h, be the function

which maps any element to its ¢ copies in U,. It holds that |U.| =t - |U,| < 4t*logt.

If |U,| > 4tlogt, then we apply Lemma 15 with parameter ¢t to obtain U! and h,. The

lemma guarantees that |U.| < 4t? logt.

Next, we assemble these individual reductions into one. Set U’ = |J, U., where we treat
the sets U. as disjoint. Since in both of the previous two cases we have |U,| = O(t? logt) it
follows that [U| = > |U.| = O(t*logt). Let h be the function which is piece-wise defined
by the h;’s, that is, h returns h,(u) on input v € U,. Recall the notation h(S) = J,cg h(u).
The new Hybrid Problem instance is constructed by hashing every set S; € S; into the smaller
universe, that is, we set S} := h(S;) € S;. Property 1 is immediate from this construction,
and the computation takes time O(mt).

It remains to prove Property 2. For the remainder of the proof fix some sets S, ..., Sk
and let S = S1U---USy (clearly, S has size O(s)). We start with the (unrealistic) assumption
that S is hashed perfectly, that is, |h(S)| = t|.S|. In this case we claim that:

t-Val, (S1,...,S,) = Val.(h(S1), ..., h(Sk)) for all T # 0O,

t-Val.(S,...,Sk) = Val (h(S1),...,h(Sk)) + A for 7 = 0%, where A :=t - |Ugx| — |U}.|.
Indeed, if S is hashed perfectly then we exactly scale the number of satisfying elements by
a factor of ¢ for every type 7 # 0F. This holds because a satisfying assignment for 7 # 0*
corresponds to some element of the universe u € U, for which u € S; for all i’s such that
7[i] = 1. The perfect hashing implies that the element wu in these sets S; gets mapped to ¢
different elements in the new universe, and since there are no collisions these form ¢ satisfying
assignments in the hashed instance. The type 7 = 0* is exceptional because each satisfying
assignment does not correspond to any u € Uyx. Instead, the hashing scales the number
of falsifying elements of type 0%, |Uyx N S|. The number of satisfying elements of type 0%,
|Ugr \ S|, is preserved up to an additive error of exactly A.

We will now remove the unrealistic assumption that h is hashed perfectly. The strategy
is to define another function h* obtained from h by artificially making the hashing with S
perfect. To that end, we list the elements in S in an arbitrary order si,..., s|g|, and start
with the assignment h*(s;) = h(s;). As long as there exist indices ¢ < j such that h*(s;)
and h*(s;) share a common element z, we reassign h*(s;) := h*(s;) \ {z} U {2’} for some
unused universe element 2’ € U’. The function h* obtained in this way also maps elements
of U to size-t subsets of U’ and hashes S perfectly. Let Z be the set of all pairs of elements
z and 2’ that occurred in the process; since there are exactly ¢|.S| — |h(S)| iterations we have
|Z| < 2t|S| — 2|h(S)| and by Lemma 15 it follows that |Z| = O(s?log |U|). By the definition
of h*, it is clear that [Val(h(S1),...,h(Sk)) — Val(h*(S1),...,h*(Sk))| < |Z|. Therefore, by
the previous paragraph (applied with h*) and by an application of the triangle inequality,
we obtain:

[t - Val.(Si,...,S) — Val (h(S1),...,h(S))| = O(s?log |U|) for all T # OF,

|t - Val.(Si,...,S) — Val . (h(S1),...,h(Sy)) — Al = O(s?log |U|) for 7 = OF.

The claimed Property 2 is now immediate by summing over all types 7 and by another
application of the triangle inequality.
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Finally, it remains to prove that A > 0. There are two cases depending on how the set Uy,

was constructed: In the first case of the construction we have ¢ -|Upx| = [U].| and thus A = 0.

In the second case we have [UL| < 4t*logt < ¢ - |U;| and thus A =t - |Upe| — [Uju| > 0. <
Having established the universe reduction, we can finally prove Lemma 14.

Proof of Lemma 14. The algorithm consists of three steps, which are implemented in
the same way for all combinations of maximization versus minimization and exact versus
approximate computation.

1. (Eliminating heavy sets.) We say that a set S; € S; is heavy if |S;| > s(m), and light
otherwise. Our first goal is to eliminate all heavy sets. Since the total cardinality of all
sets S; is bounded by m, there can be at most O(m/s(m)) heavy sets. Therefore, we can
brute-force over every such set S; and solve the remaining Hybrid Problem on k — 1 set
families using the baseline algorithm in time O(m*~1). Afterwards, we can safely remove
all heavy sets. Overall, this step takes time O(m*/s(m)).

2. (Reduction to k-MAXIP or k-MINIP.) In the remaining instance we have that |S;| < s(m)
for all sets S;. Therefore, we can apply the universe reduction from Lemma 16 (with

some parameter ¢ to be specified in the next step) to obtain an instance Sf,...,S;, over a
smaller universe U’ = (J, U of size O(t*logt), and an offset A > 0.
The Hybrid Maximization Problem instance S7, ..., S}, reduces to k-MAXIP in the natural

way: Recall that k-MAXIP is the same as the Basic Problem of type 7 = 1¥. Hence, we
can apply Observation 13 to reduce to an instance of k-MAXIP with n = O(m) vectors
in dimension O(t?logt) in time O(n|U’|) = O(nt?logt). An analogous reduction works
for Hybrid Minimization Problems and k-MINIP.

3. (Recovering the optimal value.) Solve (or approximate) the constructed k-MAXIP instance
and let ALG’ denote the output. Then compute ALG := (ALG’ +A)/t and return ALG
rounded to an integer. The precise way of rounding depends on maximization versus
minimization and exact versus approximate, see the following analysis.

Let € > 0 be a constant which we will specify later, and set ¢t = Cs(m)?logm for some

sufficiently large constant C' = C(e). Then by Property 2 of Lemma 16 we have

1(S),....5" A 2]
Val(S1,. ., 8p) — YA t’SkH ‘:()(W)q.

In particular, it holds that

OPT' + A
OPT — % <e, (2)

where OPT and OPT’ are the optimal values of the original and the reduced instance,
respectively. As the new universe has size O(t?logt) = O(s(m)*logm?) as claimed, we can

indeed use the efficient O(m*/s(m))-time k-MAXIP or k-MINIP algorithm in the third step.

The total running time is as stated: Recall that s(m) < m'/% and thus all previous steps run
in time O(m*/s(m)). It remains to argue about the guarantees of the reduction; we need to
consider three cases:
(Exact mazimization or minimization: ¢ = 1.) Tt suffices to set ¢ < % Since we can
exactly compute ALG' = OPT’, by rounding ALG = (ALG’ +A)/t to the nearest integer,
we obtain the only integer in the interval ((OPT' + A)/t — 1, (OPT' + A)/t + 3), and
thus we output OPT.
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ALG — ALGt A ¢ (OPtT +8) Y 1 OPT— &) > - 1OPT — &,
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A  Reducing OptSP;, Formulas to the Hybrid Problem

In this section we give the first phase of the reduction, where we reduce OpT(%)) to the Hybrid
Problem. The main lemma is the following. As before, let s(m) < m'/% be a nondecreasing
function and let ¢ > 1 be constant.

» Lemma 17. Let k > 2. If the Hybrid Problem can be c-approzimated in time O(mF/s(m)),
then OPT(v)) can be c-approzimated in time O(mF/s(*R/m)), for any OPTSPy formula ).

Recall that we only have to deal with OpTSP;, = OPTSP} ; formulas, as any OpPTSPy, ¢
problem with £ > 1 directly admits an improved algorithm; see [8, Appendix B] in the full
version. As explained in Section 3, we prove Lemma 17 by progressively simplifying OpT(¢))
in four steps:

1. Remove all hyperedges, that is, ¥ no longer contains predicates of arity > 3 so an instance
of OPT(%)) can be thought of as a (colored) graph.

2. Remove all cross edges, that is, edges between vertices z; and x; that we maximize over.

3. Remove all parallel edges (or alternatively, colored edges), that is, we combine parallel
edges into simple edges.

4. Remove unary predicates, finally turning the OPT(¢) instances into graphs. At this point
it becomes simple to rewrite OPT(¢)) as a Hybrid Problem.

Step 1: Removing Hyperedges

As a first step, we eliminate all hyperpredicates, that is, predicates of arity > 3. Formally, we
prove the following lemma.

» Lemma 18. Suppose that, for any OPTSP), formula ¢ not containing hyperpredicates,
OPT(v)) can be c-approzimated in time O(mF/s(m)). Then OPT(v) can be c-approzimated
in time O(m*/s(m)) for any OPTSPy, formula 1.

The proof is quite similar to [18, Section 7]. We start with a technical lemma:

» Lemma 19. Let

w: Opt #(E(xl,x])/\(b(xh,mkay))a

L1y Tk Y

for some i,j € [k],i # j and arbitrary ¢. Then OPT()) can be solved exactly in time
O(mk_l/Q).
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Proof. Let us begin with the simplest case k = 2. For a vertex z in the given instance, let
deg(x) denote the total number of records containing z over all relations. We distinguish the
following three cases:

Case 1: deg(xz1) > +/m. We explicitly list all vertices x1 with deg(z1) > +/m; note that
there can be at most O(y/m) such elements since the sparsity of the MAX(z)) instance is
bounded by O(m). The remaining MAXSP; formula can be solved in time O(m) using
the baseline algorithm. In total, this step takes time O(y/mm) = O(m?3/?).

Case 2: deg(wz2) > +/m. By exchanging the roles of 21 and x5, we deal with this case in
the same way as case 1.

Case 3: deg(w1) < +/m and deg(x2) < +/m. Assuming that the previous two cases were
executed, we can assume that deg(z1) < /m and deg(z2) < y/m for all remaining ob-
jects x1, 2. We exploit that any non-zero solution (x1, z2) of MAX(1)) satisfies E(x1,x2):
It suffices to maximize over all O(m) edges E(z1, z2), counting the number of y’s satisfy-
ing ¢. Since deg(z1) < /m and deg(z2) < v/m, we can enumerate and test all objects y
which are connected to either 1 or z2 by some relation in time O(y/m). What remains
are objects y not connected to either x; or xs by any relation. To account for these
missing objects, we can substitute false for all non-unary predicates in ¢; what remains is
a Boolean function over unary predicates over y. We can precompute the number of y’s
satisfying that function in linear time, so again the total time is O(m +m+/m) = O(m?/?).

It remains to lift this proof to the general case k > 2. We brute-force over all z-variables
except for x; and x;. This amounts for a factor O(m*~2) in the running time. What remains
is a MAXSP, formula in the shape as before which can be solved exactly in time O(m?3/?) by
the previous case analysis. In total this takes time O(m”*~2m?3/2) = O(m*~1/2). The proof
works in exactly the same way for minimization problems. |

Proof of Lemma 18. Let ¢ = maxy,, . ., #, d(x1, ..., 2k, y) be a MAXSP formula possi-
bly containing some hyperpredicates. We introduce a new binary relation N(z;,z;) defined
as follows: For any z;,z; € V it holds that N(z;,z;) = true if and only if ; and z; are
connected by some (hyper-)edge. Observe that any (hyper-)edge contributes to at most a
constant number of records N (z;,z;), so we can construct N in time O(m) and the sparsity
blows up only by a constant factor. We can now rewrite ¢ via

o = Ima}i # << /\ N(xiaxj)> A ¢0($17 s 7$k’y)>
Pty \ Nz

and

7/11"3' = maX # (N(xlaxj) A (rb(xla cee axk7y))7
T1yeTh gy

where ¢g is obtained from ¢ by replacing all occurrences of hyperpredicates by false. It

follows that we can express

OPT = max{OPTy, mjx OPT, ,},
i#j

where OPT) is the optimal value of 1y, and OPT; ; is the optimal value of v; ;. Observe
that ¥y is a MAXSPy, formula not involving any hyperpredicates, so we can by assumption
c-approximate OPTy in time T'(m). Moreover, the formulas 1); ; are precisely in the shape
to apply Lemma 19, so we can compute OPT; ; exactly in time O(m*~1/2). <
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Step 2: Removing Cross Edges

Next, the goal is to remove all binary predicates E(x;, ;) between two z-variables. Let us
call these predicates E(x;,x;) cross predicates and the associated entries (z;, ;) cross edges.

» Lemma 20. Suppose that, for any OPTSPy formula 1 not containing hyperpredicates
and cross predicates, OPT(3)) can be c-approzimated in time O(mF/s(m)). Then OPT(z))
can be c-approzimated in time O(mF /s(*/m)) for any OPTSPy, formula 1 not containing
hyperpredicates.

Proof. Let ¢ = maxy,,. .., #, d(x1,...,zE,y) and let By, ..., E, denote the cross predicates
in the given instance. We define

1o = max # (( /\ E£($i7xj)> /\¢0(l’1,---,9€k,y)>

L1y Tk L
Y 43,3
and

Yeyi,j = max # (Ee(xi,l"j) ANo(x1, ... ,xk,y)>,
T1,eTh oy
where ¢ € [r] and ¢ # j € [k] and ¢¢ is the propositional formula obtained from ¢ by
substituting all predicates E;(xz;,x;) by false. It is easy to verify that

OPT = max{OPT),, max OPTy; ;},
ird

where OPTy and OPTy; ; are the optimal values of MAX(vg) and MAX (¢ ;), respectively.
Using Lemma 19, we can compute OPT,; ; exactly in time O(m*~1/2) for all ¢,4,5. Tt
remains to efficiently solve MAX(tg) to compute OPTy.

As described before, we can always assume that each variable ranges over a separate set:
x; € X;, y €Y. We call a vertex ; heavy if it has degree at least *+/m, and light otherwise.
The first step is to eliminate all heavy vertices; there can exist at most O(m/**/m) many
such vertices z;. Fixing x;, we can solve the remaining problem in time O(m*~1) using
the baseline algorithm. We keep track of the optimal solution detected in this way. This
precomputation step takes time O(m”/*+/m) and afterwards we can safely remove all heavy
vertices.

Next, partition each set X; into several groups Xj 1,...,X; 4 such that the total degree
of all vertices in a group is O(**/m), and the number of groups is g = O(m/**/m). This is
implemented by greedily inserting vertices into X; ; until its total degree exceeds *+y/m. As
each vertex inserted in that way is light, we can overshoot by at most */m.

Let 1 := maxy, ... 4, #y oo(x1, ..., 2Tk, y); note that ¢ equals ¥y except that it disregards
the cross predicates. Therefore, by assumption we can c-approximate MAX(t)7) in time
O(m*/s(m)). The algorithm continues as follows:

k compute a c-approximation of Max(t1) on the

1. For all combinations (j1,...,j%) € [g]
input Xy ;,,..., Xk .. We keep track of the (g)mnk’_2 + 1 combinations with largest
values (breaking ties arbitrarily).

2. For any of the top-most (g) mn*~2 4+ 1 combinations (ji, ..., jx), solve MAX(¢)y) exactly
on X1 j,,...,Xk,j, using the baseline algorithm. Return the best solution detected in
this step or the precomputation phase.

We begin with the correctness of the algorithm. First, the value of any solution (z1,...,zk)

in MAX(1)g) is at least as large as its value in MAX(¢)). In particular, the optimal solution

of MAX(tp) has value at least OPT( in MAX(v1). We next establish an upper bound on
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the number false positives, that is, tuples (z1,...,x;) of different value in MAX (1)) than
in MAX(¢1). Observe that any such false positive contains at least one edge (z;,z;) and
since there are at most m edges, at most (g) choices of 4,j and at most n*~2 choices for
the remaining vertices x4, ¢ # i,j, we can indeed bound the number of false positives by
(g) mn*=2. Thus, if we witness the top-most (lzc)mnk_2 + 1 solutions of MaAX(¢1) in step 1,
among these there exists at least one solution of value > OPTy/c in MAX(¢).

Finally, let us bound the running time of the above algorithm. Recall that removing heavy
vertices accounts for O(m*/*+/m) time. In step 1, the MAX(3;) algorithm is applied g*
times on instances of size O(*®/m), which takes time O((m/**/m)¥ - (*/m)*/s(**/m)) =
O(m*/s(*R/m)). Step 2 runs the baseline algorithm mn*~2 = O(m*~1) times on instances
of size O(*+/m), which takes time O(m*~1(*+/m)¥) = O(m*/**/m). Thus, the total
running time is O(m”/*/m + m¥/s(*+/m)). As s(m) < m, this is as claimed. The proof
for the maximization variant is complete and there are only minor adaptions necessary for
minimization. <

Step 3: Removing Parallel Edges

After applying the previous steps we can assume that ¢ is an OPTSP, formula not containing
hyperedges or cross edges. Let Eq,..., E, be the binary relations featured in 1. We say
that 1 does not have parallel edges if r = 1. In an instance of OPT(¢) with parallel edges,
any pair of vertices (z;,y) may be connected by up to r parallel edges, or equivalently by
an edge of 2" possible colors. We adopt the second viewpoint for this step: Let x(x;,y) :=
(Br(4,Y)s -+, Br(z4,y)) € {0,1}" be the color of the edge (z;,y) and let x(z1,..., %k, y) :=
(x(x1,9), .-, x(x1,v)) € ({0,1}")* be the color of the tuple (z1,...,zx,y).

» Lemma 21. Suppose that, for any OPTSPy, formula v not containing hyperedges, cross
edges and parallel edges, OPT(v)) can be c-approzimated in time O(mF/s(m)). Then OPT(3))
can be c-approzvimated in time O(m*/s(m)) for any OPTSPy formula v not containing
hyperedges and cross edges.

Proof. Let E1,..., E, denote the binary relations featured in the given instance; our goal
is to construct a new instance with only a single edge predicate E. We leave the vertex
sets X; unchanged and construct Y’ = {y, : y € Y,a € ({0,1}")*}, i.e., each vertex
y € Y is copied 2"F = O(1) times and each copy ¥, is indexed by a k-tuple of colors
a=(ai,...,a;) € ({0,1}")k. For every a we also introduce a new unary predicate C,, and
assign Cy (Yo ) if and only if o = /.

Now let i € [k] and let z; € X; and y € Y be arbitrary vertices in the original instance.

We assign the edges in the constructed instance as follows. If x(z;,y) = 0 = (0,...,0),
then z; and y are not connected and we do not introduce new edges. So suppose that
x(xi,y) #0. Then we add 2 - 2" =1 edges

E(xi,yp), for all 8 € ({0,1}")* with 8; = x(z4,9), and

E(zi,y,), for all v € ({0,1}")* with v; = 0.
Clearly the sparsity of the new instance is bounded by 2 - 2"*~Vm = O(m) plus the
contribution of the new unary predicates which is also O(m).

Now let ¢ = opt,, ., #,é(z1,...,2x). To define an equivalent MAXSP;, formula ¢,
for any a € ({0,1}7)* let ¢, denote the formula obtained from ¢ by substituting F;(x;,y)
by true if a; j = 1 and by false otherwise. We define ¢ = max,, ., #, ¢ (v1,..., Tk, ),
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where ¢'(z1, ..., 2, y) is

\/ ) (Ca(y)/\< /\ (B(zi,y) <= 7&0)> /\¢a($17-~-,$k7y)>'

T i
ac({0,1}7) (i) €lk] (iii)

(ii)

As desired, the constructed instance contains only a single binary predicate and no cross or
hyperedges. It remains to argue that the value of any tuple (z1,..., ) is not changed by
the reduction. Indeed, for all y € Y we prove the following two conditions and thereby the
claim.

(X1, Ty Ya) = O(21, .. Tk, y) for a = x(21, ..., 2k, Y),

&' (X1, .. Tk, Yo) = false for all a # x(x1,..., Tk, Y).
The first bullet is simple to verify: In the evaluation of ¢'(z1,. .., Zk, yo) we only have to focus
on the a-disjunct by the constraint (i). The constraint (ii) is satisfied by our construction of £
and therefore only (iii) is decisive: ¢'(x1, ..., %k, Ya) = Pa(X1y- - Tk, Ya) = O(T1, - - -, Th, Y)-
Next, focus on the second bullet. For a # x(x1,..., Tk, y) there exists some index i such
that «; # x(x;,y). By (i), we again only need to consider the a-disjunct. We now prove that
E(xz;,y) < «; = 0 which falsifies (ii) and shows ¢'(z1,..., 2z, ya) = false. On the one
hand, if «; # 0 then there is no edge E(x;,ya), since 0 # «; # x(x;,y). On the other hand,
if a; = 0 then we added an edge E(z;, ya). <

Step 4: Removing Unary Predicates

As the final simplification, we eliminate unary predicates and show that the resulting problem
can be reduced to the Hybrid Problem.

Proof of Lemma 17. By applying the reductions in Lemmas 18, 20 and 21, it suffices to
show that any OPTSPy, property ¥ not containing hyperpredicates, cross edge predicates and
parallel edge predicates can be reduced to the Hybrid Problem. The shape of 1 is significantly
restricted and contains only the following three types of relations: Unary predicates on
X1,..., Xk, unary predicates on Y and binary predicates of the form E(x;,y) for i € [k].

We can assume that there are no unary predicates on X, ..., X} as follows: By enumerat-
ing all possible assignments of these unary predicates, and by restricting the sets Xq,..., X
to those vertices matching the current assignment, we create a constant number of instances
each without unary predicates on Xj,..., Xk.

This leaves only unary predicates on Y and the edge predicates E(x;,y). Let ¢ =
OPty,  zp #y O(T1, ..., 2k, y). Another way to view this problem is associate a Boolean
function ¢, : {0,1}* — {0,1} to every vertex y € Y, which takes as input E(x;,y) and does
no longer depend on the unary predicates of y. In that way, we can rewrite the objective as

opt # dy(E(z1,y),. ... E(zk,y)).

T1,..., Tr Y

Our goal is now to reinterpret this problem as an instance of the Hybrid Problem. As the
universe, we assign

U= {(y, 7):y €Y, € {0,1}" is a satisfying assignment of (by},

along with the partition U = Ure{o,l}k U;, U =UN (Y x {r}). For every vertex z; € X,
we construct a set S; € S; as S; = {(y,7) : E(x;,y)} NU. It is easy to check that the value
of every solution is preserved in this way: Val(Si,...,Sk) = Val(zy,...,2zx). The overhead
of this rewriting step is O(m) and thus negligible in the running time bound. <
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