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Abstract
We study the unsplittable flow on trees (UFT) problem in which we are given a tree with capacities
on its edges and a set of tasks, where each task is described by a path and a demand. Our goal is
to select a subset of the given tasks of maximum size such that the demands of the selected tasks
respect the edge capacities. The problem models throughput maximization in tree networks. The
best known approximation ratio for (unweighted) UFT is O(log n). We study the problem under
the angle of FPT and FPT-approximation algorithms. We prove that

UFT is FPT if the parameters are the cardinality k of the desired solution and the number of
different task demands in the input,
UFT is FPT under (1 + δ)-resource augmentation of the edge capacities for parameters k and
1/δ, and
UFT admits an FPT-5-approximation algorithm for parameter k.

One key to our results is to compute structured hitting sets of the input edges which partition the
given tree into O(k) clean components. This allows us to guess important properties of the optimal
solution. Also, in some settings we can compute core sets of subsets of tasks out of which at least
one task i is contained in the optimal solution. These sets have bounded size, and hence we can
guess this task i easily.

A consequence of our results is that the integral multicommodity flow problem on trees is FPT
if the parameter is the desired amount of sent flow. Also, even under (1 + δ)-resource augmentation
UFT is APX-hard, and hence our FPT-approximation algorithm for this setting breaks this boundary.
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1 Introduction

The unsplittable flow on trees (UFT) problem is a natural problem which models throughput
maximization in tree networks. We are given a tree G = (V, E) where each edge e has
a capacity u(e) ∈ N. Also, we are given a set of tasks T where each task i ∈ T is
described by a path P (i) ⊆ E and a demand d(i) ∈ N. Our goal is to select a set of tasks
T ′ ⊆ T of maximum cardinality whose combined demands respect the edge capacities, i.e.,∑

i∈T ′:e∈P (i) d(i) ≤ u(e) for each edge e. Hence, one application is that each task models a
possible transmission between two nodes in a (tree) network in which the edges have bounded
capacities. Note that UFT generalizes the integral multi-commodity flow on trees problem1

1 In the integral multi-commodity flow on trees problem we are given a tree G with edge capacities u,
and additionally pairs si, ti ∈ V of source and sink vertices. The goal is to select an integral amount of

© Tomás Martínez-Muñoz and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 67; pp. 67:1–67:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmartinez@dim.uchile.cl
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.ESA.2021.67
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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which is known to be APX-hard [19]. Also, it generalizes the well-studied unsplittable flow
on path (UFP) problem which has several applications, e.g., in caching [14], scheduling [4],
and bandwidth allocation [12]. For UFT there is a O(log n)-approximation algorithm [10]
(and O(log2 n)-approximation algorithms for the weighted case [10, 18] and for submodular
objective functions [1]). In particular, it is open to construct a O(1)-approximation algorithm
for UFT.

In order to obtain better approximation ratios for combinatorial optimization problems,
one can study them under the angle of FPT-approximation algorithms. In such algorithms,
one defines some quantity to be a fixed parameter k which we define to be the size of the
desired solution for our case of UFT, and then ensures that the running time is of the
form f(k)nO(1) for some computable function f . Furthermore, for UFT we define that an
FPT-α-approximation algorithm is an algorithm that either computes a solution of size at
least k/α or asserts that there is no solution of size k. In the last years there several such
results have been found for different problems. For example, for k-Median and k-Means
there are tight FPT-approximation algorithms known with approximation ratios of 1+2/e+ϵ

and 1 + 8/e + ϵ, respectively [15], while the best known polynomial time algorithms for the
problems have ratios of 2.611 [8] and 6.357 [3], respectively. For Facility Location there
is an FPT-approximation algorithm with a ratio of essentially 1.463 + ϵ [15] which matches a
known lower bound for (pure) approximation algorithms [21], while the best known upper
bound is 1.488 [23]. For the capacitated versions of k-Median and k-Means there are
FPT-(3 + ϵ)- and FPT-(9 + ϵ)-approximation algorithms known, respectively [16] while the
best known polynomial time approximation ratio is only O(log k) based on an algorithm
in [9] (see also [2]). For UFP there is an FPT-(1 + ϵ)-approximation algorithm [25] while
the best known polynomial time approximation ratio is only 5/3 + ϵ [20]. For some W[1]-
hard problems, there are even FPT-approximation algorithms known whose approximation
ratios beat the best possible ratios of pure approximation algorithms. For example, for the
Strongly Connected Steiner Subgraph problem, there is an FPT-2-approximation
algorithm known when parametrized by the number of terminals [13], but there is a lower
bound of O(log2−ϵ n) for (pure) approximation algorithms [22]. We refer to the surveys by
Marx [24] and Feldmann et al. [17] for more results.

Given that for the mentioned problems FPT-approximation algorithms were found with
better ratios than the best known (pure) approximation algorithms, this raises the question
whether this is also possible for UFT. In this paper we answer this question in the affirmative
and also show that certain special cases of UFT are even FPT.

1.1 Our contribution
Our first result is that UFT admits an exact FPT-algorithm if the parameters are k and the
number d̄ of different task demands in the input. Our first step is to compute a hitting set,
i.e., a subset of the edges such that each input task uses at least one of them. Via a routine
in [19] we construct a structured hitting set of size O(k) or directly a solution of size k (in
which case we are done). In particular, our hitting set partitions the tree into O(k) clean
components. Then we consider an edge e from the hitting set such that there is no edge
from the hitting set underneath e. We consider all input tasks that use e but no other edge
from the hitting set, let us denote them by T ′. Using some properties of our hitting set,
we show that that in FPT time we can compute a core set of size f(k, d̄) for T ′ (for some

flow to send between each pair (si, ti), in order to maximize the total amount of sent flow.



T. Martínez-Muñoz and A. Wiese 67:3

function f) which is a set T ′′ ⊆ T ′ such that we can assume w.l.o.g. that T ′′ contains all
tasks from T ′ ∩ OPT. Therefore, in some sense, T ′′ forms a kernel for T ′ (in the sense of
being a smaller instance that we reduce our given instance to). This allows us to guess a
task in T ′ ∩ OPT in time f(k, d̄) or we guess that T ′ ∩ OPT = ∅. In either case we make
progress: either we find a task in OPT or we can delete one of the O(k) edges of the hitting
set. Therefore, our algorithm has only O(k) iterations overall and in each of them there are
only f(k, d̄) + 1 options for our guesses.

▶ Theorem 1. There is an FPT-algorithm for UFT for parameters k and d̄ with a running
time of kO(k·d̄k) · O(n2).

Note that the above mentioned integral multi-commodity flow problem (on trees) can be
modeled by UFT instances in which d(i) = 1 for each task i and hence d̄ = 1. Therefore,
we obtain an FPT-algorithm for this problem as a by-product. In particular, note that this
problem is APX-hard [19] while our algorithm computes an optimal solution of size k.

▶ Corollary 2. There is an FPT-algorithm for integral multi-commodity flow on trees where
the parameter k denotes the amount of sent flow.

Using the algorithm for UFT above we construct an FPT-algorithm for the general case
of UFT under (1 + δ)-resource augmentation: our algorithm either computes a solution of
size k that is feasible if we increase the capacity of each edge by a factor 1 + δ, or we assert
that there is no solution of size k for the original edge capacities. Key for this is to use the
available recource augmentation to reduce the given instance to a set of smaller instances in
which the input tasks have only O(log((k/δ)k)) different demands. On each of these instances
we invoke the algorithm from above and combine the obtained solutions. Due to the resource
augmentation, we can ensure that this union forms a feasible solution.

▶ Theorem 3. There is an FPT-algorithm for UFT under (1 + δ)-resource augmentation
with a running time of k(k/δ)O(k)

nO(1).

Note that our results implies an (exact) FPT-algorithm for UFP (i.e., on paths, rather
than trees) under (1 + δ)-resource augmentation, which was not known before. Also, already
UFP is W[1]-hard [25] for parameter k (and hence also UFT), which justifies that we use
resource augmentation or the additional parameter d̄. Furthermore, it establishes a distinction
in comparison to (pure) approximation algorithms for UFT, since UFT is still APX-hard
under resource augmentation, assuming that δ is sufficiently small.

▶ Theorem 4 (implied by [19, Section 4]). UFT is APX-hard under (1 + δ)-resource augment-
ation for any δ < 1/2.

Then we present an FPT-5-approximation algorithm for UFT (i.e., without resource
augmentation) where the fixed-parameter is only k (and not also d̄). Recall that the best
known polynomial time approximation algorithm for (unweighted) UFT has an approximation
ratio of only O(log n). Intuitively, let i∗ ∈ OPT be the task of smallest demand in OPT.
We guess which edges of our hitting set are used by i∗. Then we select the input task i of
smallest demand that uses exactly these edges of the hitting set. By an exchange argument,
we show that there are seven task in OPT such that we can replace these seven (unknown)
tasks in OPT by our (known) task i and still obtain a feasible solution. For proving this, we
again exploit some structural properties of our hitting set. Intutively, our task i pays for
seven tasks in OPT. This yields a 7-approximation algorithm when we iterate this routine
(and this argument). In order to improve the approximation ratio to 5, we guess additional
properties of i∗ such that we can compute a task i′ which we can replace by only five tasks
from OPT. This yields an FPT-5-approximation algorithm.

ESA 2021
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▶ Theorem 5. There is an FPT-5-approximation algorithm for UFT with a running time of
kO(k)nO(1).

1.2 Other related work

For the mentioned integral multi-commodity flow problem on trees there is a 2-approximation
algorithm in the unweighted case [19] and a 4-approximation algorithm in the weighted
case [11]. Under the no-bottleneck-assumption (NBA), i.e., assuming that maxi∈T d(i) ≤
mine∈E u(e) there is a 48-approximation algorithm for UFT [11]. For uniform edge capacities
and bounded node degrees, there is a 3.542-approximation algorithm for UFT [6]. For UFP
there is no better approximation algorithm known under uniform edge capacities (and hence
neither for the NBA) than the mentioned (5/3 + ϵ)-approximation for the general case [20].
However, UFP admits a QPTAS [5, 7], i.e., a (1 + ϵ)-approximation in time n(log n)O(1)

for any constant ϵ > 0, while for UFT a QPTAS is unlikely to exist since the problem is
APX-hard [19].

2 Hitting sets and structuring the tree

In all our algorithms we will use hitting sets as the backbone of our computations. We define
that a hitting set is a set of edges E′ ⊆ E such that each input task uses at least one edge
in E′, i.e., P (i) ∩ E′ ≠ ∅ for each i ∈ T . In this section, first we show that a result in [19]
implies that in time nO(1) we can compute a hitting set of size at most 2k or directly find a
solution of size k. Then, we use this as a base to compute a more structured hitting set Ehs
of size O(k). Afterwards, we use Ehs to partition the tree G and establish some structural
properties that we can assume without loss of generality. Throughout the paper, we denote
by n the number of bits in the input.

First, we invoke the mentioned result to compute an initial hitting set E′.

▶ Lemma 6 (implicit in [19, Section 5]). There is an algorithm with a running time of nO(1)

that either outputs a set of tasks T ′ with |T ′| = k such that P (i) ∩ P (i′) = ∅ for all i, i′ ∈ T ′

with i ̸= i′, or it outputs a hitting set E′ with |E′| ≤ 2k.

If the algorithm returns a set T ′ of k tasks with the mentioned properties then we can
simply output T ′ since it forms a feasible solution. Assume now that the algorithm returns a
hitting set E′. We want to add more edges to E′ in order to obtain a more structured hitting
set. For any two edges e, e′ we define lca(e, e′) to be the vertex that is the least common
ancestor of the (up to four) vertices incident to e and e′; also, we denote by Pe,e′ ⊆ E the
(unique) path in G that contains e and e′. Intuitively, a hitting set is good if for any two
edges e, e′ ∈ Ehs the edges of Pe,e′ incident to lca(e, e′) are also in the hitting set.

▶ Definition 7. A hitting set Ehs is good if for any two edges e, e′ ∈ Ehs we have that
δ(lca(e, e′)) ∩ Pe,e′ ⊆ Ehs.

We construct a good hitting set Ehs based on E′ as follows. We take all edges in E′, and
for any two edges e, e′ ∈ E′ we add the edges in δ(lca(e, e′)) ∩ Pe,e′ , see Figure 1. By some
standard tree arguments one can show that then |Ehs| ≤ 6k. Also, Ehs is a good hitting set.

▶ Lemma 8. Given a hitting set Ē′, in time nO(1) we can construct a good hitting set Ēhs
with |Ēhs| ≤ 3|Ē′|.
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Figure 1 Assume that the red edges form a hitting set Ē′. Then the union of the red and orange
edges forms a good hitting set Ēhs. Given the red edges, the orange edges are selected according to
the proof of Lemma 8.

2.1 Backbone and hanging trees
Let Ehs denote the good hitting set obtained by applying Lemma 8 to E′. We use Ehs in
order to partition the edges of G into a backbone of highway edges (that will contain Ehs)
and some subtrees which we will call hanging trees. First, we are interested in the edges that
lie on some path that connects two edges in Ehs (see Figure 2). We say that an edge e ∈ E

is a highway edge if there are two edges e′, e′′ ∈ Ehs such that e ∈ Pe′,e′′ . Let E⋆
hs denote the

set of all highway edges and note that Ehs ⊆ E⋆
hs. Intuitively, E⋆

hs forms a backbone of G.
Note we cannot bound |E⋆

hs| by a function of k only. On the other hand, we observe that
G[E⋆

hs] is a tree. If an edge e ∈ E⋆
hs is incident to a leaf in G[E⋆

hs] then we say that e is a
final edge. Observe that then e ∈ Ehs and thus there are at most 6k final edges. The final
edges will play a special role later.

We say that the edges in E \ E⋆
hs are black edges. Note that they form trees. For each

connected component H of G[E \ E⋆
hs] (i.e., the subgraph of G induced by E \ E⋆

hs), we say
that H forms a hanging tree and we define its root s to be the vertex of H that is closest to
the root of G. In the sequel, we will write Hs for a hanging tree with root s. For a hanging
tree Hs we say that its depth is the maximum distance of a vertex in Hs to s.

By some easy transformations, we can ensure that the depth of each hanging tree Hs

is bounded by a function in k and d̄ := |{di|i ∈ T }|, i.e., d̄ is the number of different task
demands in the input. To this end, we note that if there are two edges e, e′ ∈ Hs appearing
in this order on the path from s to a leaf of Hs and u(e) ≤ u(e′), then we can contract e′

since any input task Ti using e′ also uses e (since P (i) uses at least one edge of Ehs and hence
P (i) must pass through s). Also, we can assume w.l.o.g. that for each edge e its capacity
u(e) is the sum of the demands of at most k input tasks. With these ideas, we can prove the
following lemma for which the intuition is that D is bounded by some parameter.

▶ Lemma 9. In time O(n2) we can construct an equivalent instance (G′, T ′) in which the
depth of every hanging tree is at most (d̄ + 1)k + 1.

3 Parameterized algorithm for UFT

In this section we present an FPT-algorithm for UFT, assuming that our fixed parameters
are k and d̄ (recall that d̄ is the number of different task demands in the input). In particular,
this shows that UFT is FPT if all tasks have unit demands (which is APX-hard).

ESA 2021



67:6 FPT and FPT-Approximation Algorithms for UFT

r E \ E⋆

hs

E
⋆

hs
\ Ehs

Ehs

Figure 2 Partition of E, where Ehs are the edges in the good hitting set, E⋆
hs are the edges in

highway paths, and E \ E⋆
hs are the edges in hanging trees.

Our strategy is to identify a subset T ′ ⊆ T of tasks for which we can compute a core set
which is intuitively a subset K ⊆ T ′ for which we can assume that it contains all tasks in
T ′ ∩ OPT for some optimal solution OPT. We will ensure that the size of our core set is
bounded by a function in k and d̄. Hence, in some sense it is a kernel for the set T ′.

▶ Definition 10. Given a set T ′ ⊆ T , we say that a set K ⊆ T ′ is a core set for T ′ if for
every feasible set of tasks S ⊆ T there exists a feasible set of tasks S ′ such that |S ′| = |S|,
S ′ \ T ′ = S \ T ′, and S ′ ∩ T ′ ⊆ K.

We will ensure that |K| ≤ f(k, d̄) for our computed core sets K, for some function f .
Hence, having computed K, in time O(f(k, d̄)) we can guess a task from T ′ ∩ OPT or guess
that T ′ ∩ OPT = ∅. In our main algorithm, we will compute O(k) core sets for different sets
T ′, guess which of their tasks are in OPT, and in this way eventually find a solution of size
k in time (f(k, d̄))O(k)nO(1).

First, we prove some basic properties of core sets.

▶ Lemma 11. Let T1, . . . , Tℓ be subsets of T . If K1, . . . , Kℓ are core sets for T1, . . . , Tℓ,
respectively, then

⋃ℓ
i=1 Ki is a core set for

⋃ℓ
i=1 Ti.

▶ Lemma 12. Let T ′ and T ′′ with T ′′ ⊆ T ′ ⊆ T . If K is a core set for T ′′ and T ′′ is a
core set for T ′ then K is also a core set for T ′.

3.1 Constructing core sets
We first present an algorithm Akr that computes a core set for any set of tasks T ′ for which
intuitively there are two hanging trees H, H ′ such that all tasks in T ′ start in H and end
in H ′. Formally, the input of Akr consists of a path P = Ps,t for two nodes s and t that lie
in two different hanging trees H, H ′, and of a value d ∈ N which is the demand of some
input task. Let T ′ denote the set of all tasks i ∈ T such that P (i) contains the path P ,
d(i) = d, and each edge of P (i) \ E⋆

hs lies in H or H ′. The algorithm Akr computes a core
set K for T ′. For each node v in some hanging tree H denote by pv the maximum distance
of v to a leaf of H. Recall that by Lemma 9 we can assume that for every v ∈ V follows that
pv ≤ (d̄ + 1)k + 1. For any two vertices v, v′ denote by Pv,v′ the (unique) path from v to v′,
and for each vertex v denote by δ(v) the set of edges incident to v.



T. Martínez-Muñoz and A. Wiese 67:7

The algorithm Akr(P, d) works as follows:
1. If ps = pt = 0 then return an arbitrary subset of T ′ of size min{k, |T ′|}.
2. Otherwise, construct greedily a subset A ⊆ T ′ of tasks such that for every pair i ≠ j it

holds that P (i) ∩ P (j) = P : keep adding tasks to A until |A| = 2k or if the property
would not be fulfilled if we added an additional task i ∈ T ′ \ A to A.

3. If |A| = 2k then return A.
4. If |A| < 2k then let E be the set of edges in (δ(s) ∪ δ(t)) \ P that are used by tasks in A.
5. For every edge ej ∈ E compute Kj = Akr(P ∪ {ej}, d)
6. Return K =

⋃
ej∈E Kj .

We want to show that Akr(P, d) returns a core set for T ′ . Observe that |Ē| ≤ O(k), the
recursion depth is bounded by O((d̄ + 1)k), and hence we output at most kO((d̄+1)k) tasks
in total. Intuitively, if in a recursive call it holds that |A| < 2k then Ē contains all edges
in (δ(s) ∪ δ(t)) \ P that are used by tasks in T ′. Thus, for each task i ∈ T ′ there will be a
recursive call Akr(P ∪ {ej}, d) such that P (i) ⊆ P ∪ {ej}. On the other hand, if |A| = 2k in
some recursive call then A itself is a coreset for this call: if OPT contains a task i ∈ T ′ \ A

then by the pigeon hole principle there must be another task i′ ∈ A \ OPT such that no
task in OPT uses an edge in P (i′) \ P and hence we can swap i and i′ in OPT, using that
d(i) = d(i′). We formalize this in the following lemma.

▶ Lemma 13. Let s, t be two nodes in two different hanging trees, let d ∈ N, and let
T ′ = {i ∈ T |Ps,t ⊆ P (i) ∧ d(i) = d}. Then Akr(Ps,t, d) returns a core set for T ′ of size at
most (4k)ps+pt · k in time (4k)ps+pt · k · O(n).

Proof. Let Ts,t be the set of tasks i ∈ T such that Ps,t ⊆ P (i). We define the instance depth
to be ps + pt, and we give a proof by induction on the instance depth. In the base case
ps = pt = 0. Then in the first step of the algorithm two options can arise:

K = T ′. In this case it follows directly that K is a core set for T ′.
K ̸= T ′. Let OPT be a feasible solution of size k. In this case it follows that K has size
2k, and then we can replace all the tasks in OPT ∩ T ′ by tasks of K.

Now consider the case that ps + pt > 0. Given an edge ej ∈ E, let sj and tj be the end nodes
of the path P ∪ {ej}. It follows that T ′ ∩ Tsj ,tj

is the set of tasks in T ′ that uses ej . Since
|Psj ,tj

| = |Ps,t| + 1, then psj
+ ptj

= ps + pt − 1, implying by the inductive hypothesis that
Kj is a core set of T ′ ∩ Tsj ,tj

. We define T ′′ =
⋃

j∈{1,...,|E|} T ′ ∩ Tsj ,tj
. Lemma 11 implies

that K is a core set for T ′′. It remains to show that T ′′ is a core set for T ′. If |A| < 2k then
each task in T ′ uses an edge from E, which implies that T ′ = T ′′, so we conclude that T ′′ is
a core set for T ′. Since K is a core set for T ′′ and T ′′ is a core set for T ′, the Lemma 12
implies that K is a core set of T ′.

Assume now that |A| = 2k. Let OPT be a feasible solution of size k, such that among
all solutions OPT′ of size k with OPT \ T ′ ⊆ OPT′, the solution OPT is the solution that
maximizes

∣∣OPT′ ∩ A
∣∣. Let us assume that there is a task i ∈ (OPT ∩ T ′) \ A. Each task in

OPT shares an edge in E \ P with at most two tasks from A. Therefore, there are at most
2(k − 1) tasks i′ ∈ A such that P (i′) \ P contains an edge that is used by some task in OPT.
Therefore, there exists a task i′′ ∈ A such that no edge in P (i′′)\P is used by any tasks in OPT.
Therefore, OPT ∪ {i′′} \ {i} is a feasible solution and |(OPT ∪ {i′′} \ {i}) ∩ A| > |OPT ∩ A|
which is a contradiction. Therefore, A is a core set for T ′.

Now we analyse the running time of Akr. Each of the recursive calls generated by Akr is
associated to a path Psi,ti

such that |Psi,ti
| = |Ps,t| + 1, and therefore psi

+ pti
≤ ps + pt − 1.

Therefore, the recursion depth is at most ps + pt. In the recursion tree each node has at most

ESA 2021
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v1

v2

v3

v4

e1
e2

e3

e4

e
∗

u

i4

i3

i2

i1

Figure 3 The sets A = {i1, i2, i3, i4}, V = {v1, v2, v3, v4}, and E = {e1, e2, e3, e4} as they are
defined in algorithm Afin(P, d).

4k childrens. If in a leaf of the recursion tree a core set is returned, this core set contains
at most k tasks. We conclude that K is a core set of size at most (4k)ps+pt · k which we
compute in time (4k)ps+pt · k · O(n). ◀

We will use Akr as a subroutine in a different algorithm Afin for computing core sets which
we describe now. Let e∗ be a final edge. Let H(e∗) be the hanging tree underneath e∗, i.e.,
that is rooted at the vertex incident to e∗ that is further away from the root. The input of
Afin consists of a path P ⊆ H(e∗)∪{e∗} and of a value d ∈ N which is intuitively the demand
of some input task. Let T ′ denote the set of all tasks i such P ⊆ P (i), P (i) ∩ Ehs = {e∗}
and d(i) = d. The algorithm Afin will compute a core set for T ′. In order to present the
algorithm, we introduce some definitions. We say that a task i ∈ T ′ turns at a node v if v is
the endnode of the path P (i) ∩ E⋆

hs that is closest to the root. For each task i we denote by
v(i) the vertex at which i turns. We define that the level ℓ(i) of a task i ∈ T ′ is the distance
between v(i) and e∗, i.e., the number of edges of the path that connects v(i) with the vertex
incident to e∗ that is closer to the root.

Our algorithm Afin(P, d) works as follows (see Figure 3 for an illustration):
1. Initialize A = ∅. Consider tasks in T ′ ordered non-decreasingly by their levels, add each

task i ∈ T ′ to A if for each previously added task i′ ∈ A it holds that P (i)∩P (i′) ⊆ E⋆
hs∪P .

Stop if |A| = 2k or if no more task in T ′ can be added to A.
2. Let V =

{
v1, ..., v|V ′|

}
be the vertices at which the tasks in A turn, u be the endvertex

of P that is in H(e∗), and E be the set of edges in δ(u) \ P that are used by tasks in A.
3. For every vertex vj ∈ V we compute Kkr

j = Akr(Pvj ,u, d).
4. For every edge ej ∈ E we define Pj = P ∪ {ej} and compute Kfin

j = Afin(Pj , d).
5. Return

K =

 ⋃
j∈{1,...,|V |}

Kkr
j

 ∪

 ⋃
j∈{1,...,|E|}

Kfin
j

 .
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We want to show that Afin(P, d) computes a core set with bounded size for T ′. If |A| = 2k

we can show by an exchange argument that there is an optimal solution OPT such that
each task in OPT ∩ T ′ turns at some vertex in V ′ or use some edge in E′. If |A| < 2k one
can show that this is automatically satisfied. In the calls to Akr we obtain core sets that
together contain all tasks in OPT ∩ T ′ that turn at some vertex in V ′. The recursive calls
to Afin compute core sets that together contain all tasks in OPT ∩ T ′ that use some edge
in E′. Observe that for Afin the tasks are ordered, favoring tasks of lower level, since those
intutively use less edges on E⋆

hs and thus intersect with fewer other tasks on these edges. We
define pmax to be the maximum value pu over all nodes v ∈ V . Since due to Lemma 9 we
can assume that that pv ≤ (d̄ + 1)k + 1 for every v ∈ V , we obtain that pmax ≤ (d̄ + 1)k + 1.

▶ Lemma 14. Let e∗ be a final edge, let P ⊆ H(e∗) ∪ {e∗} be a path, and let T ′ be the set
of all tasks i such that P ⊆ P (i), P (i) ∩ Ehs = {e∗}, and d(i) = d. The algorithm Afin(P, d)
computes a core set for T ′ of size at most (4k)2pmax · k in time (4k)2pmax · k2 · O(n).

3.2 UFT Algorithm
Now we describe our main FPT-algorithm for UFT which will use Afin(e, d) as a subroutine.
Recall that there are at most 6k edges in Ehs. We take an arbitrary final edge e ∈ Ehs.
We guess whether there is a task i ∈ OPT that uses e but no other edge in Ehs, i.e., such
that P (i) ∩ Ehs = {e}. If yes, we guess d(i) for which there are only d̄ options. Then we
call Afin(e, d(i)) and obtain a core set K of size at most (4k)2pmaxk2. Assume w.l.o.g. that
OPT is an optimal solution with the property that K contains all tasks in OPT that use e

but no other edge in Ehs (using that K is a core set). In time (4k)2pmaxk2 we guess a task
i ∈ K ∩ OPT. We add i to our computed solution and remove i from the set of input tasks
T . We update the edges capacities, taking into account that we selected i, i.e., we update
u(e) := u(e) − d(i) for each edge e ∈ P (i). At this point, we remove from T each task
i′ ∈ T such that u(e) < d(i) for some edge e ∈ P (i). We keep on guessing whether there
is a task i ∈ OPT that uses e but no other edge in Ehs, i.e., P (i) ∩ Ehs = {e}. If yes, we
repeat the process above. Otherwise, we know that there is no more task i ∈ OPT with
P (i) ∩ Ehs = {e}. Then we remove e from Ehs, we remove from T all input tasks i with
P (i) ∩ Ehs = {e}, and we define E⋆

hs newly based on the changed set Ehs. Then we apply
Lemma 9 to the resulting instance.

We repeat the above process with a final edge e′ in the (changed) set Ehs (note that
possibly e′ was not a final edge in the original set Ehs). We continue until we selected k tasks
in total. If all our guesses were correct, then S forms a feasible solution. Moreover, there
are at most O(k) guesses in total with at most d̄ · (4k)2pmaxk2 possibilities for each guess: if
we guess that there is a task i ∈ OPT with P (i) ∩ Ehs = {e} then subsequently we select
such a task and this happens at most k times. On the other hand, if we guess that there is
no task i ∈ OPT with P (i) ∩ Ehs = {e} then subsequently we remove e from Ehs and the
initial set Ehs has only O(k) edges. For each guess there are at most d̄ · (4k)2pmaxk2 options.
Hence, there are only

(
d̄ · (4k)2pmaxk2)O(k) possibilities for all our guesses overall. Therefore,

we obtain a running time of kO(k·d̄k) · O(n2) overall, which yields the proof of Theorem 1.

4 Resource augmentation

In this section we present an FPT-algorithm for UFT under (1 + δ)-resource augmentation.
Formally, we present an algorithm with a running time of the form f(k, δ)nO(1) for some
computable function f that outputs a set S ⊆ T with |S| = k that is feasible under (1 + δ)-
resource augmentation, i.e.,

∑
i : i∈S∩Te

d(i) ≤ (1 + δ)u(e) for each e ∈ E, or outputs that
there is no solution of size k (for the original edge capacities).
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Our strategy is to split the input tasks T into groups such that the demands of any two
tasks in different groups differ at least by a factor k/δ. Then we can compute a solution for
each group separately and their union is a (global) solution under resource augmentation, as
the following lemma shows.

▶ Lemma 15. Consider sets of tasks {Tj}j∈N with Tj ⊆ T for each j ∈ N such that for
each j, j′ ∈ N with j ̸= j′ and any two tasks Ti ∈ Tj, Ti′ ∈ Tj′ it holds that d(i) > k

δ d(i′)
or d(i′) > k

δ d(i). For each j ∈ N let Sj ⊆ Tj be a solution with at most k tasks that is
feasible under (1 + δ′)-resource augmentation for some δ′ ≥ 0, and suppose that δ < 1/2.Then⋃

j∈N Sj is feasible under (1 + 2δ′ + 2δ)-resource augmentation.

On the other hand, if we can ensure that within each group the task demands differ by at
most a factor (k/δ)k, then we can compute a solution of size k for this group that is feasible
under (1 + δ)-resource augmentation as follows: we first round the task demands to powers
of 1 + δ and then invoke our algorithm due to Theorem 1, using that the number of different
task demands is only log1+δ((k/δ)k).

▶ Lemma 16. Consider a set of tasks T ′ ⊆ T such that for any two tasks i, i′ ∈ T ′ it
holds that ( δ

k )kd(i) ≤ d(i′) ≤ ( k
δ )kd(i). Then in time k

O
(

kk+2·(log1+δ(k/δ))k+1)
· O(n2) we can

compute for any k′ ≤ k a solution S ′ ⊆ T ′ of size k′ that is feasible under (1 + δ)-resource
augmentation, or assert that there is no solution of size k′ (for the original edge capacities).

Now with a shifting argument we can guess sets of tasks {Tj}j∈N that satisfy the condition
of Lemma 15, such that each set Tj satisfies the condition of Lemma 16, and additionally⋃

j∈N Tj contains a solution of size k. We apply Lemma 16 to each set Tj to find the largest
k′ ≤ k for which there exists a solution, denote by Sj the largest solution found, and output
the union

⋃
j∈N Sj which is feasible under (1 + 4δ)-resource augmentation due to Lemma 15.

▶ Theorem 17. There is an FPT-algorithm for UFT under (1 + δ)-resource augmentation
with a running time of k

O
(
(k·log1+δ(k/δ))k+2)

· O(n2).

5 FPT-approximation algorithm

In this section we present an FPT-5-approximation algorithm for UFT, i.e., given a para-
meter k, in time f(k)nO(1) our algorithm either finds a solution of size k/5 or asserts that
there are no solution of size k. First, we present a simpler FPT-7-approximation algorithm
and then explain how to improve it to an FPT-5-approximation.

Again, we invoke Lemmas 6 and 8 to construct a good hitting set Ehs (or directly obtain a
solution of size k). Since |Ehs| = O(k), we observe that the graph (V, E \ Ehs) has K = O(k)
connected components; we denote them by G1, ..., GK . Since Ehs is a hitting set, we obtain
the following lemma.

▶ Lemma 18. For each task i ∈ T the two endvertices of P (i) lie in two different components
in {G1, ..., GK}.

Let i∗
1 ∈ OPT denote the task with smallest demand in OPT. We guess the two

components of the two endvertices of P (i∗
1). We select the input task i1 with smallest

demand whose path has its endvertices in the same two components. It might be that i1 ̸= i∗
1;

however, we will show that we can find seven tasks i′
1, ..., i′

7 ∈ OPT such that if we replace
i′
1, ..., i′

7 by i1 then we still obtain a feasible solution. Intuitively, the task i1 (which we
select) pays for the tasks i′

1, ..., i′
7 (which we lose). We continue iteratively until we picked

⌈k/7⌉ tasks.
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Formally, our algorithm runs in ⌈k/7⌉ rounds where in each round we select one task
i. Let OPT0 = OPT. Suppose that after k′ ∈ {0, ..., ⌈k/7⌉ − 1} rounds we selected tasks
i1, ..., ik′ and defined a solution OPTk′ ⊆ OPT such that OPTk′ ∪ {i1, ..., ik′} is feasible
(note that this is clearly true for k′ = 0). Let i∗

k′+1 ∈ OPTk′ denote a task with smallest
demand in OPTk′ , i.e., such that d(i∗

k′+1) ≤ d(i) for each i ∈ OPTk′ . We guess the two
components from {G1, ..., GK} that contain the two endvertices of P (i∗

k′+1). Let ik′+1 denote
the input task i of smallest demand with the property that P (i) has its endvertices in the
same components and {i, i1, ..., ik′} forms a feasible solution. We select ik′+1 and prove in
the next lemma that intuitively we can select ik′+1 if we are willing to sacrifice at most seven
tasks from OPTk′ .

▶ Lemma 19. There exist tasks i′
1, ..., i′

7 ∈ OPTk′ such that OPTk′ \ {i′
1, ..., i′

7} ∪
{i1, ..., ik′ , ik′+1} is feasible.

Proof. Let G′ and G′′ denote the two components from {G1, ..., GK} that contain the two
endvertices of P (i∗

k′+1). The idea behind the proof is to identify seven tasks i′
1, ..., i′

7 ∈ OPTk′

such that d(i′
ℓ) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each ℓ ∈ {1, ..., 7} and such that the edges of their
paths contain all the edges of P (ik′+1) that are used by tasks in OPTk′ (i.e., edges on which
selecting ik′+1 potentially causes conflicts with other tasks in OPTk′). We will select three
tasks for the edges in P (ik′+1) ∩ E(G′), three for the edges in P (ik′+1) ∩ E(G′′), and one for
the edges in P (ik′+1) \ (E(G′) ∪ E(G′′)).

Consider the edges in P (ik′+1)∩E(G′). We partition them into P (ik′+1)∩E(G′)\E⋆
hs and

P (ik′+1)∩E(G′)∩E⋆
hs. If an edge e ∈ P (ik′+1)∩E(G′)\E⋆

hs is used by some task i ∈ OPTk′ ,
then e is also used by the task i′ ∈ OPTk′ that maximizes |P (i′) ∩ P (ik′+1) ∩ E(G′) \ E⋆

hs|.
Let i′

1 denote this task i′. Regarding the edges in P (ik′+1) ∩ E(G′) ∩ E⋆
hs, note that they

form a path, and let u and v be its end vertices. Let i′
2 denote the task i ∈ OPTk′ such

that u ∈ V (P (i)) and i maximizes |P (i) ∩ E(G′) ∩ E⋆
hs|. Similarly, let i′

3 denote the task
i ∈ OPTk′ such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(G′) ∩ E⋆

hs|. Then, if some
task i ∈ OPTk′ uses an edge e ∈ P (ik′+1) ∩ E(G′) ∩ E⋆

hs then e ∈ P (i′
2) or e ∈ P (i′

3) (see
Figure 4). In a similar way, we identify three tasks i′

4, i′
5 and i′

6 for P (ik′+1) ∩ E(G′′).
Finally, all the edges in P (ik′+1) \ (G′ ∪ G′′) are used by i∗

k′+1, and we define i′
7 := i∗

k′+1.
If an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′

ℓ) for some ℓ ∈ {1, ..., 7}. Since
d(i′

ℓ) ≥ d(i∗
k′+1) ≥ d(ik′+1) for each ℓ ∈ {1, ..., 7}, the tasks i′

1, ..., i′
7 satisfy the claim of the

lemma. ◀

We remark that the tasks i′
1, ..., i′

7 might not be pairwise distinct. We define OPTk′+1 :=
OPTk′ \ {i′

1, ..., i′
7} and iterate. Since in each iteration we picked one task and removed

at most seven tasks from OPT, one can show easily that at the end we select ⌈k/7⌉ tasks,
assuming that |OPT| ≥ k. Our running time is kO(k)nO(1) since in each of the k iterations
there are O(k2) options for our guesses.

▶ Theorem 20. There is an FPT-7-approximation algorithm for UFT with a running time
of kO(k)nO(1).

5.1 Improvement to an FPT-5-approximation
We improve our approximation factor to 5 by doing additional guesses when we select the
task ik′ in each round k′. Assume again that at the beginning of round k′ +1 we have already
selected tasks i1, ..., ik, and defined a set OPTk′ ⊆ OPT such that OPTk′ ∪ {i1, ..., ik′} is
feasible. Like before, let i∗

k′+1 ∈ OPTk′ denote the task with smallest demand in OPTk′

and we guess the components from G1, ..., GK that contain the endvertices of P (i∗
k′+1). Let
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r E \ E?
hs

E?
hs \ Ehs

Ehs

u

v

i′1

i′2

i′3

i′7

ik′+1

i′6

i′5

i′4

Figure 4 The task ik′+1 is selected, and Lemma 19 shows that if we remove the tasks i′
1, ...i′

7
from OPTk′ , we can add the task ik′+1 to OPTk′ since each edge on P (ik′+1) is used by one of the
tasks i′

1, ...i′
7 or by no task from OPTk′ .

G′ and G′′ be these components. Like before, let ik′+1 denote the input task i of smallest
demand with the property that P (i) has its endvertices in G′ and G′′ and {i, i1, ..., ik′} forms
a feasible solution. We do not select ik′+1 yet; instead, we guess some properties of P (i∗

k′+1),
more precisely, of the part of P (i∗

k′+1) within G′ and G′′. Since Ehs is a good hitting set, it
holds that G′ (or G′′) restricted to E⋆

hs is a path.

▶ Lemma 21. Let G̃ ∈ {G1, ..., GK}. Then G[E⋆
hs ∩ E(G̃)] is a path (possibly with zero

edges).

Let Ḡ′ := G[E⋆
hs ∩ E(G′)] and Ḡ′′ := G[E⋆

hs ∩ E(G′′)]. Observe that P (i∗
k′+1) uses some

edges of Ḡ′ and also P (ik′+1) uses some edges of Ḡ′. Note that the respective sets of edges
are contained in each other. The same holds for Ḡ′′. It turns out that for Lemma 19 a
particularly bad case is when P (ik′+1) uses strictly more edges of both Ḡ′ and Ḡ′′ than
P (i∗

k′+1), i.e., then we need to remove seven tasks from OPTk′ , rather than fewer tasks.
Therefore, we guess whether this bad case applies. If yes, instead of ik′+1 =: i

(1)
k′+1 we consider

a task i
(2)
k′+1 which is the input task i of smallest demand with endvertices in G′ and G′′, such

that {i, i1, ..., ik′} forms a feasible solution and P (i) uses strictly less edges than P (i(1)
k′+1) of

both Ḡ′ and Ḡ′′. Again, we guess whether the bad case applies for i
(2)
k′+1. If yes, we replace

i
(2)
k′+1 by some task i

(3)
k′+1 that uses even fewer edges of Ḡ′ and Ḡ′′ and so on. We repeat this

for at most 2k iterations. Formally, if for some ℓ ∈ {1, ..., 2k} we defined the task i
(ℓ)
k′+1 then

we guess whether the bad case applies for i
(ℓ)
k′+1, i.e., whether P (i(ℓ)

k′+1) uses strictly more
edges of both Ḡ′ and Ḡ′′ than P (i∗

k′+1). If yes, we define the task i
(ℓ+1)
k′+1 to be the input

task i of smallest demand with endvertices in G′ and G′′, such that {i, i1, ..., ik′} forms a
feasible solution and P (i) uses strictly less edges than P (i(ℓ)

k′+1) of both Ḡ′ and Ḡ′′. If for
some i

(ℓ)
k′+1 with ℓ ∈ {1, ..., 2k} the bad case does not apply then intuitively we can show that
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for adding i
(ℓ)
k′+1 we need to remove only five tasks from OPT, rather than seven. In this case

we select ik := i
(ℓ)
k′+1 and define OPTk′+1 := OPTk′ \ {i′

1, ..., i′
5} for the tasks i′

1, ..., i′
5 due to

the following lemma, and continue with the next round k′ + 2.

▶ Lemma 22. Suppose that for some ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) does not use

strictly more edges of both Ḡ′ and Ḡ′′ than P (i∗
k′+1). Then there exist tasks i′

1, ..., i′
5 ∈ OPTk′

such that OPTk′ \ {i′
1, ..., i′

5} ∪ {i1, ..., ik′ , i
(ℓ)
k′+1} is feasible.

Proof. Assume w.l.o.g. that P (i(ℓ)
k′+1) does not use strictly more edges of Ḡ′′ than P (i∗

k′+1).
Following the idea behind Lemma 19 we identify five tasks i′

1, ..., i′
5 ∈ OPTk′ such that

d(i′
j) ≥ d(i∗

k′+1) ≥ d(i(ℓ)
k′+1) for each j ∈ {1, ..., 5} and such that the edges of their paths

(together) contain all the edges of P (i(ℓ)
k′+1) that are used by tasks in OPTk′ (i.e., edges on

which selecting i
(ℓ)
k′+1 potentially causes conflicts with other tasks in OPTk′). We will select

three tasks for the edges in P (i(ℓ)
k′+1) ∩ E(G′), one for the edges in P (i(ℓ)

k′+1) ∩ E(G′′) \ E(Ḡ′′),
and one for the edges in P (i(ℓ)

k′+1) \ (E(G′) ∪ E(G′′)) and the edges in P (i(ℓ)
k′+1) ∩ E(Ḡ′′).

Consider the edges in P (i(ℓ)
k′+1) ∩ E(G′). We partition them into P (i(ℓ)

k′+1) ∩ E(G′) \ E(Ḡ′)
and P (i(ℓ)

k′+1)∩E(Ḡ′). If an edge e ∈ P (i(ℓ)
k′+1)∩E(G′)\E(Ḡ′) is used by some task i ∈ OPTk′ ,

then e is also used by the task i′ ∈ OPTk′ that maximizes |P (i′) ∩ P (i(ℓ)
k′+1) ∩ E(G′) \ E(Ḡ′)|.

Let i′
1 denote this task i′. Regarding the edges in P (i(ℓ)

k′+1) ∩ E(Ḡ′), note that they form
a path, and let u and v be its end vertices. Let i′

2 denote the task i ∈ OPTk′ such that
u ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′)|. Similarly, let i′

3 denote the task i ∈ OPTk′

such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′)|. Then, if some task i ∈ OPTk′ uses
an edge e ∈ P (i(ℓ)

k′+1) ∩ E(Ḡ′) then e ∈ P (i′
2) or e ∈ P (i′

3).
Regarding the edges in P (i(ℓ)

k′+1)∩E(G′′)\E(Ḡ′′), if an edge e ∈ P (i(ℓ)
k′+1)∩E(G′′)\E(Ḡ′′)

is used by some task i ∈ OPTk′ , then e is also used by the task i′ ∈ OPTk′ that maximizes
|P (i′) ∩ P (i(ℓ)

k′+1) ∩ E(G′′) \ E(Ḡ′′)|. Let i′
4 denote this task i′. Regarding the edges in

P (i(ℓ)
k′+1) ∩ E(Ḡ′′) and the edges in P (i(ℓ)

k′+1) \ (E(G′) ∪ E(G′′)), they are all used by i∗
k′+1,

which we now identify as i′
5.

It follows that if an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′
j) for some

j ∈ {1, ..., 5}. Since d(i′
j) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5}, the tasks i′
1, ..., i′

5
satisfy the claim of the lemma. ◀

On the other hand, if the bad case applied to each i
(ℓ)
k′+1 with ℓ ∈ {1, ..., 2k} then we

can show that there must be one task i
(ℓ∗)
k′+1 with ℓ∗ ∈ {1, ..., 2k} such that the edges of

P (i(ℓ∗)
k′+1) \ E⋆

hs are not used by any task in OPT. It turns out that this is again a good
case. Intuitively, then we do not need to remove any task from OPT in order to make
space for i

(ℓ∗)
k′+1 on the edges in P (i(ℓ∗)

k′+1) \ E⋆
hs and, therefore, it turns out that we need to

remove only five tasks from OPT. In this case we guess ℓ∗, select ik := i
(ℓ∗)
k′+1 and define

OPTk′+1 := OPTk′ \ {i′
1, ..., i′

5} for the tasks i′
1, ..., i′

5 due to the following lemma, and
continue with the next round k′ + 2.

▶ Lemma 23. Suppose that for each ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) uses strictly more

edges of Ḡ′ and Ḡ′′ than P (i∗
k′+1). Then there is an ℓ∗ ∈ {1, ..., 2k} for which there exist

tasks i′
1, ..., i′

5 ∈ OPTk′ such that OPTk′ \ {i′
1, ..., i′

7} ∪ {i1, ..., ik′ , i
(ℓ∗)
k′+1} is feasible.

Proof. Since for each ℓ ∈ {1, ..., 2k} it holds that P (i(ℓ)
k′+1) uses strictly more edges of Ḡ′

and Ḡ′′ than P (i∗
k′+1), then there is an ℓ∗ ∈ {1, ..., 2k} such that |P (i(ℓ∗)

k′+1) ∩ E(Ḡ′) \ E⋆
hs| =

|P (i(ℓ∗)
k′+1) ∩ E(Ḡ′′) \ E⋆

hs| = 0. Following the idea behind Lemma 19 we identify five tasks

ESA 2021



67:14 FPT and FPT-Approximation Algorithms for UFT

i′
1, ..., i′

5 ∈ OPTk′ such that d(i′
ℓ∗) ≥ d(i∗

k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5} and such that
the edges of their paths contain all the edges of P (ik′+1) that are used by tasks in OPTk′

(i.e., edges on which selecting ik′+1 potentially causes conflicts with other tasks in OPTk′).
Now will select two tasks for the edges in P (i(ℓ∗)

k′+1) ∩ E(Ḡ′), two for the ones in that in
P (i(ℓ∗)

k′+1) ∩ E(Ḡ′′) and one for the edges in P (i(ℓ∗)
k′+1) \ (E(Ḡ′) ∪ E(Ḡ′′)).

Consider the edges in P (i(ℓ∗)
k′+1)∩E(Ḡ′′). We partition them into P (i(ℓ∗)

k′+1)∩E(G′′)\E(Ḡ′′)
and P (i(ℓ∗)

k′+1)∩E(Ḡ′′). There is no edge P (i(ℓ∗)
k′+1)∩E(G′′)\E(Ḡ′′) used by some task i ∈ OPTk′ ,

so we don’t need to define a task to cover those edges. Regarding the edges in P (i(ℓ∗)
k′+1)∩E(Ḡ′′),

we note that they form a path, and let u and v be their end vertices. Let i′
1 denote the

task i ∈ OPTk′ such that u ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′) ∩ E⋆
hs|. Similarly, let

i′
2 denote the task i ∈ OPTk′ such that v ∈ V (P (i)) and i maximizes |P (i) ∩ E(Ḡ′) ∩ E⋆

hs|.
Then, if some task i ∈ OPTk′ uses an edge e ∈ P (ik′+1) ∩ E(Ḡ′′) then e ∈ P (i′

1) or e ∈ P (i′
2).

In a similar way, we identify two tasks i′
3 and i′

4 for P (i(ℓ∗)
k′+1) ∩ E(G′′).

Finally, all the edges in P (i(ℓ∗)
k′+1)\(G′ ∪G′′) are used by i∗

k′+1, and we define i′
5 := i∗

k′+1. It
follows that if an edge e is used by some task i ∈ OPTk′ , then e ∈ P (i′

j) for some j ∈ {1, ..., 5}.
Since d(i′

j) ≥ d(i∗
k′+1) ≥ d(ik′+1) for each j ∈ {1, ..., 5}, the tasks i′

1, ..., i′
5 satisfy the claim

of the lemma. ◀

Since in each iteration we picked one task and removed at most five tasks from OPT,
one can show easily that at the end we select ⌈k/5⌉ tasks, assuming that |OPT| ≥ k. Our
running time is kO(k)nO(1) since in each of the k iterations there are O(k2) options for our
guesses.

▶ Theorem 24. There is an FPT-5-approximation algorithm for UFT with a running time
of kO(k)nO(1).
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