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Abstract
Efficient haplotype matching search is of great interest when large genotyped cohorts are becoming
available. Positional Burrows-Wheeler Transform (PBWT) enables efficient searching for blocks of
haplotype matches. However, existing efficient PBWT algorithms sweep across the haplotype panel
from left to right, capturing all exact matches. As a result, PBWT does not account for mismatches.
It is also not easy to investigate the patterns of changes between the matching blocks. Here, we
present an extension to PBWT, called bi-directional PBWT that allows the information about the
blocks of matches to be present at both sides of each site. We also present a set of algorithms to
efficiently merge the matching blocks or examine the patterns of changes on both sides of each
site. The time complexity of the algorithms to find and merge matching blocks using bi-directional
PBWT is linear to the input size.

Using real data from the UK Biobank, we demonstrate the run time and memory efficiency of
our algorithms. More importantly, our algorithms can identify more blocks by enabling tolerance
of mismatches. Moreover, by using mutual information (MI) between the forward and the reverse
PBWT matching block sets as a measure of haplotype consistency, we found the MI derived from
European samples in the 1000 Genomes Project is highly correlated (Spearman correlation r=0.87)
with the deCODE recombination map.
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1 Introduction

Diploid organisms such as humans inherit two copies of chromosomes, one from each parent.
Each haplotype sequence of the two copies of a chromosome can be represented as a long
string. Haplotype matches are usually considered to be binary and the matches between
any pair of haplotypes may be due to a common ancestor or natural selection. While short
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matches between two individuals may have been caused by chance, a match shared between
several haplotypes or individuals are more informative since it is less likely that the matches
occurred by random. The lower the probability of haplotype matches by chance, the stronger
the evidence that the segments have been inherited from a common ancestor [14].

The availability of large-scale genetic data has promoted the need for efficient algorithms
and methods. Positional Burrows-Wheeler Transform (PBWT) [5] proposed by Richard
Durbin, provides an efficient data structure for compression and searching for matches in
large haplotype sequences. The underlying idea of PBWT is to sort the haplotype sequences
at each variant site k by their reversed prefix order. An additional array, called the divergence
array, keeps track of the reverse prefix match between adjacent haplotypes in sorted order.
The presented algorithms in PBWT provide an efficient approach to find all pairwise matches
between haplotype sequences ending at each variant site.

PBWT data structure has already been utilized to find matching blocks in large haplotype
panels [4, 1, 11]. A matching block contains several haplotype sequences that share a common
reverse prefix of length L at a site. The concept of a matching block is a direct extension
of pairwise matches to multi-way matches due to transitivity. Instead of a sequence with
a minimum length of L shared by only two haplotypes, a block of matches is defined by a
minimum number of haplotypes or individuals (W ), where W ≥ 2.

For the sake of memory efficiency, the PBWT algorithms are typically a scan across a
haplotype panel from the first variant site in a forward direction. At each variant site during
the pass, the panel is sorted by the reversed prefix order while updating the divergence
values for each haplotype. The computed values are only kept transiently and only the active
array at the current variant site k is kept in memory. As a result, the memory usage for
PBWT algorithms will be only O(M), where M denotes the number of haplotypes. This,
however, comes with the cost of only being able to access data at a single site and only from
one direction. While the forward-only PBWT sweep is sufficient for identifying pairwise
matches between any two haplotypes or matching blocks, it is not efficient in determining the
boundaries of the matching blocks nor does it facilitate the tracking of changes in matching
blocks. As a result, no mismatch will be allowed in otherwise long matching blocks and
recombination events cannot be observed between blocks of haplotypes around a site.

Here, we present an extension to Durbin’s PBWT by allowing the information at both
directions from site k to be accessible. This is enabled by a memory-efficient two-pass sweep:
first, a reverse pass storing all PBWT data structures in an intermediate file and then a
forward pass creating a transient forward PBWT. In the forward PBWT, we have random
access to the reverse PBWT at each variant site and observe the potential changes beyond
the variant site using the pre-computed reverse PBWT.

The bi-directional PBWT can be used to efficiently track haplotype sequences across the
matching blocks at both the forward and the reverse PBWTs. Since the matching blocks at
either side of a variant site define the partition of the sequence indices, the correspondence
between the forward matching blocks and the reverse matching blocks can be expressed as
the intersection of their partitions. In the context of PBWT, we formulate the problem as
the all partition matching problem, where all matching partitions are enumerated, and the
large partition matching problem, where only sufficiently large partitions are reported. Both
problems can be solved by efficient O(M) algorithms. In doing so, bi-directional PBWT
allows integration of the changes within a matching block.

We demonstrate two potential applications of the haplotype block matching algorithm
using bi-directional PBWT. The first application involves the identification of matching
blocks allowing mismatches. Additionally, the blocks of matches that undergo changes around
a site may indicate phasing errors or recombination events. Preliminary results of these
applications are shown using UK Biobank and 1000 Genomes project data [3].
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2 Methods

2.1 Background and notation

Following Durbin’s notation [5], we define a panel of haplotype sequences as X ∈ {0, 1}M×N ,
a two-dimensional matrix of binary values, where M denotes the number of haplotype
sequences and N the number of variant sites. Each row is a haplotype sequence and each
column Xk, k = 0, ..., N − 1 is an array representing the values of haplotypes at the site k. If
s and t are two haplotype sequences, and s[j, k) and t[j, k) denote their subsequences from
site j to site k − 1, then there is a match between s and t from j to k if s[j, k) = t[j, k).

The concept of haplotype match can be defined over blocks [4, 1, 11]. Assume C is the
set of sequence indices: C = {0, ..., M − 1}. We can define a haplotype matching block or a
block as a tuple (c, j, k), j < k, where c ⊂ C is a subset of sequence indices and j and k − 1
denote the starting and ending sites of the match, respectively. The length of a block is
defined as l = k − j, and the width of a block is w = |c|. If l ≥ L and w ≥ W , we call the
block a (L, W )-block. In particular, a block is called width maximal at each site k if the
number of sequences sharing a substring with a length ≥ L cannot be increased. A block is
called length maximal if one or multiple sequences in the block have a different value at the
site k resulting in less than W haplotypes in the block. Width and length maximal blocks
can be found in O(NM) time in Positional Burrows-Wheeler Transform (PBWT) [4, 1, 11].

The basic idea using PBWT to find matching blocks is that at any site k, all matching
haplotype sequences with a length ≥ L are adjacent to each other in the PBWT panel [11].
In other words, if a set of haplotypes builds a block of matches with a length L, they will be
contiguous in the PBWT panel.

2.1.1 PBWT data structures: PBWT matrix, positional prefix array, and
divergence array

The underlying idea of the Positional Burrows-Wheeler Transform (PBWT) is to store
haplotype sequences based on their reversed prefix order. It also enables efficient algorithms
for identifying matches by introducing additional data structures augmenting the original
haplotype panel X. The positional prefix array ak contains the sequence indices sorted based
on their reversed prefix order. The PBWT array yk stores the values of haplotype sequences
in the reversed prefix order at each site (yk[i] = Xk[ak[i]]). The divergence array dk at
the variant site k for each haplotype stores the starting position of the match between the
haplotype with its preceding haplotype sequence in the reversed prefix order. In other words,
the divergence value keeps track of the starting site index of the longest match for each
haplotype. We refer to the value of the divergence array for each haplotype as its divergence
value. dk is utilized to both identify a long match with a length ≥ L and determine the
starting position of the match.

Note that in a typical PBWT all-versus-all matching algorithm, the haplotype panel
is swept from left to right and the data structures ak, yk, and dk can be built transiently,
thus enabling an efficient memory footprint of O(M). Indeed this is the primary mode that
PBWT can be used in large data sets. However, such sweeping algorithm precludes access to
information from both sides of the site k, and thus limiting the investigation of changes of
haplotype blocks.

WABI 2021
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2.2 Bi-directional PBWT

2.2.1 Overview
Here, we assume that PBWT data structures for both forward and reverse directions are
available at each site. Figure 1 shows the bi-directional PBWT data structures using a
simple example of a haplotype panel. Given a minimum length L, width maximal blocks
ending at site k define a partition of the set of indices C for either side. Assume the block
set S(k, L) represents a set of blocks of matching haplotypes in the forward PBWT ending
at a variant site k. In other words, S(k, L) is a partition of the set of sequence indices C.
Similarly, we define the block set T (k, L) for the reverse PBWT at site k, another partition
of C. For the sake of simplicity, we omit the k and L and denotes the partitions as S and T .
It is of our interest to find the matching between these two block sets, where the matching
is defined over all subsets shared by S and T , also known as the intersection of partitions
U(S, T ) = {s ∩ t|s ∈ S ∧ t ∈ T}\{∅}. Additionally, the forward and the reverse PBWTs
do not have to be back-to-back and a small gap may be allowed. I.e., we can consider the
matching between S(k, L) and T (k + g, L), where g is the size of the gap.

Here, we define two versions of the matching problems, the all-block matching problem
and the W-width block matching problem. For the all-block matching problem, the goal is to
enumerate all possible blocks in U(S, T ). In the case of haplotype sequences from population
genotyping data, we expect there will be a strong correlation between the blocks of S and T .
This can be quantified by the mutual information (MI) between the sets of matching blocks
in forward (S) and reverse (T ) directions:

MI(S, T ) =
∑
s∈S

∑
t∈T

p(S·T )(s, t)log

(
p(S·T )(s, t)
pS(s)pT (t)

)
,

where p(S·T )(s, t) is the joint probability function of S and T , which can be calculated by
enumerating the blocks in U(S, T ).

For the W-width block matching problem, the goal is the find all the matching blocks in
U(S, T ) that contain ≥W haplotypes. This may sound like yet another way of solving the
(2L + g, W )-block problem. However, the benefit of defining the problem as such is that it
would allow mismatches in the gap region of an otherwise exact matching block.

Our approach for finding blocks of matches using bi-directional PBWT can be split into
three subroutine algorithms: 1) Finding blocks of matches exceeding the given length and
width cut-off using bi-directional PBWT. 2) Matching blocks from both sides. 3) Extracting
the length of matches, in the case of finding (2L + g, W )-blocks. Figure 1 shows a simple
schematic of our method for detecting clusters around the site k. The matching blocks from
both sides are considered around a given gap in terms of sites.

2.2.2 Algorithm 1: Find width maximal blocks
We start by independently finding width maximal blocks ((W, L)-blocks) on both sides at
each site k that contain at least W sequences and include at least L sites. This will output
the block sets S(k, L) and T (k, L) for each site k. Using the divergence arrays for each side,
we can easily find blocks that extend for at least L matching sites. Blocks form contiguous
segments in the positional prefix array and are capped off at both ends by large divergence
values. Blocks of matches are separated by a sequence j where dj > k − L. We can separate
blocks of matches at each site and assign a unique ID to each block. For each sequence, we
store its corresponding block ID in an array for lookup in Algorithm 2. Algorithm 1 has a
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Figure 1 Bi-directional PBWT data structures. The standard PBWT data structures for the
forward and the reverse PBWTs are shown at both sides. For L = 5, the L-block set at the forward
PBWT, S = {s1 = {0, 1, 2, 3, 4, 5, 6, 7}, s2 = {8, 9}} and the L-block set at the reverse PBWT,
T = {t1 = {1, 2, 3, 4, 5, 6}, t2 = {0, 8, 9}, t3 = {7}}, are integrated to form U = U(S, T ) = {u1 =
{0}, u2 = {1, 2, 3, 4, 5, 6}, u3 = {7}, u4 = {8, 9}}. The arrows on the sides mark the boundaries of
matching blocks.

a b c

1 000101000001100 000100001010111 3

2 000101010001100 000100100101011 7

3 111111110001100 000100101010111 8

4 000111101001100 000100101010111 1

5 111100011001100 000100101111111 10

6 011110101010101 111100000000000 9

7 110001011010101 111100010101000 2

8 101001011010101 111101101010000 6

9 001100111010101 111101101111000 4

10 101100111010101 111111111100000 5

k
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Figure 2 A simple schematic of bi-directional PBWT for finding blocks of matches before and
after the site k: 1. Finding blocks of matches exceeding a given length in terms of sites L (≥ 6)
and haplotypes W (≥ 3) at both sides separately (a). 2. Merging the blocks of matches from both
sides (b). 3. Determination of the length in terms of sites (L) of continuous matching blocks (c).
The length in terms of the number of sites in the matching block in green increases since the 6th
sequence is discarded.

time complexity of O(M) since we only iterate through the divergence array at each site.
Figure 2 illustrates the process for finding width maximal blocks and Algorithm 1 outlines
the pseudo-code for finding width maximal blocks on one side of the site.

2.2.3 Algorithm 2: Match blocks by enumerating intersection of
partitions

Recall from Algorithm 1 that width maximal blocks represent a set of sequences that match
for at least L sites. In Algorithm 2, we solve the W-width block matching problem by
enumerating the intersection of block sets that exceed the minimum number of haplotypes
(W ) on both sides. Note that the all-block matching problem can be solved similarly by
simply ignoring the minimum number of haplotypes W .

We define an array link where link[i] is the pair <forward block ID of haplotype i, reverse
block ID of haplotype i>. After sorting link, haplotypes in the same forward and reverse
blocks will be adjacent to each other and form contiguous sections in the array. Each section
in the array that has the same two-block pair becomes a candidate for a matching block

WABI 2021
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Algorithm 1 Find width maximal blocks at site k.

1: blockID ← 1
2: start← −1
3: for i← 0, M − 1 do
4: if d[i] > k − L then
5: assign blockID to sequences in [start, i− 1]
6: blockID = blockID + 1
7: start← i

8: end if
9: end for

with the only criteria left to check being if the size of the block candidate is greater than or
equal to W . Note that since the pairs in the link array only contain block ID values from
1−M , we can utilize a radix sort. Algorithm 2 has a time complexity of O(M) time due
to the radix sort and a memory complexity of O(M). Figure 2 illustrates the process for
merging blocks and Algorithm 2 outlines the pseudo-code for merging blocks.

Algorithm 2 Match blocks in forward and reverse PBWT at position k.

1: link ← []
2: for i← 0, M − 1 do
3: link[i]← <forward block ID of haplotype i, reverse block ID of haplotype i>
4: end for
5: radixSort(link)
6: start← 0
7: for i← 1, M − 1 do
8: if link[i] ̸= link[i− 1] then
9: if i− start ≥W then ▷ Check if the block’s width is at least W

10: report width-maximal matching block from [start, i− 1]
11: end if
12: start← i

13: end if
14: end for

2.2.4 Algorithm 3: Report block length
Recall that Algorithm 1 only checks that a block matches for a minimum of L sites and
doesn’t compute how much further the block matches past those L sites. Once a block
candidate from Algorithm 2 has met the size requirement of containing at least W sequences,
we utilize Algorithm 3 to find the length of the block on both sides of site k. If on the
left side, a block includes sequences at positions x0, x1, ..., xj in the positional prefix array,
then we define minPos as the min0≤i≤j xi and the maxPos as the max0≤i≤j xi. The length
that the block extends to the left can then be represented by k −maxminP os<i≤maxP os di.
The same logic can be applied to find the length of the block on the right side. Note that
we do not include minPos in the query range since the definition of the divergence array
states that di is a comparison between string i and string i− 1 in the positional prefix array.
To be able to compute the expression maxminP os<i≤maxP os di efficiently, we can utilize a
range query data structure. Since we do not need to perform range updates, sparse table
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provides a lightweight data structure that can be built in O(M) time by dividing the data
into blocks of size b (b ∈ Θ(log(M))) and computing the sparse table over the maximums in
each block. For each query, there will be a maximum of two b-sized blocks that will not be
completely encapsulated by the range query. These two b-sized blocks will be found at the
two boundaries of the range query and the maximum for these two blocks can be computed
manually and efficiently using bitwise operations. Each range query can be performed in
O(b) where b is a small constant factor. Alternatively, Cartesian trees can be used which
guarantees the time complexity of O(M) for pre-processing and O(1) for range queries. In
practice, however, we found that using sparse tables with the block technique seemed to
be faster than Cartesian trees in both precomputation and query runtimes. Since each
sequence is only included in a single query and queries take O(1) time, it takes O(M) time to
complete all queries. Thus, Algorithm 3’s runtime is dominated by building the sparse table,
which takes O(M) time and O(M) memory to construct. Figure 3 illustrates the process for
reporting block length and Algorithm 3 outlines the pseudo-code for finding the length of a
block reported in Algorithm 2.

Algorithm 3 Report block length.

1: for all blocks reported in Algorithm 2 do
2: lf = k −maxminP os<i<=maxP os df [i] ▷ report forward length
3: k′ = k + g − 1
4: lr = maxminP os<i<=maxP os dr[i]− k′ ▷ report reverse length
5: end for

 
 

  

0 101001011010101         000100001010100 1 

1 001100111010101         000100100101000 2 

2 101100111010101         000100100101000 3 

3 101100111010101         000100101010100 4 

4 011100111010101         000100101010111 5 

5 111101111010101         000101010101011 6 

6 001101000110101         101010000001100 0 

7 000010110110101         101010001101101 8 

8 100011111110111         101010101000111 9 

9 101111111110111         111100010101011 7 

 

 

minPos 

maxPos 

maxPos 

minPos 

Reverse  
Prefix Array           

Forward  
Prefix Array           

Forward PBWT  Reverse PBWT  
 
 

(at k ) 

Figure 3 A simple example illustrating Algorithm 3 – Report Cluster Length. To find the length
of the cluster on both sides, we identify minP os and maxP os on both sides and perform a maximum
range query on the divergence arrays.

2.2.5 Efficient implementation of bi-directional PBWT
To compute a bi-directional PBWT efficiently, we must be able to efficiently read a VCF
file in reverse order (from the last site to the first site). In our implementation, we utilized
the C++ method seekg() to manipulate the position of the input stream pointer. We begin
by reading the first site in the VCF file and extracting the number of individuals, M , by
counting the number of “|”. We then jump to the end of the file and start the process of

WABI 2021
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reading the VCF file in reverse order line by line. To extract each line from the end of
the file, we use seekg() to move the input stream pointer back one position at a time until
we reach a newline character. Since we already know M , we can optimize this process by
initially moving the input stream pointer back 4 ∗M positions since we know each individual
in the VCF file takes up 4 characters. Then we only need to move the input stream pointer
back one character at a time through the fixed fields which usually comprise less than 500
characters. By doing this, we can compute the reverse PBWT with comparable efficiency to
the forward PBWT.

Bi-directional PBWT builds off of Durbin’s algorithms 1 and 2. In these 2 algorithms,
Durbin iterates through all N sites while maintaining a positional prefix array (i.e. a sorted
array of binary strings) and a divergence array (di stores the smallest value j such that the
haplotype sequences in the prefix array positions i and i− 1 match from sitej to the current
site). Before running the aforementioned algorithms, we create the PBWT data structure
for reverse sequences first and then use the stored values while scanning the panel in the
forward direction. Note that we only need to store values from the reverse PBWT since we
can simultaneously compute blocks and the forward PBWT at the same time. Source code
is available at https://github.com/ZhiGroup/bi-PBWT.

3 Results

3.1 Runtime and memory usage
We evaluated the run time and memory usage of bi-directional PBWT on large-scale haplotype
panels. The scalability of bi-directional PBWT was evaluated with respect to the size of
the input data and the length parameter. Table 1 shows the resource consumption when
running bi-directional PBWT (both forward and reverse combined) on chromosome 21 of
the UK Biobank panel comprising 974,818 haplotypes with the parameters of L = 0.5 Mbps
and W = 100. Table 2 shows the runtime growth of bi-directional PBWT with respect to
the input size M when all other variables are held constant. From Table 2, we can observe
that our method has an asymptotic runtime of O(M) with respect to M . Table 3 shows
the runtime growth of bi-directional PBWT with respect to input size N when all other
variables are held constant. From Table 3, we can see that the algorithm has an asymptotic
runtime of O(N) with respect to N . Table 4 shows the runtime growth of bi-directional
PBWT with respect to the parameter L when all other variables are held constant. From
Table 4, we can see that the asymptotic runtime of bi-directional PBWT is not affected by L.
All experiments were carried out with a 2.10 GHz Intel Xeon E5-2620 v4 using a single core.

Table 1 Run time and memory usage of bi-directional PBWT on chromosome 21 of the UK
Biobank.

Run time Peak memory Peak disk usage #Blocks
3.2 hrs 261.44 MB 73.1 GB 245,563
W = 100, L = 0.5 Mbps.

Table 2 Runtime growth with respect to the number of haplotypes M .

Size of M 50,000 100,000 200,000 400,000 800,000
Time (s) 607.1 1,432.54 3,000.11 5,971.03 11,284.42
N = 9793, W = 100, L = 0.5 Mbps.

https://github.com/ZhiGroup/bi-PBWT
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Table 3 Runtime growth with respect to the number of sites N .

Size of N 500 1000 2000 4000 8000
Time (s) 773.91 1,455.34 3,273.91 5,955.54 11,953.19

M = 974818, W = 100, L = 0.5 Mbps.

Table 4 Runtime growth with respect to the target length L.

Size of L (Mbps) 0.1 0.2 0.4 0.8 1.6
Time (s) 12,090.35 12,336.94 13,727.56 13,471.45 13,957.97

M = 974818, N = 9793

The benchmarks show that the asymptotic runtime is linear with respect to the size of
the input and that the asymptotic memory usage is O(M).
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Figure 4 Comparison of total areas covered by matching blocks using exact matches vs. allowing
a mismatching site. The percentage increase in the total area covered by matching blocks is shown
for different minimum target lengths.

3.2 Blocks of haplotype matches in UK Biobank
To establish the benefit of allowing mismatches in the otherwise perfect matching blocks, we
ran bi-directional PBWT either with a tolerance of mismatch or with a perfect match in
the gap region. We used a gap size of g = 1 and haplotypes of chromosome 21 in the UK
Biobank data [2] to count the total sizes of matching blocks as the total area that is covered
by any matching block. We used the total area to investigate the differences between exact
matches and allowing only one mismatch (error) using bi-directional PBWT. The total area
and the percentages of differences for exact matching blocks and error-tolerant mode are
shown in Figure 4. The minimum number of haplotypes W was set to 200. As shown in
the figure, based on different cut-off values for the minimum length, the gain can vary from
∼ 3− 43%. The percentage of additional area covered by matching blocks while allowing
only 1 mismatch in the middle of blocks can result in ∼ 43% more area compared to exact
matches for L = 500.

We searched for haplotype matches using bi-directional PBWT in UK Biobank with a
minimum length of 0.5 Mbps shared among at least 100 haplotypes using all individuals.
Figure 5 shows the number of clusters at each site. Please note that there must be a mismatch

WABI 2021
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Figure 5 Manhattan plot for the number of blocks allowing a mismatching site in the block using
all autosomal chromosomes in the UK Biobank data. The minimum length for both sides was set to
0.5 Mbps.

at each site in the gap for the cluster to be counted. The minimum length should also hold
for both sides of matches around each site. The plot shows the availability of such haplotype
blocks across the chromosomes. There’s also a dip in chromosome 6 which covers the HLA
region. Figure 6 shows the average number of haplotypes that have an alternating allele in
each block at every site. As shown in the figure, there is a peak in chromosome 6 which again
comprises the HLA region. The mismatches in each cluster are shared by several haplotypes
and the sizes of the blocks in terms of the number of haplotypes are larger compared to
other regions.

Figure 6 Manhattan Plot for the average number of mismatches in each block at every site using
all autosomal chromosomes in the UK Biobank data.
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Figure 7 Manhattan plot for the mutual information at each site using all 22 autosomal chromo-
somes in the UK Biobank data.
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Figure 8 Mutual information (MI) calculated by bi-directional PBWT (L = 0.1 Mbps) in 1000
Genomes Project data and deCODE recombination rate at 500 kbps scale. The MI’s were calculated
for each population separately.

3.3 Correlation between Mutual Information and Genetic Map
The mutual information was calculated for all sites in the UK Biobank data. Figure 7
shows the Manhattan plot for the mutual information at each site using all 22 autosomal
chromosomes. The minimum length of the block was set to 0.5 Mbps. We also calculated
the mutual information in 1000 Genomes Project data using the minimum length cut-
off of 0.1 Mbps. Figure 8 shows the mutual information for each population in 1000
Genomes Project using chromosome 1 and the deCODE [7] recombination rate (cM/Mbps)
at 500k resolution. We also computed the correlation between the mutual information and
deCODE recombination map using the UK Biobank data and 1000 Genomes Project data in
chromosome 1 (L = 0.1 Mbps). The Spearman’s rank correlation coefficient for chromosome
1 of all participants was 0.85 and the European population in 1000 Genomes Project was 0.87.
The correlation coefficient for the European population is slightly higher as expected when
compared to the deCODE genetic map. For UK Biobank, the Spearman’s rank correlation
coefficient was 0.82 using all participants. In general, the mutual information correlates with
the recombination rate at low resolution.

4 Conclusions and Discussion

The PBWT data structure provides a concise representation of a haplotype panel which
enables efficient exact haplotype matching. PBWT data structures have been used for
genotype imputation [8, 12], building a representation of an ancestral recombination graph
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(ARG) [13], query search [9], and detecting Identical by Descent (IBD) segments [10, 15, 6].
In this work, we presented an extension of the original PBWT data structure to bi-directional.
To achieve the time and memory efficiency that is required for large biobank-scale data, we
designed a set of efficient algorithms. Specifically, the algorithms aim to efficiently identify
blocks of matches that are present in both directions of the PBWT instances around each
variant site.

Bi-directional PBWT allows the investigation of matching blocks at each site beyond
the currently active site in PBWT. Therefore, it provides flexibility in detecting matches in
otherwise rigid exact haplotype matches in the original PBWT. In our results, we showed
that allowing only one mismatching site will have some ∼ 3− 43% increase in the reported
area involved in a matching block. The presented algorithms for allowing one mismatch can
be extended to multiple mismatching sites occurring with a minimum distance. Assuming
that blocks of matches are less likely to occur by random, the divergence values in the
forward PBWT can be updated using the block information in the reverse PBWT. As a
result, approximate haplotype matches can be enumerated in the forward PBWT. Therefore,
it can provide an efficient haplotype matching solution that can tolerate genotyping errors.

We also showed that the mutual information (MI) obtained by bi-directional PBWT
can be used to estimate recombination rates at low resolution. The Spearman correlation
coefficient between the MI of the European samples in the 1000 Genomes Project and the
deCODE genetic map was 0.87. The mutual information here certainly does not provide
a fine resolution map, however, it does highlight another application of the bi-directional
PBWT. Another approach to determine the recombination rates can be the calculation of
edit distance of two block sets of matches in the forward and backward PBWT, where the
edit distance is defined as the minimal number of sequence reassignments to achieve similar
blocks in both directions.
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