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—— Abstract
We are proposing a keyword—based query interface for knowledge bases — including relational or
deductive databases — based on contextual background knowledge such as suitable join conditions
or synonyms. Join conditions could be extracted from existing referential integrity (foreign key)
constaints of the database schema. They could also be learned from other, previous database queries,
if the database schema does not contain foreign key constraints.

Given a textual representation — a word list — of a query to a relational database, one may parse
the list into a structured term. The intelligent and cooperative part of our approach is to hypothesize
the semantics of the word list and to find suitable links between the concepts mentioned in the query
using contextual knowledge, more precisely join conditions between the database tables.

We use a knowledge—based parser based on an extension of Definite Clause Grammars (DCG)
that are interweaved with calls to the database schema to suitably annotate the tokens as table
names, table attributes, attribute values or relationships linking tables. Our tool DDQL yields the
possible queries in a special domain specific rule language that extends Datalog, from which the
user can choose one.
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1 Introduction

The growing wave of digitization, which the smart world of the future is facing, could be met
by concepts from artificial intelligence (AI). The field of Al can be divided into symbolic and
subsymbolic approaches, e. g., [11,15]. Symbolic or knowledge—based approaches model central
cognitive abilities of humans like logic, deduction and planning in computers — mathematically
exact operations can be defined. Subsymbolic or statistical approaches try to learn a model
of a process (e.g., an optimal action of a robot or the classification of sensor data) from
the data.

Current knowledge—based information systems are increasingly becoming hybrid, including
different formalisms for knowledge representation. In this paper, we use concepts from Al
and logic programming for answering non—expert queries to hybrid knowledge bases. Still,
the most frequent fromalism is relational databases, but it would be very interesting to
include rule—bases, ontologies and XML databases as well.

It is becoming popular to consider natural language queries [1]. In a simple form, this
concept is well-known from keyword-based queries in search engines like Google. It can be
very helpful for users who are not so familiar with the database schema, and for users on
? Dietmar Seipel, Da.uniel Weidner, a.nd Salvador Abreu;

37 icensed under Creative Commons License CC-BY 4.0
10th Symposium on Languages, Applications and Technologies (SLATE 2021).

Editors: Ricardo Queirés, Mario Pinto, Alberto Simdes, Filipe Portela, and Maria Joao Pereira; Article No. 16;
pp. 16:1-16:15

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:dietmar.seipel@uni-wuerzburg.de
mailto:daniel.weidner@uni-wuerzburg.de
mailto:spa@uevora.pt
https://doi.org/10.4230/OASIcs.SLATE.2021.16
http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html
http://www1.pub.informatik.uni-wuerzburg.de/databases/research.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2

Intelligent Query Answering

mobile devices, where it is difficult to enter complex—structured queries. For a preceeding
speech—to—text transformation, currently subsymbolic approches, e.g. voice/speech assitants
such as the commercial systems Siri, Alexa, or Dragon NaturallySpeaking or the publicly
available tools Mozilla Common Voice/Deep Spech [12] are popular. In this paper, the
complicated step of assigning a suitable semantics — i.e. of compling textual keyword—based
queries to correct complex—structured knowledge base queries, e.g. in SQL or Datalog— is
done using a symbolic, declarative knowledge—based approach with techniques from logic
programming and deductive databases [3,6,7].

The rest of this paper is structured as follows: Section 2 gives an overview on database
query languages and intelligent query answering. Section 3 presents our running example
of a database schema, a database instance (tables) and a set of relational database queries;
we sketch some possible ways of deriving suitable join conditions. Section 4 describes our
new system and langauge DDQL for answering keyword—based queries using technology from
logic programming and deductive databases; we use our running example database. Finally,
Section 5 concludes with a summary.

2 Database Query Languages and Intelligent Query Answering

Natural language interfaces (NLI) are considered a useful end—user facing query language for
knowledge bases, see Affolter et al. [1] and Damljanovic et al. [8]. This holds especially true
for complex databases and knowledge bases, where the intricacies of both the information
schema and the technicalities of the query language — SQL most of the time — put the task of
issuing useful queries well beyond the skill of most prospective, non—technical users. NLIs can
usually be catgorized into keyword—, pattern—, parsing—, and grammar—based systems. Recent
case studies are also reported by Stockinger [23] who argues that the trend of building NLI
databases is stimulated by the recent success stories of artificial intelligence and in particular
deep learning. An important keyword—based system is SODA [2]. Li and Jagadish [14] hold
that NLIs are superior to other approaches to ease database querying, such as keyword search
or visual query—building. They present the parsing—based systems NaLIR and NaLiX.

The main gripe with a natural language interface is that it’s inherently difficult to verify
reliably: an ambiguous sentence might be incorrectly parsed and its meaning evaluated,
without the end user ever becoming aware of the situation. As a consequence, much effort
has been placed into devising user—friendly ways of removing the ambiguity and translating
the query to a semantically equivalent one in the native database query language. In practice,
this entails presenting alternatives to the user and asking him to decide; the process may
be iterated.

Doing so with SQL as the target seems a natural choice, but hits many difficulties arising
from the language’s many quirks. This situation is exacerbated when one must present the
query interpretation back to the user. Relying on a more abstract query language, such
as a first order predicate logic—based one, turns out to be both easier and more effective,
especially as the reflection of the user’s utterance interpretation will be presented in a form
which is closer to its presumed grammatical structure and therefore easier to recognize
and understand.

Besides convenience in presentation, relying on a logic representation for the queries and
schema has several enabling benefits: a major one is that it provides a unifying framework for
heterogeneous sources of information, such as SQL databases but also deductive databases,
XML databases, ontologies queried in SPARQL or RDF datasets [22]. This topic has been amply
covered in the literature, see for example [16] for an overview on logic in deductive databases.
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Interpreting a natural language sentence as a database query entails attempting to do

several queries, ranging over the schema but also the data and even the query history.

Contextual speech recognition is a very hard problem, which can be eased if one manages to
make use of background knowledge. The inherent ambiguity in the task of parsing and tagging
a sentence in natural language can be mitigated and complemented with concurrent knowledge
base queries: domain knowledge may be used to constrain the admissible interpretations as
well as to provide useful annotations. Having a logic—based framework also makes it easy to
provide views, which may be further used in interpreting natural language queries. The logic
dialect needs not be full first—order logic, as Datalog is sufficient to express queries originally
formulated in simple natural language.

3 Relational Database Queries

It is difficult for database users to have to remember the strucuture of the database (the
database schema) and the correct writing of the terms (table names and attributes) and the
values in the tables. Nevertheless, they have a good notion of the queries that they would
like to ask. One could, e.g., imagine the following database queries:

Q1 Give me the salary of Borg.

Qo Who is the father of Alice 7

Qs What is the salary of Research 7

Q4 Give me the sum of the salaries of the departments by name.
Qs Give me the supervisor name of an employee by name.

The database user does not say that salary is an attribute of a database table or that Borg
is a value of another attribute. Moreover, there could be slight spellings mistakes.

We are proposing an intelligent expert tool for query answering based on the deductive
database system DDbase [21] of the declarative programming toolkit Declare [19]. We have
developed a module DDQL of DDbase, that can first parse the textual representation of the
query using Declare’s extended definite clause grammars (EDcG) [18] in Prolog based on
the background knowledge of the database schema and the database, then hypothesize the
intended semantics of the query using expert knowledge, and finally present possible queries
and answers, so that the user can select one. In future extensions, it might be possible to
define Datalog—like rules in natural language.

3.1 The Database Schema

We use the relational database COMPANY from [9] in an extensive case study for exemplifying
our approach. The database schema in Figure 1 contains 6 entity /relationship types and 8
referential integrity constraints between them (links given by arrows). Some corresponding
database tables will be given in the following Section 3.2. The query compilation in Section 4.2

will extract undirected connected subgraphs from the corresponding link graph in Figure 2.

The relationship types from the corresponding ER diagram of [9] are represented in the
database schema as follows:

(a) in the table EMPLOYEE, the 1:n relationship types WORKS__FOR and SUPERVISION
from the ER diagram are integrated as foreign keys DNO and SUPERSSN (the SsN of
the supersisor), respectively;

(b) the manager of a department is given by the attribute MGRSSN in DEPARTMENT;

(c) the table WORKs_ ON gives the employees working on a project, and the attribute
DNUM in PROJECT gives the responsible department of a project.

16:3
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EMPLOYEE /

MINIT

FNAME BDATE ADDRESS SEX SALARY SUPERSSN

LNAME SSN DNO ‘

DEPARTMENT

DNAME DNUMBER MGRSSN

MGRSTARTDATE |

DEPT_LOCATIONS

DNUMBER | DLOCATION

1
PROJECT
| PNAME ‘ PNUMBER ‘ PLOCATION DNUM |

WORKS_ON /
ESSN PNO

HOURS

DEPENDENT

SEX

ESSN | DEPENDENT_NAME BDATE | RELATIONSHIP

Figure 1 Referential Integrity Constraints for the Relational Database COMPANY.

Functionalities and existency constraints require: every employee works for exactly one
department; every department must have exactly one manager; an employee can manage at
most one department; every employee must work for at least one project; and every project
must have exactly one responsible department. All constraints of the database schema can
be used for optimizing queries.

3.2 Database Tables

In the following, we will use a slightly restricted version of the database, where some entity
types and attributes are not present or renamed.

EMPLOYEE
FNAME ‘ LNAME ‘ SSN ‘ BDATE ‘ ADDRESS ‘ SEX ‘ SALARY SUPERSSN DNo
John Smith 4444 | 1955-01-09 731 Fondren, Houston M 30000 2222 5
Franklin Wong 2222 | 1945-12-08 638 Voss, Houston M 40000 1111 5
Alicia Zelaya 7777 | 1958-07-19 | 3321 Castle, Spring F 25000 3333 4
Jennifer | Wallace | 3333 | 1931-06-20 291 Berry, Bellaire F 43000 1111 4
James Borg 1111 1927-11-10 450 Stone, Houston M 55000 NULL 1

The departments and their managers are given by the table DEPARTMENT with the
primary key DNO (DNUMBER in Figure 1). The 1:1 relationship type MANAGES is integrated
as a foreign key MGRSSN together with the describing attribute MGRSTARTDATE, the start
date of its manager. The multi-valued attribute Locations of the entity type DEPARTMENT
yields a separate table DEPT__LOCATIONS, which we do not consider here. The table
WORKS__ON shows the HOURS that the employees work on the projects.
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WOoRKs__ ON
DEPARTMENT ESsN \ PNo \ Hours
DNAME ‘ Dno ‘ MGRSSN | MGRSTARTDATE 1111 20 NULL
Headquarters 1 1111 1971-06-19 2222 | 2 10.0
Administration | 4 3333 1985-01-01 2222 3 10.0
Research 5 2222 1978-05-22 3333 | 30 20.0

The 1:n relationship type CONTROLS between DEPARTMENT and PROJECT is integrated
as the foreign key DNUM in PROJECT. Every project is located at one of the locations of its
controlling department.

ProJECT
PNAME PNUMBER | PLOCATION | DNUM
ProductX 1 Bellaire 5
Reorganization 20 Houston 1
Newbenefits 30 Stafford 4

In a deductive database variant, the rows of the relational tables would be represented by
Datalog facts.

3.3 Datalog—-Like Rules

In our system DDQL, the relational or deductive database can be enriched with further
Datalog—like rules in field notation, or knowledge from ontologies in RDF, OWL, or SWRL.
Likewise, some background knowledge from the database schema can be represented in a
Datalog-like manner. For the foreign—key constraint from EMPLOYEE to DEPARTMENT,
a Datalog—like rule with field notation can be generated in DDbase which links the social
security number of an employee with the number of his or her department:

works_for (Employee, Department) :-
employee:[’SSN’:Employee, ’DNO’:Department].

From an ontology, it could be known that every employee is human. This would be expressed
by the following Datalog—like rule with field notation, since SSN is the primary key of
EMPLOYEE:

human (Employee) :-
employee: [’SSN’:Employeel].

The user of the database would like to ask queries in Google style, i.e. without precisely
remembering the database schema and the links between the tables by referential integrity
constraints. Here, the background knowledge given by the Datalog-like rules can be used.

16:5
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3.4 Inference of Join Conditions

Suitable join conditions can be inferred from the foreign key constraints given in the database
schema. The schema of the database company contained many foreign key constraints. For
many other databases, no foreign key constraints are given. But join conditions can be
inferred from previous SQL queries in the log file: e.g., a join condition can be assumed, if
the primary key of a table (all attributes of the primary key) is joined with some attributes
of another table.

In Declare, the schema of a table can be extracted automatically from a running relational
MySQL database system and presented in XML to the user and analysed with Prolog:

<table name="employee">
<attribute name="SSN" type="varchar(9)" is_nullable="NO"/>
<attribute name="SALARY" ...>
<attribute name="DNO" ...>

<primary_key> <attribute name="SSN"/> </primary_key>
<foreign_key>
<attribute name="SUPERSSN"/>
<references table="employee">
<attribute name="SSN"/> </references> </foreign_key>
<foreign_key>
<attribute name="DNO"/>
<references table="department">
<attribute name="DNUMBER"/> </references> </foreign_key>
</table>

Currently, this XML representation is derived using ODBC in Declare, and join conditions are
extracted in DDQL. If the second foreign key constraint was not given in the schema, we
may still infer a corresponding join condition from the following SQL statement occuring in a
query log file:

use company;
select employee.DNO, employee.SSN, employee.SALARY
from employee, department

where department.DNAME = ’Research’

and employee.DNO = department.DNUMBER;

Declare provides a tool named SQUASH [5] to parse SQL statements to Prolog terms, which
may be mapped to XML. SQUASH proposes a domain specific language SQUASHML for
SQL statements; this can be further processed in Declare to infer the join conditions. In a
simplified version, the SQL statement above looks as follows:

<select>
<select_list>
<object table="employee" column="DNO"/>
<object table="employee" column="SSN"/>
<object table="employee" column="SALARY"/>
</select_list_element>
<from_list>
<object table="employee"/>
<object table="department"/>
</from_list>
<where_list>
<condition junctor="and">
<comparison operator="=">
<object table="department" column="DNAME"/>
<object value="Research"/>
</comparison>
</condition>
</where_list>
</select>
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4 The Declarative Database Query System and Language DDQL

In this section, we will present the new declarative database query system and language DDQL,
which is based on concepts from logic programming. The knowledge-based compilation of
keyword—queries to Datalog is done in three steps. In experiments with the company database,
useful queries were generated; if a database does not contain referential integrity constraints,
then we will need query logs for deriving suitable join conditions.

4.1 Syntax and Evaluation Using Logic Programming Concepts

The declarative programming toolkit Declare [19] and its deductive database system
DDbase [21] already have functionality for evaluating database queries formulated using
extensions of Datalog. Even hybrid queries including different knowledge representation
formalisms are possible in DDbase. E.g., relational databases can be accessed using SQL quer-
ies and ODBC; for XML processing, a query, transformation and update language FNQUERY
is given in [20].

We assume that the reader has some basic knowledge about logic programming [3,7]
as well as relational [9] and deductive databases [16]. DDbase allows for rules of the form
A= Ly,..., Ly, where the head A is a logical atom and the body is a conjunction (the
comma “,” denoting the conjunction “A”) of literals L;, 1 < ¢ < m. The literals can
be logical atoms L; = B;, default negated literals L, = not (A;), or aggregation literals
L; = ddbase_ aggregate(X, (A1,...,A,), Xs) over logical atoms A;. In the domain specific
language of DDbase, rules can have ordinary logical atoms — in Prolog notation — or field
notation atoms p : [ay : t1,...,a : tx], where p is a predicate symbol, ay,...,a; are field
names, and tq,...,t; are corresponding terms, which amounts to non—positional arguments
in Prolog terms. The rules must fullfil the safety condition that variables in atoms A; within
default negated literals must be bound by preceeding ordinary atoms or aggregation literals
in the same rule body. It is not the intent of this paper to formally define the semantics
of DDbase. The next subsections will focus on the knowledge—based compilation of queries
and give some intuitive examples without default negation. Only one (Q4) contains an
aggregation literal

ddbase_aggregate( [C, sum(D)],
( employee(_, _, _, _» _s _s _» D, _, E),
department(C, E, _, _) ), Xs ),
member ([A, B], Xs).

In analogy to SQL and extending Prolog’s predicate findall/3, this groups instantiations
of the variable C with the sum (which is an aggregation function) of the corresponding
instantiations of the variable D and returns pairs. Here, the template is X = [C, sum(D)]
and pairs [A, B] are selected from the result Xs.

DDbase programs are evaluated bottom—up with stratified fizpoint computation like Datalog
and they can — possibly — be compiled to SQL queries; often DDbase programs can also be
evaluated top—down like in Prolog. For the evaluation in logic programming, the field notation
atoms are compiled to ordinary, logical Datalog atoms based on background knowledge about
the database schema. The ordinary Datalog rules can be compiled to SQL with DDbase, if
there is no default negation — and for stratified default negation or aggregation. A stratified
evaluation requires that none of the embedded atoms A; is mutualle recursive with the
head atom A. Then, the program is split into strata, such that default negated literals or
aggregation literals refer to lower strata; the strata are evaluated successively, and the output
of a lower stratum is fed into the strata above. For non-stratified default negation, DDbase
could use answer set solvers, cf. [4,13], if there are no aggregation literals.
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4.2 Knowledge—Based Compilation of Queries
DpQL compiles a NL query Qn to a Datalog query Qp in three steps:
Oy = Q4 — QF — Op.

It shows them in a command line interface; the result tables are shown in a graphical interface.

Annotation of Key Words (Q4)

First, using Definite Clause Grammars (DcCGs, see, e.g., [3,7]), an annotated query Qg4 is
generated. Using, e.g., the following grammar rule in the extended DcG formalism introduced
in [18], also the resulting parse tree can be computed:

query ==> aggregation, of, attribute, of, table.

The Dca rules are fully interleaved with database access operations of DDbase using ODBC.
E.g., the derivations of attribute and table can result in ODBC calls, or — for potential
speed—up — calls to a cached collection of facts previously extracted from the database. Some
words of the query — such as “of” and “the” — are ignored.

DDQL generates the annotations one after the other on backtracking, starting with the
most likely annotations. E.g., the query Q; with the key words “salary, of, Borg” is first
annotated to the following query Qa:

salary=company/employee/attribute
’Borg’=company/employee/row (QLNAME)

The keyword “of” is ignored. In DDQL, it can be detected easily from the database schema
that salary is an attribute of the relation employee. The location of *Borg’ has to be
done based on the contents of the database, which is more expensive. But this can be done
depending on the context of the table employee; it turns out that it is the value of the
attribute LNAME. After the first annotation has been done and the first solution to the query
has been produced, DDQL uses backtracking to generate further annotations and solutions.
Of course, then DDQL will also search for *Borg’ in other tables of the database.

Generation of Field Notation (QF) and Datalog (Qp)

Then, the compilation of the annotated queries Q4 to SQL or Datalog is done using technology
from DDbase based on the database schema. As an intermediate representation, conjunctive
queries Qp in Datalog are generated with atoms in field notation. The conjunctive queries
are then refined and optimized to ordinary Datalog queries Qp using background knowledge
from the database schema or Datalog—likes rules. Qp could be evaluated on a deductive
variant of the relational database or a deductive database; an SQL variant of Qp can be
evaluated on the relational database.

In the following, we will show and explain the intermediate queries Qp and Qp for a few
example queries to the database company — and we skip the annotated queries Q4.

The relevant links between the concepts mentioned in a user query might be an undirected
tree, or even a cyclic graph. E.g., if the user asks for the salary of all employees working in a
department that controlls the project >ProductX’ and is located in ’Houston’, then the red
link tree in Figure 2 (arrows starting with a bullet) — which is an abstraction of Figure 1 —
might be used. The direction of the labelled referential integrity constraints MANAGES and
CONTROLS is due to the fact that their corresponding relationships are integrated as the
attributes MGRSSN and DNUM into DEPARTMENT and PROJECT, respectively.
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& EMPLOYEE DEPENDENT

WOoRrks_ ON DEPARTMENT
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PROJECT DEPT_LOCATIONS

Figure 2 Link Graph for the Referential Integrity Constraints.

4.3 Example Queries

In the following, we will explain a spectrum of example queries to show different features of
DbpQL.

Selection Queries 91, 92, and Q3

The two selection queries Q1 and Qs are relatively simple to solve, since they rely on only
one table, namely EMPLOYEE and DEPENDENT, respectively (the latter table is not detailed
in this paper, but the schema in Figure 1 contains it). The selection query Qs results in the
following NL query Qn:

salary, of, ’Research’

The database user might not know that SALARY is an attribute of the table EMPLOYEE, and
that Research is the value of the attribute DNAME of the table DEPARTMENT. The query is
annotated, and a list Qp of query atoms in field notation is generated:

employee: [>SSN’:B, ’>SALARY’:C],
employee:[’SSN’:B, °’DNO’:A],
department : [’DNUMBER’:A, ’DNAME’:’Research’].

The variables A, B, and C are automatically generated by the system. The second atom links
the first and the third; here, the WORKS__FOR relationship is integrated in EMPLOYEE using
its last argument DNoO. It would also be conceivable to link EMPLOYEE and DEPARTMENT
by an atom associated with the MANAGES relationship to return the salary of the manager
of the research department, or even by a longer path using the relationships WORKS__ ON
and CONTROLS to return the salary of all employees working for a project that is controlled
by the research department. The former, alternative path through MANAGES might be
offered to the user, but the latter, the longer path through WORKS__ ON and CONTROLS
seems unlikely.

The list Qp could be optimized using the database schema; the two employee atoms
could be combined into a single one, since they share the variable B for the key SSN: the
result is the atom

employee:[’SSN’:B, ’SALARY’:C, ’DNO’:A].

Thus, from O, a Datalog query Qp is generated:

select (A, B, C) :-
employee(_, _, _, B, _, _, _, C, _, A),
department (’Research’, A, _, _)

16:9
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From Qp, an SQL query is compiled, which could be presented to the user together with its
resulting table:

use company;

select employee.DNO, employee.SSN, employee.SALARY
from employee, department

where department.DNAME = ’Research’

and employee.DNO = department.DNUMBER;

The — intermediate — Datalog query Qp can be used for evaluation or clarification. If the
rule system of the user is complicated or refers to further Datalog rules, ontologies or XML
tables, then Qp cannot be translated to SQL and has to be evaluated in DDbase directly.

In general, the situation can be more complicated, as we can have multiple occurrences
of the same table and we need aliases, e.g. for Q5. Moreover, the linking atoms can be
ambiguous and we may need aggregations.

Aggregation Query Q4
Consider the following NL query Qn:

sum, of, salary, of, department, name

The database user might want to know the sum of the salaries of the employees grouped by
the names of their departments. The query is annotated, and a list Qp of query atoms in
field notation is generated:

aggregation:[C, sum(D)],

employee: [’>SSN’:F, ’SALARY’:D],
employee:[’SSN’:F, ’DNO’:E],
department : [’DNUMBER’:E, °’DNAME’:C].

The system found out that the word name in the query refers to the attribute DNAME of
DEPARTMENT. The third atom links the second and the fourth; here, the WORKS_ FORr
relationship is integrated in EMPLOYEE using its last argument DNO. The aggregation is
encoded as a special atom. This list could be optimized using the database schema; the two
employee atoms could be combined into a single one, since they share the value F for the key
SSN, namely to the atom employee: [’SSN’:F ,’SALARY’:D ,’DNO’:E]. Thus, from Qp, a
Datalog query Qp is generated:

select (A, B) :-
ddbase_aggregate( [C, sum(D)],
( employee(_, _, _, F, _, _, _, D, _, E),
department(C, E, _, _) ),
Xs ),
member ([A, B], Xs).

ddbase_aggregate/2 is a meta—predicate provided with DDbase. From its result Xs, pairs
[A, B] are selected using member/2. Here, this gets compiled to an aggregation with a Group
By clause in SQL. From Qp, an SQL query is compiled, which can be presented to the user
together with its resulting table:
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use company;
select department.DNAME, sum(employee.SALARY)
from employee, department

where employee.DNO = department.DNUMBER

group by department.DNAME;

Moreover, it is possible in DDbase to use more general, user—defined aggregation functions.
E.g., for 1ist (D) (instead of sum(D)), Qp would be directly evaluated in DDbase to produce
a non-first normal form (NFNF, NF?) relation showing a list of the salaries grouped by the
departments C, which is not possible in SQL:

NF? Relation

Dno ‘ SALARIES
'NULL’
4 25000, 43000, 25000

30000, 40000, 38000, 25000

Query Qs with Aliases

The following NL query Qpy needs multiple occurrences of the same table and aliases:

name, of, supervisor, of, exmployee, name

The database user might want to know the names of the supervisors of the employees. The
query is annotated, and a list Q of query atoms in field notation is generated:

employee:[’SSN’:D, ’LNAME’:B],
employee:[’SSN’:D, ’SUPERSSN’:C],
employee:[’SSN’:C, ’LNAME’:A].

The second atom links the first and the third. The optimizer could combine the first two
atoms, since they agree on the key SSN, to the atom

employee:[’SSN’:D, ’LNAME’:B, ’SUPERSSN’:C].

Notice, that the third atom cannot be merged since it differs on SSN. Thus, from Qp, a
Datalog query Qp is generated:

select (A, B) :-
employee(_, _, B, D, _, _, _, _, C, _),
employee(_, _, A, C,

Note that the SSNs of the supervisor (C) and the employee (D) are not part of the result.
From Qp, an SQL query is compiled, which could be presented to the user together with its
resulting table:

use company;
select employee__1.LNAME, employee__2.LNAME
from employee employee__1, employee employee__2

where employee__1.SUPERSSN = employee__2.SSN;

SLATE 2021
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4.4 General Aspects of DDQL

The DDQL approach — exemplified in the case study — can be applied to knowledge databases —
e.g. relational or deductive databases. The following aspects have to be taken into account.

Links Based on Query Order

For successor atoms of the annotated query Qp, links have to be found, which might not be
unique or obvious. In fact, also for the queries Q3 and Q4 the links based on WORKS__FOR
were not unique, but they were taken to follow the direction from EMPLOYEE to DEPARTMENT
in Figure 1. If DEPARTMENT were to be mentioned before EMPLOYEE in the query, then it
would be more likely that the user—intended semantics would be based on MANAGES.

Multiple Links

The atoms in Qp might not appear consecutively in the graph of Figure 1. There might be
several linking trees, or the atoms could be on a cycle. DDQL is collecting heuristics for
finding suitable links. For Q3 and Q4 these links were affected by the order of the words in
the query.

However, if we were to ask about EMPLOYEE and PNAME, then there would be two
equally reasonable links, namely through WORKS__ON and through DEPARTMENT (which
could itself be supported by two different foreign—key constraints). These two cases can be
expressed by the following Prolog clauses:

select (Lname, Pname) :-

employee(_, _, Lname, Ssn, _, _, _, _, _, _J),
works_on(Ssn, Pno, _),
project (Pname, Pno, _, _).

select (Lname, Pname) :-
employee(_, _, Lname, _, _, _, _, _, _, Dnum),
department (_, Dnum, _, _),
project (Pname, _, _, Dnum).

In the second query, the linking atom department(_, Dnum, _, _), which is produced
because of the foreign key constraints between EMPLOYEE and DEPARTMENT and between
DEPARTMENT and PROJECT, could be redundant. It makes a difference when there is no
department with the number Dnum referenced by EMPLOYEE and PROJECT. In that case,
the user has to decide about whether he wants to include this atom or not. If the query were
to contain a keyword that is similar to a link, then the link would be preferred. In general,
all corresponding queries can be presented to the user, for a choice to be made.

Similarities and Subsumptions

So far, we have not yet discussed similarities or subsumptions between words from the query
and the terms used in the database. Here, ontologies or concepts from linguistics can be
applied. A simple case would be the Levenshtein Distance (Edit Distance) between words
or conversions between singular and plural. More complicated cases could be handled by
background knowledge such as translations between languages.
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Declare

sum of salary of department

| DDQL search |

select(A,sum_atoms(B)) :- 3 tuples
employee(C,D,E,F,G,H,I,B,J,K),employee(L,M,N,F,0,P,Q,R,S,A),department(T,A,U,V)

select(A,sum_atoms(B)) :- 3 tuples
employee(C,D,E,F,G,H,l,B,),K),department(L,A,M,N)

SQL
select(A,B,C) :- 8 tuples
employee:[SSN:B,SALARY.C],employee:[SSN:B,DNO:A],department:[DNUMBER:A]

SQL use company;
select employee__30.DNO, employee_ 29.5SN, employee_ 29.SALARY
from employee employee_ 29, employee employee_ 30, department
where employee_ 29.55N = employee_ 30.5SN and employee_ 30.DNO = department. DNUMBER ;

select(A,B,C) :- 24 tuples
employee:[SSN:B,SALARY:C],department:[DNUMBER:A]

SQL use company;
select department. DNUMBER, employee.SSN, employee.SALARY
from employee, department
where true ;

Figure 3 Graphical User Interface of DDQL: Variant of Query Qu.

Parsing Sentences and Rules

With a powerful speech—to—text component, we could aim to parse more complex structures
for sentences. Then we could enable the user to define subqueries producing views. With
DbpQL, it is already possible to define additional Datalog predicates with rules to be used —
like SQL views — in further queries. Also, sometimes referential integrity constraints can be
inferred for these new predicates.

4.5 The Graphical User Interface

A prototype of the graphical user interface (GUI) of DDQL is shown in Figure 3. After
entering the keywords separated by blanks, a list of possible search queries in Datalog* is
generated. The generated queries might be further optimized. Currently, a corresponding
SQL query is shown, if there are no aggregation functions. Obviously, for user—defined
aggregation functions, only the Datalog* variant is possible. Figure 3 also shows the number
of result tuples, such that the user can choose a possible alternative answer. A ranking of
the results would be possible based on these numbers, the contextual knowledge, and the
query history — but so far we have not finalized that.

4.6 Benchmark — Database Schemas and Queries

We have investigated the database schemas of a collection of relational databases. The tuples
[DB, T, A, F] listed below show the following:

(a) DB is the name of the database,

(b) T is the number of tables in the database,

(c) A is the average number of attributes per table in the database,

(d) F is the average number of foreign keys per table in the database.

Most databases did not provide foreign key constraints. Only the database company provided
foreign key constraints, namely 1.33 on average per table.
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Tuples = [
[alignment, 5, 3.4, 0], [company, 6, 4.67, 1.33],
[evu, 20, 5.7, 0], [morphemes, 1, 7, 0], [selli, 1, 7, 0],
[stock, 6, 3.33, 0], [wm_2002, 9, 7.33, 0] 1]

ILe., for most databases DDQL has to rely on the query log files with previous queries, which
we can parse to XML using our tool SQUASH, to learn about possible join conditions.

In a benchmark with many queries to the relational database company — which has 1.33
foreign key constraints per table on average — about 4 to 5 different alternative suggestions
were generated on average per query. The answer intended by the user was always one of
them. For the single query

salary, of, exmployee, ’1111°

many (i.e. 20) different alternative suggestions were generated. We are currently trying to
reduce this number for similar cases. Without this query, only 3.5 alternative suggestions
were generated on average.

5 Conclusions

In this paper, we have shown how queries to relational databases can be answered in keyword—
based natural language interfaces using intelligent, cooperative techniques based on logic
programming and deductive databases.

The concepts mentioned in the query are linked based on contextual background knowledge,
mainly from the database schema. Also Datalog—like rules can be added as background
knowledge, e.g. for deductive databases — without a database schema. In the deductive
database DDbase, the knowledge could also be hybrid — including ontological, linked data
(RDF, OWL), SWRL knowledge and semi—structured XML documents — and hybrid queries
could become possible in DDQL.

Various styles or patterns of the database schema design can significantly influence the
level of application of our approach. E.g., under the universal relation scheme assump-
tion (URSA) [10] we could simply use natural join queries.

Currently, we are containerizing Declare — inluding DDQL — in a docker image. In the
future, we are planning to add a voice recognition part, especially for using DDQL on mobile
devices. Also the knowledge acquisition could be done with a voice assistant based on a
domain-specific language, see [17].

We are constantly incorporating further aspects of Al into DDQL. In the future, also
concepts from subsymbolic Al will be investigated and included where useful. For instance,
by looking at the user behaviour from previous queries, we may derive heuristics for finding
intended queries (e.g. linking atoms) using some form of machine learning.
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