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Abstract

In the minimum common string partition problem (MCSP), one gets two strings and is asked
to find the minimum number of cuts in the first string such that the second string can be obtained
by rearranging the resulting pieces. It is a difficult algorithmic problem having applications
in computational biology, text processing, and data compression. MCSP has been studied extensively
from various algorithmic angles: there are many papers studying approximation, heuristic, and
parameterized algorithms. At the same time, almost nothing is known about its exact complexity.
In this paper, we present new results in this direction. We improve the known 2n upper bound
(where n is the length of input strings) to ϕn where ϕ ≈ 1.618... is the golden ratio. The algorithm
uses Fibonacci numbers to encode subsets as monomials of a certain implicit polynomial and extracts
one of its coefficients using the fast Fourier transform. Then, we show that the case of constant size
alphabet can be solved in subexponential time 2O(n log log n/ log n) by a hybrid strategy: enumerate
all long pieces and use dynamic programming over histograms of short pieces. Finally, we prove
almost matching lower bounds assuming the Exponential Time Hypothesis.
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1 Overview

Two strings s1, s2 ∈ Σn are said to have a common partition of size t if one can cut s1 into
t blocks (by t−1 cuts), rearrange them, and get s2. This is a string similarity measure having
applications in computational biology, text processing, and data compression. The minimum
common string partition problem (MCSP) is to find the minimum size of a common partition
of two input strings. There are two natural special cases of the problem: in d-MCSP, every
symbol appears at most d times in each input string; in MCSPc, the size of the alphabet Σ
is at most c.

1.1 Known results

The problem has been studied extensively from various algorithmic angles.

Computational complexity. Already 2-MCSP is APX-hard, hence MCSP is both NP-hard
and APX-hard [8].

Paramaterized algorithms. The problem is fixed parameter tractable (FPT) with respect
to combinations of various parameters [6, 11, 2, 3]. For example, [2] gives an O∗(d2k)
algorithm1 for d-MCSP, whereas [3] gives an FPT algorithm with respect to t only.

Approximation algorithms. The best known approximation ratio for a polynomial-time
algorithm is O(logn log∗ n) [5]. There is also an O(d)-approximation algorithm [15].
The best known approximation ratios for 2-MCSP and 3-MCSP are 1.1037 and 4,
respectively [8].

Heuristic algorithms. One natural heuristic approach for MCSP is greedy: cut out a longest
common substring and repeat. It is well studied both from practical and theoretical
points of view. Its approximation factor is: O(logn) for many families of inputs [17],
between Ω(n0.46) and O(n0.69) in the worst case [4, 13]. It can be implemented in linear
time [9].

1.2 New results

Much less is known about the exact complexity of MCSP. The best known upper bound
is O∗(2n) [7]. This aligns well with what is known for many other permutation problems:
say, the shortest common superstring problem, the shortest common supersequence problem,
the traveling salesman problem. Whereas many approximation, parameterized, and heuristic
algorithms are known for these problems, breaking the 2n barrier for any of them is a long
standing open problem. (For the mentioned problems, n denotes the number of input strings,
sequences, or nodes.)

In this paper, we present the following new exact algorithms and lower bounds for MCSP.
We start by showing two straightforward O∗(2n) algorithms: the first one enumerates all
possible partitions of both input strings and is perhaps the simplest exact algorithm for
the problem; the second one is a straightforward application of the dynamic programming
method. Both algorithms use exponential space.

1 The O∗(·) notation is common in the field of algorithms for NP-hard problems: like O(·) hides constant
factors, it suppresses factors that grow polynomially in the input length.
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1.2.1 Improving time to ϕn: dynamic programming
Then, we show how to improve the dynamic programming algorithm to get the running time
O∗(ϕn) where ϕ ≈ 1.618... is the golden ratio. In short, the improvement is based on the
following idea. For two strings to have a common partition, their multisets of symbols should
coincide. Then, if one cuts the first string into blocks and maps all blocks of length at least
two to the second string (so that the mapped parts do not overlap), all the remaining blocks
of length one are mapped automatically.

1.2.2 Improving space to polynomial: FFT and Fibonacci encoding
The improved algorithm still uses exponential space (as it is based on dynamic programming).
Again, avoiding exponential space in algorithms for NP-hard problems may be a challenging
task. For example, the best known algorithm for the coloring problem has running time
O∗(2n) and uses exponential space [1]; bringing down the space consumption to polynomial
is an open problem. Also, for the optimal 2-constraint satisfaction problem (as well as for its
special cases: maximum 2-satisfiability and maximum cut), all known better-than-2n-time
algorithms use exponential space [18, 14]; improving 2n time while keeping polynomial
space is an open problem. For the MCSP problem, we show how to get a polynomial space
algorithm with running time O∗(ϕn).

The approach that we use is inspired by generating functions. Let c0, c1, c2, · · · = {ci}∞
i=0

be an integer sequence of interest, where term ci is expressed in a complex way through the
previous terms, so that it is difficult to directly find a closed form for it. Occasionally, one
can solve this problem in three steps.
1. Pack a sequence into a polynomial (or, rather, formal power series):

T (x) = c0 + c1x+ c2x
2 + · · · =

∞∑
i=0

cix
i .

2. By means of algebraic manipulations, find a closed form expression for T (x).
3. Then, ci is the coefficient of xi in Taylor expansion of T (x) that can be found using the

value of the ith derivative of T at zero.
What we use can be viewed as a discrete and algorithmic version of this approach. Given
strings s1, s2 ∈ Σn, we define a finite sequence {ci}N

i=0 with the following property: s1, s2
have a common partition of size t iff a particular term c is positive. This term may be
expressed through the other terms, but it will take a lot of space, so instead we find it in three
steps.
1. Pack a sequence into a polynomial P of finite degree such that the term c is a coefficient

of a particular monomial m in P .
2. Describe an efficient way of evaluating P at a given point.
3. Using fast Fourier transform, extract the coefficient of m using values of P at specific

points.
The algorithm uses Fibonacci encoding in order to keep the degree of the polynomial low
enough.

1.2.3 Subexponential running time for small alphabets: hybrid strategy
Then, we show that for the constant size alphabets, one can even get a subexponential
running time: 2O( n log log n

log n ). The main idea is to track short and long blocks differently:
we just guess the cut points of all long blocks (this is feasible as there are not too many
of them) and we exploit dynamic programming to handle the short ones. By balancing these
two cases carefully, one gets a speed up to a subexponential time.

ESA 2021
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1.2.4 Lower bounds
Finally, we show that substantial improvement of the presented upper bounds is difficult.
Namely, we prove that under the Exponential Time Hypothesis (stating that there are
no subexponential time algorithms for the satisfiability problem), MCSP cannot be solved
in subexponential time (of the form 2o(n)). This is a simple application of the NP-hardness
proof of MCSP. Then, we present a reduction from the general case to the special case
of constant size alphabet that gives a lower bound 2Ω(n/ log n) (under ETH) for that special
case.

Notation
Throughout the paper, we use the following notation. Let s be a string of length n.
We use 1-based indexing and slice notation: s = s[1]s[2] · · · s[n]; for 1 ≤ l ≤ r ≤ n,
s[l : r] = s[l]s[l + 1] · · · s[r]. By [n] we denote the set {1, . . . , n}.

2 2n time and space: enumerating all partitions

In this section, we present perhaps the most straightforward algorithm. As simple as it is,
it has an important feature that many other algorithms lack: it works for any number of input
strings. See Algorithm 1. Its running time is O∗(2n) as the number of different partitions of
a string of length n is 2n−1: there are n− 1 places to make a cut.

Algorithm 1 Enumerating all partitions.
Input: strings s1, . . . , sj of length n.
Output: the minimum size of a common partition of s1, . . . , sj .

1: T ← associative array
2: for every partition of s1 into substrings p1, . . . , pk do
3: T [multiset{p1, . . . , pk}]← j-tuple (1, 0, . . . , 0)
4: for i from 2 to j do
5: for every partition of si into substrings p1, . . . , pk do
6: if T has key multiset{p1, . . . , pk} then
7: T [multiset{p1, . . . , pk}][i]← 1
8: t← +∞
9: for every key P of T do:

10: if T [P ] = (1, . . . , 1) then
11: t← min(t, |P |)
12: return t

Hereinafter, we return the size of the optimal partition instead of the partition itself. This
is equivalent to the original problem, since there is a polynomial Algorithm 2 for finding the
optimal partition given an oracle for minimum size of a common partition. In this algorithm,
we first look for the longest prefix p of s1 that can be matched somewhere in s2, such that
after replacing it and its match with a new symbol #1 the size of the optimal partition stay
the same. To make sure that the size of the optimal partition does not change, we use the
oracle. It is clear that in the optimal partition #1 is not a prefix of some longer block. After
we find p, we replace it and its match with #1 and start looking for the next longest block
in the optimal partition that we replace with a new symbol #2 and so on. In the end we
obtain a partition P = {p1, p2, . . . , pt} such that s1 = p1 . . . pt and pi is the longest possible
block in a common partition of the minimum size t given previous i− 1 blocks.
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Algorithm 2 Constructing the optimal partition.
Input: strings s1, s2 of length n, oracle O for the minimum size of a common partition.
Output: a common partition of s1, s2 of the minimum size.

1: P ← ∅
2: t← O(s1, s2)
3: for i from 1 to t do
4: #i ← a symbol that does not occur in s1 and s2
5: for all j from n down to i, all 1 ≤ l ≤ r ≤ n do
6: s′

1 ← s1[1 : i− 1] #i s1[j + 1 : n]
7: s′

2 ← s2[1 : l − 1] #i s2[r + 1 : n]
8: if s1[i : j] = s2[l : r] and O(s′

1, s
′
2) = t then

9: P ← P ∪ s1[i : j]
10: s1 ← s′

1
11: s2 ← s′

2
12: break
13: return P

3 Improving time to ϕn: dynamic programming

Here, we present a dynamic programming solution with roughly the same running time
and space as the previous solution. Later, we will be able to improve both time and space
of this algorithm. The algorithm works by solving the following subproblem: for 0 ≤ k ≤ n,
let C(k) be the set of all pairs (S, t), where S ⊆ [n], |S| = k, and 1 ≤ t ≤ n, such that
one can cut s1[1 : k] into t blocks and match them to the subsequence of s2 specified by S.
The minimum size of a common partition is then simply the minimum t such that (S, t) is
contained in C(n). To compute C(k), we first fix the length i of the last block of s1[1 : k].
Then, this block should be matched somewhere in s2, whereas C(k − i) can be used to find
the positions where the remaining t− 1 blocks should be matched. The formal pseudocode
is given in Algorithm 3. The running time and space is O∗(2n) as the number of different
subsets is 2n whereas all other steps clearly take polynomial time.

Algorithm 3 Dynamic programming.
Input: strings s1, s2 of length n.
Output: the minimum size of a common partition of s1, s2.

1: C(0)← {(∅, 0)}
2: for k from 1 to n do
3: C(k)← ∅
4: for all 1 ≤ i ≤ k, all 1 ≤ l ≤ n− i+ 1, all (S, t) ∈ C(k − i) do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] and S ∩ {l, l + 1, . . . , l + i− 1} = ∅ then
6: C(k)← C(k) ∪ {(S ∪ {l, l + 1, . . . , l + i− 1}, t+ 1)}
7: return min{t : (S, t) ∈ C(n)}

In the previous algorithm, we considered subsets of s2 that have a common partition of
particular size with the prefix of s1. Here, we are going to ignore pieces of size one in every
such partition: indeed, if one successfully matched longer pieces, then the pieces of size one
will match as well.

ESA 2021
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With this in mind, one may consider only subsets of s2 that can be cut into pieces of
length at least two and matched to some subset of the prefix of s1: the remaining part of the
prefix is assumed to be filled with pieces of length one.

In addition to ignoring pieces of length one, we also plug the “holes” of size one in our
subsets, since we can plug them only with pieces of size one and may do it immediately. To
formalize that, we introduce the function Plug whose pseudocode is given in Algorithm 4.
Say that there is a hole at position i ∈ [n] in a set S ⊆ [n] if i /∈ S whereas each of i− 1 and
i+ 1 either belong to S or does not belong to [n].

Algorithm 4 The function Plug.
Input: subset S ⊆ [n].
Output: hole-free superset of S of minimum size.

1: for i in [n] do
2: if S has a hole at position i then
3: S ← S ∪ {i}
4: return S

Now we are ready to describe the subproblem of our algorithm. For 0 ≤ k ≤ n, let
C(k) be the set of all pairs (S, t), for which there exist a pair (T, β) such that S = Plug(T ),
t = β + |S| − |T |, and one can cut the subsequence of s2 specified by T into β blocks of size
at least two and match them to some subsequence of s1[1 : k]. Thus, t is a number of blocks
into which S can be cut so that all the blocks of size at least two match to s1[1 : k] and blocks
of size one (that is, plugged holes in T ) match somewhere in s1 (not necessarily in s1[1 : k]).
The minimum size of a common partition is then the minimum value of t+ n− |S| such that
(S, t) is contained in C(n). Here, n− |S| is the number of ignored but not plugged blocks of
size one. Clearly, C(k) ⊆ C(k′) for k < k′. To compute C(k), we first fix the length i ̸= 1
of the long block s1[k − i + 1 : k] and j ≥ 0 blocks of size one before it that we wish to
ignore. Then, this long block should be matched somewhere in s2, whereas C(k − i− j) can
be used to find the positions where the remaining long blocks should be matched. After we
correctly match the long block somewhere in s2, we append it to the corresponding S from
C(k − i− j), plug the holes and recalculate the number of blocks as the number of blocks
in S before appending plus one plus the number of holes plugged after appending. If i = 0,
then we may skip the choice of j and simply get C(k − 1). The formal pseudocode is given
in Algorithm 5.

Algorithm 5 Improved dynamic programming algorithm.
Input: strings s1, s2 of length n.
Output: the minimum size of a common partition of s1, s2.

1: C(0)← {(∅, 0)}
2: for k from 1 to n do
3: C(k)← C(k − 1) (case i = 0)
4: for all 2 ≤ i ≤ k, all 0 ≤ j ≤ n− i, all 1 ≤ l ≤ n− i+ 1, all (S, t) ∈ C(k− i− j) do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] and S ∩ {l, l + 1, . . . , l + i− 1} = ∅ then
6: S′ ← Plug(S ∪ {l, l + 1, . . . , l + i− 1})
7: C(k)← C(k) ∪ {(S′, t+ 1 + |S′| − |S|)}
8: return min{t+ n− |S| : (S, t) ∈ C(n)}

▶ Theorem 1. Algorithm 5 solves MCSP in time and space O∗(ϕn).
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Proof. Correctness. For every (S, t) ∈ C(n), the total number of blocks in the corresponding
partition is the number of long blocks plus the number of plugged holes (= t) plus |[n] \ S|
blocks of size one we ignore. If the optimal partition contains no pieces longer than one, then
we never fulfill the if condition, but nevertheless C(n) will contain (∅, 0) dragged through
the whole cycle (thanks to line 3), that corresponds to the partition of size n as required.

Running time. It is sufficient to count all the subsets S we considered. For that, it is
convenient to treat every such subset as a sequence v ∈ {0, 1}n without lonely zeros and ones.
Let f0(n) be the number of such sequences that end up with zero and f1(n) be the number
of such sequences that end up with one. Since every such sequence ending with one ends
with at least two ones, we can write the recurrence relation f1(n) =

∑n−2
i=2 f0(i). Similarly,

f1(n) = f0(n), hence f1(n) =
∑n−2

i=2 f1(i) that, together with the initial conditions f1(2) =
f1(3) = 1, describes the shifted sequence of Fibonacci numbers, thus f1(n) = O(ϕn). ◀

4 Improving space to polynomial: FFT and Fibonacci encoding

In this section, we improve the space of the previously considered algorithm to polynomial.
The following theorem provides a basic toolkit for this.

▶ Theorem 2. Assume that for two strings s1, s2 ∈ Σn and a parameter t one can construct
a multivariate polynomial (of finite degree) P (X) over a (finite) variable set X and a monomial
m =

∏
xi∈X xdi

i , where di ∈ Z≥0, with the following three properties:
1. Its coefficients are non negative and less than W = 2poly(n).
2. For fixed values of variables X, one can compute P (X) in time polynomial in the length

of the binary representation of the values.
3. There is a common partition of s1, s2 of size t if and only if the coefficient of m in P is

non-zero.
Then, MCSP can be solved in time

O∗

(
polylog

( ∏
xi∈X

degxi
(P )
) ∏

xi∈X

degxi
(P )
)

and space

O∗

(
polylog

( ∏
xi∈X

degxi
(P )
))

,

where degxi
(P ) is the degree of variable xi in P , that is, the maximum degree of xi across

the monomials of P with non-zero coefficients.

In the proof, we use the following theorem proved in [10] (Theorem 3.2).

▶ Theorem 3. Let P (x) =
∑d

i=0 pix
i be a polynomial of degree at most d with non-negative

integer coefficients less than W . Given an arithmetic circuit C(x, p) of size polylog(d,W )
which evaluates P modulo a prime p = dpolylog(d,W ) at an integer point x, any coefficient
of P (x) can be found in time dpolylog(d,W ) and space polylog(d,W ).

Here we calculate modulo p just to prevent the numbers we operate from growing exponentially
fast.

ESA 2021
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Proof of Theorem 2. Let X = {x1, . . . , xq}. In order to apply Theorem 3, we need to build
a univariate polynomial Q(x) out of P (x1, . . . , xq). To do this, we use Kronecker substitu-
tion [16]:

Q(x) = P
(
x, xdegx1 (P )+1, x(degx1 (P )+1)(degx2 (P )+1), . . . , x

∏q−1
i=1

(degxi
(P )+1)

)
.

That is, we replace xi by x
∏i−1

j=1
(degxj

(P )+1). Then, P contains a monomial m =
∏

i∈[q] x
ai
i if

and only if Q contains a monomial x
∑

i∈[q]
ai·
∏i−1

j=1
(degxj

(P )+1).
Since W = 2poly(n), polylog(d,W ) = O∗(polylog(d)). ◀

As a warm up, we show how to reduce the space complexity of the 2n dynamic program-
ming Algorithm 3 to polynomial.

▶ Theorem 4. MCSP can be solved in time O∗(2n) and polynomial space.

Proof. We construct a series of polynomials Pk for 0 ≤ k ≤ n associated with the steps of the
dynamic programming algorithm. Each Pk corresponds to C(k) in the mentioned algorithm
in the following way: Pk has a monomial αzty|S|∏

i∈S x
2i−1 for some α > 0 depending

on the monomial if and only if (S, t) ∈ C(k). The pseudocode for computing Pn is given
in Algorithm 6. It is not difficult to see that this is a polynomial time algorithm.

Algorithm 6 Computing Pn.
Input: strings s1, s2 of length n, values x, y, z.
Output: value of Pn at the point (x, y, z).

1: P0(x, y, z)← 1
2: Pk(x, y, z)← 0 for all 1 ≤ k ≤ n
3: for k from 1 to n do
4: for all 1 ≤ i ≤ k, all 1 ≤ l ≤ n− i+ 1 do
5: if s1[k − i+ 1 : k] = s2[l : l + i− 1] then
6: Pk(x, y, z)← Pk(x, y, z) + zyix2l+i−1−2l−1

Pk−i(x, y, z)
7: return Pn(x, y, z)

We claim that s1 and s2 have a common partition of size t if and only if Pn contains
a monomial ztynx2n−1. One direction is straightforward. Assume that there is a partition of
s1 into pieces (l1, r1), . . . , (lt, rt), where l1 = 1, rt = n and ri = li+1 − 1 for all i ∈ [t− 1] and
it corresponds to a partition of s2 into pieces (l′1, r′

1), . . . , (l′t, r′
t) such that s1[li : ri] = s2[l′i : r′

i]
for all i ∈ [t]. Then Pri

has a monomial

zyri−li+1x2r′
i −2l′

i
−1
Pri−1 .

Then, by induction, Pri
has a monomial

ziy

∑i

j=1
(rj−lj+1)

x

∑i

j=1
2r′

j −2l′
j

−1

.

Hence, Pn = Prt has a monomial

zty

∑t

j=1
(rj−lj+1)

x

∑t

j=1
2r′

j −2l′
j

−1

= ztynx2n−1 .
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For the reverse direction, suppose Pn has a monomial ztynx2n−1. It could only be obtained
as a product

∏t
i=1 zy

ri−li+1x2ri −2li−1 for some (l1, r1), . . . , (lt, rt) during the execution of
the algorithm. An important invariant of each such terms is that the degree of y is equal
to the Hamming weight of the degree of x. (Here, by the Hamming weight of an integer we
mean the sum of the bits of its binary representation.)

As
∑t

i=1(ri − li + 1) is equal to the degree of y, it is equal to n. If they are all disjoint,
we have a valid partition. Suppose there exist i and j such that (li, ri) and (lj , rj) intersect.
Consider the product

(zyri−li+1x2ri −2li−1
)(zyrj−lj+1x2rj −2lj −1

) = z2yri+rj−li−lj+2x

(∑ri

t=li
2t−1

)
+
(∑rj

t=lj
2t−1

)
.

Now, let us look at the Hamming weight of the degree of x. As it is the sum of
d = ri + rj − li − lj + 2 powers of 2, it is at most d. But as (li, ri) and (lj , rj) intersect,
there is at least one carry, so it is actually less than d. Then, when we multiply all the
terms, as the Hamming weight of the sum is not more than the sum of Hamming weights,
we have that Hamming weight is strictly less than the degree of y, so it is less than n. But
the Hamming weight of 2n − 1 is equal to n, a contradiction.

Finally, we can solve MCSP by finding the smallest t such that ztynx2n−1 is present in
Pn. As we already have a polynomial time algorithm for Pn, its coefficients are not greater
than (n2)n = 2O(n log n) and total degree is O∗(2n), by Theorem 2 there exists an O∗(2n)
time and polynomial space algorithm for MCSP. ◀

We are now going to infuse the previous algorithm with ideas from the improved dynamic
programming and introduce a better encoding to get a speed up. In the previous section, we
were encoding each segment (l, r) as 2r − 2l−1. This is a natural way to represent a subset:
this number has ones in its binary representation exactly at positions from l to r. Then
we were using a property of the binary representation that the sum of encodings of two
intersecting segments has a Hamming weight strictly less than sum of the Hamming weights
of the terms. Another way to look at it: for any two intersecting segments (l1, r1),(l2, r2)
there is a collection of nonintersecting segments (l′1, r′

1), . . . , (l′p, r′
p) such that:

2∑
i=1

2ri − 2li−1 =
p∑

i=1
2r′

i − 2l′
i−1 , but

2∑
i=1

ri − li + 1 >
p∑

i=1
r′

i − l′i + 1

Here we can take as (l′i, r′
i) all the substrings of consecutive 1s in the binary representation

of
∑2

i=1 2ri − 2li−1.
We are going to do something similar but sacrifice some of this clarity for efficiency. We

will encode each segment (l, r) as F ′(r)− F ′(l − 1), where F ′(i) is the (i+ 1)-th Fibonacci
number (so F ′(−1) = 0 and F ′(0) = 1). Then we will show that this encoding has a similar
property as a binary one but only for segments of size greater than one.

▶ Theorem 5. MCSP can be solved in time O∗(ϕn) and polynomial space.

Proof. Consider a polynomial defined by Algorithm 7.
We call a piece of the partition long if it has length greater than one. The meaning of

the indices is the following:
k is the length of the prefix of s1 that we are currently processing,
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Algorithm 7 Computing Pn

Input: strings s1, s2 of length n, values x, y, z, w.
Output: value of Pn at the point (x, y, z, w).

1: Pk ← 1 for all 0 ≤ k ≤ n
2: for k from 1 to n do
3: for all 1 < i ≤ j ≤ k, all 1 ≤ l ≤ n− i+ 1, all n− i+ 1 ≤ q ≤ n do
4: if s1[j − i+ 1 : j] = s2[l : l + i− 1] then
5: r ← l + i− 1
6: Pk ← Pk + wq−r+1yq−l+1zq2−(l−1)2

xF ′(q)−F ′(l−1)Pj−i

7: Pk ← Pk + wq−(r−l)yqzq2
xF ′(q)−1Pj−i

8: return Pn

j is the position of the rightmost symbol of the last long piece in s1[1 : k],
i is the length of this long piece s1[j − i+ 1 : j],
l and r are the endpoints of a potential match of this long piece in s2,
q is the right endpoint of the block s2[r + 1 : q] that is cut into pieces of length one.

In short, we consider only long pieces in s1 and every long piece s1[j − i + 1 : j] we
correspond with a) block s2[l : q] that consists of q − r + 1 pieces: its match s2[l : r] and the
group s2[r + 1 : q] of pieces of length one after it; b) block s2[1 : q] that consists of its match
and two groups s2[1 : l − 1] and s2[r + 1 : q] of pieces of length one.

Now we need to show that s1 and s2 have a common partition of size t if and only if Pn

contains a monomial wtxF ′(n)−1ynzn2 . The if part is provided by the following lemma:

▶ Lemma 6. If there is a common partition of s1 and s2 of size t, then there is a monomial
wtxF ′(n)−1ynzn2 in Pn.

Proof. Let (l1, r1), . . . , (ld, rd) be a set of long pieces in the common partition. Without loss
of generality we may assume that all (li, ri) are sorted, that is ∀ i : ri ≤ li+1. Each piece
(li, ri) for i > 1 may contribute a monomial

wqi−ri+1xF ′(qi)−F ′(li−1)yqi−(li−1)zq2
i −(li−1)2

,

where qi = li+1−1, qd = n, and (l1, r1) may contribute a monomial wq1−r1+l1xF ′(q1)−1yq1zq2
1 ,

where q1 = l2 − 1. Here, for i = 1 we choose the monomial that takes into account pieces of
size one before and after the long block (hence, q1 − r1 + l1 in the exponent of w) and for
i > 1 we choose the monomial that takes into account pieces of size one only after the long
block (hence, qi − ri + 1 in the exponent of w). Thus, the sum of all the exponents of w is
equal to the number of pieces in common partition, that is, t.

Multiplying all monomials together, we obtain the following monomial present in Pn:

wq1−r1+l1xF ′(q1)−1yq1zq2
1

d∏
i=2

wqi−ri+1xF ′(qi)−F ′(li−1)yqi−(li−1)zq2
i −(li−1)2

=

= wtxF ′(n)−1ynzn2
. ◀

Now we are getting to the tricky part. We need to prove that if Pn contains a monomial
wtxF ′(n)−1ynzn2 then s1 and s2 have a common partition with k pieces.
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For every set S = {(l1, r1), . . . , (ld, rd) | (li, ri) ⊂ [n]} of d intervals let m(S) denote a
monomial

m(S) :=
d∏

i=1
xF ′(r)−F ′(l−1)yri−li+1zr2

i −(li−1)2
=

= x
∑

i
F ′(ri)−F ′(li−1)y

∑
i

ri−li+1z
∑

i
r2

i −(li−1)2
.

The point of introducing such notation is that polynomial Pn is simply a sum of monomials
of the form wαm(S) for some S = {(l1, r1), . . . , (ld, rd)} where all the intervals are long, so
the m(S) part relates to what is covered in s2 and wα part relates to how it is covered (that
is, how many blocks).

It is easy to check that if there are no intersecting intervals in S and they cover the whole
[n] then m(S) = xF ′(n)−1ynzn2 and we have a common partition of size α. What about
intersecting intervals? The following lemma deals with this case:

▶ Lemma 7. If S contains intersecting intervals and m(S) = xF ′(n)−1ynzn2 then there is a
set S′ of non-intersecting intervals such that m(S′) = xF ′(n)−1yαzβ and (α < n) ∨ (β < n2).

Proof. Suppose there are two long intersecting intervals (l1, r1) and (l2, r2) in S. We can
show that there is a set of long non intersecting intervals (l′1, r′

1), . . . , (l′p, r′
p) such that:

p∑
j=1

(F ′(r′
j)− F ′(l′j − 1)) = (F ′(r1)− F ′(l1 − 1)) + (F ′(r2)− F ′(l2 − 1)),

and one of the following two statements is true:∑p
j=1(r′

j − l′j + 1) < (r1 − l1 + 1) + (r2 − l2 + 1),∑p
j=1(r′

j − l′j + 1) = (r1 − l1 + 1) + (r2 − l2 + 1), but∑p
j=1(r′2

j − (l′j − 1)2) < (r2
1 − (l1 − 1)2) + (r2

2 − (l2 − 1)2).
If we replace (l1, r1) and (l2, r2) with this intervals we obtain a set S1 such that m(S1) =
yαzβxF ′(n) and (α < n) ∨ (β < n2). We can keep replacing intersecting pairs with non-
intersecting intervals preserving the value of degx. It is clear that this process will eventually
stop since degy ≥ 0 and degz ≥ 0, and thus the resulting set S′ is well-defined and consists
of non-intersecting intervals.

It remains to present the set {(l′1, r′
1), . . . , (l′p, r′

p)} for every two intersecting intervals
{(l1, r1), (l2, r2)}.

Let T = {(ai, bi), . . . (ap, bp)}, such that ∀i ∈ [p] : 0 ≤ ai < bi − 1 ≤ n− 1 or ai = bi (the
later represents an interval of size 0 and is used only to reduce the number of cases in the
analysis). We will use the following notation:

f(T ) =
∑|T |

i=1 F
′(bi)− F ′(ai),

g(T ) =
∑|T |

i=1 bi − ai,
h(T ) =

∑|T |
i=1 b

2
i − a2

i .

Let A be a set {(a, b), (c, d)} such that (b ≥ d > a ≥ c) ∨ (b ≥ d > c ≥ a). As there is no
difference in analysis (we may replace (a, b), (c, d) with (a, d), (b, c)), we consider only the first
case. We are going to go through rigorous case analysis to show that we can always construct
a set B such that f(A) = f(B) and either g(A) > g(B) or g(A) = g(B) but h(A) > h(B):
1. If d > a+ 2 ∨ d = a+ 1 and a > c+ 2 ∨ a = c+ 1 then

B = {(c, a− 1), (a+ 1, d), (b− 1, b+ 1)},

g(B) = d− c < b− a+ d− c = g(A);
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2. If d > a+ 2 ∨ d = a+ 1 and a = c+ 2 then

B = {(c− 2, c), (a+ 1, d), (b− 1, b+ 1)},

g(B) = d− a+ 3 < b− a+ d− c = g(A);
3. If d = a+ 2 then

B = {(c, d− 1), (b− 1, b+ 1)},

g(B) = d− a+ 1 < b− a+ d− c = g(A);
4. If a = c and d > a+ 3 ∨ d = a+ 2 and b− a > 2 then

B = {(a− 2, a), (a+ 2, d), (b− 1, b+ 1)},

g(B) = d− a+ 2 < b− a+ d− c = g(A);
5. If a = c and b− a = 2 then

B = {(a, b+ 1)},

g(B) = b− a+ 1 < b− a+ d− c = g(A);
6. If a = c and d = a+ 3 and b > a+ 3 then

B = {(a− 2, d− 1), (b− 1, b+ 1)},

g(B) = d− a+ 3 < b− a+ d− c = g(A);
7. If a = c and d = b and b = a+ 3

B = {(a− 2, b+ 1)},

g(B) = d− a+ 3 = b− a+ d− c = g(A),
h(B) = (a+ 4)2 − (a− 2)2 = 12a+ 12 < 12a+ 18 = 2((a+ 3)2 − a2) = h(A).

In some of the cases, it may turn out that for some interval from B its left endpoint is
negative or its right endpoint is greater than n. In fact, the latter case is impossible: if long
interval (a, b) covers at least n+ 1 then F ′(b)− F ′(a) > F ′(n)− 1. In the former case we
will use the additional manipulations with B:
2. If c = 0 then we drop (−2, 0). If c = 1 then we replace (−1, 1) with (0, 2);
4. If a = 0 then we drop (−2, 0). If a = 1 then we replace (−1, 1) with (0, 2);
6. If a = 0 then we replace (−2, 2) with (0, 2). If a = 1 then we replace (−1, 3) with (2, 4);
7. If a = 0 then we replace (−2, 4) with (0, 4). If a = 1 then we replace (−1, 5) with (4, 6).

Now to get the desired result we need to apply this case analysis to {(l1−1, r1), (l2−1, r2)},
get a set B = {(a′

1, b
′
1) . . . (a′

p, b
′
p)} and get a collection (a′

1 + 1, b′
1), . . . , (a′

p + 1, b′
p) which

would satisfy all the intended properties. ◀

Suppose that there exists a set of intervals S with intersections and m(S) = xF ′(n)−1ynzn2 .
Let S′ be the corresponding set from the statement of the lemma. Since S′ contains only
non-intersecting intervals, degx(m(S′)) ≤ F ′(n) − 1 and equality can be achieved only
if this intervals cover the whole [n]. If so, then degy(m(S′)) = n = degy(m(S)) and
degz(m(S′)) = n2 = degz(m(S)). But at least one of degy and degz decreases while we
go from S to S′, which is a contradiction. Thus, the monomial wtxF ′(n)−1ynzn2 may only
correspond to some set without intersections that covers the whole [n] and in turn corresponds
to a common partition of size t.

Finally, we can solve MCSP problem by finding the smallest t such that wtxF ′(n)−1ynzn2

is present in Pn. As we already have a polynomial time algorithm for Pn, its coefficients
are not greater than (2n3)n = 2O(n log n) and total degree is O∗(ϕn), by Theorem 2 there is
O∗(ϕn) time and polynomial space algorithm for MCSP. ◀
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5 Subexponential running time for small alphabets: hybrid strategy

For the case of a constant size alphabet, we provide a subexponential time algorithm, that
collects information about partitions of s1 and s2 separately and then just checks if they
have any partition in common. The main idea is to divide all the pieces in a partition into
two groups: long ones and short ones. The good thing about long ones is that there are not
too many of those due to their length. The good thing about short ones is that there are not
too many possible short strings over our alphabet due to its small size. By balancing these
two cases, we get the desired running time.

▶ Theorem 8. MCSP can be solved in time and space 2O
(

n log |Σ| log log n
log n

)
when |Σ| = no(1).

Proof. Let µ be a parameter whose value we will choose later. For every multiset S of strings
no longer than µ, we define a histogram histµ(S) = {(s, count(S, s)) | s ∈ Σ∗, |s| ≤ µ}, where
count(S, s) stands for a number of occurrences of s in S. As before, for both input strings we
construct sets of their partitions, but now we treat each partition P as a pair (L,histµ(S))
of a multiset of long pieces L = {s ∈ P, |s| > µ} and a histogram of a multiset of short ones
S = {s ∈ P, |s| ≤ µ}.

The construction of all possible partitions goes as follows: we iterate over all possible
multisets of long pieces and for each of them we compute all possible histograms of short
ones. As the number of long pieces is not greater than n/µ, there are at most

( 2n
2n/µ

)
ways to

choose their ends.
Once we have fixed the long pieces, we want to enumerate all possible ways to cut the

rest into small pieces. In order to do this, we use dynamic programming. Let s1, s2, . . . , sk

be the multiset of strings after removing all the long pieces. By R({s1, s2, . . . , sk}) we define
the set of all possible ways to cut these strings into pieces no longer than µ. Then,

R({s1, s2, . . . , sk}) =

=
min{µ,|sk|}⋃

i=1
{C ∪ sk[|sk| − i+ 1 : |sk|] | C ∈ R({s1, s2, . . . , sk[1 : |sk| − i]})},

and R({s1, s2, . . . , sk}) may be computed in O∗(n|Σ|µ), as n|Σ|µ is the upper bound on the
number of all possible histograms: count(S, s) ≤ n for every s ∈ S and there are at most
|Σ|µ+1 distinct s, and it takes polynomial in n and linear in size time to obtain R if all
smaller ones are already computed.

Thus, the total time is O∗
(( 2n

2n/µ

)
· n|Σ|µ

)
and we wish to choose µ so that this time

is small as possible. Since
( 2n

2n/µ

)
= 2O( n

µ log µ) and n|Σ|µ = 2O(|Σ|µ log n), we may choose

µ = c log2 n/ log2 |Σ| with c < 1, and then the total time is 2O
(

n log |Σ| log log n
log n

)
. ◀

6 Lower bounds: reductions to MIS and to binary alphabet

In this section, we prove the ETH based lower bounds: assuming Exponential Time Hypoth-
esis, the best upper bounds for MCSP and MCSPc are 2Ω(n) and 2Ω(n/ log n), respectively.

▶ Lemma 9. Assuming ETH, there is no 2o(n) time algorithm for MCSP.

Proof. [8] proves NP-hardness of MCSP by reducing the maximum independent set on
degree-3 graphs (3-MIS) to MCSP. The reduction is linear: given a graph with n nodes,
it produces an instance of MCSP with strings of length O(n). In turn, [12] shows that
there is no 2o(n) time algorithm for 3-MIS under ETH. This implies that the same is true for
MCSP. ◀
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▶ Theorem 10. Assuming ETH, there is no 2o(n/ log n) time algorithm for MCSP on constant
size alphabets.

Proof. We show how to reduce an instance of the general MCSP of length n to an instance
of MCSP over binary alphabet that is 4 logn times longer. Since the general MCSP cannot
be solved in time 2o(n) under ETH, we obtain a lower bound 2Ω(n/ log n) for its constant-size
alphabet version.

Consider an instance of MCSP that consists of strings s1 and s2 of length n. Since there
are at most n distinct symbols in both strings, we can encode each symbol c via binary string
b(c) of length log2 n. For every symbol c we define a gadget ψ(c) as a string

ψ(c) = 0 b(c)[1] 0 b(c)[2] 0 . . . 0 b(c)[log2 n] 0 1 1 1 0 b(c)[1] 0 b(c)[2] 0 . . . 0 b(c)[log2 n] 0.

We call the central 1 of a gadget its pivot.
We transform s1 = s1[1]s1[2] . . . s1[n] into a string s′

1 = ψ(s1[1])ψ(s1[2]) . . . ψ(s1[n]) and
s2 = s2[1]s2[2] . . . s2[n] into a string s′

2 = ψ(s2[1])ψ(s2[2]) . . . ψ(s2[n]). It is clear that (s′
1, s

′
2)

is an instance of MCSP over binary alphabet of size n · ⌈4 log2 n+ 5⌉. We show that there is
a common partition of s1 and s2 of size at most t if and only if there is a common partition
of s′

1 and s′
2 of size at most t.

Necessity. Given a common partition of s1 and s2, we can transform it into a common
partition of s′

1 and s′
2 of the same size simply by replacing each block b = b[1]b[2] . . . b[|b|]

with ψ(b) = ψ(b[1])ψ(b[2]) . . . ψ(b[|b|]).
Sufficiency. Consider a common partition of s′

1 and s′
2 of size t. Call the block of

this partition long if it contains at least two pivots of some gadgets. Since the pivot and
its neighbors are the only consecutive 1’s in gadget, if some long block b1 of s′

1 matched
with some long block b2 of s′

2 then all the pivots of b1 matched with the corresponding
pivots of b2. Note that long blocks, along with each pivot, contain information about the
corresponding symbols of its gadgets, as this information is duplicated on both sides of the
pivot. This means that we can correspond every long block that contains pivots of gadgets
ψ(c[1])ψ(c[2]) . . . ψ(c[|c|]) with substring c[1]c[2] . . . c[|c|] of s1 and s2.

Now we are ready to present a common partition of s1 and s2 of size at most t: for every
long block in (s′

1, s
′
2) we take the corresponding block in (s1, s2) and cut the remains into

blocks of size one. Clearly, the result is a common partition of s1 and s2: blocks of length at
least two do not intersect and are contained in both strings since so do the corresponding
long blocks. The remaining blocks of size one match since s1 and s2 consists of the same
number of each symbol. The size of the constructed partition is equal to the number of
blocks in the considered partition of s′

1 and s′
2 that contain at least one pivot and hence is

no more than t. ◀

7 Open problems

There are three natural questions left open by the present studies.
1. Close the gap between a lower bound 2Ω(n/ log n) and an upper bound 2O(n log log n/ log n)

for constant size alphabets.
2. Design a moderately exponential time (of the form cn for c < 2) algorithm for the case

of more than two input strings.
3. Roughly, it is the “no-holes” property that allows us to improve the 2n upper bound for

MCSP. What are other problems with the same effect?
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