
Subgame-Perfect Equilibria in Mean-Payoff Games
Léonard Brice #

LIGM, Univ. Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, France

Jean-François Raskin #

Université libre de Bruxelles, Brussels, Belgium

Marie van den Bogaard #

LIGM, Univ. Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, France

Abstract
In this paper, we provide an effective characterization of all the subgame-perfect equilibria in infinite
duration games played on finite graphs with mean-payoff objectives. To this end, we introduce the
notion of requirement, and the notion of negotiation function. We establish that the plays that are
supported by SPEs are exactly those that are consistent with the least fixed point of the negotiation
function. Finally, we show that the negotiation function is piecewise linear, and can be analyzed
using the linear algebraic tool box. As a corollary, we prove the decidability of the SPE constrained
existence problem, whose status was left open in the literature.
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1 Introduction

The notion of Nash equilibrium (NE) is one of the most important and most studied solution
concepts in game theory. A profile of strategies is an NE when no rational player has
an incentive to change their strategy unilaterally, i.e. while the other players keep their
strategies. Thus an NE models a stable situation. Unfortunately, it is well known that, in
sequential games, NEs suffer from the problem of non-credible threats, see e.g. [18]. In those
games, some NE only exists when some players do not play rationally in subgames and so use
non-credible threats to force the NE. This is why, in sequential games, the stronger notion
of subgame-perfect equilibrium is used instead: a profile of strategies is a subgame-perfect
equilibrium (SPE) if it is an NE in all the subgames of the sequential game. Thus SPE
imposes rationality even after a deviation has occured.

In this paper, we study sequential games that are infinite-duration games played on
graphs with mean-payoff objectives, and focus on SPEs. While NEs are guaranteed to
exist in infinite duration games played on graphs with mean-payoff objectives, it is known
that it is not the case for SPEs, see e.g. [19, 5]. We provide in this paper a constructive
characterization of the entire set of SPEs, which allows us to decide, among others, the SPE
(constrained) existence problem. This problem was left open in previous contributions on
the subject. More precisely, our contributions are described in the next paragraphs.
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8:2 Subgame-Perfect Equilibria in Mean-Payoff Games

Contributions. First, we introduce two important new notions that allow us to capture NEs,
and more importantly SPEs, in infinite duration games played on graphs with mean-payoff
objectives1: the notion of requirement and the notion of negotiation function.

A requirement λ is a function that assigns to each vertex v ∈ V of a game graph a value
in R ∪ {−∞, +∞}. The value λ(v) represents a requirement on any play ρ = ρ0ρ1 . . . ρn . . .

that traverses this vertex: if we want the player who controls the vertex v to follow ρ and to
give up deviating from ρ, then the play must offer a payoff to this player that is at least λ(v).
An infinite play ρ is λ-consistent if, for each player i, the payoff of ρ for player i is larger than
or equal to the largest value of λ on vertices occurring along ρ and controlled by player i.

We first use those notions to rephrase a classical result about NEs: if λ maps a vertex v to
the largest value that the player that controls v can secure against a fully adversarial coalition
of the other players, i.e. if λ(v) is the zero-sum worst-case value, then the set of plays that
are λ-consistent is exactly the set of plays that are supported by an NE (Theorem 24).

As SPEs are forcing players to play rationally in all subgames, we cannot rely on the
zero-sum worst-case value to characterize them. Indeed, when considering the worst-case
value, we allow adversaries to play fully adversarially after a deviation and so potentially
in an irrational way w.r.t. their own objective. In fact, in an SPE, a player is refrained to
deviate when opposed by a coalition of rational adversaries. To characterize this relaxation
of the notion of worst-case value, we rely on our notion of negotiation function.

The negotiation function nego operates from the set of requirements into itself. To
understand the purpose of the negotiation function, let us consider its application on the
requirement λ that maps every vertex v on the worst-case value as above. Now, we can
naturally formulate the following question: given v and λ, can the player who controls v

improve the value that they can ensure against all the other players, if only plays that are
consistent with λ are proposed by the other players? In other words, can this player enforce
a better value when playing against the other players if those players are not willing to give
away their own worst-case value? Clearly, securing this worst-case value can be seen as a
minimal goal for any rational adversary. So nego(λ)(v) returns this value; and this reasoning
can be iterated. One of the contributions of this paper is to show that the least fixed point
λ∗ of the negotiation function is exactly characterizing the set of plays supported by SPEs
(Theorem 28).

To turn this fixed point characterization of SPEs into algorithms, we additionally draw
links between the negotiation function and two classes of zero-sum games, that are called
abstract and concrete negotiation games (see Theorem 32). We show that the latter can be
solved effectively and allow, given λ, to compute nego(λ) (Lemma 36). While solving concrete
negotiation games allows us to compute nego(λ) for any requirement λ, and even if the
function nego(·) is monotone and Scott-continuous, a direct application of the Kleene-Tarski
fixed point theorem is not sufficient to obtain an effective algorithm to compute λ∗. Indeed,
we give examples that require a transfinite number of iterations to converge to the least
fixed point. To provide an algorithm to compute λ∗, we show that the function nego(·) is
piecewise linear and we provide an effective representation of this function (Theorem 41).
This effective representation can then be used to extract all its fixed points and in particular
its least fixed point using linear algebraic techniques, hence the decidability of the SPE
(constrained) existence problem (Theorem 45). Finally, all our results are also shown to
extend to ε-SPEs, those are quantitative relaxations of SPEs.

1 A large part of our results apply to the larger class of games with prefix-independent objectives. For the
sake of readability of this introduction, we focus here on mean-payoff games but the technical results in
the paper are usually covering broader classes of games.
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Related works. Non-zero sum infinite duration games have attracted a large attention in
recent years, with applications targeting reactive synthesis problems. We refer the interested
reader to the following survey papers [2, 7] and their references for the relevant literature.
We detail below contributions more closely related to the work presented here.

In [6], Brihaye et al. offer a characterization of NEs in quantitative games for cost-prefix-
linear reward functions based on the worst-case value. The mean-payoff is cost-prefix-linear.
In their paper, the authors do not consider the stronger notion of SPE, which is the central
solution concept studied in our paper. In [8], Bruyère et al. study secure equilibria that are
a refinement of NEs. Secure equilibria are not subgame-perfect and are, as classical NEs,
subject to non-credible threats in sequential games.

In [20], Ummels proves that there always exists an SPE in games with ω-regular objectives
and defines algorithms based on tree automata to decide constrained SPE problems. Strategy
logics, see e.g. [12], can be used to encode the concept of SPE in the case of ω-regular
objectives with application to the rational synthesis problem [15] for instance. In [13],
Flesch et al. show that the existence of ε-SPEs is guaranteed when the reward function
is lower-semicontinuous. The mean-payoff reward function is neither ω-regular, nor lower-
semicontinuous, and so the techniques defined in the papers cited above cannot be used in
our setting. Furthermore, as already recalled above, see e.g. [21, 5], contrary to the ω-regular
case, SPEs in games with mean-payoff objectives may fail to exist.

In [5], Brihaye et al. introduce and study the notion of weak subgame-perfect equilibria,
which is a weakening of the classical notion of SPE. This weakening is equivalent to the
original SPE concept on reward functions that are continuous. This is the case for example
for the quantitative reachability reward function, on which Brihaye et al. solve the problem
of the constrained existence of SPEs in [4]. On the contrary, the mean-payoff cost function
is not continuous and the techniques used in [5], and generalized in [10], cannot be used to
characterize SPEs for the mean-payoff reward function.

In [17], Meunier develops a method based on Prover-Challenger games to solve the
problem of the existence of SPEs on games with a finite number of possible outcomes. This
method is not applicable to the mean-payoff reward function, as the number of outcomes in
this case is uncountably infinite.

In [14], Flesch and Predtetchinski present another characterization of SPEs on games
with finitely many possible outcomes, based on a game structure that we will present here
under the name of abstract negotiation game. Our contributions differ from this paper in
two fundamental aspects. First, it lifts the restriction to finitely many possible outcomes.
This is crucial as mean-payoff games violate this restriction. Instead, we identify a class of
games, that we call with steady negotiation, that encompasses mean-payoff games and for
which some of the conceptual tools introduced in that paper can be generalized. Second, the
procedure developed by Flesch and Predtetchinski is not an algorithm in CS acceptation: it
needs to solve infinitely many games that are not represented effectively, and furthermore
it needs a transfinite number of iterations. On the contrary, our procedure is effective and
leads to a complete algorithm in the classical sense: with guarantee of termination in finite
time and applied on effective representations of games.

Structure of the paper. In Sect. 2, we introduce the necessary background. Sect. 3 defines
the notion of requirement and the negotiation function. Sect. 4 shows that the set of plays
that are supported by an SPE are those that are λ∗-consistent, where λ∗ is the least fixed
point of the negotiation function. Sect. 5 draws a link between the negotiation function and
negotiation games. Sect. 6 establishes that the negotiation function is effectively piecewise
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8:4 Subgame-Perfect Equilibria in Mean-Payoff Games

linear. Finally, Sect. 7 applies those results to prove the decidability of the SPE constrained
existence problem on mean-payoff games, and adds some complexity considerations. The
detailed proofs of our results, as well as additional examples, can be found in appendices
of [3], the full version of this paper.

2 Background

In all what follows, we will use the word game for the infinite duration turn-based quantitative
games on finite graphs with complete information.

▶ Definition 1 (Game). A game is a tuple G = (Π, V, (Vi)i∈Π, E, µ), where:
Π is a finite set of players;
(V, E) is a finite directed graph, whose vertices are sometimes called states and whose
edges are sometimes called transitions, and in which every state has at least one outgoing
transition. For the simplicity of writing, a transition (v, w) ∈ E will often be written vw.
(Vi)i∈Π is a partition of V , in which Vi is the set of states controlled by player i;
µ : V ω → RΠ is an outcome function, that maps each infinite word ρ to the tuple
µ(ρ) = (µi(ρ))i∈Π of the players’ payoffs.

▶ Definition 2 (Initialized game). An initialized game is a tuple (G, v0), often written G↾v0 ,
where G is a game and v0 ∈ V is a state called initial state. Moreover, the game G↾v0 is
well-initialized if any state of G is accessible from v0 in the graph (V, E).

▶ Definition 3 (Play, history). A play (resp. history) in the game G is an infinite (resp.
finite) path in the graph (V, E). It is also a play (resp. history) in the initialized game
G↾v0 , where v0 is its first vertex. The set of plays (resp. histories) in the game G (resp. the
initialized game G↾v0) is denoted by PlaysG (resp. PlaysG↾v0 , HistG, HistG↾v0). We write
HistiG (resp. HistiG↾v0) for the set of histories in G (resp. G↾v0) of the form hv, where v is
a vertex controlled by player i.

▶ Remark. In the literature, the word outcome can be used to name plays, and the word
payoff to name what we call here outcome. Here, the word payoff will be used to refer to
outcomes, seen from the point of view of a given player – or in other words, an outcome will
be seen as the collection of all players’ payoffs.

▶ Definition 4 (Strategy, strategy profile). A strategy for player i in the initialized game G↾v0

is a function σi : HistiG↾v0 → V , such that vσi(hv) is an edge of (V, E) for every hv. A
history h is compatible with a strategy σi if and only if hk+1 = σi(h0 . . . hk) for all k such
that hk ∈ Vi. A play ρ is compatible with σi if all its prefixes are.

A strategy profile for P ⊆ Π is a tuple σ̄P = (σi)i∈P , where for each i, σi is a strategy for
player i in G↾v0 . A complete strategy profile, usually written σ̄, is a strategy profile for Π. A
play or a history is compatible with σ̄P if it is compatible with every σi for i ∈ P .

When i is a player and when the context is clear, we will often write −i for the set Π \ {i}.
We will often refer to Π \ {i} as the environment against player i. When τ̄P and τ̄ ′

Q are
two strategy profiles with P ∩ Q = ∅, (τ̄P , τ̄ ′

Q) denotes the strategy profile σ̄P ∪Q such that
σi = τi for i ∈ P , and σi = τ ′

i for i ∈ Q.

Before moving on to SPEs, let us recall the notion of Nash equilibrium.

▶ Definition 5 (Nash equilibrium). Let G↾v0 be an initialized game. The strategy profile σ̄ is
a Nash equilibrium – or NE for short – in G↾v0 if and only if for each player i and for every
strategy σ′

i, called deviation of σi, we have the inequality µi (⟨σ′
i, σ̄−i⟩v0) ≤ µi (⟨σ̄⟩v0).
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To define SPEs, we need the notion of subgame.

▶ Definition 6 (Subgame, substrategy). Let hv be a history in the game G. The subgame
of G after hv is the initialized game (Π, V, (Vi)i, E, µ↾hv)↾v, where µ↾hv maps each play to
its payoff in G, assuming that the history hv has already been played: formally, for every
ρ ∈ PlaysG↾hv, we have µ↾hv(ρ) = µ(hρ).

If σi is a strategy in G↾v0 , its substrategy after hv is the strategy σi↾hv in G↾hv, defined
by σi↾hv(h′) = σi(hh′) for every h′ ∈ HistiG↾hv.

▶ Remark. The initialized game G↾v0 is also the subgame of G after the one-state history v0.

▶ Definition 7 (Subgame-perfect equilibrium). Let G↾v0 be an initialized game. The strategy
profile σ̄ is a subgame-perfect equilibrium – or SPE for short – in G↾v0 if and only if for every
history h in G↾v0 , the strategy profile σ̄↾h is a Nash equilibrium in the subgame G↾h.

The notion of subgame-perfect equilibrium can be seen as a refinement of Nash equilibrium:
it is a stronger equilibrium which excludes players resorting to non-credible threats.
▶ Example 8. In the game represented in Figure 1a, where the square state is controlled by
player 2 and the round states by player #, if both players get the payoff 1 by reaching the
state d and the payoff 0 in the other cases, there are actually two NEs: one, in blue, where 2
goes to the state b and then player # goes to d, and both win, and one, in red, where player
2 goes to the state c because player # was planning to go to e. However, only the blue one
is an SPE, as moving from b to e is irrational for player # in the subgame G↾ab.

An ε-SPE is a strategy profile which is almost an SPE: if a player deviates after some
history, they will not be able to improve their payoff by more than a quantity ε ≥ 0.

▶ Definition 9 (ε-SPE). Let G↾v0 be an initialized game, and ε ≥ 0. A strategy profile σ̄

from v0 is an ε-SPE if and only if for every history hv, for every player i and every strategy
σ′

i, we have µi(⟨σ̄−i↾hv, σ′
i↾hv⟩v) ≤ µi(⟨σ̄↾hv⟩v) + ε.

Note that a 0-SPE is an SPE, and conversely.
Hereafter, we focus on prefix-independent games, and in particular mean-payoff games.

▶ Definition 10 (Mean-payoff game). A mean-payoff game is a game G = (Π, V, (Vi)i, E, µ),
where µ is defined from a function π : E → QΠ, called weight function, by, for each player i:

µi : ρ 7→ lim inf
n→∞

1
n

n−1∑
k=0

πi (ρkρk+1) .

In a mean-payoff game, the weight given by the function π represents the immediate
reward that each action gives to each player. The final payoff of each player is their average
payoff along the play, classically defined as the limit inferior over n (since the limit may not
be defined) of the average payoff after n steps.

▶ Definition 11 (Prefix-independent game). A game G is prefix-independent if, for every
history h and for every play ρ, we have µ(hρ) = µ(ρ). We also say, in that case, that the
outcome function µ is prefix-independent.

Mean-payoff games are prefix-independent. We now recall a classical result about two-
player zero-sum games.

▶ Definition 12 (Zero-sum game). A game G, with Π = {1, 2}, is zero-sum if µ2 = −µ1.
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(a) Two NEs and one SPE.
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(b) A game without SPE.

Figure 1 Two examples of games.
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(a) The game G.
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(b) The outcomes of plays and SPE
plays in G.

Figure 2 A game with an infinity of SPEs.

▶ Definition 13 (Borel game). A game G is Borel if the function µ, from the set V ω equipped
with the product topology to the Euclidian space RΠ, is Borel, i.e. if, for every Borel set
B ⊆ RΠ, the set µ−1(B) is Borel.

▶ Proposition 14 (Determinacy of two-player zero-sum Borel games, [16]). Let G↾v0 be an
initialized zero-sum Borel game, with Π = {1, 2}. Then, we have the following equality:

sup
σ1

inf
σ2

µ1(⟨σ̄⟩v0) = inf
σ2

sup
σ1

µ1(⟨σ̄⟩v0).

That quantity is called value of G↾v0 , denoted by val1(G↾v0); solving the game G means
computing its value.

The following examples illustrate the SPE existence problem in mean-payoff games.

▶ Example 15. Let G be the mean-payoff game of Figure 1b, where each edge is labelled by
its weights π# and π2. No weight is given for the edges ac and bd since they can be used
only once, and therefore do not influence the final payoff. As shown in [9], this game does
not have any SPE, neither from the state a nor from the state b.

Indeed, the only NE plays from the state b are the plays where player 2 eventually leaves
the cycle ab and goes to d: if he stays in the cycle ab, then player # would be better off
leaving it, and if she does, player 2 would be better off leaving it before. From the state a, if
player # knows that player 2 will leave, she has no incentive to do it before: there is no NE
where # leaves the cycle and 2 plans to do it if ever she does not. Therefore, there is no
SPE where # leaves the cycle. But then, after a history that terminates in b, player 2 has
actually no incentive to leave if player # never plans to do it afterwards: contradiction.

▶ Example 16. Let us now study the game of Figure 2a. Using techniques from [11], we can
represent the outcomes of possible plays in that game as in Figure 2b (gray and blue areas).
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Following exclusively one of the three simple cycles a, ab and b of the game graph during
a play yields the outcomes 01, 10 and 22, respectively. By combining those cycles with well
chosen frequencies, one can obtain any outcome in the convex hull of those three points. Now,
it is also possible to obtain the point 00 by using the properties of the limit inferior: it is for
instance the outcome of the play a2b4a16b256 . . . a22n

b22n+1

. . . . In fact, one can construct a
play that yields any outcome in the convex hull of the four points 00, 10, 01, and 22.

We claim that the outcomes of SPEs plays correspond to the entire blue area in Figure 2b:
there exists an SPE σ̄ in G↾a with ⟨σ̄⟩a = ρ if and only if µ2(ρ), µ#(ρ) ≥ 1. That statement
will be a direct consequence of the results we show in the remaining sections, but let us give
a first intuition: a play with such an outcome necessarily uses infinitely often both states. It
is an NE play because none of the players can get a better payoff by looping forever on their
state, and they can both force each other to follow that play, by threatening them to loop
for ever on their state whenever they can. But such a strategy profile is clearly not an SPE.

It can be transformed into an SPE as follows: when a player deviates, say player 2, then
player # can punish him by looping on a, not forever, but a great number of times, until
player 2’s mean-payoff gets very close to 1. Afterwards, both players follow again the play
that was initially planned. Since that threat is temporary, it does not affect player #’s payoff
on the long term, but it really punishes player 2 if that one tries to deviate infinitely often.

3 Requirements and negotiation

We will now see that SPEs are strategy profiles that respect some requirements about
the payoffs, depending on the states it traverses. In this part, we develop the notions of
requirement and negotiation.

3.1 Requirement
In the method we will develop further, we will need to analyze the players’ behaviour when
they have some requirement to satisfy. Intuitively, one can see requirements as rationality
constraints for the players, that is, a threshold payoff value under which a player will not
accept to follow a play. In all what follows, R denotes the set R ∪ {±∞}.

▶ Definition 17 (Requirement). A requirement on the game G is a function λ : V → R.
For a given state v, the quantity λ(v) represents the minimal payoff that the player

controlling v will require in a play beginning in v.

▶ Definition 18 (λ-consistency). Let λ be a requirement on a game G. A play ρ in G is λ-
consistent if and only if, for all i ∈ Π and n ∈ N with ρn ∈ Vi, we have µi(ρnρn+1 . . . ) ≥ λ(ρn).
The set of the λ-consistent plays from a state v is denoted by λCons(v).

▶ Definition 19 (λ-rationality). Let λ be a requirement on a mean-payoff game G. Let i ∈ Π.
A strategy profile σ̄−i is λ-rational if and only if there exists a strategy σi such that, for
every history hv compatible with σ̄−i, the play ⟨σ̄↾hv⟩v is λ-consistent. We then say that the
strategy profile σ̄−i is λ-rational assuming σi. The set of λ-rational strategy profiles in G↾v

is denoted by λRat(v).

Note that λ-rationality is a property of a strategy profile for all the players but one,
player i. Intuitively, their rationality is justified by the fact that they collectively assume
that player i will, eventually, play according to the strategy σi: if player i does so, then
everyone gets their payoff satisfied. Finally, let us define a particular requirement: the
vacuous requirement, that requires nothing, and with which every play is consistent.
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ac b d

#
0
2
3 #

2
2
2

#
1
2
1
(λ0) −∞ −∞−∞ −∞

(λ1) 1 21 2
(λ2) 2 21 2

Figure 3 A game without SPE.

▶ Definition 20 (Vacuous requirement). In any game, the vacuous requirement, denoted by
λ0, is the requirement constantly equal to −∞.

3.2 Negotiation
We will show that SPEs in prefix-independent games are characterized by the fixed points of
a function on requirements. That function can be seen as a negotiation: when a player has a
requirement to satisfy, another player can hope a better payoff than what they can secure in
general, and therefore update their own requirement.

▶ Definition 21 (Negotiation function). Let G be a game. The negotiation function is the
function that transforms any requirement λ on G into a requirement nego(λ) on G, such
that for each i ∈ Π and v ∈ Vi, with the convention inf ∅ = +∞, we have:

nego(λ)(v) = inf
σ̄−i∈λRat(v)

sup
σi

µi(⟨σ̄⟩v).

▶ Remarks. There exists a λ-rational strategy profile from v against the player controlling v

if and only if nego(λ)(v) ̸= +∞. The negotiation function is monotone: if λ ≤ λ′ (for the
pointwise order, i.e. if for each v, λ(v) ≤ λ′(v)), then nego(λ) ≤ nego(λ′). The negotiation
function is also non-decreasing: for every λ, we have λ ≤ nego(λ).

In the general case, the quantity nego(λ)(v) represents the worst case value that the
player controlling v can ensure, assuming that the other players play λ-rationally.
▶ Example 22. Let us consider the game of Example 15: in Figure 3, on the two first lines
below the states, we present the requirements λ0 and λ1 = nego(λ0), which is easy to compute
since any strategy profile is λ0-rational: for each v, λ1(v) is the classical worst-case value or
antagonistic value of v, i.e. the best value the player controlling v can enforce against a fully
hostile environment. Let us now compute the requirement λ2 = nego(λ1).

From c, there exists exactly one λ1-rational strategy profile σ̄−# = σ2, which is the empty
strategy since player 2 has never to choose anything. Against that strategy, the best and
the only payoff player # can get is 1, hence λ2(c) = 1. For the same reasons, λ2(d) = 2.

From b, player # can force 2 to get the payoff 2 or less, with the strategy profile σ# : h 7→ c.
Such a strategy is λ1-rational, assuming the strategy σ2 : h 7→ d. Therefore, λ2(b) = 2.

Finally, from a, player 2 can force # to get the payoff 2 or less, with the strategy profile
σ2 : h 7→ d. Such a strategy is λ1-rational, assuming the strategy σ# : h 7→ c. But, he cannot
force her to get less than the payoff 2, because she can force the access to the state b, and the
only λ1-consistent plays from b are the plays with the form (ba)kbdω. Therefore, λ2(a) = 2.

3.3 Steady negotiation
In what follows, we will often need a game to be with steady negotiation, i.e. such that there
always exists a worst λ-rational behaviour for the environment against a given player.
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▶ Definition 23 (Game with steady negotiation). A game G is with steady negotiation if
and only if for every player i, for every vertex v, and for every requirement λ, the set{

supσi
µi(⟨σ̄−i, σi⟩v)

∣∣ σ̄−i ∈ λRat(v)
}

is either empty, or has a minimum.

▶ Remark. In particular, when a game is with steady negotiation, the infimum in the
definition of negotiation is always reached.

It will be proved in Section 5 that mean-payoff games are with steady negotiation.

3.4 Link with Nash equilibria
Requirements and the negotiation function are able to capture Nash equilibria. Indeed, if λ0
is the vacuous requirement, then nego(λ0) characterizes the plays that are supported by a
Nash equilibrium (abbreviated by NE plays), in the following formal sense:

▶ Theorem 24. Let G be a game with steady negotiation. Then, a play ρ in G is an NE
play if and only if ρ is nego(λ0)-consistent.

▶ Example 25. Let us consider again the game of Example 15, with the requirement λ1 given
in Figure 3. The only λ1-consistent plays in this game, starting from the state a, are acω,
and (ab)kdω with k ≥ 1. One can check that those plays are exactly the NE plays in that
game.

In the following section, we will prove that as well as nego(λ0) characterizes the NEs, the
requirement that is the least fixed point of the negotiation function characterizes the SPEs.

4 Link between negotiation and SPEs

The notion of negotiation will enable us to find the SPEs, but also more generally the ε-SPEs,
in a game. For that purpose, we need the notion of ε-fixed points of a function.

▶ Definition 26 (ε-fixed point). Let ε ≥ 0, let D be a finite set and let f : RD → RD be a
mapping. A tuple x̄ ∈ RD is a ε-fixed point of f if for each d ∈ D, for ȳ = f(x̄), we have
yd ∈ [xd − ε, xd + ε].

▶ Remark. A 0-fixed point is a fixed point, and conversely.

The set of requirements, equipped with the componentwise order, is a complete lattice.
Since the negotiation function is monotone, Tarski’s fixed point theorem states that the
negotiation function has a least fixed point. That result can be generalized to ε-fixed points:

▶ Lemma 27. Let ε ≥ 0. On each game, the function nego has a least ε-fixed point.

Intuitively, the ε-fixed points of the negotiation function are the requirements λ such
that, from every vertex v, the player i controlling v cannot enforce a payoff greater than
λ(v) + ε against a λ-rational behaviour. Therefore, the λ-consistent plays are such that if
one player tries to deviate, it is possible for the other players to prevent them improving
their payoff by more than ε, while still playing rationally. Formally:

▶ Theorem 28. Let G↾v0 be an initialized prefix-independent game, and let ε ≥ 0. Let λ∗

be the least ε-fixed point of the negotiation function. Let ξ be a play starting in v0. If there
exists an ε-SPE σ̄ such that ⟨σ̄⟩v0 = ξ, then ξ is λ∗-consistent. The converse is true if the
game G is with steady negotiation.
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ac b d

#
0
2
3 #

2
2
2

#
1
2
1
(λ2) 2 21 2
(λ3) 2 31 2
(λ4) +∞ +∞1 2

Figure 4 A game without SPE.

5 Negotiation games

We have now proved that SPEs are characterized by the requirements that are fixed points
of the negotiation function; but we need to know how to compute, in practice, the quantity
nego(λ) for a given requirement λ. In other words, we need a algorithm that computes, given
a state v0 controlled by a player i in the game G, and given a requirement λ, which value
player i can ensure in G↾v0 if the other players play λ-rationally.

5.1 Abstract negotiation game
We first define an abstract negotiation game, that is conceptually simple but not directly
usable for an algorithmic purpose, because it is defined on an uncoutably infinite state space.

A similar definition was given in [14], as a tool in a general method to compute SPE plays
in games whose payoff functions have finite range, which is not the case of mean-payoff games.
Here, linking that game with our concepts of requirements, negotiation function and steady
negotiation enables us to present an effective algorithm in the case of mean-payoff games, by
constructing a finite version of the abstract negotiation game, the concrete negotiation game,
and afterwards by analyzing the negotiation function with linear algebra tools.

The abstract negotiation game from a state v0, with regards to a player i and a requirement
λ, is denoted by Absλi(G)↾[v0] and opposes two players, Prover and Challenger, as follows:

Prover proposes a λ-consistent play ρ from v0 (or loses, if she has no play to propose).
Then, either Challenger accepts the play and the game terminates; or, he chooses an edge
ρkρk+1, with ρk ∈ Vi, from which he can make player i deviate, using another edge ρkv

with v ̸= ρk+1: then, the game starts again from v instead of v0.
In the resulting play (either eventually accepted by Challenger, or constructed by an
infinity of deviations), Prover wants player i’s payoff to be low, and Challenger wants it
to be high.

That game gives us the basis of a method to compute nego(λ) from λ: the maximal
outcome that Challenger – or C for short – can ensure in Absλi(G)↾[v0], with v0 ∈ Vi, is also
the maximal payoff that player i can ensure in G↾v0 , against a λ-rational environment; hence
the equality valC

(
Absλi(G)↾[v0]

)
= nego(λ)(v0). A proof of that statement, with a complete

formalization of the abstract negotiation game, is presented in [3].
▶ Example 29. Let us consider again the game of Example 15: the requirement λ2 = nego(λ1),
computed in Section 3.2, is given again in Figure 4. Let us use the abstract negotiation game
to compute the requirement λ3 = nego(λ2).

From a, Prover can propose the play abdω, and the only deviation Challenger can do is
going to c; he has of course no incentive to do it. Therefore, λ3(a) = 2. From b, whatever
Prover proposes at first, Challenger can deviate and go to a. Then, from a, Prover cannot
propose the play acω, which is not λ2-consistent: she has to propose a play beginning by ab,
and to let Challenger deviate once more. He can then deviate infinitely often that way, and
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generate the play (ba)ω: therefore, λ3(b) = 3. The other states keep the same values. Note
that there exists no λ3-consistent play from a or b, hence nego(λ3)(a) = nego(λ3)(b) = +∞.
This proves that there is no SPE in that game.

5.2 Concrete negotiation game
In the abstract negotiation game, Prover has to propose complete plays, on which we can
make the hypothesis that they are λ-consistent. In practice, there will often be an infinity
of such plays, and therefore it cannot be used directly for an algorithmic purpose. Instead,
those plays can be given edge by edge, in a finite state game. Its definition is more technical,
but it can be shown that it is equivalent to the abstract one. In order to make the definition
as clear as possible, we give it only when the original game is a mean-payoff game. However,
one could easily adapt this definition to other classes of prefix-independent games.

▶ Definition 30 (Concrete negotiation game). Let G↾v0 be an initialized mean-payoff game,
and let λ be a requirement on G, with either λ(V ) ⊆ R, or λ = λ0.

The concrete negotiation game of G↾v0 for player i is the two-player zero-sum game
Concλi(G)↾s0 = ({P,C}, S, (SP, SC), ∆, ν)↾s0

, defined as follows:
The set of states controlled by Prover is SP = V ×2V , where the state s = (v, M) contains
the information of the current state v on which Prover has to define the strategy profile,
and the memory M of the states that have been traversed so far since the last deviation,
and that define the requirements Prover has to satisfy. The initial state is s0 = (v0, {v0}).
The set of states controlled by Challenger is SC = E × 2V , where in the state s = (uv, M),
the edge uv is the edge proposed by Prover.
The set ∆ contains three types of transitions: proposals, acceptations and deviations.

The proposals are transitions in which Prover proposes an edge of the game G:

Prop =
{

(v, M)(vw, M)
∣∣ vw ∈ E, M ∈ 2V

}
;

the acceptations are transitions in which Challenger accepts to follow the edge proposed
by Prover (it is in particular his only possibility when that edge begins on a state that
is not controlled by player i) – note that the memory is updated:

Acc = {(vw, M) (w, M ∪ {w}) | j ∈ Π, w ∈ Vj } ;

the deviations are transitions in which Challenger refuses to follow the edge proposed
by Prover, as he can if that edge begins in a state controlled by player i – the memory
is erased, and only the new state the deviating edge leads to is memorized:

Dev = {(uv, M)(w, {w}) | u ∈ Vi, w ̸= v, uw ∈ E } .

On those transitions, we define a multidimensional weight function π̂ : ∆ → RΠ∪{⋆},
with one dimension per player (non-main dimensions) plus one special dimension (main
dimension) denoted by the symbol ⋆. For each non-main dimension j ∈ Π, we define:

on proposals: π̂j ((v, M)(vw, M)) = 0;

on acceptations and deviations: π̂j ((uv, M)(w, N)) = 2
(

πj(uw) − max
vj∈M∩Vj

λ(vj)
)

;

and on the main dimension:
on proposals: π̂⋆ ((v, M), (vw, M)) = 0;
on acceptations and deviations: π̂⋆ ((uv, M), (w, N)) = 2πi(uw).
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For each dimension d, we write µ̂d the corresponding mean-payoff function:

µ̂d(ρ) = lim inf
n∈N

1
n

n−1∑
k=0

π̂d(ρkρk+1).

Thus, the mean-payoff along the main dimension corresponds to player i’s payoff, while
the mean-payoff along a non-main dimension j corresponds to player j’s payoff... minus
the maximal requirement player j has to satisfy.
Then, the outcome function νC = −νP measures player i’s payoff, with a winning condition
if the constructed strategy profile is not λ-rational, that is to say if after finitely many
player i’s deviations, it can generate a play which is not λ-consistent:

νC(η) = +∞ if after some index n ∈ N, the play ηnηn+1 . . . contains no deviation, and
if µ̂j(η) < 0 for some j ∈ Π;
νC(η) = µ̂⋆(η) otherwise.

Like in the abstract negotiation game, the goal of Challenger is to find a λ-rational
strategy profile that forces the worst possible payoff for player i, and the goal of Prover is to
find a possibly deviating strategy for player i that gives them the highest possible payoff.

A play or a history in the concrete negotiation game has a projection in the game on
which that negotiation game has been constructed, defined as follows:

▶ Definition 31 (Projection of a history, of a play). Let G be a prefix-independent game.
Let λ be a requirement and i a player, and let Concλi(G) be the corresponding concrete
negotiation game. Let H = (h0, M0)(h0h′

0, M0) . . . (hnh′
n, Mn) be a history in Concλi(G):

the projection of the history H is the history Ḣ = h0 . . . hn in the game G. That definition
is naturally extended to plays.

▶ Remark. For a play η without deviations, we have µ̂j(η) ≥ 0 for each j ∈ Π if and only if
η̇ is λ-consistent.

The concrete negotiation game is equivalent to the abstract one: the only differences are
that the plays proposed by Prover are proposed edge by edge, and that their λ-consistency is
not written in the rules of the game but in its outcome function.

▶ Theorem 32. Let G↾v0 be an initialized mean-payoff game. Let λ be a requirement and i a
player. Then, we have:

valC (Concλi(G)↾s0) = inf
σ̄−i∈λRat(v0)

sup
σi

µi(⟨σ̄⟩v0).

▶ Example 33. Let us consider again the game from Example 15. Figure 5 represents the
game Concλ1#(G) (with λ1(a) = 1 and λ1(b) = 2), where the dashed states are controlled by
Challenger, and the other ones by Prover. The dotted arrows indicate the deviations, and
the transitions that are not labelled have either the weight 0 on the three dimensions, or
meaningless weights since they cannot be used more than once. The red arrows indicate a
(memoryless) optimal strategy for Challenger. Against that strategy, the lowest outcome
Prover can ensure is 2. Therefore, nego(λ1)(v0) = 2, in line with the abstract game in
Example 29.

5.3 Solving the concrete negotiation game
We now know that nego(λ)(v), for a given requirement λ, a given player i and a given state
v ∈ Vi, is the value of the concrete negotiation game Concλi(G)↾(v,{v}). Let us now show
how, in the mean-payoff case, that value can be computed.



L. Brice, J.-F. Raskin, and M. van den Bogaard 8:13

b, {a, b}

ba, {a, b}

a, {a, b}

ab, {a, b}

a, {a}

ab, {a}c, {c}

cc, {c}

ac, {a} c, {a, c}

cc, {a, c}

b, {b}

ba, {b} bd, {b} d, {b, d}

dd, {b, d}

ac, {a, b}c, {a, b, c}

cc, {a, b, c}

bd, {a, b}d, {a, b, d}

dd, {a, b, d}

#
−2

2
2

⋆
0

#
−2

2
2

⋆
0

#
0

2
0

⋆
2

#
0

2
0

⋆
2

#
0

2
0

⋆
4

#
0

2
−2

⋆
2

#
2

2
0

⋆
4

#
0

2
2

⋆
0

#
−2

2
2

⋆
0

Figure 5 A concrete negotiation game.

▶ Definition 34 (Memoryless strategy). A strategy σi in a game G is memoryless if for all
vertices v ∈ Vi and for all histories h and h′, we have σi(hv) = σi(h′v).

For any game G and any memoryless strategy σi, G[σi] denotes the graph induced by σi,
that is the graph (V, E′), with E′ = {vw ∈ E | v ̸∈ Vi or w = σi(v)} . For any finite set D

and any set X ⊆ RD, ConvX denotes the convex hull of X.
We can now prove that in the concrete negotiation game constructed from a mean-payoff

game, Challenger has an optimal strategy that is memoryless.

▶ Lemma 35. Let G↾v0 be an initialized mean-payoff game, let i be a player, let λ be a
requirement and let Concλi(G)↾s0 be the corresponding concrete negotiation game. There
exists a memoryless strategy τC that is optimal for Challenger, i.e. such that:

inf
τP

νC(⟨τ̄⟩s0) = valC (Concλi(G)↾s0) .

For every game G↾v0 and each player i, MLi (G↾v0), or ML (G↾v0) when the context
is clear, denotes the set of memoryless strategies for player i in G↾v0 . When (V, E) is
a graph, SC(V, E) denotes the set of its simple cycles, and SConn(V, E) the set of its
strongly connected components. For any closed set C ⊆ RΠ∪{⋆}, the quantity min⋆C =
min {x⋆ | x̄ ∈ C, ∀j ∈ Π, xj ≥ 0} is the ⋆-minimum of C: it will capture, in the concrete
negotiation game, the least payoff that can be imposed on player i while keeping every
player’s payoff above their requirements, among a set of possible outcomes.

With Lemma 35, we can now solve the concrete negotiation game.

▶ Lemma 36. Let G↾v0 be an initialized mean-payoff game, and let Concλi(G)↾s0 be its
concrete negotiation game for some λ and some i. Then, the value of the game Concλi(G)↾s0

is given by the formula:

max
τC∈MLC(Concλi(G))

min
K ∈ SConn (Concλi(G)[τC])

accessible from s0

opt(K),

where opt(K) is the minimal value νC(ρ) for ρ among the infinite paths in K.
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If K contains a deviation, then Prover can choose among its simple cycles the one that
minimizes player i’s payoff:

opt(K) = min
c∈SC(K)

µ̂⋆(cω).

If K does not contain a deviation, then Prover must choose a combination of its simple
cycles that minimizes the main dimension while keeping the other dimensions above 0:

opt(K) = min⋆ Conv
c∈SC(K)

µ̂(cω).

▶ Corollary 37. For each player i and every state v ∈ Vi, the value nego(λ)(v) can be
computed with the formula given in Lemma 36 applied to the game Concλi(G)↾(v,{v})

Another corollary of that result is that there always exists a best play that Prover can
choose, i.e. Prover has an optimal strategy; by Theorem 32, this is equivalent to saying that:

▶ Corollary 38. Mean-payoff games are games with steady negotiation.

6 Analysis of the negotiation function in mean-payoff games

When one wants to compute the least fixed point of a function, the usual method is to iterate
it on the minimal element of the considered set, to go until that fixed point. That approach
is valid if the negotiation function is Scott-continuous, i.e. such that for every non-decreasing
sequence (λn)n of requirements on G, we have nego (supn λn) = supn nego(λn).

▶ Proposition 39. In mean-payoff games, the negotiation function is Scott-continuous.

By Kleene-Tarski fixed-point theorem, the least fixed point of the negotiation function is,
then, the limit of the negotiation sequence, defined as the sequence (λn)n∈N = (negon(λ0))n.

In many cases, the negotiation sequence is stationary, and in such a case, it is possible to
compute its limit: whenever a term is equal to the previous one, we know that we reached it.
But actually, the negotiation sequence is not always stationary.

▶ Example 40. Let us consider the game of Figure 6. Since all player 3’s weights are equal
to 0, for all n > 0, we have λn(d) = λn(f) = 0. It comes that for all n > 0, we also have
λn(c) = λn(e) = 0. Moreover, by symmetry of the game, we always have λn(a) = λn(b).
Therefore, to compute the negotiation sequence, it suffices to compute λn+1(a) as a function
of λn(b), knowing that λ1(a) = λ1(b) = 1, and therefore that for all n > 0, λn(a) = λn(b) ≥ 1.

From a, the worst play that player 2 could propose to player # would be a combination
of the cycles cd and d giving her exactly 1. But then, player # will deviate to go to b, from
which if player 2 proposes plays in the strongly connected component containing c and d,
then player # will always deviate and generate the play (ab)ω, and then get the payoff 2.

Then, in order to give her a payoff lower than 2, player 2 has to go to the state e. Since
player # does not control any state in that strongly connected component, the play he will
propose will be accepted: he will, then, propose the worst possible combination of the cycles
ef and f for player #, such that he gets at least his requirement λn(b). The payoff λn+1(a)
is then the minimal solution of the system:

λn+1(a) = x + 2(1 − x)
2(1 − x) ≥ λn(b)

0 ≤ x ≤ 1
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Figure 6 A game where the negotiation sequence is not stationary.
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Figure 7 The negotiation function on the games of Examples 16 and 15.

that is to say λn+1(a) = 1 + λn(b)
2 = 1 + λn(a)

2 , and by induction, for all n > 0:

λn(a) = λn(b) = 2 − 1
2n−1 ,

which converges to 2 but never reaches it.
Therefore, we need a different approach to compute that least fixed point. We will now

show that, in the case of mean-payoff games, the negotiation function is a piecewise linear
function from the vector space of requirements into itself, which can therefore be computed
and analyzed using classical linear algebra techniques. Then, it becomes possible to search
for the fixed points or the ε-fixed points of such a function, and to decide the existence or
not of SPEs or ε-SPEs in the game studied.

▶ Theorem 41. Let G be a mean-payoff game. Let us assimilate any requirement λ on G

with finite values to the tuple λ̄ = (λ(v))v∈V , element of the vector space RV . Then, for each
player i and every vertex v0 ∈ Vi, the quantity nego(λ)(v0) is a piecewise linear function of
λ̄, and an effective expression of that function can be computed in 2-ExpTime.

▶ Example 42. Let us consider the game of Example 16. If a requirement λ is represented by
the tuple (λ(a), λ(b)), the function nego : R2 → R2 can be represented by Figure 7a, where
in any one of the regions delimited by the dashed lines, we wrote a formula for the couple
(nego(λ)(a), nego(λ)(b)). The orange area indicates the fixed points of the function, and the
yellow area the other 1

2 -fixed points.

▶ Example 43. Now, let us consider the game of Example 15. If we fix λ(c) = 1 and λ(d) = 2,
and represent the requirements λ by the tuples (λ(a), λ(b)), as in the previous example.
Then, the negotiation function can be represented as in Figure 7b. One can check that there
is no fixed point here, and even no 1

2 -fixed point – except (+∞, +∞).
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7 Conclusion: algorithm and complexity

Thanks to all the previous results, we are now able to compute the least fixed point, or the
least ε-fixed point, of the negotiation function, on every mean-payoff game, and to use it as
a characterization of all the SPEs or all the ε-SPEs. A direct application is an algorithm
that solves the ε-SPE constrained existence problem, i.e. that decides, given an initialized
mean-payoff game G↾v0 , two thresholds x̄, ȳ ∈ QΠ, and a rational number ε ≥ 0, whether
there exists an SPE σ̄ such that x̄ ≤ µ(⟨σ̄⟩v0) ≤ ȳ.

We leave for future work the optimal complexity of that problem. However, we can easily
prove that it cannot be solved in polynomial time, unless P = NP.

▶ Theorem 44. The ε-SPE constrained existence problem is NP-hard.

Given G↾v0 , by Theorem 41, computing a general expression of the negotiation function
as a piecewise linear function can be done in time double exponential in the size of G. Then,
for each linear piece of nego, computing its set of ε-fixed points is a polynomial problem.
Since the number of pieces is at most double exponential in the size of G, computing its
entire set of fixed points, and thus its least ε-fixed point λ, can be done in double exponential
time.

Then, from the requirement λ and the thresholds x̄ and ȳ, we can construct a multi-
mean-payoff automaton Aλ of exponential size, that accepts an infinite word ρ ∈ V ω, if and
only if ρ is a λ-consistent play of G↾v0 , and x̄ ≤ µ(ρ) ≤ ȳ – see [3] for the construction of Aλ.

Finally, by Theorem 28, there exists an SPE σ̄ in G↾v0 with x̄ ≤ µ(⟨σ̄⟩v0) ≤ ȳ if and only
if the language of the automaton Aλ is nonempty, which can be known in a time polynomial
in the size of Aλ (see for example [1]), i.e. in a time exponential in the size of G. We can
therefore conclude on the following result:

▶ Theorem 45. The ε-SPE constrained existence problem is decidable and 2-ExpTime-easy.
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