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Abstract
The language Pn (P̃n, respectively) consists of all words that are palindromes of length 2n (2n − 1,
respectively) over a fixed binary alphabet. We construct a regular expression that specifies Pn (P̃n,
respectively) of alphabetic width 4 · 2n − 4 (3 · 2n − 4, respectively) and show that this is optimal,
that is, the expression has minimum alphabetic width among all expressions that describe Pn (P̃n,
respectively). To this end we give optimal expressions for the first k palindromes in lexicographic
order of odd and even length, proving that the optimal bound is 2n + 4(k − 1) − 2S2(k − 1) in case
of odd length and 2n + 3(k − 1) − 2S2(k − 1) − 1 for even length, respectively. Here S2(n) refers to
the Hamming weight function, which denotes the number of ones in the binary expansion of the
number n.
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1 Introduction

During the last two decades or so, literally hundreds of research papers have been investigating
deterministic and nondeterministic state complexity of regular languages. Here, general
purpose lower bound techniques are available, and in many cases, upper and lower bounds can
be obtained that match exactly, not only asymptotically. For recent surveys, see, e.g., [8, 15].

The situation is less desirable if we investigate the minimum required size of regular
expressions describing a regular language. While several different lower bound techniques
are available, often the best known upper and lower bounds match only asymptotically. For
illustration, the size blow-up when going from finite automata over a binary alphabet to
regular expressions is at least cn for some c > 1 for large enough n, cf. [12]. The current
record holder for the upper bound is O(1.682n), see [5]. This gives a “tight” bound of 2Θ(n),
which is on closer inspection a bit loose. To our knowledge, exactly matching upper and
lower bounds for the minimum required expression size are known only for very few nontrivial
language families: Namely, the Boolean n-bit parity function [7, 14], the less-than relation
on an n-set [2], given as { ij | 1 ≤ i < j ≤ n }, and the permutations of an n-set [23].

The set of all palindromes over the alphabet {a, b} is context-free but not regular; virtually
every computer science student in the world will learn this during their curriculum. Not
surprisingly, this basic observation is as old as the Chomsky hierarchy itself [3]. Of course, if
we consider only palindromes of a given length, the set thus obtained is finite, and therefore
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regular. We exactly determine the optimum regular expressions for this set, for every given
length. In the course of the proof, we also determine the optimum regular expressions
for the lexicographically first k palindromes of a given length, for every k. The difficulty
of course lies in establishing a matching lower bound. To this end, we use and expand a
method from [23] to obtain a recurrent lower bound. The recurrence thus obtained involves
a “minvolution” in the sense of [11] and the minimum operator of course yields a nonlinear
recurrence. A long line of research concerns asymptotic and exact solutions of recurrences
involving minimum and maximum functions, see, e.g., [18] and references therein. Our
recurrence falls into neither of the known categories. So we develop a tailor-made strategy
for solving the recurrence, and derive a novel identity involving sums of Hamming weights.
We hope that this will serve as a helpful example for researchers in need of solving similar
nonlinear recurrences.

Some of our results contribute to the knowledge about integer sequences: We give a
characterization of the number of multiplications to compute the (n + 1)th power by the
ancient Indian Chandah-sutra method in terms of Hamming weights (Lemma 8). Also, we
find a new recurrence for the numbers having a partition into distinct Mersenne numbers
greater than zero (Lemma 10). The functions giving the optimal lengths of the regular
expressions we consider can be enumerated in lexicographic order; accompanying submissions
to the On-line Encyclopedia of Integer Sequences (OEIS) are in preparation, since these
sequences are not yet covered by OEIS.

With some extra effort, all of our results can be generalized to larger alphabet sizes.
These results will be presented in the full version of this paper.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory
as contained in [16]. In particular, let Σ be an alphabet and Σ∗ the set of all words over
the alphabet Σ, including the empty word ϵ. The length of a word w is denoted by |w|,
where |ϵ| = 0, and the total number of occurrences of the alphabet symbol a in w is denoted
by |w|a. In this paper, we mainly deal with finite languages. The order of a finite language L

is the length of a longest word belonging to L. A finite language L is homogeneous if all
words in the language have the same length. In order to fix the notation, we briefly recall
the definition of regular expressions and the languages described by them.

The regular expressions over an alphabet Σ are defined inductively in the usual way:2 ∅,
ϵ, and every letter a with a ∈ Σ is a regular expression; and when E and F are regular
expressions, then (E+F ), (E ·F ), and (E)∗ are also regular expressions. The language defined
by a regular expression E, denoted by L(E), is defined as follows: L(∅) = ∅, L(ϵ) = {ϵ},
L(a) = {a}, L(E + F ) = L(E) ∪ L(F ), L(E · F ) = L(E) · L(F ), and L(E∗) = L(E)∗. The
alphabetic width or size of a regular expression E over the alphabet Σ, denoted by awidth(E),
is defined as the total number of occurrences of letters of Σ in E. For a regular language L,
we define its alphabetic width, awidth(L), as the minimum alphabetic width among all regular
expressions describing L.

2 For convenience, parentheses in regular expressions are sometimes omitted and the concatenation is
simply written as juxtaposition. The priority of operators is specified in the usual fashion: concatenation
is performed before union, and star before both product and union.



H. Gruber and M. Holzer 52:3

3 A Lower Bound for Palindromes of Even Length

For a nonnegative integer n, let Pn = { wwR | w ∈ {a, b}n } denote the set of palindromes
of length 2n. In this section, we give a tight bound on the required regular expression size
of Pn. For our toolbox, we need to investigate the concatenation of homogeneous languages.

▶ Lemma 1. Let L1 and L2 be homogeneous languages. Then awidth(L1 · L2) = awidth(L1) +
awidth(L2).

Inspired by the method recently used to exactly determine the alphabetic width of the
set of permutations [23], define ℓ(n, k) to be the minimum alphabetic width of a regular
expression describing a subset of Pn, where the subset has cardinality at least k. Note
that ℓ(n, k) is monotone in k by definition, that is, ℓ(n, k) ≤ ℓ(n, k′), for k ≤ k′.

▶ Lemma 2. Let n ≥ 0 and 1 ≤ k ≤ 2n. Then ℓ(n, k) obeys the following recurrence:

ℓ(n, k) ≥ min{ ℓ(n − 1, k) + 2, min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

ℓ(n, k) ≥ min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)}, for n ≥ 1 and k > 2n−1,

and
ℓ(n, 1) = 2n.

Proof. In the case k = 1, each regular expression describing a nonempty subset of {a, b}2n

must have alphabetic width at least 2n. For n ≥ 1, the expression a2n describes at least
one word in Pn. For n = 0, ϵ is an optimal regular expression describing the only nonempty
subset of {a, b}0 = {ϵ}. Thus we have ℓ(n, 1) = 2n for all n ≥ 0.

For n ≥ 1 and 2 ≤ k ≤ 2n, let E be a regular expression denoting a subset of Pn which
has cardinality at least k. The language Pn is homogeneous, so we may safely assume that
neither ϵ nor ∅ occur in E, and the same holds for the Kleene star, see, e.g., [14]. Thus, E

is of the form F + G or of the form F · G, and each of F and G have alphabetic width at
least 1.

If E = F +G, then both F and G denote subsets of Pn, say of sizes k1 and k2, respectively.
Then k1 + k2 ≥ k, and, by minimality, k1, k2 < k. We thus obtain the following recurrence
in the case of union:

ℓ(n, k) ≥ ℓ(n, k1) + ℓ(n, k2)
≥ ℓ(n, k1) + ℓ(n, k − k1)
≥ min

1≤i<k
{ℓ(n, i) + ℓ(n, k − i)},

where we used the monotonicity of ℓ(n, k) with respect to k for the second estimation.
The other case is that E = F ·G. We may assume that the words in F have length at most n

– otherwise, we apply the argument to ER = GR ·F R, and note that awidth(E) = awidth(ER).
Let n1 denote the length of the words in F . Then we have 1 ≤ n1 ≤ n. We claim that L(F )
must be a singleton language, that is, L(F ) = {w} for some word w. For the sake of
contradiction, assume L(F ) contains another word x with x ≠ w. Since E describes Pn

and L(E) = L(F ) · L(G), the language L(E) contains a word of the form wzwR, for some
infix z. Since there is only one way to write wzwR as product of words in L(F ) and L(G),
the word zwR must be in L(G). But then the non-palindromic word xzwR is a member
of L(E), which yields the desired contradiction to establish the claim.

MFCS 2021
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Further, we can assume that n1 = 1 without loss of generality. This can be seen as
follows. By Lemma 1, awidth(L(E)) = awidth(L(F )) + awidth(L(G)). For 1 ≤ i ≤ n1, let
ai denote the ith letter in w. Since L(F ) = {w}, we have awidth(L(F )) = n1. Thus, if we
replace the subexpression F of E with the expression f̃ = a1 · (a2 · · · an1), the expression Ẽ

thus obtained is again minimal. By applying the associative law for concatenation to Ẽ, we
obtain yet another minimal expression Ẽ′ = f̃ ′ · G′′ with f̃ ′ = a1 and G′′ = (a2 · · · an1 · G).

Since all words in Pn are palindromic, L(G′′) = S · a1, for some subset S of Pn−2. Also,
set S must be of the same cardinality as L(E). We thus obtain the following recurrence in
the case of concatenation:

ℓ(n, k) ≥ ℓ(n − 1, k) + 2.

Observe that k can be at most 2n−1 in this case, since there are no more than 2n−1 palindromes
of length 2(n − 1). Also, we must have n ≥ 2 in the case of concatenation, since both k ≥ 2
and k ≤ 2n−1 hold.

Either the case of union or of concatenation applies – because E has no Kleene star, and
we obtain the recurrence relation

ℓ(n, k) ≥ min{ ℓ(n − 1, k) + 2, min
1≤i<k

{ℓ(n, i) + ℓ(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

and
ℓ(n, k) ≥ min

1≤i<k
{ℓ(n, i) + ℓ(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

as desired. ◀

In the above proof, we derived a recursive lower bound on ℓ(n, k). Let f denote the
integer-valued function which is defined by that recurrence, that is,

f(n, k) = min{ f(n − 1, k) + 2, min
1≤i<k

{f(n, i) + f(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = min
1≤i<k

{f(n, i) + f(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n.

The recursive definition can be simplified with the aid of the following lemma.

▶ Lemma 3. f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1.

Proof. Recall the recursive definition of f in this parameter range is

f(n, k) = min{ f(n − 1, k) + 2, min
1≤i<k

{f(n, i) + f(n, k − i)} },

for n ≥ 2 and 2 ≤ k ≤ 2n−1, so the inequality f(n, k) ≤ f(n − 1, k) + 2 is immediate. For
the converse inequality, we claim that

min
1≤i<k

{f(n, i) + f(n, k − i)} ≥ f(n − 1, k) + 2.

We prove this by lexicographic induction on (n, k). To show the statement for n ≥ 2
and k ≥ 2, we assume that the statement holds for all pairs (n′, k′) with n′ < n, as well as
for all pairs with n′ = n and k′ < k. Observe, that by the induction hypothesis on (n, k) we
also can safely assume that f(n′, k′) ≥ f(n′ − 1, k′) + 2, which follows from the recursive
definition of f . The base case (2, 2) is easily verified with

min
1≤i<2

{f(2, i) + f(2, 2 − i)} = f(2, 1) + f(2, 1) = 4 + 4 ≥ 4 + 2 = f(1, 2) + 2,
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because f(1, 2) = min1≤i<2{f(1, i) + f(1, 2 − i)} = f(1, 1) + f(1, 1) = 2 + 2 = 4. For the
induction step, we apply the induction hypothesis and f(n, k) ≥ f(n − 1, k) + 2 twice to
obtain

min
1≤i<k

{f(n, i) + f(n, k − i)} ≥ min
1≤i<k

{(f(n − 1, i) + 2) + (f(n − 1, k − i) + 2)}

≥ min
1≤i<k

{f(n − 1, i) + f(n − 1, k − i)} + 4

≥ f(n − 1, k) + 6,

which means that min1≤i<k{f(n, i) + f(n, k − i)} ≥ f(n − 1, k) + 2 as desired.
Having established the claim, the equality of f(n, k) with f(n − 1, k) + 2 now follows

immediately. This completes the proof of the lemma. ◀

Still, the second recurrence equation entails the full history of the parameter k. One
might hope that f is convex in the parameter k, and that the minimum in the formula
min1≤i<k{f(n, i) + f(n, k − i)} is always attained in the middle, i.e., arg min i =

⌊
k
2
⌋
.

Compare, e.g., [21, p. 366] on convex recurrences. But this is, unfortunately, not the case: for
instance, we have f(3, 6) = min1≤i<6{f(3, i) + f(3, 6 − i)} = f(3, 2) + f(3, 4) = 8 + 14 = 22,
while 2 · f(3, 3) = 2 · (f(2, 3) + 2) = 2 · (10 + 2) = 24. In fact, computations for small ranges
of n and k suggest a nontrivial behavior of f – see Table 1.

Table 1 Some f(n, k) values for small n and k.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15 k = 16

n = 1 2 4

n = 2 4 6 10 12

n = 3 6 8 12 14 20 22 26 28

n = 4 8 10 14 16 22 24 28 30 38 40 44 46 52 54 58 60

At least, we are interested only in the value of f(n, 2n). Once we put forward a suitable
induction hypothesis (which admittedly is somewhat flabbergasting), we can establish a
simple closed form for f(n, 2n) with a laborious lexicographic induction.

▶ Lemma 4. f(n, 2n) = 2n+2 − 4.

Proof. For the upper bound, observe that f(n, 2n) ≤ 2 · f(n, 2n−1) easily follows from the
recurrence equations defining f and with the help of Lemma 3 we obtain

f(n, 2n) ≤ 2 · (f(n − 1, 2n−1) + 2).

With f(1, 2) = 4, this boils down to an inhomogeneous linear recurrence with variable n,
which can be solved as f(n, 2n) ≤ 4(2n − 1) = 2n+2 − 4.

The lower bound will follow immediately once we have established the following claim.

▷ Claim 5. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then

f(n, k) ≥


4k if k < 2n−1,
4k − 2 if k is not a power of two and k > 2n−1, and
4k − 4 + 2n − 2 log k if k is a power of two.

The remaining part of the proof is a lexicographic induction on (n, k), which tedious details
are left to the reader. ◀

MFCS 2021
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4 Some Digit Theory

Now that our appetite is whetted, we want to solve the recurrence also in the general case
where k is not a power of two. In this section, we develop the necessary tools regarding “digit
theory,” that is, mathematical properties of digit sums, that we will need for the analysis.
Let S2(n) denotes the “digit sum to base 2” function. This function is often referred to as
the Hamming weight function and denotes the number of ones in the binary expansion of
the number n. Throughout the rest of this paper, for a nonnegative integer n, we refer to
the function λ(n) defined as

λ(n) =
{

0, if n = 0
⌊log2 n⌋, otherwise.

Here log2 n refers to the logarithm to base 2. For the digit sum to base 2 we find the following
equations useful whenever powers of 2 are involved somehow.

▶ Lemma 6. Let n be a nonnegative integer. Then
1. S2(2n − 1) = n and
2. S2(n − 2λ(n)) = S2(n) − 1.

Next we recall an alternative characterization of the digit sum to base 2 that proves
useful in the forthcoming calculations.

▶ Lemma 7. Let n be a nonnegative integer. Then

S2(n) = n −
∞∑

i=1

⌊ n

2i

⌋
.

Observe, that the sum contains only a finite number of non-zero summands.

More generally, for prime q the sum
∑∞

i=1

⌊
n
qi

⌋
is famously known to be equal to the

largest power of q that divides n! (Legendre’s formula [22]). For non-prime q, the latter
equality ceases to hold in general, because for n = 8 and q = 4 the largest integer power of 4
that divides 8! is 3, because 8! = (2 · 4) · 7 · (2 · 3) · 5 · 4 · 3 · 2 · 1 = 7 · 5 · 43 · 32 · 2, while the
sum evaluates to 2.

The study of the following maximization problem

max
0≤i≤n

{S2(i) + S2(n − i)}

is essential for our main result. Remarkably, the formula on the right-hand side of the
identity in Lemma 8 below is famously known as the number of multiplications to compute
the (n + 1)th power by the ancient Indian Chandah-sutra method. This appears as sequence
A014701 in the On-line Encyclopedia of Integer Sequences, and is referred to as the left-to-right
binary method 3 in [20, Chap. 4.6.3].

▶ Lemma 8. Let n be a nonnegative integer. Then

max
0≤i≤n

{S2(i) + S2(n − i)} = λ(n + 1) + S2(n + 1) − 1.

3 We note that the formula given in [20, p. 463] refers to the right-to-left binary method. As explained
there, the latter takes one more multiplication than the left-to-right binary method.

https://oeis.org/A014701
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Proof. Observe, that S2(n) denotes the Hamming weight of n, that is, the number of
ones in the binary expansion of the number n. We shall prove first the easier inequality,
namely max0≤i≤n{S2(i) + S2(n − i)} ≥ λ(n + 1) + S2(n + 1) − 1. It suffices to find a
suitable decomposition n = j + (n − j) for some j, which attains the bound. We choose
j = n+1−2λ(n+1). Then j is equal to n+1 modulo 2λ(n+1), and thus their binary expansions
differ only in the highest order bit. In other words, S2(j) = S2(n + 1) − 1 by Lemma 6.2.
Also, by the finite geometric series expansion,

n − j = n −
(

n + 1 − 2λ(n+1)
)

= 2λ(n+1) − 1 =
λ(n+1)−1∑

i=0
1 · 2i,

and thus S2(n − j) = λ(n + 1) – see Lemma 6.1.
The converse inequality requires more effort, namely to prove that

max
0≤i≤n

{S2(i) + S2(n − i)} ≤ λ(n + 1) + S2(n + 1) − 1.

Our strategy is as follows. Given any decomposition n = x + y with x, y ≥ 0, we write x

and y in binary positional notation xλ(x) · · · x1x0 and yλ(y) · · · y1y0. Then we shall apply a
certain set of rules to x and y such that

after each rule application, the sum of the two summands x′ and y′ thus obtained is n,
that is, x′ + y′ = n,
after each rule application, the sum of their Hamming weights is not decreased, that is,
S2(x′) + S2(y′) ≥ S2(x) + S2(y), and
after the last rule application, in the larger summand thus obtained, all bits are equal
to 1.

This will of course suffice to show that the decomposition into j and n − j, as described at
the beginning of the proof of this lemma, attains the maximum.

When looking at the bits of x and y, there are several constellations that need to be
addressed. The first rule concerns the case x0 = y0 = 0, that is, the lowest order bits are
both zero. Assume x is greater than or equal to y, otherwise we exchange the roles of x and y.
Let ℓ denote the lowest order nonzero bit position of x, that is xℓ = 1 and xk = 0, for all k

with 0 ≤ k < ℓ. Then decreasing the number x by 1 amounts to setting xℓ = 0 and xk = 1,
for all k with 0 ≤ k < ℓ. Also, increasing the number y by 1 amounts to setting y0 = 1, while
all other bits of y remain unchanged. Observe, that this maneuver increases the Hamming
weight of both summands. Also, the two summands thus obtained add up to n, and both
summands have their lowest order bit set to 1. For an illustration of this situation we refer
the reader to the left drawing of Figure 1.

We now generalize this to the case xi = yi = 0, for 0 ≤ i < λ(x). Here again, we assume
that x ≥ y; otherwise we exchange the roles of x and y. Here essentially the same mechanism
applies, but, roughly speaking, we need to “multiply everything” by 2i. In the same spirit
as above, let ℓ denote the lowest order nonzero bit position of x above i, that is xℓ = 1
and xk = 0, for all k with i ≤ k < ℓ. Note that ℓ is guaranteed to exist, since x ≥ y. Observe,
that decreasing the number x by 2i amounts to setting xℓ = 0 and xk = 1, for all k with
i ≤ k < ℓ. Also, increasing the number y by 2i amounts to setting yi = 1, while all other bits
of y remain unchanged. So this maneuver increases the Hamming weight of both summands.
Also, the obtained summands sum up to n, and both summands have their ith bit set to 1.
This completes the description of the first rule. For an illustration of this situation we refer
to the right drawing of Figure 1.

MFCS 2021
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λ(x) . . . ℓ ℓ − 1 . . . 0
x = ∗ 1 0 . . . 0
y = ∗ 0

is changed to

λ(x) . . . ℓ ℓ − 1 . . . 0
x = ∗ 0 1 . . . 1
y = ∗ 1

λ(x) . . . ℓ ℓ − 1 . . . i . . . 0
x = ∗ 1 0 . . . 0 ∗
y = ∗ 0 ∗

is changed to

λ(x) . . . ℓ ℓ − 1 . . . i . . . 0
x = ∗ 0 1 . . . 1 ∗
y = ∗ 1 ∗

Figure 1 First bit manipulation rule for the decomposition of n into x and y for the first situation
(left), i.e., x0 = y0 = 0, and the general situation (right), i.e., xi = yi = 0, for 0 ≤ i < λ(x).

We iteratively apply this rule to the resulting pair of summands from the previous round,
for each i in increasing order, requiring that x ≥ y at the beginning at every round; otherwise
the rôles of x and y are exchanged. After the (i + 1)th round, no constellations remain with
xr = yr = 0, for 0 ≤ r ≤ i. Finally, for every i with 0 ≤ i ≤ λ(x), no constellations remain
with xi = yi = 0.

When y denotes the smaller summand obtained by the above procedure, the constellations
where yi = 1 do not need to be fixed. The remaining constellations are those where yi = 0
and xi = 1, for some i ≤ λ(x). The second rule is to exchange the bit values, that is, we
set yi = 1 and xi = 0. It is clear that the two summands thus obtained add up to n. Also, the
sum of the Hamming weights is unaffected. We apply the second rule as often as needed, and
the number of these rule applications is of course bounded by λ(x) + 1. For an illustration of
the second rule we refer to Figure 2.

λ(x) . . . i . . . 0
x = ∗ 1 ∗
y = ∗ 0 ∗

is changed to

λ(x) . . . i . . . 0
x = ∗ 0 ∗
y = ∗ 1 ∗

Figure 2 Second bit manipulation rule for the decomposition of n into x and y that is applied as
often as needed.

After all applications of the second rule, we end up with the larger summand having all
bits set to 1. Since the other two conditions are invariant under application of both rules,
this completes the proof. ◀

5 Optimal Expressions for the first k Palindromes in Lexicographic
Order

Now that we have collected the necessary tools, we aim to solve the recurrence f(n, k) also
for the case where k is not a power of two. Recall that Lemma 3 allows us to write up the
recurrence in simplified form, as follows:

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = min
1≤i<k

{f(n, i) + f(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n.
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We transform this recurrence into a recurrence on one unknown within two steps. In the
first step, we define another function in two unknowns in terms of f(n, k).

▶ Lemma 9. Let g(n, k) := 1
2 f(n, k) − n. Then g(n, k) satisfies the recurrence

g(n, k) = g(n − 1, k), for n ≥ 2 and 2 ≤ k ≤ 2n−1,

g(n, k) = n + min
1≤i<k

{g(n, i) + g(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
g(n, 1) = 0.

We shall apply the second transformation only for the “interesting” parameter range
of k, that is, when k is in the upper half of the admissible range. Namely, we observe, that
whenever 2n−1 < k ≤ 2n, then we can express n in terms of k as n = 1 + λ(k − 1). Recalling
that λ(0) = 0, we set

h(k) := g(1 + λ(k − 1), k), for k ≥ 1.

Then we find the following situation:

▶ Lemma 10. Let h(k) := g(1 + λ(k − 1), k), for k ≥ 1. Then h(k) satisfies the recurrence

h(1) = 0
h(k) = 1 + λ(k − 1) + min

1≤i<k
{h(i) + h(k − i)} for k ≥ 2,

and it has the solution h(k) = 2(k − 1) − S2(k − 1).

It is worth mentioning that the formula in Lemma 10 implies that the values of the
recurrence h, starting from h(1), coincide with the (zero-based) sequence A005187 in the
On-Line Encyclopedia of Integer Sequences – the numbers having a partition into distinct
Mersenne numbers greater than zero.

Now let’s undo both transformations. We first determine g(n, k) by using h(k) and its
explicit solution. Then, by elementary calculations we arrive at an alternative recurrence
for f(n, k).

▶ Lemma 11. The function f(n, k) satisfies the recurrence

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f(n, k) = 2n + 4(k − 1) − 2S2(k − 1), for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f(n, 1) = 2n

and it has the solution f(n, k) = 2n + 4(k − 1) − 2S2(k − 1).

Proof. In order to undo both transformations, we first determine g(n, k) by using h(k) and
its explicit solution from Lemma 10. We find

g(n, k) = g(n − 1, k), for n ≥ 2 and 2 ≤ k ≤ 2n−1,

g(n, k) = 2(k − 1) − S2(k − 1), for n ≥ 1 and 2n−1 < k ≤ 2n,

and
g(n, 1) = 0,
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because, for k > 2n−1 we have

g(n, k) = g(1 + λ(k − 1), k)
= h(k)
= 2(k − 1) − S2(k − 1).

Finally, recall that f(n, k) = 2(g(n, k) + n), which results in

f(n, k) = f(n − 1, k) + 2, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

and for k > 2n−1 we calculate

f(n, k) = 2(g(n, k) + n)
= 2 (2(k − 1) − S2(k − 1) + n)
= 2n + 4(k − 1) − 2S2(k − 1).

For the terminating cases of the recurrence, we simply recall those from the original recurrence
defining f(n, k):

f(n, 1) = 2n,

and this completes the proof.
It remains to solve the alternative recurrence, which is now done with ease. The statement

is proved by lexicographic induction on (k, n). Let k = 1, then 2n+4(k−1)−2S2(k−1) = 2n

is obviously an solution for any n. To show the statement for k ≥ 2 and n ≥ 1, we assume
that the statement holds for all pairs (k′, n′) with k′ < k, as well as for all pairs with k′ = k

and n′ < n. Then for the case k > 2n−1 we have nothing to prove and in case 2 ≤ k ≤ 2n−1,
we apply the induction hypothesis and get

f(n, k) = f(n − 1, k) + 2
= 2(n − 1) + 4(k − 1) − 2S2(k − 1) + 2
= 2n + 4(k − 1) − 2S2(k − 1)

as desired. ◀

With the lower bound in place, it remains to give an optimal regular expression matching
the lower bound. The expression En,k describes the lexicographically first k palindromes of
length 2n, and is defined recursively as follows:

En,k = a · En−1,k · a, for n ≥ 1 and 1 ≤ k ≤ 2n−1,

En,k = a · En−1,2n−1 · a + b · En−1,k−2n−1 · b, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
E0,1 = ϵ.

We can prove by induction that this recursive upper bound on the alphabetic width meets
the lower bound:

▶ Lemma 12. For n ≥ 0 and k ≥ 1, awidth(En,k) = f(n, k).

It remains to show that the definition of En,k is semantically correct, in the sense that it
describes exactly the set of the lexicographically first k palindromes.
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▶ Lemma 13. Let n, k be integers with n ≥ 0 and 1 ≤ k ≤ 2n. Then the regular expres-
sion En,k describes the lexicographically first k palindromes of length 2n.

Proof. We begin with a natural bijection between palindromes of length 2n, for n ≥ 1,
and the nonnegative integers in the range 0, 1, . . . , 2n − 1: for a nonnegative integer j

with 0 ≤ j < 2n, with binary expansion
∑∞

r=0 jr2r = k, let ρ : {0 7→ a, 1 7→ b}, and
let ρn(j) = ρ(jn−1)ρ(jn−2) · · · ρ(j0) denote the usual n-bit binary representation of j in
positional notation – with leading zeros if needed. Define the family of functions σn by
letting σn(j) = ρn(j)ρn(j)R. Whenever n is understood from the context, we shall drop the
subscript and write ρ(j) instead of ρn(j), and similarly for σ. Observe, that, among the
palindromes of length 2n, the word σ(j) is the (j + 1)th palindrome in lexicographic order.
Conversely, for a palindrome w of length 2n, the preimage σ−1(w) equals the (zero-based)
lexicographic index of w among the palindromes of length 2n. For convenience, we extend
the definition of σn to the case n = 0 by letting σ0(0) = ϵ.

We claim that, given n ≥ 1 and k with 1 ≤ k ≤ 2n, as well as a nonnegative integer j < k,
the word σ(j) is in L(En,k). This claim will be proven by induction on n. The base case is
n = 0. We thus have k = 1. Here, σ0(0) = ϵ, and E0,1 = ϵ. For the induction step, we now
assume n ≥ 1. We consider two cases:
Case 1. Consider first the case j < 2n−1. Then σn(j) = a · σn−1(j) · a. By the induc-

tion hypothesis, σn−1(j) ∈ L(En−1,k), and by the recursive definition of the regular
expression En,k, we have a · L(En−1,k) · a ⊆ L(En,k). Hence, σ(j) ∈ L(En,k) in this case.

Case 2. The other case is j ≥ 2n−1. Then σn(j) = b · σn−1(j − 2n−1) · b. Observe, that also
k > 2n−1 holds, since j < k. Let k′ = k −2n−1 and j′ = j −2n−1. Then k′ ≥ 1 and j′ ≥ 0,
as well as n − 1 ≥ 0. Using the induction hypothesis, we have σn−1(j′) ∈ L(En−1,k′). In
other words, σn−1(j − 2n−1) ∈ L(En−1,k−2n−1). Now, by the recursive definition of the
regular expression En,k, we obtain b ·L(En−1,k−2n−1) ·b ⊆ L(En,k). Hence, σ(j) ∈ L(En,k)
also in this case.

This completes the induction, and the claim is established.
It remains to show that no other words are described by En,k. To this end, we note

first that the recursive definition of En,k ensures that it describes no non-palindromic words,
and only words of length 2n. Now let w be any word that is described by En,k. Recall
that σ−1(w) is equal to the lexicographic index of w among all palindromes of length 2n.

We shall prove by induction on n that the lexicographic index of every w described
by En,k is at most k − 1. In the base case n = 0, we must have k = 1 and w = ϵ, and
σ−1(w) = 0 = k − 1 in this case. Now assume n ≥ 1. We distinguish two cases:
Case 1. Consider first the case that the word w is the form axa. We need to consider two

subcases. The first subcase is k ≤ 2n−1. Here, by definition of En,k, the word x is in
L(En−1,k). Bearing in mind that σ−1(x) = σ−1

n−1(x) and σ−1(w) = σ−1
n (w) denote two

different functions, we will again drop the subscripts for convenient reading. By the
induction assumption, σ−1(x) ≤ k − 1. Recalling the bijection between natural numbers
and palindromes, we have σ−1(axa) = σ−1(x). With axa = w, we obtain σ−1(w) =
σ−1(x) in this subcase. The second subcase is k > 2n−1. Here, by definition of En,k, the
word x is in L(En−1,2n−1). By the induction assumption, σ−1(x) ≤ 2n−1 ≤ k − 1, and
using again the bijection between natural numbers and palindromes, σ−1(w) = σ−1(x).

Case 2. Now consider the case that the word w is of the form bxb. By the recursive definition
of En,k, we can conclude that x ∈ L(En−1,k−2n−1) – and that k > 2n−1. By the induction
assumption, σ−1(x) ≤ k − 2n−1 − 1. Recalling the bijection between natural numbers
and palindromes, we have σ−1(bxb) = 2n−1 + σ−1(x). Taking these two facts together,
we obtain σ−1(w) = 2n−1 + σ−1(x) ≤ 2n−1 + k − 2n−1 − 1 ≤ k − 1, as desired.

This completes the proof of the second claim, and the proof of the lemma is completed. ◀
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We thus can summarize our findings about palindromes of even length in the last three
lemmata in the following statement.

▶ Theorem 14. Let k and n be integers, with n ≥ 0 and 1 ≤ k ≤ 2n. Then the set of
the lexicographically first k palindromes of length 2n over a binary alphabet requires regular
expressions of alphabetic width exactly 2n + 4(k − 1) − 2S2(k − 1).

6 Alphabetic Width of Palindromes of Odd Length

We turn to palindromes of odd length. The recurrences essentially differ only in the
terminating cases. But changing the starting conditions of a nonlinear system may, or may
not, change everything. We thus provide a careful writeup.

To this end, for positive integer n, let P̃n denote the set of palindromes of length 2n − 1
over a binary alphabet. Now define ℓ̃(n, k) to be the minimum alphabetic width of a regular
expression describing a subset of P̃n, where the subset has cardinality at least k. Again by
definition, ℓ̃(n, k) is monotone with respect to the parameter k.

▶ Lemma 15. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then ℓ̃(n, k) obeys the following recurrence:

ℓ̃(n, k) ≥ min{ ℓ̃(n − 1, k) + 2, min
1≤i<k

{ℓ̃(n, i) + ℓ̃(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

ℓ̃(n, k) ≥ min
1≤i<k

{ℓ̃(n, i) + ℓ̃(n, k − i)}, for n ≥ 1 and k > 2n−1,

and
ℓ̃(n, 1) = 2n − 1.

In analogy to the definition of the function f , let f̃ denote the integer-valued function
which is defined by that recurrence, that is,

f̃(n, k) = min{ f̃(n − 1, k) + 2, min
1≤i<k

{f̃(n, i) + f̃(n, k − i)} }, for n ≥ 2 and 2 ≤ k ≤ 2n−1,

f̃(n, k) = min
1≤i<k

{f̃(n, i) + f̃(n, k − i)}, for n ≥ 1 and 2n−1 < k ≤ 2n,

and
f̃(n, 1) = 2n − 1.

We estimate the values of the function f̃(n, k) as follows:

▶ Lemma 16. Let n ≥ 1 and 1 ≤ k ≤ 2n. Then f̃(n, k) = f(n, k) − k.

Thus, we immediately obtain:

▶ Lemma 17. f̃(n, 2n) = 3 · 2n − 4.

With the lower bound in place, it remains to give an optimal regular expression matching
the lower bound. The expression Ẽn,k is defined recursively as follows.

Ẽn,k = a · Ẽn−1,k · a, for n ≥ 2 and 1 ≤ k ≤ 2n−1,

Ẽn,k = a · Ẽn−1,2n−1 · a + b · Ẽn−1,k−2n−1 · b, for n ≥ 2 and 2n−1 < k ≤ 2n,

and
Ẽ1,1 = a as well as Ẽ1,2 = a + b.

The semantic correctness proof runs along the lines of the proof of Lemma 13.
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▶ Lemma 18. Let n, k be integers with n ≥ 1 and 1 ≤ k ≤ 2n. Then the regular expres-
sion Ẽn,k describes the lexicographically first k palindromes of length 2n − 1.

It remains to show that the alphabetic width of Ẽn,k meets the lower bound. An easy
induction reduces this to the case of even length palindromes, in a similar vein as we did it
in Lemma 16.

▶ Lemma 19. Let n, k be integers with n ≥ 1 and 1 ≤ k ≤ 2n. Then awidth(Ẽn,k) =
awidth(En,k) − k.

We thus can summarize our findings about palindromes of odd length in the following
theorem – compare with Theorem 14.

▶ Theorem 20. Let k and n be integers, with n ≥ 1 and 1 ≤ k ≤ 2n. Then the set of the
lexicographically first k palindromes of length 2n − 1 over a binary alphabet requires regular
expressions of alphabetic width exactly 2n + 3(k − 1) − 2S2(k − 1) − 1.

We conclude this section with a curious observation, which was contributed by an
anonymous reviewer. Recall that

ℓ̃(n, k) = min
|L|≥k

L⊆P̃n

{awidth(L)},

that is, ℓ̃(n, k) denotes the minimum alphabetic width of a regular expression describing a
subset of P̃n, where the subset has cardinality at least k. Then the analysis in the present
work establishes that the minimum is attained by the set of the lexicographically first k

palindromes, and a corresponding statement holds in the even length case. This observation
is summarized in the following theorem (which no longer needs to distinguish between even
and odd length):

▶ Theorem 21. For n ≥ 0 and 1 ≤ k ≤ 2⌈n/2⌉, let Paln denote the set of palindromes of
length n, and let Lexn,k denote the set of the lexicographically first k palindromes of length n.
Then

Lexn,k ∈ argmin
|L|≥k

L⊆Paln

awidth(L).

As the reviewer pointed out, this is reminiscent of the Kruskal-Katona Theorem from
extremal combinatorics, see, e.g., [19]. Among several equivalent formulations of that theorem,
one of them deals with minimization of the size of shadows in layers of the Boolean hypercube.
The Kruskal-Katona Theorem then states that initial segments with respect to a version of
the lexicographic ordering form sets with the smallest shadow possible.

7 Conclusion

Most lower bound proofs for regular expression size can be put into the following three
categories: proofs based on (arithmetic) circuit complexity, e.g., [4, 7, 14], proofs based
on the star height lemma, e.g., [9, 12, 13], and specialized proofs that are tailor-made for
a specific language family, e.g., [2, 6, 10, 23]. While the present work falls into the third
category, the lower bound method is quite similar to the one for permutations [23]. We
expect that the method can be expanded to further families of finite languages, where the
best known regular expressions have a divide-and-conquer flavor. A few examples from the
literature come to mind:
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First, the binomial language Bn,k = { w ∈ {0, 1}n : |w|1 = k }. A regular expression of
divide-and-conquer flavor having size nO(log k) for this language was proposed in [7], and
the question of optimality was posed as an open problem. In [4], methods from arithmetic
circuit complexity are utilized to derive a lower bound of nkΩ(log k).
Regarding larger alphabets, the less-than relation on an n-set is given as { ij | 1 ≤ i <

j ≤ n }. For this language, the minimum required regular expression size was determined
exactly in [2], which implies a lower bound on the complexity of rectifier networks. This
language naturally generalizes to the set of increasing sequences of length k over an n-set.
For this an arithmetic formula lower bound was derived in [17]. As pointed out in [4],
that result transfers to lower bounds on regular expression size.
For the set of permutations of an n-set, the exact bound was determined in [23], and an
asymptotic lower bound is given in [4] using a different method. Its natural generalization
is the set of k-permutations of an n-set. The nondeterministic state complexity of this
language is studied in [1]. Their motivation is that a lower bound on nondeterministic
state complexity gives lower bounds on the running time for parameterized algorithms
following the divide-and-conquer paradigm. We claim that, by the well-nested nature of
divide-and-conquer, a (potentially higher) lower bound on regular expression size would
serve this goal equally well.

The cited examples witness a lot of cross-fertilization between lower bound methods on
various models of computation, including arithmetic circuits, rectifier networks, families of
parameterized algorithms, and, of course, regular expressions.
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