
On the Hardness of Compressing Weights
Bart M. P. Jansen # Ñ

Eindhoven University of Technology, The Netherlands

Shivesh K. Roy # Ñ

Eindhoven University of Technology, The Netherlands

Michał Włodarczyk #Ñ

Eindhoven University of Technology, The Netherlands

Abstract
We investigate computational problems involving large weights through the lens of kernelization,
which is a framework of polynomial-time preprocessing aimed at compressing the instance size. Our
main focus is the weighted Clique problem, where we are given an edge-weighted graph and the
goal is to detect a clique of total weight equal to a prescribed value. We show that the weighted
variant, parameterized by the number of vertices n, is significantly harder than the unweighted
problem by presenting an O(n3−ε) lower bound on the size of the kernel, under the assumption that
NP ̸⊆ coNP/poly. This lower bound is essentially tight: we show that we can reduce the problem to
the case with weights bounded by 2O(n), which yields a randomized kernel of O(n3) bits.

We generalize these results to the weighted d-Uniform Hyperclique problem, Subset Sum,
and weighted variants of Boolean Constraint Satisfaction Problems (CSPs). We also study
weighted minimization problems and show that weight compression is easier when we only want to
preserve the collection of optimal solutions. Namely, we show that for node-weighted Vertex Cover
on bipartite graphs it is possible to maintain the set of optimal solutions using integer weights from
the range [1, n], but if we want to maintain the ordering of the weights of all inclusion-minimal
solutions, then weights as large as 2Ω(n) are necessary.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Problems, reductions and completeness

Keywords and phrases kernelization, compression, edge-weighted clique, constraint satisfaction
problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.64

Related Version Full Version: https://arxiv.org/abs/2107.02554

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

1 Introduction

A prominent class of problems in algorithmic graph theory consist of finding a subgraph with
certain properties in an input graph G, if one exists. Some variations of this problem can be
solved in polynomial time (detecting a triangle), while the general problem is NP-complete
since it generalizes the Clique problem. In recent years, there has been an increasing interest
in understanding the complexity of such subgraph detection problems in weighted graphs,
where either the vertices or the edges are assigned integral weight values, and the goal is
either to find a subgraph of a given form which optimizes the total weight of its elements, or
alternatively, to find a subgraph whose total weight matches a prescribed value.

Incorporating weights in the problem definition can have a significant effect on com-
putational complexity. For example, determining whether an unweighted n-vertex graph
has a triangle can be done in time O(nω) (where ω < 2.373 is the exponent of matrix

© Bart M. P. Jansen, Shivesh K. Roy, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 64; pp. 64:1–64:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://www.win.tue.nl/~bjansen/
https://orcid.org/0000-0001-8204-1268
mailto:s.k.roy@tue.nl
https://sites.google.com/view/shiveshroy
https://orcid.org/0000-0003-0896-3437
mailto:m.wlodarczyk@tue.nl
https://www.win.tue.nl/~mwlodarczyk/
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.MFCS.2021.64
https://arxiv.org/abs/2107.02554
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 On the Hardness of Compressing Weights

multiplication) [14], while for the analogous weighted problem of finding a triangle of min-
imum edge-weight, no algorithm of running time O(n3−ε) is known for any ε > 0. Some
popular conjectures in fine-grained complexity theory even postulate that no such algorithms
exist [27]. Weights also have an effect on the best-possible exponential running times of
algorithms solving NP-hard problems: the current-fastest algorithm for the NP-complete
Hamiltonian Cycle problem in undirected graphs runs in time O(1.66n) [3], while for its
weighted analogue, Traveling Salesperson, no algorithm with running time O((2 − ε)n)
is known for general undirected graphs (cf. [23]).

In this work we investigate how the presence of weights in a problem formulation affects
the compressibility and kernelization complexity of NP-hard problems. Kernelization is
a subfield of parameterized complexity [6, 9] that investigates how much a polynomial-time
preprocessing algorithm can compress an instance of an NP-hard problem, without changing
its answer, in terms of a chosen complexity parameter.

For a motivating example of kernelization, we consider the Vertex Cover problem.
For the unweighted variant, a kernelization algorithm based on the Nemhauser-Trotter theo-
rem [25] can efficiently reduce an instance (G, k) of the decision problem, asking whether G

has a vertex cover of size at most k, to an equivalent one (G′, k′) consisting of at most 2k ver-
tices, which can therefore be encoded in O(k2) bits via its adjacency matrix. In the language
of parameterized complexity, the unweighted Vertex Cover problem parameterized by
the solution size k admits a kernelization (self-reduction) to an equivalent instance on O(k2)
bits. For the weighted variant of the problem, where an input additionally specifies a weight
threshold t ∈ N+ and a weight function w : V (G) → N+ on the vertices, and the question
is whether there is a vertex cover of size at most k and weight at most t, the guarantee on
the encoding size of the reduced instance is weaker. Etscheid et al. [10, Thm. 5] applied a
powerful theorem of Frank and Tardös [12] to develop a polynomial-time algorithm to reduce
any instance (G, w, k, t) of Weighted Vertex Cover to an equivalent one with O(k2)
edges, which nevertheless needs O(k8) bits to encode due to potentially large numbers
occurring as vertex weights. The Weighted Vertex Cover problem, parameterized by
solution size k, therefore has a kernel of O(k8) bits.

The overhead in the kernel size for the weighted problem is purely due to potentially large
weights. This led Etscheid et al. [10] to ask in their conclusion whether this overhead in the
kernelization sizes of weighted problems is necessary, or whether it can be avoided. As one of
the main results of this paper, we will prove a lower bound showing that the kernelization
complexity of some weighted problems is strictly larger than their unweighted counterparts.

Our results. We consider an edge-weighted variation of the Clique problem, parameterized
by the number of vertices n:

Exact-Edge-Weight Clique (EEWC)
Input: An undirected graph G, a weight function w : E(G) → N0, and a target t ∈ N0.
Question: Does G have a clique of total edge-weight exactly t, i.e., a vertex set S ⊆ V (G)
such that {x, y} ∈ E(G) for all distinct x, y ∈ S and such that

∑
{x,y}⊆S w({x, y}) = t?

Our formulation of EEWC does not constrain the cardinality of the clique. This
formulation will be convenient for our purposes, but we remark that by adjusting the weight
function it is possible to enforce that any solution clique S has a prescribed cardinality.
Through such a cardinality restriction we can obtain a simple reduction from the problem
with potentially negative weights to equivalent instances with weights from N0, by increasing
all weights by a suitably large value and adjusting t according to the prescribed cardinality.

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:3

Note that an instance of EEWC can be reduced to an equivalent one where G has all possible
edges, by simply inserting each non-edge with a weight of t + 1. Hence the difficulty of the
problem stems from achieving the given target weight t as the total weight of the edges
spanned by S, not from the requirement that G[S] must be a clique.

EEWC is a natural extension of Zero-Weight Triangle [1], which has been studied
because it inherits fine-grained hardness from both 3-Sum [29] and All Pairs Shortest
Paths [28, Footnote 3]. EEWC has previously been considered by Abboud et al. [2] as
an intermediate problem in their W[1]-membership reduction from k-Sum to k-Clique.
Vassilevska-Williams and Williams [29] considered a variation of this problem with weights
drawn from a finite field. The related problem of detecting a triangle of negative edge weight
is central in the field of fine-grained complexity for its subcubic equivalence [30] to All
Pairs Shortest Paths. Another example of an edge-weighted subgraph detection problem
with an exact requirement on the weight of the target subgraph is Exact-Edge-Weight
Perfect Matching, which can be solved using algebraic techniques [22, §6] and has been
used as a subroutine in subgraph isomorphism algorithms [21, Proposition 3.1].

The unweighted version of EEWC, obtained by setting all edge weights to 1, is NP-
complete because it is equivalent to the Clique problem. When using the number of vertices n

as the complexity parameter, the problem admits a kernelization of size O(n2) obtained by
simply encoding the instance via its adjacency matrix. We prove the following lower bound,
showing that the kernelization complexity of the edge-weighted version is a factor n larger.
The lower bound even holds against generalized kernelizations (Definition 4).

▶ Theorem 1. The Exact-Edge-Weight Clique problem parameterized by the number
of vertices n does not admit a generalized kernelization of O(n3−ε) bits for any ε > 0, unless
NP ⊆ coNP/poly.

Intuitively, the lower bound exploits the fact that the weight value of each of the Θ(n2)
edges in the instance may be a large integer requiring Ω(n) bits to encode. We also provide
a randomized kernelization which matches this lower bound.

▶ Theorem 2. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Exact-Edge-Weight Clique, outputs an instance (G′, w′, t′) of
bitsize O(n3), in which each number is bounded by 2O(n), that is equivalent to (G, w, t) with
probability at least 1 − 2−n. Moreover, if the input is a YES-instance, then the output is
always a YES-instance.

The proof is based on the idea that taking the weight function modulo a random prime
preserves the answer to the instance with high probability. We adapt the argument by Harnik
and Naor [13] that it suffices to pick a prime of magnitude 2O(n). As a result, each weight
can be encoded with just O(n) bits.

It is noteworthy that the algorithm above can produce only false positives, therefore
instead of using randomization we can turn it into a co-nondeterministic algorithm which
guesses the correct values of the random bits. The framework of cross-composition excludes
not only deterministic kernelization, but also co-nondeterministic [8], thus the lower bound
from Theorem 1 indeed makes the presented algorithm tight.

Together, Theorems 1 and 2 pin down the kernelization complexity of Exact-Edge-
Weight Clique, and prove it to be a factor n larger than for the unit-weight case.
For Clique, the kernelization of O(n2) bits due to adjacency-matrix encoding cannot
be improved to O(n2−ε) for any ε > 0, as was shown by Dell and van Melkebeek [8].

We extend our results to the hypergraph setting, which is defined as follows: given
a d-regular hypergraph (d ≥ 3) with non-negative integer weights on the hyperedges, and
a target value t, test if there is a vertex set S for which each size-d subset is a hyperedge (so

MFCS 2021

64:4 On the Hardness of Compressing Weights

that S is a hyperclique) such that the sum of the weights of the hyperedges contained in S

is exactly t. By a bootstrapping reduction using Theorem 1, we prove that Exact-Edge-
Weight d-Uniform Hyperclique does not admit a generalized kernel of size O(nd+1−ε)
for any ε > 0 unless NP ⊆ coNP/poly, while the randomized hashing technique yields
a randomized kernelization of size O(nd+1).

We can view the edge-weighted (d-hyper)clique problem on (G, k, w, t) as a weighted
constraint satisfaction problem (CSP) with weights from Z, by introducing a binary variable
for each vertex, and a weighted constraint for each subset S′ of d vertices, which is satisfied
precisely when all variables for S′ are set to true. If S′ is a (hyper)edge e ∈ E(G) then
the weight of the constraint on S′ equals the weight of e; if S′ is not a hyperedge of G,
then the weight of the constraint on S′ is set to −∞ to prevent all its vertices from being
simultaneously chosen. Under this definition, G has a (hyper)clique of edge-weight t if
and only if there is an assignment to the variables for which the total weight of satisfied
constraints is t. Via this interpretation, the lower bounds for EEWC yield lower bounds on
the kernelization complexity of weighted variants of CSP. We employ a recently introduced
framework [17] of reductions among different CSPs whose constraint languages have the same
maximum degree d of their characteristic polynomials, to transfer these lower bounds to other
CSPs (see Section 3.3 for definitions). We obtain tight kernel bounds when parameterizing
the exact-satisfaction-weight version of CSP by the number of variables, again using random
prime numbers to obtain upper bounds. Our lower bounds for Exact-Edge-Weight
d-Uniform Hyperclique transfer to all CSPs with degree d ≥ 2. In degree-1 CSP each
constraint depends on exactly one variable, therefore its exact-weighted variant is equivalent
to the Subset Sum problem, for which we also provide a tight lower bound.

▶ Theorem 3. Subset Sum parameterized by the number of items n does not admit
a generalized kernelization of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Theorem 3 tightens a result of Etscheid et al. [10, Theorem 14], who ruled out (standard)
kernelizations for Subset Sum of size O(n2−ε) assuming the Exponential Time Hypothesis.
Our reduction, conditioned on the incomparable assumption NP ̸⊆ coNP/poly, additionally
rules out generalized kernelizations that compress into an instance of a potentially different
problem. Note that the new lower bound implies that the input data in Subset Sum cannot
be efficiently encoded in a more compact way, whereas the previous lower bound relies on
the particular way the input is encoded in the natural formulation of the problem. On the
other hand, a randomized kernel of size O(n2) is known [13].

The results described so far characterize the kernelization complexity of broad classes of
weighted constraint satisfaction problems in which the goal is to find a solution for which the
total weight of satisfied constraints is exactly equal to a prescribed value. We also broaden
our scope and investigate the maximization or minimization setting, in which the question is
whether there is a solution whose cost is at least, or at most, a prescribed value. Some of
our upper-bound techniques can be adapted to this setting: using a procedure by Nederlof,
van Leeuwen and de Zwaan [24] a maximization problem can be reduced to a polynomial
number of exact queries. This leads, for example, to a Turing kernelization (cf. [11]) for
the weight-maximization version of d-Uniform Hyperclique which decides an instance
in randomized polynomial time using queries of size O(nd+1) to an oracle for an auxiliary
problem. We do not have lower bounds in the maximization regime.

In an attempt to understand the relative difficulty of obtaining an exact target weight
versus maximizing the target weight, we finally investigate different models of weight reduction
for the Weighted Vertex Cover problem studied extensively in earlier works [5, 10, 24].
We consider the problem on bipartite graphs, where an optimal solution can be found in

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:5

polynomial time, but we investigate whether a weight function can be efficiently compressed
while either preserving (a) the collection of minimum-weight vertex covers, or (b) the relative
ordering of total weight for all inclusion-minimal vertex covers. We give a polynomial-time
algorithm for case (a) which reduces to a weight function with range {1, . . . , n} using a relation
to b-matchings, but show that in general it is impossible to achieve (b) with a weight function
with range {1, . . . , 2o(n)}, by utilizing lower bounds on the number of different threshold
functions.

Organization. We begin with short preliminaries with the crucial definitions. We prove
our main Theorem 1 in Section 3 by presenting a cross-composition of degree 3 into Exact-
Edge-Weight Clique and employing it to obtain kernelization lower bounds for d-uniform
hypergraphs for d ≥ 2. This section also contains the kernelization lower bound for Subset
Sum as well as the generalization of these results to Boolean CSPs. Next, in Section 4 we
focus on bipartite Weighted Vertex Cover and the difficulty of compressing weight
functions. The proofs of statements marked with (⋆) are located in the appendix. The proofs
of statements marked with (♠) can be found in the full version [16]. The proof of Theorem 2,
together with Turing kernelization for maximization problems, is given in Appendix B. The
kernel upper bounds for Boolean CSPs can be found in the full version [16].

2 Preliminaries

We denote the set of natural numbers including zero by N0, and the set of positive natural
numbers by N+. For positive integers n we define [n] := {1, . . . , n}. For a set U and
integer d ≥ 1 we denote by

(
U
d

)
the collection of all size-d subsets of U . All logarithms we

employ have base 2. Given a set U and a weight function w : U → N0, for a subset S ⊆ U

we denote w(S) :=
∑

v∈S w(v).
A graph G has a vertex set V (G) and an edge set E(G) ⊆

(
V (G)

2
)
. For d ≥ 2, a d-uniform

hypergraph G consists of a vertex set V (G) and a set of hyperedges E(G) ⊆
(

V (G)
d

)
, that is,

each hyperedge is a set of exactly d vertices. Hence a 2-uniform hypergraph is equivalent to a
standard graph. A clique in a d-uniform hypergraph G is a vertex set S ⊆ V (G) such that for
each X ∈

(
S
d

)
we have X ∈ E(G): each possible hyperedge among the vertices of S is present.

A vertex cover for a graph G is a vertex set S ⊆ V (G) containing at least one endpoint of
each edge. A vertex cover is inclusion-minimal if no proper subset is a vertex cover.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N+, where Σ is
a finite alphabet.

▶ Definition 4. Let Q, Q′ ⊆ Σ∗ × N+ be parameterized problems and let h : N+ → N+ be a
computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm that,
on input (x, k) ∈ Σ∗ × N+, takes time polynomial in |x| + k and outputs an instance (x′, k′)
such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial.

▶ Definition 5 (Linear-parameter transformations). Let P and Q be parameterized problems.
We say that P is linear-parameter transformable to Q, if there exists a polynomial-time
computable function f : Σ∗ × N+ → Σ∗ × N+, such that for all (x, k) ∈ Σ∗ × N+, (a)
(x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q and (b) k′ ≤ O(k). The function f is called a
linear-parameter transformation.

MFCS 2021

64:6 On the Hardness of Compressing Weights

We employ a linear-parameter transformation for proving the lower bound for Subset
Sum. For other lower bounds we use the framework of cross-composition [4] directly.

▶ Definition 6 (Polynomial equivalence relation, [4, Def. 3.1]). Given an alphabet Σ, an
equivalence relation R on Σ⋆ is called a polynomial equivalence relation if the following
conditions hold.

(i) There is an algorithm that, given two strings x, y ∈ Σ⋆, decides whether x and y belong
to the same equivalence class in time polynomial in |x| + |y|.

(ii) For any finite set S ⊆ Σ⋆ the equivalence relation R partitions the elements of S into a
number of classes that is polynomially bounded in the size of the largest element of S.

▶ Definition 7 (Degree-d cross-composition). Let L ⊆ Σ⋆ be a language, let R be a polynomial
equivalence relation on Σ⋆, and let Q ⊆ Σ⋆ × N+ be a parameterized problem. A degree-d
OR-cross-composition of L into Q with respect to R is an algorithm that, given z instances
x1, x2, . . . , xz ∈ Σ⋆ of L belonging to the same equivalence class of R, takes time polynomial
in

∑z
i=1 |xi| and outputs an instance (x′, k′) ∈ Σ⋆ × N+ such that:

(i) the parameter k′ is bounded by O(z1/d · (maxi |xi|)c), where c is some constant inde-
pendent of z, and

(ii) (x′, k′) ∈ Q if and only if there is an i ∈ [z] such that xi ∈ L.

▶ Theorem 8 ([4, Theorem 3.8]). Let L ⊆ Σ⋆ be a language that is NP-hard under Karp
reductions, let Q ⊆ Σ⋆ × N+ be a parameterized problem, and let ε > 0 be a real number.
If L has a degree-d OR-cross-composition into Q and Q parameterized by k has a polynomial
(generalized) kernelization of bitsize O(kd−ε), then NP ⊆ coNP/poly.

3 Kernel lower bounds

3.1 Exact-Edge-Weight Clique
In this section we show that Exact-Edge-Weight Clique parameterized by the number
of vertices in the given graph n does not admit a generalized kernel of size O(n3−ε), unless
NP ⊆ coNP/poly. We use the framework of cross-composition to establish a kernelization
lower bound [4]. We will use the NP-hard Red-Blue Dominating Set (RBDS) as a
starting problem for the cross-composition. Observe that RBDS is NP-hard because it is
equivalent to Set Cover and Hitting Set [19].

Red-Blue Dominating Set (RBDS)
Input: A bipartite graph G with a bipartition of V (G) into sets R (red vertices) and B

(blue vertices), and a positive integer d ≤ |R|.
Question: Does there exist a set D ⊆ R with |D| ≤ d such that every vertex in B has
at least one neighbor in D?

The following lemma forms the heart of the lower bound. It shows that an instance of
EEWC on z · NO(1) vertices can encode the logical OR of a sequence of z3 instances of
size N each. Roughly speaking, this should be interpreted as follows: when z ≫ N , each of
the roughly z2 edge weights of the constructed graph encodes z useful bits of information, in
order to allow the instance on ≈ z2 edges to represent all z3 inputs.

▶ Lemma 9. There is a polynomial-time algorithm that, given integers z, d, n, m and a
set of z3 instances {(Gi,j,k, Ri,j,k, Bi,j,k, d) | i, j, k ∈ [z])} of RBDS such that |Ri,j,k| = m

and |Bi,j,k| = n for each i, j, k ∈ [z], constructs an undirected graph G′, integer t > 0, and
weight function w : E(G′) → N0 such that:

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:7

1. the graph G′ contains a clique of total edge-weight exactly t if and only if there ex-
ist i∗, j∗, k∗ ∈ [z] such that Gi∗,j∗,k∗ has a red-blue dominating set of size at most d,

2. the number of vertices in G′ is O(z(m + nd)), and
3. the values of t and |V (G′)| depend only on z, d, n, and m.

Proof. We describe the construction of (G′, w, t); it will be easy to see that it can be carried
out in polynomial time. Label the vertices in each set Ri,j,k arbitrarily as r1, . . . , rm, and
similarly label the vertices in each set Bi,j,k as b1, . . . , bn. We construct a graph G′ with
edge-weight function w and integer t such that G′ has a clique of total edge weight exactly
t if and only if some Gi,j,k is a YES-instance of RBDS. In the following construction we
interpret edge weights as vectors of length nz + 1 written in base (m + d + 2), which will be
converted to integers later. Starting from an empty graph, we construct G′ as follows; see
Figure 1.

1. For each i ∈ [z], create a vertex bi. The vertices bi form an independent set, so that any
clique in G′ contains at most one vertex bi.

2. For each j ∈ [z], create a vertex set Rj = {rj
1, rj

2, · · · , rj
m} and insert edges of weight 0⃗

between all possible pairs of Rj .
3. For each k ∈ [z], create a vertex sk. The vertices sk form an independent set, so that any

clique in G′ contains at most one vertex sk.
4. For each j, k ∈ [z], for each x ∈ [m], insert an edge between sk and rj

x of weight 0⃗.

The next step is to ensure that the neighborhood of a vertex rx in Gi,j,k is captured in
the weights of the edges which are incident on rj

x in G′.

5. For each i, j ∈ [z], for each x ∈ [m], insert an edge between bi and rj
x.

6. The weight of each edge {bi, rj
x} is a vector of length nz + 1, out of which the least

significant nz positions are divided into z blocks of length n each, and the most significant
position is 1. The numbering of blocks as well as positions within a given block start
with the least significant position.
For each i, j ∈ [z], for each x ∈ [m], the weight of edge {bi, rj

x} is defined as follows. For
each k ∈ [z], for each q ∈ [n], the value vk,q(bi, rj

x) represents the value of the qth position
of the kth block of the weight of {bi, rj

x}. The value is defined based on the neighborhood
of vertex rx in Gi,j,k as follows:

vk,q(bi, rj
x) =

{
1 if {bq, rx} ∈ E(Gi,j,k)
0 otherwise.

(1)

Intuitively, the vector representing the weight of edge {bi, rj
x} is formed by a 1 followed

by the concatenation of z blocks of length n, such that the kth block is the 0/1-incidence
vector describing which of the n blue vertices of instance Gi,j,k are adjacent to rx.

Note that the n blue vertices of an input instance Gi,j,k are represented by a single blue
vertex bi in G′. The difference between distinct blue vertices is encoded via different positions
of the weight vectors. The most significant position of the weight vectors, which is always set
to 1 for edges of the form {bi, rj

x}, will be used to keep track of the number of red vertices in
a solution to RBDS.

The graph constructed so far has a mechanism to select the first index i of an instance Gi,j,k

(by choosing a vertex bi), to select the second index j (by choosing vertices rj
x), and to select

the third index k (by choosing a vertex sk). The next step in the construction adds weighted

MFCS 2021

64:8 On the Hardness of Compressing Weights

r4 r3 r2 r1

b5 b4 b3 b2 b1

f

e1

b3 b2 b1

r14 r
1
3 r

1
2 r

1
1 r24 r

2
3 r

2
2 r

2
1

s3 s2 s1

0
000

0
0

0

0
0 0

0

0
0

0 0
0 000

0
0 0

e3
e4

0
0

00

0 0 0

P16 P15 P1

R3 R2 R1

g

1︸︷︷︸ 00111︸ ︷︷ ︸
w(f) = 0︸︷︷︸ 00000︸ ︷︷ ︸ 11111︸ ︷︷ ︸ 11111︸ ︷︷ ︸
w(g) = 1︸︷︷︸ 00000︸ ︷︷ ︸

Block3

00000︸ ︷︷ ︸
Block2

00000︸ ︷︷ ︸
Block1

G2,1,3

w(e1) = ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 1 Top-left: An instance (G2,1,3, R2,1,3, B2,1,3, 2) of RBDS with m = 4, n = 5, and d = 4.
Right: Illustration of the EEWC instance created for a sequence of 33 inputs including the one on
the left. For readability, only a subset of the edges is drawn. Bottom-left: For each type edge with
non-zero weight, an example weight is shown in vector form.

edges {bi, sk}, of which a solution clique in G′ will contain exactly one. The weight vector
for this edge is chosen so that the domination requirements from all RBDS instances whose
third index differs from k (and which are therefore not selected) can be satisfied “for free”.

7. For each i, k ∈ [z], insert an edge between bi and sk.
8. As in Step 6, the weight of the edge {bi, sk} is a (1 + nz)-tuple consisting of the most

significant position followed by z blocks of length n. There is a 0 at the most significant
position, block k consists of n zeros, and the other blocks are filled with ones. Hence the
weight of the edge {bi, sk} is independent of i.

To be able to ensure that G′ has a clique of exactly weight t if some input instance Gi,j,k

has a solution, we need to introduce padding numbers which may be used as part of the
solution to EEWC.

9. For each position v ∈ [nz + 1] of a weight vector, add a vertex set Pv = {pv
1, pv

2, · · · , pv
d−1}

to G′. Recall that d is the upper bound on the solution size for RBDS.
10. For each i ∈ [z], for each v ∈ [nz + 1], for each y ∈ [d − 1], add an edge {bi, pv

y}. The
weight of edge {bi, pv

y} has value 1 at the vth position and zeros elsewhere.
11. For each v ∈ [nz + 1], for each y ∈ [d − 1], add an edge {pv

y, u} of weight 0⃗ for all
u ∈ V (G′) \ ({bi | i ∈ [z]} ∪ {pv

y}), i.e., for all vertices u ̸= pv
y which were not already

adjacent to pv
y.

We define the target weight t to be the (nz + 1)-length vector with value d at each
position, which satisfies Condition 3. Observe that G′ has O(z(m + nd)) vertices: Steps 1
and 3 contribute O(z) vertices, Step 2 contributes O(zm), and Step 9 contributes O(d(nz)).
Hence Condition 2 is satisfied. It remains to verify that G′ has a clique of total edge weight

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:9

exactly t if and only if some input instance Gi,j,k has a solution of Red-Blue Dominating
Set of size at most d. Before proving this property, we show the following claim which
implies that no carries occur when summing up the weights of the edges of a clique in G′.

▷ Claim 10. For any clique S ⊆ V (G′), for any position v ∈ [nz +1] of a weight vector, there
are at most d + m + 1 edges of the clique G′[S] whose weight vector has a 1 at position v,
and all other weight vectors are 0 at position v.

Proof. By construction, the entries of the vector encoding an edge weight are either 0 or 1.
By Steps 1 and 3, a clique S in G′ contains at most one vertex bi and one vertex sk.

Since G′ does not have edges between vertices in distinct sets Rj and Rj′ by Step 2, any
clique in G′ consists of at most one vertex bi, one vertex sk, a subset of one set Rj , and a
subset of

⋃
v∈[nz+1] Pv. For any fixed position v ∈ [nz + 1], the only edge-weight vectors

which can have a 1 at position v are the d − 1 edges from Pv to bi, the edge {bi, sk}, and
the m edges between Rj and bi. As this yields (d − 1) + 1 + m edges that possibly have a 1
at position v, the claim follows. ◁

The preceding claim shows that when we convert each edge-weight vector to an integer
by interpreting the vector as its base-(m + d + 2)-representation, then no carries occur when
computing the sum of the edge-weights of a clique. Hence the integer edge-weights of a
clique S ⊆ V (G′) sum to the integer represented by vector t, if and only if the edge-weight
vectors of the edges in S sum to the vector t. In the remainder, it therefore suffices to prove
that there is a YES-instance Gi∗,j∗,k∗ of RBDS among the inputs if and only if G′ has a
clique whose edge-weight vectors sum to the vector t. We prove these two implications.

▷ Claim 11. If some input graph Gi∗,j∗,k∗ has a red-blue dominating set of size at most d,
then G′ has a clique of edge-weight exactly t.

Proof. Let S ⊆ Ri∗,j∗,k∗ of size at most d be a dominating set of Bi∗,j∗,k∗ . We define a
vertex set S′ ⊆ V (G′) as follows. Initialize S′ := {bi∗ , sk∗}, and for each vertex rx ∈ S, add
the corresponding vertex rj∗

x ∈ Rj∗ to S′.
We claim that S′ is a clique in G′. To see this, note that Rj∗ is a clique by Step 2.

Vertex sk∗ is adjacent to all vertices of Rj∗ by Step 4. Vertex bi∗ is adjacent to all vertices
of Rj∗ by Step 5. By Step 8 there is an edge between bi∗ and sk∗ .

Let us consider the weight of clique S′. Since S is a dominating set of Bi∗,j∗,k∗ , if we
sum up the weight vectors of the edges {bi∗ , rj∗

x } for rx ∈ S, then by Step 6 we get a value
of at least one at each position of block k∗. The most significant position of the resulting
sum vector has value |S| ≤ d. By Step 8 the weight vector of the edge {bi∗ , sk∗} consists
of all ones, except for block k∗ and the most significant position, where the value is zero.
Thus adding the edge weight of {bi∗ , sk∗} to the previous sum ensures that each block has
value at least 1 everywhere, whereas the most significant position has value |S|. All other
edges spanned by S have weight 0⃗. Letting t′ denote the vector obtained by summing the
weights of the edges of clique S′, we therefore find that t′ has value |S| as its most significant
position and value at least 1 everywhere else.

Next we add some additional vertices to the set S′ to get a clique of weight exactly t. By
Step 11, vertices from the sets Pv for v ∈ [nz + 1] are adjacent to all other vertices in the
graph and can be added to any clique. All edges incident on a vertex pv

y ∈ Pv have weight 0⃗,
except the edges to vertices of the form bi whose weight vector has a 1 at the vth position
and 0 elsewhere. Since S′ contains exactly one such vertex bi∗ , for any v ∈ [nz + 1] we can
add up to d − 1 vertices from Pv to increase the weight sum at position v from its value of at
least 1 in t′, to a value of exactly d. Hence G′ has a clique of edge-weight exactly t. ◁

MFCS 2021

64:10 On the Hardness of Compressing Weights

▷ Claim 12. If G′ has a clique of edge-weight exactly t, then some input graph Gi∗,j∗,k∗ has
a red-blue dominating set of size at most d.

Proof. Suppose G′[S′] is a clique whose total edge weight is exactly t. Note that only edges
for which one of the endpoints is of the form bi for i ∈ [z] have positive edge weights. The
remaining edges all have weight 0⃗. Also, by Step 1 there is at most one b-vertex in S′. Hence
since t ̸= 0⃗ there is exactly one vertex bi∗ in S′. By Step 9 and 10, the edges of type {bi∗ , pv

y}
for pv

y ∈ Pv contribute at most d − 1 to the value of each position v ∈ [nz + 1] of the sum.
Hence for each position v ∈ [nz + 1] there is an edge in clique S′ of the form {bi∗ , rj

x} or
{bi∗ , sk} which has a 1 at position v. We use this to show there is an input instance with a
red-blue dominating set of size at most d.

By Step 3, there is at most one s-vertex in S′. Let k∗ := 1 if S ∩ {s1, . . . , sz} = ∅, and
otherwise let sk∗ be the unique s-vertex in S′. Since the weight of the edge {bi∗ , sk∗} has
zeros in block k∗ by Step 8, our previous argument implies that for each of the n positions
of block k∗, there is an edge in clique S′ of the form {bi∗ , rj

x} whose weight has a 1 at that
position. Hence S′ contains at least one r-vertex, and by Step 2 all r-vertices in the clique S′

are contained in a single set Rj∗ . We show that Gi∗,j∗,k∗ has a red-blue dominating set of
size at most d. Let S := {rx | rj∗

x ∈ S′}. Since for each of the n positions of block k∗ there
is an edge {bi∗ , rj

x} in S′ with a 1 at that position, by Step 5 each blue vertex of Bi∗,j∗,k∗

has a neighbor in S. Hence S is a red-blue dominating set. By Step 5, the most significant
position of each edge between bi∗ and Rj∗ has value 1. As the most significant position of
the target t is set to d, it follows that |S| ≤ d, which proves that Gi∗,j∗,k∗ has a red-blue
dominating set of size at most d. ◁

This completes the proof of Lemma 9. ◀

Lemma 9 forms the main ingredient in a cross-composition that proves kernelization
lower bounds for Exact-Edge-Weight Clique and its generalization to hypergraphs. For
completeness, we formally define the hypergraph version as follows.

Exact-Edge-Weight d-Uniform Hyperclique (EEW-d-HC)
Input: A d-uniform hypergraph G, weight function w : E(G) → N0, and a positive
integer t.
Question: Does G have a hyperclique of total edge-weight exactly t?

The following theorem generalizes Theorem 1. The case d = 2 of the theorem follows
almost directly from Lemma 9 and Theorem 8, as the construction in the lemma gives the
crucial ingredient for a degree-3 cross-composition. For larger d, we essentially exploit the
fact that increasing the size of hyperedges by one allows one additional dimension of freedom,
as has previously been exploited for other kernelization lower bounds for d-Hitting Set
and d-Set Cover [7, 8]. The proof is given in Appendix A.1.

▶ Theorem 13. (⋆) For each fixed d ≥ 2, Exact-Edge-Weight d-Uniform Hyper-
clique parameterized by the number of vertices n does not admit a generalized kernel of
size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

3.2 Subset Sum
We show that Subset Sum parameterized by the number of items n does not have generalized
kernel of bitsize O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. We prove the lower bound
by giving a linear-parameter transformation from Exact Red-Blue Dominating Set. We

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:11

use Exact Red-Blue Dominating Set rather than Red-Blue Dominating Set as our
starting problem for this lower bound because it will simplify the construction: it will avoid
the need for “padding” to cope with the fact that vertices are dominated multiple times.

The Subset Sum problem is formally defined as follows.

Subset Sum (SS) Parameter: n

Input: A multiset X of n positive integers and a positive integer t.
Question: Does there exist a subset S ⊆ X with

∑
x∈S x = t?

We use the following problem as the starting point of the reduction.

Exact Red-Blue Dominating Set (ERBDS) Parameter: n := |V (G)|
Input: A bipartite graph G with a bipartition of V (G) into sets R (red vertices) and B

(blue vertices), and a positive integer d ≤ |R|.
Question: Does there exist a set D ⊆ R of size exactly d such that every vertex in B

has exactly one neighbor in D?

Jansen and Pieterse proved the following lower bound for ERBDS.

▶ Theorem 14 ([15, Thm. 4.9]). Exact Red-Blue Dominating Set parameterized
by the number of vertices n does not admit a generalized kernel of size O(n2−ε) unless
NP ⊆ coNP/poly.

Actually, the lower bound they proved is for a slightly different variant of ERBDS where
the solution D is required to have size at most d, instead of exactly d. Observe that the
variant where we demand a solution of size exactly d is at least as hard as the at most d

version: the latter reduces to the former by inserting d isolated red vertices. Therefore
the lower bound by Jansen and Pieterse also works for the version we use here, which will
simplify the presentation.

▶ Theorem 3. Subset Sum parameterized by the number of items n does not admit
a generalized kernelization of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Given a graph G with a bipartition of V (G) into R and B with R = {r1, r2, . . . , rnR
},

B = {b1, b2, . . . , bnB
}, and target value d for ERBDS, we transform it to an equivalent

instance (X, t) of SS such that |X| = nR. We start by defining nR numbers N1, N2, . . . , NnR

in base (nR + 1). For each i ∈ [nR], the number Ni consists of (nB + 1) digits. We denote
the digits of the number Ni by Ni[1], . . . , Ni[nB + 1], where Ni[1] is the least significant and
Ni[nB + 1] is the most significant digit. Intuitively, the number Ni corresponds to the red
vertex ri. See Figure 2 for an illustration.

For each i ∈ [nR], for each j ∈ [nB + 1], digit Ni[j] of number Ni is defined as follows:

Ni[j] =


1 if j = nB + 1
1 if j ∈ [nB] and {ri, bj} ∈ E(G)
0 otherwise.

(2)

Hence the most significant digit of each number is 1, and the remaining digits of number Ni

form the 0/1-vector indicating to which of the nB blue vertices ri is adjacent in G.
To complete the construction we set X = {N1, N2, . . . , NnR

} and we define t as follows:

t = d 11 . . . 1︸ ︷︷ ︸
nB times

(3)

MFCS 2021

64:12 On the Hardness of Compressing Weights

r1 r2 r3 r4

b1 b2 b3 b4 b5
ct B5 B4 B3 B2 B1

N1 1 0 0 0 1 1
N2 1 0 1 1 1 0
N3 1 1 1 1 0 0
N4 1 1 0 0 0 1
t 2 1 1 1 1 1

Figure 2 Left: An instance of ERBDS with nR = 4, nB = 5, and d = 2. Right: Illustration of
the SS instance created for the given input. Note that {r2, r4} and the numbers {N2, N4} form a
solution for ERBDS and SS, respectively. The leftmost column corresponds to the total count (ct)
of the number of elements; the remaining columns correspond to blue vertices.

Observe that under these definitions, there are no carries when adding up a subset of the
numbers in X, as each digit of each of the nR numbers is either 0 or 1 and we work in
base nR + 1.

The number of items |X| in the constructed instance of SS is nR, upper bounded by the
parameter |V (G)| of ERBDS. It is easy to see that the construction can be carried out in
polynomial time. To complete the linear-parameter transformation from ERBDS to SS, it
remains to prove that G has a set D ⊆ R of size exactly d such that every vertex in B has
exactly one neighbor in D, if and only if there exist a set S ⊆ X with

∑
x∈S x = t.

In the forward direction, suppose that there exists a set D ⊆ R of size exactly d such that
every vertex in B has exactly one neighbor in D. We claim that {Ni | ri ∈ D} is a solution
to SS. The resulting sum has value d at the most significant digit since |D| = d. All other
digits correspond to vertices in B. Since each blue vertex is adjacent to exactly one vertex
from D it is easy to verify that all remaining digits of the sum are exactly one, implying
that the numbers sum to exactly t.

For the reverse direction, suppose there is a set S ⊆ X with
∑

x∈S x = t. Since the most
significant digit of t is set to d and each number in X has a 1 as most significant digit, we
have |S| = d since there are no carries during addition. Define D := {ri | Ni ∈ S} as the
set of the red vertices corresponding to the numbers in S. As

∑
x∈S x = t and no carries

occur in the summation, we have
∑

x∈S x[j] = t[j] = 1 for each j ∈ [nB]. As the j-th digit of
all numbers is either 0 or 1 by definition, there is a unique Ni ∈ S with Ni[j] = 1, so that
ri ∈ D is the unique neighbor of bj in D. This shows that D is an exact red-blue dominating
set of size d, concluding the linear-parameter transformation.

If there was a generalized kernelization for SS of size O(n2−ε), then we would obtain
a generalized kernelization for ERBDS of size O(n2−ε) by first transforming it to SS, and
then applying the generalized kernelization for the latter. Hence by contraposition and
Theorem 14, the claim follows. ◀

3.3 Constraint Satisfaction Problems

In this section we extend our lower bounds to cover Boolean Constraint Satisfaction Problems
(CSPs). We employ the recently introduced framework [17] of reductions among different
CSPs to make a connection with EEW-d-HC. We start with introducing terminology
necessary to identify crucial properties of CSPs.

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:13

Preliminaries on CSPs. A k-ary constraint is a function f : {0, 1}k → {0, 1}. We refer to k

as the arity of f , denoted ar(f). We always assume that the domain is Boolean. A constraint
f is satisfied by an input s ∈ {0, 1}k if f(s) = 1. A constraint language Γ is a finite collection
of constraints {f1, f2, . . . , fℓ}, potentially with different arities. A constraint application,
of a k-ary constraint f to a set of n Boolean variables, is a triple ⟨f, (i1, i2, . . . ik), w⟩, where
the indices ij ∈ [n] select k of the n Boolean variables to whom the constraint is applied,
and w is an integer weight. The variables can repeat in a single application.

A formula Φ of CSP(Γ) is a set of constraint applications from Γ over a common set
of variables. For an assignment x, that is, a mapping from the set of variables to {0, 1},
the integer Φ(x) is the sum of weights of the constraint applications satisfied by x. The
considered decision problems are defined as follows.

Exact-Weight CSP(Γ) Parameter: n

Input: A formula Φ of CSP(Γ) over n variables, an integer t ∈ Z.
Question: Is there an assignment x for which Φ(x) = t?

Max-Weight CSP(Γ) Parameter: n

Input: A formula Φ of CSP(Γ) over n variables, an integer t ∈ Z.
Question: Is there an assignment x for which Φ(x) ≥ t?

The compressibility of Max-Weight CSP(Γ) has been studied by Jansen and Wło-
darczyk [17], who obtained essentially optimal kernel sizes for every Γ in the case where
the weights are polynomial with respect to n. Even though the upper and lower bounds
in [17] are formulated for Max-Weight CSP(Γ), they could be adapted to work with
Exact-Weight CSP(Γ). The crucial idea which allows to determine compressibility of Γ is
the representation of constraints via multilinear polynomials.

▶ Definition 15. For a k-ary constraint f : {0, 1}k → {0, 1} its characteristic polynomial Pf

is the unique k-ary multilinear polynomial over R satisfying f(x) = Pf (x) for any x ∈ {0, 1}k.

It is known that such a polynomial always exists and it is unique [26].

▶ Definition 16. The degree of constraint language Γ, denoted deg(Γ), is the maximal degree
of a characteristic polynomial Pf over all f ∈ Γ.

The main result of Jansen and Włodarczyk [17] states that Max-Weight CSP(Γ) with
polynomial weights admits a kernel of O(ndeg(Γ) log n) bits and, as long as the problem is NP-
hard, it does not admit a kernel of size O(ndeg(Γ)−ε), for any ε > 0, unless NP ⊆ coNP/poly.
It turns out that in the variant when we allow both positive and negative weights the problem
is NP-hard whenever deg(Γ) ≥ 2 [18]. The lower bounds are obtained via linear-parameter
transformations, where the parameter is the number of variables n. We shall take advantage
of the fact that these transformations still work for an unbounded range of weights.

▶ Lemma 17 ([17], Lemma 5.4). For constraint languages Γ1, Γ2 such that 2 ≤ deg(Γ1) ≤
deg(Γ2), there is a polynomial-time algorithm that, given a formula Φ1 ∈ CSP(Γ1) on n1
variables and integer t1, returns a formula Φ2 ∈ CSP(Γ2) on n2 variables and integer t2,
such that
1. n2 = O(n1),
2. ∃xΦ1(x) = t1 ⇐⇒ ∃yΦ2(y) = t2,
3. ∃xΦ1(x) ≥ t1 ⇐⇒ ∃yΦ2(y) ≥ t2.

MFCS 2021

64:14 On the Hardness of Compressing Weights

Kernel lower bounds for CSP. The lower bound of Ω(ndeg(Γ)−ε) has been obtained via a
reduction from d-SAT (with d = deg(Γ)) to Max-Weight CSP(Γ), combined with the fact
that Max d-SAT does not admit a kernel of size O(nd−ε) for d ≥ 2 [8, 17]. We are going
to show that when the weights are arbitrarily large, then the optimal compression size for
Exact-Weight CSP(Γ) becomes essentially O(ndeg(Γ)+1), so the exponent is always larger
by one compared to the case with polynomial weights. To this end, we are going to combine
the aforementioned reduction framework with our lower bound for Exact-Edge-Weight
d-Uniform Hyperclique.

Consider a constraint language Γd
and consisting of a single d-ary constraint ANDd, which

is satisfied only if all the arguments equal 1. The characteristic polynomial of ANDd is
simply P (x1, . . . , xd) = x1x2 · · · xd, hence the degree of Γd

and equals d. We first translate
our lower bounds for the hyperclique problems into a lower bound for Exact-Weight
CSP(Γd

and) for all d ≥ 2, and then extend it to other CSPs.

▶ Lemma 18. For all d ≥ 2, Exact-Weight CSP(Γd
and) does not admit a generalized

kernel of size O(nd+1−ε), for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Consider an instance (G, w, t) of Exact-Edge-Weight d-Uniform Hyperclique.
Let W be the sum of all weights, which are by the definition non-negative. We can assume
t ∈ [0, W], as otherwise there is clearly no solution. We create an instance Φ of Exact-
Weight CSP(Γd

and) with the variable set V (G) as follows. For each potential hyperedge
e = {v1, . . . , vd}, if e ∈ E(G) we create a constraint application ⟨ANDd, (v1, . . . , vd), w(e)⟩
and if e ̸∈ E(G), we create a constraint application ⟨ANDd, (v1, . . . , vd), W + 1⟩.

If X ⊆ V (G) is a hyperclique with total weight t, then for the assignment x(v) = [v ∈ X]
it holds that Φ(x) = t. In the other direction, if Φ(x) = t then x cannot satisfy any constraint
application with weight W + 1. Hence, each size-d subset of 1-valued variables corresponds
to a hyperedge in G and X = {v ∈ V (G) | x(v) = 1} forms a hyperclique of total weight t.

We have constructed a linear-parameter transformation from EEW-d-HC to Exact-
Weight CSP(Γd

and). Therefore, any generalized kernel of size O(nd+1−ε) for the latter
would entail the same bound for EEW-d-HC. The claim follows from Theorem 13. ◀

The lower bound for Exact-Weight CSP(Γd
and) given by Lemma 18 yields a lower

bound for general Exact-Weight CSP(Γ) using the reduction framework described above.

▶ Theorem 19. For any Γ with deg(Γ) ≥ 2, Exact-Weight CSP(Γ) does not admit a
generalized kernel of size O(ndeg(Γ)+1−ε), for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Consider an n-variable instance (Φ1, t1) of Exact-Weight CSP(Γd
and), where

d = deg(Γ). It holds that deg(Γd
and) = d. By Lemma 17, there is a linear-parameter

transformation that translates (Φ1, t1) into an equivalent instance (Φ2, t2) of Exact-Weight
CSP(Γ). If we could compress (Φ2, t2) into O(nd+1−ε) bits, this would entail the same
compression for (Φ1, t1). The claim follows from Lemma 18. ◀

This concludes the discussion of kernelization lower bounds. The kernelization upper
bounds discussed in the introduction can be found in Appendix B (for hyperclique problems)
and in the full version [16] (for CSPs).

4 Node-weighted Vertex Cover in bipartite graphs

Preserving all minimum solutions. For a graph G with node-weight function w : V (G) →
N+, we denote by C(G, w) the collection of subsets of V (G) which are minimum-weight vertex
covers of G. For n-vertex bipartite graphs there exists a weight function with range [n] that
preserves the set of minimum-weight vertex covers, which can be computed efficiently.

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:15

▶ Theorem 20. (♠) There is an algorithm that, given an n-vertex bipartite graph G and
node-weight function w : V (G) → N+, outputs a weight function w∗ : V (G) → [n] such that
C(G, w) = C(G, w∗). The running time of the algorithm is polynomial in |V (G)| and the
binary encoding size of w.

The proof of the theorem is given in the full version [16]. It relies on the fact that a
maximum b-matching (the linear-programming dual to Vertex Cover) can be computed in
strongly polynomial time in bipartite graphs by a reduction to Max Flow. The structure of
a maximum b-matching allows two weight-reduction rules to be formulated whose exhaustive
application yields the desired weight function. We also prove that the bound of n on the
largest weight in Theorem 20 is best-possible.

Preserving the relative weight of solutions. For a graph G, we say that two node-weight
functions w, w′ are vertex-cover equivalent if the ordering of inclusion-minimal vertex covers
by total weight is identical under the two weight functions, i.e., for all pairs of inclusion-
minimal vertex covers S1, S2 ⊆ V (G) we have w(S1) ≤ w(S2) ⇔ w′(S1) ≤ w′(S2). While
a minimum-weight vertex cover of a bipartite graph can be found efficiently, the following
theorem shows that nevertheless weight functions with exponentially large coefficients may
be needed to preserve the ordering of minimal vertex covers by weight.

▶ Theorem 21. (♠) For each n ≥ 1, there exists a node-weighted bipartite graph Gn on 2(n+1)
vertices with weight function w : V (Gn) → N+ such that for all weight functions w′ : V (G) →
N+ which are vertex-cover equivalent to w, we have: max

v∈V (Gn)
w′(v) ≥ 2Ω(n).

5 Conclusions

We have established kernelization lower bounds for Subset Sum, Exact-Edge-Weight
d-Uniform Hyperclique, and a family of Exact-Weight CSP problems, which make it
unlikely that there exists an efficient algorithm to compress a single weight into o(n) bits.
This gives a clear separation between the setting involving arbitrarily large weights and
the case with polynomially-bounded weights, which can be encoded with O(log n) bits each.
The matching kernel upper bounds are randomized and we leave it as an open question to
derandomize them. For Subset Sum parameterized by the number of items n, a deterministic
kernel of size O(n4) is known [10].

Kernelization of weighted minimization/maximization problems is so far less understood.
We are able to match the same kernel size as for the exact-weight problems, but only
through Turing kernels. Using techniques from [10] one can obtain, e.g., a kernel of size
O(n8) for Max-Edge-Weight Clique. Improving upon this bound possibly requires
a better understanding of the threshold functions. Our study of weighted Vertex Cover
on bipartite graphs indicates that preserving the order between all the solutions might be
overly demanding and it could be easier to keep track only of the structure of the optimal
solutions. Can we extend the theory of threshold functions so that better bounds are feasible
when we just want to maintain a separation between optimal and non-optimal solutions?

References
1 Amir Abboud, Shon Feller, and Oren Weimann. On the fine-grained complexity of parity

problems. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 5:1–5:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.5.

MFCS 2021

https://doi.org/10.4230/LIPIcs.ICALP.2020.5

64:16 On the Hardness of Compressing Weights

2 Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Andreas S.
Schulz and Dorothea Wagner, editors, Algorithms – ESA 2014 – 22th Annual European
Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2014. doi:10.1007/978-3-662-44777-2_1.

3 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/120880240.

5 Miroslav Chlebík and Janka Chlebíková. Crown reductions for the minimum weighted vertex
cover problem. Discret. Appl. Math., 156(3):292–312, 2008. doi:10.1016/j.dam.2007.03.026.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Holger Dell and Dániel Marx. Kernelization of packing problems. In Yuval Rabani, editor,
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 68–81. SIAM, 2012. doi:10.1137/1.
9781611973099.6.

8 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

10 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for
weighted problems. J. Comput. Syst. Sci., 84:1–10, 2017. doi:10.1016/j.jcss.2016.06.004.

11 Henning Fernau. Kernelization, Turing kernels. In Encyclopedia of Algorithms, pages 1043–1045.
Springer, 2016. doi:10.1007/978-1-4939-2864-4_528.

12 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

13 Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic
applications. SIAM Journal on Computing, 39(5):1667–1713, 2010. doi:10.1137/060668092.

14 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413–423, 1978. doi:10.1137/0207033.

15 Bart M. P. Jansen and Astrid Pieterse. Optimal sparsification for some binary CSPs using
low-degree polynomials. TOCT, 11(4):28:1–28:26, 2019. doi:10.1145/3349618.

16 Bart M. P. Jansen, Shivesh K. Roy, and Michał Włodarczyk. On the hardness of compressing
weights, 2021. arXiv:2107.02554.

17 Bart M. P. Jansen and Michal Wlodarczyk. Optimal polynomial-time compression for Boolean
Max CSP. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual
European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual
Conference), volume 173 of LIPIcs, pages 63:1–63:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.63.

18 Peter Jonsson and Andrei Krokhin. Maximum H-colourable subdigraphs and constraint
optimization with arbitrary weights. Journal of Computer and System Sciences, 73(5):691–702,
2007. doi:10.1016/j.jcss.2007.02.001.

19 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

20 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM journal of research and development, 31(2):249–260, 1987.

21 Dániel Marx and Michal Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask), 2013. arXiv:
1307.2187v3.

https://doi.org/10.1007/978-3-662-44777-2_1
https://doi.org/10.1137/110839229
https://doi.org/10.1137/120880240
https://doi.org/10.1016/j.dam.2007.03.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611973099.6
https://doi.org/10.1137/1.9781611973099.6
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1007/978-1-4939-2864-4_528
https://doi.org/10.1137/060668092
https://doi.org/10.1137/0207033
https://doi.org/10.1145/3349618
http://arxiv.org/abs/2107.02554
https://doi.org/10.4230/LIPIcs.ESA.2020.63
https://doi.org/10.1016/j.jcss.2007.02.001
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1307.2187v3
http://arxiv.org/abs/1307.2187v3

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:17

22 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Comb., 7(1):105–113, 1987. doi:10.1007/BF02579206.

23 Jesper Nederlof. Bipartite TSP in o(1.9999n) time, assuming quadratic time matrix multipli-
cation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 40–53. ACM,
2020. doi:10.1145/3357713.3384264.

24 Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing a target interval
to a few exact queries. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors,
Mathematical Foundations of Computer Science 2012 – 37th International Symposium, MFCS
2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in
Computer Science, pages 718–727. Springer, 2012. doi:10.1007/978-3-642-32589-2_62.

25 G.L. Nemhauser and L.E.jun. Trotter. Vertex packings: structural properties and algorithms.
Math. Program., 8:232–248, 1975. doi:10.1007/BF01580444.

26 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994. doi:10.1007/BF01263419.

27 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and
Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation,
IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17–29. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

28 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, pages 455–464. ACM, 2009. doi:10.1145/1536414.
1536477.

29 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

30 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix,
and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

A Kernel lower bounds

A.1 Omitted proof for Exact-Edge-Weight Clique
▶ Theorem 13. (⋆) For each fixed d ≥ 2, Exact-Edge-Weight d-Uniform Hyper-
clique parameterized by the number of vertices n does not admit a generalized kernel of
size O(nd+1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We give a degree-(d + 1) OR-cross-composition (Definition 7) from RBDS to the
weighted hyperclique problem using Lemma 9. We start by giving a polynomial equivalence
relation R on inputs of RBDS. Let two instances of RBDS be equivalent under R if they
have the same number of red vertices, the same number of blue vertices, and the same target
value d. It is easy to check that R is a polynomial equivalence relation.

Consider Z inputs of RBDS from the same equivalence class of R. If Z is not a (d + 1)th

power of an integer, then we duplicate one of the input instances until we reach the first
number of the form 2(d+1)i, which is trivially such a power. This increases the number
of instances by at most the constant factor 2d+1 and does not change whether there is a
YES-instance among the instances. As all requirements on a cross-composition are oblivious
to constant factors, from now on we may assume without loss of generality that Z = zd+1

for some integer z. By definition of R, all instances have the same number m of red vertices,
the same number n of blue vertices, and have the same maximum size d of a solution.

MFCS 2021

https://doi.org/10.1007/BF02579206
https://doi.org/10.1145/3357713.3384264
https://doi.org/10.1007/978-3-642-32589-2_62
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/BF01263419
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1145/1536414.1536477
https://doi.org/10.1145/1536414.1536477
https://doi.org/10.1137/09076619X
https://doi.org/10.1145/3186893

64:18 On the Hardness of Compressing Weights

For d = 2, we can simply invoke Lemma 9 for the zd+1 = z3 instances of RBDS and output
the resulting instance (G′, w, t) of EEWC, which acts as the logical OR. Since the encoding
size N of an instance of RBDS with m red vertices, n blue vertices, and target value d

satisfies N ∈ Ω(n + m + d), Lemma 9 guarantees that G′ has O(z(m + nd)) ∈ O(3
√

Z · N2)
vertices, which is suitably bounded for a degree-3 cross-composition for the parameterization
by the number of vertices. Hence the claimed lower bound for generalized kernelization then
follows from Theorem 8.

In the remainder of the proof, we assume d ≥ 3. Partition the zd+1 inputs in zd−2 groups
{Xi1,...,id−2 | i1, . . . , id−2 ∈ [z]} of size z3 each. Apply Lemma 9 to each group Xi1,...,id−2 .
This results in zd−2 instances (Gi1,...,id−2 , wi1,...,wd−2 , t) of EEWC on a simple graph. Note
that all instances share the same value of t > 0, as Lemma 9 ensures that t only depends
on (z, d, n, m) which are identical for all groups. Similarly, all resulting instances have
the same number of vertices. Hence we can re-label the vertices in each graph so that all
graphs Gi1,...,id−2 have the same vertex set V of size O(z(m + nd)). The YES/NO-answer
to each composed instance is the disjunction of the answers to the RBDS instances in its
corresponding group.

Build a d-uniform hypergraph G∗ with weight function w∗ : E(G∗) → N0 and target
value t∗ as follows:
1. V (G∗) = V ∪ Y1 ∪ · · · ∪ Yd−2, where Yℓ = {yℓ,j | j ∈ [z]} for ℓ ∈ [d − 2].
2. A set S ⊆ V (G∗) of exactly d vertices is a hyperedge of G∗ if there is no ℓ ∈ [d − 2] for

which |S ∩ Yℓ| > 1.
3. The weight of a hyperedge S is equal to 0 if there exists ℓ ∈ [d − 2] with S ∩ Yℓ = ∅.

Otherwise, for each ℓ ∈ [d − 2] let iℓ be the unique index j such that yℓ,j ∈ S.
If eS := S ∩ V is an edge in graph Gi1,...,id−2 then define w∗(S) := wi1,...,id−2(eS).
Otherwise, let w∗(S) := t + 1.

4. Set t∗ = t.

Since d ∈ O(1), hypergraph G∗ has O(z · (m + nd)) + O(z · d) ∈ O(Z1/(d+1) · (m + n)O(1))
vertices. (We use here that d ≤ m.) Hence the parameter value of the constructed Exact-
Edge-Weight d-Uniform Hyperclique instance is indeed bounded by the (d + 1)-th
root of the number of input instances times a polynomial in the maximum size of an input
instance, satisfying the parameter bound of a degree-(d + 1) cross-composition.

It remains to verify that G∗ has a hyperclique of weight t∗ if and only if one of the
input instances has a RBDS of size at most d. By the guarantee of Lemma 9, it suffices
to show that G∗ has a hyperclique of weight t∗ if and only if one of the weighted standard
graphs (Gi1,...,id−2 , wi1,...,id−2) obtained by applying that lemma to some group of z3 inputs,
has a clique of weight t.

First suppose there exists a weighted graph (Gi∗
1 ,··· ,i∗

d−2
, wi∗

1 ,...,i∗
d−2

) that contains a clique S

of total edge weight t. Let I := {yℓ,i∗
ℓ

| ℓ ∈ [d − 2]}. Let S′ := S ∪ I. By Step 2, the set S′

is a hyperclique in G∗. It remains to verify that its weight is t∗ = t. By Step 3, for each
edge e of the clique S the set e ∪ I is a hyperedge in G∗ of the same weight. Additionally,
each subset of S′ that does not contain I has weight 0. Hence the weight of hyperclique S′ is
equal to the weight of clique S and is therefore t∗ = t.

For the other direction, suppose G∗ has a clique G∗[S∗] of weight t∗ = t. Since t > 0 and
all hyperedges in G∗ of nonzero weight contain exactly one vertex of each set Yℓ for ℓ ∈ [d−2],
there exist i∗

1, . . . , i∗
d−2 such that S∗∩Yℓ = {i∗

ℓ } for each ℓ ∈ [d−2]. Let I := {yℓ,i∗
ℓ

| ℓ ∈ [d−2]}.
We will show that S∗ ∩ V is a clique of weight t in Gi∗

1 ,...,i∗
d−2

. Since t∗ = t > 0 and edge-
weights are non-negative, it follows that no hyperedge in S∗ has weight t + 1. By Step 3, this
implies each subset of S∗ ∩ V of size two is an edge of Gi∗

1 ,...,i∗
d−2

, and hence S∗ ∩ V is a clique.

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:19

For each set e ⊆ V of size two, the weight of the hyperedge e ∪ I is equal to wi∗
1 ,...,i∗

d−2
(e).

As all other hyperedges in S∗ have weight 0, it follows that the weight of the clique S∗ ∩ V
equals that of hyperclique S∗, and is therefore equal to t∗ = t. This implies Gi∗

1 ,··· ,i∗
d−2

has a
clique of total edge weight t = t∗, which concludes the proof. ◀

B Kernel upper bounds

In this section, we present randomized kernel upper bounds for EEW-d-HC, which match the
obtained lower bounds. For the maximization variant of EEW-d-HC, we present a Turing
kernel with the same bounds. The results in this section follow from combining known
arguments from Harnik and Naor [13] and Nederlof et al. [23] with gadgets that allow us
to produce an instance of the same problem that is being compressed (so we obtain a true
kernelization, not a generalized one).

Consider a family F of subsets of a universe U and a weight function w : F → [−N, N].
For a subset X ⊆ U , we denote wsum(X) =

∑
Y ∈F, Y ⊆X w(Y). The following fact has been

observed by Harnik and Naor [13, Claim 2.7] and for the sake of completeness we provide
a proof for the formulation which is the most convenient for us.

▶ Lemma 22. Let U be a set of size n, F ⊆ 2U be a family of subsets, w : F → [−N, N] be
a weight function, and t ∈ [−N, N]. There exists a randomized polynomial-time algorithm
that, given a real ε > 0, returns a prime number p ≤ 2n · poly(n, log N, ε−1), such that if
there is no X ⊆ U satisfying wsum(X) = t, then

P
(

there is X ⊆ U satisfying wsum(X) ≡ t (mod p)
)

≤ ε.

Proof. For a fixed function w, we say that p is bad if for some X ⊆ U it holds that wsum(X) ≡ t

(mod p) but wsum(X) ̸= t. This implies that p divides |wsum(X) − t|. We argue that the
number of bad primes is bounded by 2n · (n + 1 + log(N)). Since |wsum(X) − t| ≤ 2n+1 · N ,
this number can have at most log(2n+1 · N) = n + 1 + log N different prime divisors. There
are at most 2n choices of X, which proves the bound.

We sample a random prime p among the set of the first M = 2n · (n + 1 + log(N)) · ε−1

primes. It is known that the first M primes lie in the interval [2, O(M log M)] and we can
uniformly sample a prime number from this interval in time (log M)O(1) = (n + log log(N) +
log(ε−1))O(1) [20]. By the argument above, the probability of choosing a bad prime is
bounded by ε. ◀

▶ Theorem 23. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Exact-Edge-Weight d-Uniform Hyperclique, outputs an instance
(G′, w′, t′) of bitsize O(nd+1), such that:
1. if (G, w, t) is a yes-instance, then (G′, w′, t′) is always a yes-instance,
2. if (G, w, t) is a no-instance, then (G′, w′, t′) is a no-instance with probability at least

1 − 2−n.
Furthermore, each number in (G′, w′, t′) is bounded by 2O(n).

Proof. Let us define N = max(t, maxe∈E(G) we). We can assume log N ≤ 2n, because
otherwise the input length is lower bounded by 2n and the brute-force algorithm for EEW-
d-HC becomes polynomial.

We apply Lemma 22 to the weight function w, target t, and ε = 2−n, to compute the
desired prime p ≤ 2n · poly(n, log N, ε−1) = 2O(n). If there exists a hyperclique X ⊆ V (G)
satisfying wsum(X) = t with respect to the weighted set family E(G) ⊆

(
V (G)

d

)
, then clearly

wsum(X) ≡ t (mod p). Furthermore, with probability 1 − 2−n, the implication in the other
direction holds as well. In particular, in this case p does not divide t.

MFCS 2021

64:20 On the Hardness of Compressing Weights

Let us construct a new instance (G′, w′, t′) of Exact-Edge-Weight d-Uniform Hy-
perclique with weights bounded by p · nd, which is bounded by 2O(n) for constant d. We
set w′(v) = w(v) (mod p) and tp = t (mod p). The condition wsum(X) ≡ t (mod p) is
equivalent to the existence of i ∈ [0, nd) for which w′

sum(X) = tp + ip, because the sum
w′

sum(X) comprises of at most nd summands from the range [0, p).
We introduce a set UZ of d − 1 new vertices and for each j ∈ [0, d − 1] we introduce a set

Uj of n new vertices. Intuitively, the sets Uj can be used to represent any number i ∈ [0, nd)
in base n. For every j and every v ∈ Uj we create a hyperedge e = UZ ∪ {v} with weight
w′

e = nj · p. For every other size-d subset containing at least one new vertex, we create
a hyperedge with weight 0. Observe that for every integer i ∈ [0, nd], we can find a set
Y ⊆ UZ ∪ U0 ∪ · · · ∪ Ud−1 such that w′

sum(Y) = ip. Let G′ be the graph with the set of
vertices V (G) ∪ UZ ∪ U0 ∪ · · · ∪ Ud−1 and hyperedges inherited from G plus these defined
above. We set t′ = tp + nd · p.

Suppose now that X ⊆ V (G) forms a hyperclique of total weight t in G. Then w′
sum(X) =

tp +ip for some i ∈ [0, nd). By the argument above, we can find a set Y ⊆ UZ ∪U0 ∪· · ·∪Ud−1
such that w′

sum(X ∪ Y) = t′ and X ∪ Y is a hyperclique in G′.
In the other direction, suppose we have successfully applied Lemma 22 and there is

a hyperclique X ′ ⊆ V (G′) with total weight t′. Then p divides w′
sum(X ′ \ V (G)), so since all

hyperedges intersecting both V (G) and X ′\V (G) have weight 0, we have w′
sum(X ′∩V (G)) ≡ t

(mod p) and wsum(X ′ ∩ V (G)) = t, which gives a desired hyperclique in G.
The new instance has O(n) vertices and O(nd) edges. The weight range is [0, nd · p] and,

since p = 2O(n), each weight can be encoded with O(n) bits. The claim follows. ◀

We obtain Theorem 2 as a corollary by taking d = 2.

B.1 Turing kernel for Max Weighted Hyperclique
We turn our attention to the maximization variant of the weighted hyperclique problem.
We consider the problem Max-Edge-Weight d-Uniform Hyperclique, which takes the
same input as Exact-Edge-Weight d-Uniform Hyperclique, but the goal is to detect
a hyperclique of total weight greater or equal to the target value t. Even though we are not
able to compress the weight function as in Theorem 23, we present a Turing kernelization
with the same size. We rely on a generic technique of reducing interval queries to exact
queries.

▶ Theorem 24 ([24], Theorem 1). Let U be a set of cardinality n, let w : U → N0 be a weight
function, and let l < u be non-negative integers with u − l > 1. There is a polynomial-time
algorithm that returns a set of pairs Ω = (w1, t1), . . . , (wK , tK) with wi : U → N0 and integers
t1, t2, . . . , tK , such that:
1. K is at most (5n + 2) · log(u − l),
2. for every set X ⊆ U it holds that w(X) ∈ [l, u] if and only if there exist i ∈ [1, K] such

that wi(X) = ti.

A polynomial Turing kernel (cf. [11]) for a parameterized problem P is a polynomial-time
algorithm that decides any instance of P with access to an oracle that answers instances of
size polynomial with respect to the parameter. The size of a Turing kernel is the maximal
size of the instances queried to the oracle. Note that if the classic problem underlying P
is NP-hard, then any query for a potentially different problem Q can be translated into a
query for P whose size is only polynomially larger. Hence in many settings, including ours,
it does not make a difference for the existence of polynomial-size Turing kernels whether the
queries are for the same problem or for another problem contained in NP.

B. M. P. Jansen, S. K. Roy, and M. Włodarczyk 64:21

Observe that the number of calls to the oracle is not restricted, although it is polynomial
in the input size since the overall procedure runs in polynomial time. The following theorem
gives a one-sided error randomized Turing kernel of size O(nd+1) for Max-Edge-Weight
d-Uniform Hyperclique parameterized by the number of vertices n.

▶ Theorem 25. There is a randomized polynomial-time algorithm that, given an n-vertex
instance (G, w, t) of Max-Edge-Weight d-Uniform Hyperclique, returns a family of K

instances (Gi, wi, ti), i ∈ [K], of Exact-Edge-Weight d-Uniform Hyperclique, each
of bitsize O(nd+1), such that:
1. K is polynomial with respect to the input size,
2. if (G, w, t) is a yes-instance, then at least one instance (Gi, wi, ti) is a yes-instance,
3. if (G, w, t) is a no-instance, then with probability 1 − 2−Ω(n) all the instances (Gi, wi, ti)

are no-instances.

Proof. We apply Theorem 24 with U being the set of hyperedges in G, l = t, and u =
nd · maxe∈E(G) we. We can assume that l ≤ u, as otherwise there can be no solution. We
obtain K = log(u − l) · O(nd) many weight functions wi and integers ti, so that for each
X ⊆ U it holds wsum(X) ≥ t if and only if wi

sum(X) = ti for some i ∈ [K]. Observe that
log(u − l) is upper bounded by the input size, so the condition (1) is satisfied.

The original problem thus reduces to a disjunction of polynomially many instances
of Exact-Edge-Weight d-Uniform Hyperclique. We use Theorem 23 to compress
each of them to O(nd+1) bits. The probability that a single instance would be incorrectly
compressed is bounded by 2−n. By the union bound, the probability that any instance would
be incorrectly compressed is nO(1) · 2−n = 2−Ω(n). ◀

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 Kernel lower bounds
	3.1 Exact-Edge-Weight Clique
	3.2 Subset Sum
	3.3 Constraint Satisfaction Problems

	4 Node-weighted Vertex Cover in bipartite graphs
	5 Conclusions
	A Kernel lower bounds
	A.1 Omitted proof for Exact-Edge-Weight Clique

	B Kernel upper bounds
	B.1 Turing kernel for Max Weighted Hyperclique

