
Conflict Resolution Algorithms for Deep
Coalescence Phylogenetic Networks
Marcin Wawerka #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Dawid Dąbkowski #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Natalia Rutecka #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Agnieszka Mykowiecka #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Paweł Górecki #

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Abstract
We address the problem of inferring an optimal tree displayed by a network, given a gene tree G and
a tree-child network N , under the deep coalescence cost. We propose an O(|G||N |)-time dynamic
programming algorithm (DP) to compute a lower bound of the optimal displayed tree cost, where |G|
and |N | are the sizes of G and N , respectively. This algorithm has the ability to state whether the
cost is exact or is a lower bound. In addition, our algorithm provides a set of reticulation edges that
correspond to the obtained cost. If the cost is exact, the set induces an optimal displayed tree that
yields the cost. If the cost is a lower bound, the set contains pairs of conflicting edges, that is, edges
sharing a reticulation node. Next, we show a conflict resolution algorithm that requires 2r+1 − 1
invocations of DP in the worst case, where r is a number of reticulations. We propose a similar
O(2k|G||N |)-time algorithm for level-k networks and a branch and bound solution to compute lower
and upper bounds of optimal costs. We also show how our algorithms can be extended to a broader
class of phylogenetic networks. Despite their exponential complexity in the worst case, our solutions
perform significantly well on empirical and simulated datasets, thanks to the strategy of resolving
internal dissimilarities between gene trees and networks. In particular, experiments on simulated
data indicate that the runtime of our solution is Θ(20.543k|G||N |) on average. Therefore, our solution
is an efficient alternative to enumeration strategies commonly proposed in the literature and enables
analyses of complex networks with dozens of reticulations.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Applied
computing → Computational genomics

Keywords and phrases Phylogenetic Network, Gene Tree, Species Tree, Deep Coalescence, Reticula-
tion, Optimal Displayed Tree

Digital Object Identifier 10.4230/LIPIcs.WABI.2021.17

Funding The support was provided by National Science Centre grant #2019/33/B/ST6/00737.

1 Introduction

Evolutionary networks are mathematical models of evolutionary processes with reticulate
events such as hybridization, recombination, or horizontal gene transfer [1, 24]. Hybridization
is a common phenomenon in plants and is often used in agriculture to create new breeds [18].
Recombination and reassortment are two shuffling processes in which variants of genetic
material are created from pairs of highly similar DNA sequences. For example, many viruses
have segmented genomes, including influenza viruses and rotaviruses [32], while horizontal

© Marcin Wawerka, Dawid Dąbkowski, Natalia Rutecka, Agnieszka Mykowiecka, and Paweł Górecki;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcin.wawerka@gmail.com
mailto:dav.dabkowski@gmail.com
mailto:n.rutecka@student.uw.edu.pl
mailto:a.mykowiecka@mimuw.edu.pl
https://orcid.org/0000-0002-8103-1073
mailto:gorecki@mimuw.edu.pl
https://orcid.org/0000-0002-2045-5892
https://doi.org/10.4230/LIPIcs.WABI.2021.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

gene transfer is common in bacteria [3]. In the last decades, mathematical and computational
properties of phylogenetic networks have been intensively studied (see books [20, 24]). One
of the most classic notions is a tree displayed by a network, obtained from a network by
removing a set of reticulation edges. Displayed trees may represent an evolutionary history of
a gene family if the incongruence is due to a reticulation event [24]. Alternative approaches
include embedding a gene tree into a displayed tree [27, 31, 43] or using a parental species
tree as a generalization of a displayed tree [25, 43, 49].

The pioneering work by Maddison [28] introduced the deep coalescence (DC) cost, which
measures the extra gene lineages of a gene tree when embedded into a species tree. When a
gene is embedded into its species tree, each edge of the species contains several mapped gene
lineages. In the perfect situation, when both trees have the same topology, this number is
one. Therefore, the cost is defined by the number of extra gene lineages required to embed
a gene tree into a species tree. DC and general coalescent-based methods are popular in
classical problems of computational biology, e.g. estimation of species trees [33, 41, 48], tree
reconciliation [15, 10, 44, 48], or gene tree error correction [8].

There are two main general approaches to embed a gene tree into a network using
the parsimony principle: (1) choosing the tree displayed by the network with the lowest cost,
i.e. solving the optimal displayed tree (ODT) problem, in which a reticulation node can be
reached only from one fixed parent, or (2) a direct tree-network embedding, without the
above constraint. These approaches are present in relevant articles concerning inferences of
networks under Robinson-Foulds (RF) embedding cost [31], the duplication-loss cost [43],
the deep coalescence cost [27], including the general parsimony framework using the concept
of parental species trees [25]. Alternative studies are based on minimizing deep coalescence
criterion [47] or probabilistic models on coalescent histories [46]. Model-based approaches
are usually computationally demanding since they often require enumeration of all possible
coalescence histories [42, 46]. Finally, perhaps one of the most prominent applications of
the above methods is the problem of network inference (e.g., [24, 25, 31, 43, 45] and tools
e.g., [42]).

From the theoretical point of view, ODT under DC corresponds to NP-hard problems: (1)
best switching (i.e., choosing the set of reticulation edges) for the duplication-loss model [43],
and (2) the computation of RF-embedding cost [31]. In [43] the problem is solved in
O(|N | + p2k|G|) time, where G is a gene tree and p is the number of biconnected components
in a level-k network N . [31] proposed an O(2r|N |)-time optimized algorithm to compute RF-
embedding cost. Another relevant contribution is from [27] with an O(4k|G||N |2)-time tree
vs. level-k network reconciliation algorithm under DC events. However, the latter cannot be
directly compared to ours since we solve a different problem. In all of the above contributions,
the complexity coming from 2r (or 2k) is reached due to exhaustive enumeration strategies. In
this article, we show how to avoid such strategies by proposing an efficient in practice method
to infer optimal displayed trees despite the theoretical intractability of ODT in general.

Our contribution: We address the problem of inference of an optimal tree displayed by a
network (ODT), given a gene tree G and a network N under the deep coalescence cost (DC).
We propose a novel approach in which we define scenarios for embedding G into N using
sets of reticulation edges from N , with a property that the score of a scenario approximates
the displayed tree cost. In particular, we prove that the score of a scenario is a lower bound
of the cost of the optimal displayed tree. In a particular case, when a scenario induces a
non-conflicting set of reticulation edges, we provide the correspondence between a score of

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:3

this scenario and a cost of a displayed tree. Next, we propose an O(|G||N |) time dynamic
programming (DP) algorithm to compute an optimal scenario. We show that an optimal
scenario with no conflicts corresponds to a solution of ODT. Based on DP, we design a
recursive algorithm to ODT by resolving conflicts in sets of reticulation edges. This algorithm
has exponential time complexity O(2r|G||N |), where r is the number of reticulation nodes in
N . We propose a similar O(2k|G||N |)-time algorithm for level-k networks. We also show
how the algorithms can be extended to a broader class of phylogenetic networks. Finally, we
show experimental studies on random, simulated, and empirical datasets. We show that our
algorithm has significantly improved runtime on simulated datasets by reducing the exponent
from r to 0.543r on average.

2 Definitions

A network on a set of species X is a directed acyclic graph N = (V (N), E(N)) with a single
root such that: (1) its leaves, i.e., nodes of indegree 1 and outdegree 0, are labeled by the
species from X, and (2) there is a path from the root to any other vertex. A network is
binary if its leaves, root, and the remaining nodes have degrees 1, 2 and 3, respectively. A
node is called a reticulation if it has indegree two and outdegree one, and a tree node if it
has indegree at most one and outdegree two. A network is semi-binary, if additionally, it
may contain semi-binary nodes of indegree at most one and outdegree one, which includes
the root having exactly one child. We can contract a semi-binary node v of indegree one
as follows: (1) remove v, (2) remove both edges incident with v, and (3) insert a new edge
connecting the unique parent of v with the only child of v. Similarly, if v has indegree zero
we remove v, and the child of v becomes a new root.

If ⟨v, w⟩ ∈ E(N), then v is a parent of w and w is a child of v, denoted w.parent = v if
w is a non-root tree node or a leaf. We write v.sibling = w if v ̸= w have the same parent.
We write v ⪰ w if there is a directed path from v to w, and v ≻ w if v ⪰ w and v ̸= w.
The set of all leaves in a network is denoted L(N), by R(N) ⊂ V (N) we denote the set of
reticulation nodes in N , and by ER(N) ⊂ E(N) we denote the set of all reticulation edges in
N , that is, edges ⟨v, r⟩ ∈ E(N) with r ∈ R(N). We say that a reticulation edge e is a sibling
of a reticulation edge e′ if they share the same bottom reticulation node. By outdegN (v) we
denote the outdegree of v in N .

A phylogenetic network is a binary network on X in which the leaves are labeled one-to-one
with the species from X1. A species tree is a phylogenetic network without reticulation nodes.
Similarly, a gene tree, or in short a tree, is a binary network without reticulation nodes. Note
that the leaf labeling in a gene tree does not have to be one-to-one.

From now on, all phylogenetic networks are tree-child [4, 5, 6, 35] (except for Section 5.4
and 6.3), i.e., each non-leaf node has a child that is either a tree node or a leaf.

2.1 Deep Coalescence Cost: embedding a tree into a (displayed) tree
Given a gene tree G and a species tree S on X, the lca-mapping M : V (G) → V (S) is defined
as follows: (1) if g is a leaf labeled x ∈ X then M(g) is the unique leaf labeled x in S, and
(2) if g has two children g′ and g′′, then M(g) is the lowest common ancestor of M(g′) and
M(g′′) in S. Embedding G into S is performed by mapping each edge ⟨v, w⟩ ∈ E(G) to a

1 Note that in a binary network two leaves can be labeled by the same label, which is not allowed in a
phylogenetic network.

WABI 2021

17:4 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

a

b c

d

G
t

u

a

v
p

x

b

y
q

c

d

N

a
b c

d

S1

a

b c
d

S3

a b c d

S2

a
b

c d

S4

a
b c

d

G

a
b c

d

S1

a
b c

d

G

a

b c
d

S3

a
b c

d

G

a b c d

S2

a
b c

d

G

a
b

c d

S4

a
b c

d

DC(G,S1)=0

a

b c
d

DC(G,S3)=1

a b c d

DC(G,S2)=2

a
b

c d

DC(G,S4)=2

Figure 1 From the left: a gene tree G and a phylogenetic network N with two reticulations, four
trees displayed by N , lca-mappings between G and Si’s, visualization of embeddings of G into Si’s.
Here, S1 is the optimal tree displayed by N with the DC cost of 0.

path connecting M(v) and M(w) in S. We say that the gene edge visits edges from that path.
Let ||v, w|| denote the number of edges on the path connecting v and w. Then, the visited
edges contribute to the deep coalescence cost, denoted DC(G, S), as follows:

DC(G, S) =
∑

⟨v,w⟩∈E(G)

(||M(v), M(w)|| − 1). (1)

A set Y ⊆ ER(N) is called perfect if, for each r ∈ R(N), Y contains exactly one edge
whose bottom node is r. Given a perfect Y , the graph denoted N/Y , obtained from N by
removing all edges from ER(N) \ Y is a semi-binary tree, i.e., semi-binary network with no
reticulations. Further, contracting all semi-binary nodes yields a species tree on X, denoted
NY . We say that a species tree T is displayed by a phylogenetic network N , if NY = T for
some perfect Y . We also say that the perfect set Y is induced by a tree T displayed by N if
NY = T .

We now define the Optimal Displayed Tree problem (ODT) in the parsimony framework:

▶ Problem 1 (ODT). Given a tree G and a phylogenetic network N . Find an optimal tree
S∗ displayed by N that minimizes DC(G, S) in the set of all trees S displayed by N .

The cost of an optimal displayed tree, we denote DC(G, N). While the complexity of ODT
remains unknown for the class of tree-child networks, we claim that the problem is NP-hard
in a general class of networks. The proof is similar to the NP-hardness proof of the best
switching problem from [43]. See also [31] for the related problem of RF-embedding. Fig. 1
depicts an example of DC costs.

2.2 Scenarios between gene trees and phylogenetic networks
In the previous Section, we showed how a gene tree is embedded into a species tree. Here,
we propose to embed a gene tree into a phylogenetic network using a more general approach
than embedding through a displayed tree. We start with the notion of unfolded network (see
also [22, 23]), then we define scenarios between gene trees and unfolded networks.

For a phylogenetic network N on X with k reticulations, the unfolded network N̂ is the
tree Nk obtained from N by a sequence of k unfolding operations defined on pairs (Ni, σi),
such that Ni is a semi-binary network on X and σi : V (Ni) → V (N) defines the origin of a
node from Ni. Let (N0, σ0) be a pair such that N0 = N and σ0(v) = v for each v ∈ V (N).
Then, for a sequence of all reticulation nodes r1, r2, . . . , rk from N in a reversed topological
order, (Ni, σi) is obtained from (Ni−1, σi−1) by unfolding the reticulation ri as follows:

Let Si be a copy of the subtree of Ni−1 rooted at ri.
V (Ni) := V (Ni−1) ∪ V (Si) and E(Ni) := (E(Ni−1) \ {⟨p, ri⟩}) ∪ E(Si) ∪ {⟨p, r′

i⟩}, where
p is an arbitrary parent of ri and r′

i is the root of Si.
σi(v) is σi−1(v) if v ∈ V (Ni−1); otherwise, it is σi−1(t), if v is a copy of t from Ni−1.

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:5

Informally, for each reticulation node, we copy its subtree, detach the original subtree from
one parent, and attach the copy to the same parent, without changing the labels. To avoid
using k directly, we set σ to be σk.2 Fig. 2 depicts an unfolded network.

▶ Lemma 2 (Correctness of unfolding). The unfolded network N̂ of N is a semi-binary tree.

Let a leaf-root path be a directed path connecting a leaf with the root in a network.

▶ Theorem 3 (Unfolding Soundness). There is a one-to-one correspondence between leaf-root
paths in N and leaf-root paths in N̂ .

It follows from Thm. 3 that N and N̂ have the same structure of leaf-root paths. A scenario
for G and N is a function ξ : L(G) → L(N̂) that preserves the leaf labeling: for every
g ∈ L(G), the labels of g and ξ(g) are equal. A scenario ξ can be extended to the lca-mapping
Mξ : V (G) → V (N̂) such that for g ∈ V (G), Mξ(g) is the lowest node v in N̂ such that
ξ(g′) ⪯ v, for each leaf g′ ⪯ g. Note that Mξ(g) is either a leaf or a tree node with two
children.

2.3 Deep Coalescence Score of Scenarios
Having the lca-mapping determined by a scenario, we are ready to define the deep coales-
cence score, denoted D̃C, to approximate deep coalescence events induced by scenarios in
phylogenetic networks. Our goal is to deduce properties allowing us to approximate the DC
cost to solve ODT. In particular, our approach differs from the approaches from [25, 27, 43],
e.g., in the way how a cost of a path is defined, although the general concept of mapping a
gene tree into a network is analogous.

For a scenario ξ for G and N , we say that ⟨v, w⟩ ∈ E(G) visits ⟨a, b⟩ ∈ E(N̂) if
Mξ(v) ⪰ a ≻ b ⪰ Mξ(w). Then, ⟨a, b⟩ has exactly one of the following types.

Type I: Mξ(v) = a, i.e., it is the first edge.
Type II: Mξ(v) ≻ a, outdegN̂ (a) = 2 and σ(b.sibling) /∈ R(N);
Type III: Mξ(v) ≻ a, outdegN̂ (a) = 2 and σ(b.sibling) ∈ R(N); we say that ξ bypasses
the reticulation edge σ(⟨a, b.sibling⟩)
Type IV: outdegN̂ (a) = 1 (only if σ(a) ∈ R(N)).

In the above definition, type (I) is only for the first (i.e., the closest to the root) edge visited
by a given edge from G, while for the remaining visited edges from N̂ an edge has: Type (II)
if the sibling of its bottom node is a tree node, Type (III) if the sibling of its bottom node is
a reticulation, and Type (IV) if the top node of the edge is a reticulation.

By κξ(v, w) we denote the set of all edges of Type I or II visited by ⟨v, w⟩. Then, the
deep coalescence score for G, N and a scenario ξ is

D̃C(G, N, ξ) =
∑

⟨v,w⟩∈E(G)

(|κξ(v, w)| − 1). (2)

Examples of scenarios and D̃C scores are depicted in Fig. 2. Finally, we can define Optimal
Scenario Inference problem, DC-MinRec.

▶ Problem 4 (DC-MinRec). Given a gene tree G and a phylogenetic network N . Find an
optimal scenario ξ∗ that minimizes D̃C(G, N, ξ) in the set of all scenarios ξ for G and N .

2 We also use σ with edges, e.g., σ(⟨v, w⟩) denotes ⟨σ(v), σ(w)⟩.

WABI 2021

17:6 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

In Section 4, we propose a dynamic programming algorithm that solves DC-MinRec in
O(|G||N |) time. Note that the complexity depends on the size of N (not on the potentially
exponential size of N̂).

In a trivial case, the solution to DC-MinRec is induced by the classical DC cost.

▶ Lemma 5. If N is a phylogenetic network with no reticulation node then there is only one
scenario ξ for G and N . Moreover, D̃C(G, N, ξ) = DC(G, N).

3 Scores of scenarios vs. costs of displayed trees

In this Section, we present several theoretical results connecting our scoring functions. Note
that the notion of a cost will be used only with the DC cost defined in (1) for trees and for
phylogenetic networks in Problem 1, while for scenarios, we will use the notion of a (D̃C)
score. To establish the correspondence, we first show that each perfect set Y determines a
scenario. Recall that NY is obtained from N/Y by contracting semi-binary nodes. Let N̂Y

be the graph obtained from N̂ by removing all edges e such that σ(e) ∈ ER(N) \ Y and all
subtrees whose root is the bottom node of e.

▶ Lemma 6. N̂Y and N/Y are isomorphic, and the isomorphism is established by σ|V (N̂Y).

I

I I
IV

I I
IV

I

III

III

I

III

I

II

IV

I I
IV

I

III

III

I

III

I

II
IV

II
I

I

II

IV
II

IV

I

III

III

I

III

I

II
IV

II
I

I

III

II

IV

I

III

III

I

III

I

I

IV

II
I

I

II

IV

I

III

III

I

II
I

I

II
IV

II
IV

I

II

IV

II
I

I

III
III

t

u

a1
p

x

b1
q

c1

v

p

x

b2
q

c2

y

q

c3

d1

N^

a1

b1 c1
b2 c2

c3
d1

E1

a1

b1 c1
b2 c2

c3
d1

E3

a1

b1 c1
b2 c2

c3
d1

E5

a1

b1 c1
b2 c2

c3
d1

E2

a1

b1 c1
b2 c2

c3
d1

E4

a1

b1 c1
b2 c2

c3
d1

E6

Used reticulation edges

& DC score by scenarios

up vp xq yq DC
~

E1 dp dp 0

E2 dp p p dp 0

E3 p dp dp 0

E4 p dp p dp 0

E5 dp dp dp p 1

E6 dp dp dp p 1

d - directly used
p - potentially used

Figure 2 Left: The unfolded network N̂ of N from Fig. 1 is shown with σ values attached to
nodes, where for the leaves, the index is inserted to distinguish leaves with the same labels/mappings.
Middle: 6 scenarios for G = ((a, (b, c)), d) shown as embeddings of G to N̂ . Numbers I-IV denote
the type of a visited edge. Only E1 is regular, while E1 − E4 are optimal. Right: DC score and
types of used reticulation edges for each scenario (Υ[.]).

For a perfect set Y , we define a scenario ξY such that for each gene leaf g labeled x, ξY (g)
is the only leaf in L(N̂Y) ⊆ L(N̂) labeled x. Correctness follows from Lemma 6. For example,
in Fig. 2, if Y = {⟨u, p⟩, ⟨x, q⟩}, then Y is perfect and NY = S1 from Fig. 1. Moreover, for
G = ((a, (b, c)), d), ξY maps a to a1, b to b1 c to c1 and d to d1 as depicted in E1.

We say that e ∈ ER(N) is directly used by scenario ξ if there is a visited edge e′ of Type
I or II such that σ(e′) = e. Similarly, we say that reticulation edge e is potentially used by ξ

if the sibling edge of e is bypassed by ξ. By Υξ ⊆ ER(N) we denote the set of reticulation
edges used directly or potentially by ξ (see Fig. 2).

We say that Y ⊆ ER(N) has a conflict if Y contains two sibling edges. We say that ξ is
regular if Υξ has no conflict. For instance, ΥE4 for E4 from Fig. 2 has two possible conflicts
in N . Observe that Υξ may not be perfect in general, even if ξ is regular. For instance, if
G = (c, d) and ξ maps c to c3 in the network from Fig. 2, then Υξ = {⟨y, q⟩}.

Now, we can state the crucial proposition that establishes a correspondence between
regular scenarios and embedding to trees displayed by a network.

▶ Proposition 7 (Scenario-Displayed Tree Correspondence). A scenario ξ is regular, if and
only if for every perfect set Y such that Υξ ⊆ Y , D̃C(G, N, ξ) = DC(G, NY).

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:7

In the following proposition, we show that the cost of a tree displayed by a network using
a perfect set is bounded from below by the cost of its corresponding scenario.

▶ Proposition 8. If Y is perfect, then DC(G, NY) ≥ D̃C(G, N, ξY).

Finally, we show that the equality between the score and the cost holds only if the induced
scenario is regular.

▶ Proposition 9. If Y is perfect, then DC(G, NY) = D̃C(G, N, ξY) if and only if ξY is regular.

The next theorem states that the cost of an optimal tree displayed by a network is
bounded from below by the score of an optimal scenario.

▶ Theorem 10 (Lower Bound Property). If S∗ is an optimal tree displayed by N , and ξ∗ is
an optimal scenario of N then DC(G, S∗) ≥ D̃C(G, N, ξ∗).

In our example from Fig. 1 and Fig. 2, the cost of S1 and the score of E1 are equal.
However, in general, a regular scenario may not exist. For instance, if G = (a, d), there is
only one scenario ξ for N from Fig. 2, where a and d are mapped to a1 and d1, respectively.
Then, ξ is not regular, and 0 = D̃C(G, N, ξ) < DC(G, N) = 1 (for S1 or S2).

Finally, we present a crucial theoretical property used to solve ODT using solutions to
instances of DC-MinRec.

▶ Theorem 11 (Regularity). Let d be the score of an optimal scenario of N . A tree S displayed
by N with DC(G, S) = d exists, if and only if there is an optimal regular scenario of N .

4 Dynamic Programming (DP) Algorithm to solve DC-MinRec

Dynamic programming algorithms are commonly used in tree reconciliation, including models
based on directed acyclic graphs (DAGs) [10, 16, 27, 37, 43], where a gene tree is mapped to
a tree or a DAG through the lca-mapping or general mapping based on concepts close to
our scenarios. Such approaches often lead to polynomial time solutions with square time
complexity in the best case. Here, we present a dynamic programming solution to Problem 4
by providing formulas to compute the score of an optimal scenario.

Additional notation: By v′ and v′′, we denote the children of a tree node v, and by r′ the
child of a reticulation node r. For simplicity, instead of σ(Mξ(g)) for a gene tree node g, we
write ξg (i.e., ξ[.] is a mapping from G to N).

By G|g, we denote the subtree of G rooted at g. The main component of dynamic
programming is δ such that for g ∈ V (G) and s ∈ V (N), δ(g, s) is the minimum score for G|g
in the set of all scenarios ξ between G|g and N̂ such that ξg = s. For simplicity, we ignore
−1 from the D̃C formula in the partial costs in δ as this yields a constant term dependent on
the size of G. Let τ(s) be equal 0 if s is a reticulation, and 1 otherwise. Then, we have the
following dynamic programming formula that solves DC-MinRec:

δ(g, s) =


δf (g′, s) + δf (g′′, s) g and s are tree nodes, (3)
δ(g′, s) + δ(g′′, s) g is a tree node and s is a leaf, (4)
0 g and s are leaves labeled by the same species, (5)
+∞ otherwise, (6)

δf (g, s) = min(δ(g, s), τ(s′) + δ↑(g, s′), τ(s′′) + δ↑(g, s′′)), (7)

WABI 2021

17:8 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

δ↑(g, s) =


min(δ(g, s), τ(s′)τ(s′′) + min(δ↑(g, s′), δ↑(g, s′′))) s is a tree node, (8)
1 + δ↑(g, s′) s ∈ R(N), (9)
δ(g, s) s is a leaf. (10)

In the next Lemma, we express properties satisfied by the above formulas.

▶ Lemma 12. Let g ∈ V (G), s ∈ V (N) and all scenarios below are for G and N .
D1 δ(g, s) is equal to minimum number of Type I/II edges visited by edges from E(G|g)

among scenarios ξ satisfying ξg = s.
D2 If c is a child of g and t is not a reticulation. Then, δ↑(c, t) is equal to minimum number

of Type I/II edges visited by edges from E(G|c) plus the number of edges e′ = ⟨a, b⟩ of
Type II visited by {⟨c, g⟩} with t ⪰ σ(a) among scenarios ξ such that ξg = s ≻ t ⪰ ξc.

D3 If c is a child of g and s is a tree node. Then, δf (c, s) is equal to minimum number
of Type I/II edges visited by edges from E(G|c) ∪ {⟨c, g⟩} among scenarios ξ satisfying
ξg = s.

The optimal score is given by the following theorem, whose proof follows immediately from
the definitions of δ, D̃C and Lemma 12.

▶ Theorem 13. Given a gene tree G and a phylogenetic network N . The score of an optimal
scenario ξ∗ is D̃C(G, N, ξ∗) = −|E(G)| + mins∈V (N) δ(G. root, s).

To infer an optimal scenario, we apply standard backtracking based on values of δ array.
Since there are three arrays, each of size |G||N | and every cell of an array can be computed
in O(1) time, DP has O(|G||N |) time and space complexity. Note that in implementation δf

can be embedded into δ computation. Thus, the space may be reduced to two arrays.

4.1 Inferring used reticulations edges from DP

An optimal scenario can be inferred from DP formulas using standard backtracking. However,
this scenario may not be perfect. To further utilize the results of DP, we infer the set of used
reticulation edges. For two nodes v and w, let ρ(v, w) = {⟨v, w⟩} denote the one-element set
with ⟨v, w⟩ if the edge is a reticulation edge in N , and ρ(v, w) = ∅ otherwise. Similarly, by
ρ̄(v, w) we denote the one-element set with the sibling edge of e = ⟨v, w⟩ if e is a reticulation
edge in N , and ρ̄(v, w) = ∅, otherwise. Then, DP components δ, δf and δ↑ are associated
with reticulation edge usage rules u, uf , and u↑, resp., as follows:

u(g, s) =
{

uf (g′, s) ∪ uf (g′′, s) in (3),
∅ in (4)-(6),

uf (g, s) =
{

u(g, s) if δf (g, s) = δ(g, s) in (7),
u↑(g, c) ∪ ρ(s, c) if δf (g, s) = τ(c) + δ↑(g, c) for some c ∈ {s′, s′′} in (7),

u↑(g, s) =


u(g, s) if δ↑(g, s) = δ(g, s) in (8) or (10),
u↑(g, c) in (9),
u↑(g, c) ∪ ρ(s, c) ∪ ρ̄(s, c.sibling) if δ↑(g, s) = τ(s′)τ(s′′) + δ↑(g, c)

for some c ∈ {s′, s′′} in (8).

The correctness of above formulas follows from the next lemma.

▶ Lemma 14. If the backtracking of DP results in a scenario ξ, then Υξ = u(G. root, ξG. root).

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:9

5 Inferring Optimal Displayed Trees

In this Section, we propose algorithms to solve ODT and its variants. We also answer
whether the problem can be analogously solved for level-k networks and for broader classes
of phylogenetic networks.

5.1 Solution to ODT

Thm. 11 motivates the following general branching algorithm to solve ODT. Suppose DP
returns a solution with a conflict. Then, such a conflict can be resolved by branching
and solving two sub-instances of the problem with phylogenetic networks induced from the
input phylogenetic network by removing exactly one edge from the conflict. Let Ne be the
phylogenetic network obtained from N/{e} by contracting all semi-binary nodes3. Alg. 1
details the procedure to infer an optimal tree displayed by a given network. Here, branching
occurs when there is a conflict in the set of used reticulation edges. Thus, if the number of
conflicts is low, e.g., when G and N are similar, we expect a small number of DP invocations.

Algorithm 1 Optimal displayed tree inference: a solution to ODT.
1: Input: a gene tree G and a phylogenetic network N .
2: Output: an optimal tree displayed by a network N

3: Compute Υξ∗ (see Thm. 14) for some optimal scenario ξ∗ for G and N inferred by DP.
4: Optimization: Return the empty tree with +∞ score if the score of ξ∗ is larger or equal to the

currently known best score of a regular scenario (if already computed in a recursive call).
5: If Υξ∗ has no conflict Then Return NY for some perfect set Y ⊇ Υξ∗ .
6: Otherwise Υξ∗ has a conflict, i.e., there are two sibling edges, say e and e′ in Υξ∗ .
7: Recursively compute two optimal trees displayed by networks Ne and Ne′ , resp.
8: Return the tree with the lower cost.

Correctness of Algorithm 1 follows from Thm. 11 and the following theorem.

▶ Theorem 15. If e, e′ ∈ ER(N) are sibling edges then DC(G, N) = min{DC(G, Ne),
DC(G, Ne′)}. Moreover, T is an optimal tree displayed by N if and only if T is an optimal
tree displayed by a network Ne or Ne′ with minimum cost.

In the worst case, we need to branch for every reticulation twice, which gives 2r+1 − 1
invocations of DP. Thus, Alg. 1 has time complexity O(2r|G||N |) in the worst case. However,
as mentioned previously, we expect Alg. 1 to behave better than worst complexity in practice.
See also our experimental evaluation in Section 6.

5.2 Lower and upper bounds of the optimal cost of a displayed tree

In applications where only the optimal cost is needed, for instance, in problems of network
inference, we can use the Lower Bound Theorem 10. As the cost of an optimal displayed
tree is bounded below by the score from DP, we can also compute the upper bound using
regular scenarios returned from multiple invocations of DP. See details in Alg. 2.

▶ Lemma 16. For G and N , Alg. 2 returns l and u such that l ≤ DC(G, N) ≤ u.

3 Recall that N/X is the network obtained from N by removing all edges from X.

WABI 2021

17:10 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

Algorithm 2 Branch and bound algorithm to approximate DC(G, N).
1: Input: a gene tree G, a phylogenetic network N , the maximal depth of recursion d ≥ 0.
2: Output: a pair: lower and upper bounds of the cost of an optimal displayed tree for G and N .
3: Compute Υξ∗ and the optimal score c∗ for some optimal scenario ξ∗ for G and N .
4: If Υξ∗ has no conflict Then Return ⟨c∗, c∗⟩ // Regular scenario; report the exact cost
5: If the depth d of recursive invocations is reached Then Return ⟨c∗, +∞⟩ // Lower bound only

6: Recursively compute bounds ⟨l, u⟩ and ⟨l′, u′⟩ for G and Ne and Ne′ , respectively, where e and
e′ are two conflicted sibling edges from Υξ∗ .

7: Return ⟨min(l, l′), min(u, u′)⟩ // Combine results from two invocations

5.3 Inferring optimal trees displayed by level-k networks
Our results can also be extended to level-k networks. The definition and properties are
adopted from [9, 12, 43]. A level-k network is a phylogenetic network in which every
biconnected component has at most k reticulation nodes [9]. If B is a biconnected component
of N , then by B. root we denote the unique node in B with no ancestors in B. Using the
notation from [43], by bc(N) we denote the tree obtained from N by contracting all its
biconnected components. Let Lab(N) denote the set of species present in N as leaf labels.

Algorithm 3 Optimal displayed tree for level-k network.
1: Input: a gene tree G, a phylogenetic network N .
2: Output: the cost of optimal tree displayed by N .
3: c = 0 // The cost variable
4: For each biconnected component B from bc(N) in postfix order:
5: If Lab(G) ⊆ Lab(B) Then Return c + DC(G, B) // The case of root and the top component
6: Let F be a collection of all maximal subtrees of G rooted at g such that Lab(G|g) ⊆ Lab(B).
7: c := c +

∑
G′∈F

DC↑(G′, B) // DC↑ is a “δ↑” variant of DC; see def. in Section 5.3
8: Let sB be a new species label representing the component B.
9: Replace B in N , and every G′ ∈ F , by a leaf labeled sB . // Contract B and subtrees of G

10: Return c

In Alg. 3, edges visited by subtrees of G have to be connected in the embedding. Therefore,
for each non-root component B in b(N), we minimize the score using the additional costs
of a path to the root of B. Formally, DC↑(G, N) is the minimum value of DC(G, S) +
||M(G. root), S. root || in the set of all displayed trees S of N . Computing the value (almost)
does not require modification of our algorithms. Here, instead of the formula from Thm. 13,
we compute DC↑(G, N) using −|E(G)| + δ↑(G. root, S. root). The correctness follows from
Lemma 12 case D2. The formula can be easily embedded into Alg. 1. The time complexity
of Alg. 3 is O(2k|G||N |).

5.4 Beyond tree-child networks
DP can be extended to analyse a broader class of networks, which is more beneficial from
a practical point of view. Assume that instead of a tree-child network condition, our class
of networks satisfies a relaxed condition: a node has at most one reticulation child. This
assumption admits the child of reticulation to be a reticulation, which is not allowed in
tree-child networks. Then, in DP, we have the following modification in (9): τ(s′) + δ↑(g, s′),
and in usage rules in the 2nd case of u↑ referring to (9): u↑(g, s) ∪ ρ(s, c), which is needed
when the child is also a reticulation. Under this modification, Alg. 1 returns a correct optimal
displayed tree. We omit details for brevity.

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:11

x

N

c

a
b

Figure 3 A non tree-child network.

We also analysed a general class of binary networks, i.e., in which a tree node may
have two reticulation children. However, DP cannot correctly analyse such networks. When
embedding a gene tree (a, b) into the network N from Fig. 3, we see that the optimal displayed
tree is S = ((a, b), c) with the cost 0. Here, S is constructed by removing a node x and all
three incident edges, and a tree node x.parent with two children is also contracted. In the
current DP, when a gene edge ⟨a.parent, a⟩ from G visits x.parent DP will increase the cost.
Therefore, the lower bound property is not satisfied in this case unless a solution in which
such removed tree nodes are detected is implemented. It remains open whether it can be
done in polynomial time without checking all variants of displayed trees.

6 Experimental evaluation

In this Section, we present the experimental evaluation using our prototype implementation of
DP, Alg. 1 and Alg. 2 called EmbRetNet written in Python 3. The algorithms were extended
to analyse the class of networks described in Section 5.4. The software package is available
from https://bitbucket.org/pgor17/embretnet.

Performance of inferring optimal displayed trees
Our Alg. 1 is exponential in the worst case; however, we expect better performance when
the gene tree is similar to the network, which is expected for empirical data. In this
Section, we summarize the results of several experiments to compare the performance of
our implementation of Alg. 1 to the naïve implementation in which all trees displayed by a
given network are generated, and then, the costs are computed using a linear time solution
from [48]. Note that both algorithms have exponential time complexity; however, the naïve
algorithm always has the same number of steps, proportional to 2r(|G| + |N |), where r is the
number of reticulations in N . Experiments were conducted on a Ubuntu server with Intel(R)
Xeon(R) CPU E5-2698 v4@2.20GHz (80 cores) and 500 GB of RAM.

6.1 Evaluation on random datasets
Data preparation: To generate random tree-child phylogenetic networks, we used an
algorithm from [26] and its implementation in Python from GitHub with a slight modification
to generate only binary networks. Random gene trees with one-to-one labeling of leaves were
generated using the Yule-Harding model. Then, we generated datasets R1, R2, and R3, each
consisting of 2 · 10 · 100 pairs of random gene trees and networks. For each n ∈ {12, 20} and
r ∈ {1, 2, . . . , 10}, we generated 100 pairs ⟨G, N⟩, such that N is a network with n leaves
and r reticulations and in dataset R1 |L(G)| = n, in R2 the number of leaves in G is sampled
uniformly from the interval [2, n], and in R3 G is a randomly chosen tree displayed by N .

Discussion: In the two left panels of Fig. 4, we summarize the experimental evaluation
results of R1 and R3, where G and N were generated independently. Since these datasets
represent extremes, in which G and N are highly different, our algorithm frequently infers

WABI 2021

https://bitbucket.org/pgor17/embretnet
https://github.com/RemieJanssen/Cherry-picking_TC_Network_Containment

17:12 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Sp

ee
du

p
vs

 n
ai

ve
 so

lu
tio

n

Same size random pairs (R1)

2 4 6 8 10
Number of reticulations

0
5

10
15
20
25
30

Random displayed tree (R3)

N with n=12 leaves
N with n=20 leaves

2 4 6 8 10
Number of reticulations

100

101

102

103

DP
 in

vo
ca

tio
ns

R1,n=12
R1,n=20
R3,n=12
R3,n=20
2r

Figure 4 Left: Performance of Alg. 1 vs naïve approach for random datasets R1 and R3. Each
dot represents the average speedup computed from the runtimes of 100 pairs of gene trees and
phylogenetic networks. Right: Average number of DP invocations necessary to calculate an answer
for random datasets R1 and R3. Since the results of R2 are similar to R1, we moved them to
Appendix A.1.

conflicted sets of reticulation edges by visiting almost every possible scenario, thus achieving
nearly the pessimistic exponential complexity. In consequence, it is noticeably slower than
the naïve one for R1. On the contrary, with data from R3 the algorithm rarely branches,
and its average runtime matches the complexity of DP, i.e., O(|G||N |). Even with a larger
constant factor, we outperform the naïve algorithm for r > 4, achieving > 15 times speedup
for r = 10.

6.2 Evaluation on simulated datasets

Our simulation procedure can be divided into three major phases: (i) simulating tree-child
phylogenetic networks, (ii) simulating gene trees, and (iii) introducing errors to the gene
trees. The selection of the parameters in all three phases is mainly based on the simulation
study conducted by Molloy and Warnow [34], which uses parameters derived from a fungal
dataset presented by Rasmussen and Kellis [36]. See Appendix A.2 for more details.

(i) Simulating tree-child phylogenetic networks. First, we simulated species trees using
a general sampling approach implemented in R package TreeSim version 2.4 [21] with the
parameters from [34]. The number of leaves was set to 12 or 20. Next, we inferred a network
with r reticulations from each of the simulated species trees, where r was uniformly sampled
from [1, 10]. We followed a popular study by Solis-Lemus and Ané [39]. To add r reticulations,
we started by randomly choosing r pairs of edges in the species tree. We then subdivided
both edges in a pair, making two new vertices. Finally, we added a reticulation edge between
the vertices. This method generates networks belonging to the tree-based class [14]. Similarly
to [31], the networks were constrained to be tree-child.

(ii) Simulating gene trees. For each phylogenetic network, we randomly chose one of its
displayed trees, obtaining one of the possible trees, along which gene families evolve. We
simulated one gene tree per displayed tree using SimPhy version 1.0.2 [30]. Similarly to [34],
we used three rates of duplication/loss (DL) {10−10, 2 · 10−10, 5 · 10−10} and two values of the
effective population size {107, 5 ·107}, corresponding respectively to a low and a medium level
of incomplete lineage sorting (ILS). Altogether, we used six sets of simulation parameters,
which allowed us to obtain a diversified set of gene trees. Additionally, we set the minimum
number of leaves to 3.

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:13

(iii) Simulating sequences and estimating gene trees. To introduce errors to the generated
gene trees, we simulated sequences along with them and estimated gene trees from multiple
sequence alignments using the maximum-likelihood method (MLE). DNA sequences were
simulated by INDELible v1.03 [13] and SimPhy [30]. Again, we followed the parameters
proposed in [34]. The alignment length was set to 1000 bp. To estimate gene trees, we used
a true alignment returned by INDElible. Then, we inferred ML-trees by PhyML v.3.1 [19]
using GTR+Γ model. Finally, to obtain a rooted gene tree from an unrooted ML-tree,
we conducted midpoint-plateau rooting implemented in URec [17] using the corresponding
displayed tree inferred in step (ii) of our pipeline.

Finally, for each set of parameters of duplication-loss rates, population sizes, reticulation
values, and leaf-set sizes we simulated 100 networks and 100 corresponding gene trees. The
simulations were run in parallel on 10 cores and the total simulation time was under 8 hours.
The algorithm took 2 hours to process all datasets, and it took, on average, 45 seconds to
run 100 instances with 20 leaves and 10 reticulations for low ILS and low DL.

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

vs
 n

ai
ve

 so
lu

tio
n

Low DL-rate 1 10 10

2 4 6 8 10
Number of reticulations

0.00

0.25

0.50

0.75

1.00

1.25

1.50
High DL-rate 5 10 10

N with n=12 leaves
N with n=20 leaves

2 4 6 8 10
Number of reticulations

100

101

102

103

DP
 in

vo
ca

tio
ns

low DL,n=12
low DL,n=20
high DL,n=12,20
high DL,n=20
2r

20.543 r 0.113

Figure 5 Left: Performance of Alg. 1 vs. naïve approach for datasets with low ILS (1 · 107). See
Appendix A.3 for a complete set. Right: Average number of DP invocations necessary to calculate
an answer for datasets with low ILS. The blue line is calculated using least squares linear regression,
that best approximates results for all simulated datasets.

Discussion. In Fig. 5, we present diagrams showing the results of evaluations for two
datasets. The results for the remaining datasets are similar (please refer to Appendix). The
way we simulated data makes trees and networks more similar to each other. Thus, we can
see significant improvements vs. random datasets. Regardless of parameter choices, we start
to outperform the naïve solution for r > 9. For simulated data closest to reality (low ILS,
low DL), we achieved better results for r > 7. The results suggest a hybrid approach in
Alg. 1: enumerate all displayed trees to compute DC costs directly if the network has a low
number of reticulations (e.g., r < 9).

To estimate the average runtime of our algorithm, we first calculated the depths d of the
recursive calls as log2 of the number of DP invocations from each experiment. Then, we
found that for all points ⟨r, d⟩ from our experiments, d = 0.543r − 0.1135 is the fitted least
squares regression line having the standard error of .011 (see the rightmost diagram in Fig. 5).
We conclude that, despite the worst case theoretical complexity, i.e., O((2r+1 −1)|G||N |), the
real runtime of our implementation on simulated data is proportional to 20.543r|G||N | and
outperforms the naïve approach starting from small r’s. We claim that a similar statement
holds for the algorithm with level-k networks. In other words, it is possible to analyse
empirical networks even with r = k = 40, since the exponent can be reduced by half.

WABI 2021

17:14 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

6.3 Empirical tests
Our final experiment was conducted using real data. We revisited research presented in [29]
concerning coronavirus (CoV) phylogeny. In the cited paper, the authors investigated the
origins of the SARS-CoV-2 virus which causes a severe respiratory disease. They validated
the hypothesis that the appearance of this new coronavirus is a consequence of several
recombination events that occurred between some evolutionarily close CoV species. The
results showed that both intergenic and intragenic recombination played a significant role in
the SARS-CoV-2 evolution.

The goal of our study was to test whether scenarios with the lowest DC cost inferred
for the phylogenetic network from [29] and individual gene trees confirm recombinations
identified in the cited paper. In our experiment, we focused on intergenic recombinations,
in which a whole gene is transferred from one species and integrated into another species
genome.

Data preparation: In the gene trees inference step, we followed the cited work. We selected
15 out of 25 examined coronavirus species, omitting a few species to avoid multifurcations.
As representatives of SARS-Cov-2, two variants were used. One was sampled from a
patient from Wuhan (Hu-Wuhan), the origin of the pandemic spread of coronavirus, and
the other was collected in Italy (Hu-Italy). Other selected species were RaTG13 bat CoV
from R. affinis which, at first, was considered the only close relative of SARS-CoV-2,
bat CoV ZC45 and ZXC21 strains from Zhejiang province of China (Bat-CoVZC45, and
Bat-CoVZXC21), bat coronaviruses collected from species found in several provinces of
China and from Bulgaria (Rf1, HKU3-12, BatCoV273, BatCoV279, and BM48-31 BGR),
two CoV strains from Guangdong and Guangxi pangolins (Guangdong-Png, Guangxi-Png-
P2V), and three SARS CoV related species (SARS, SARS-BJ182-4, and Rs3367). For
the list of full names please refer to Appendix A.4. Coronavirus sequences were obtained
from GenBank [2] at https://www.ncbi.nlm.nih.gov/ and GISAID [38] databases. In the
studied phylogenetic network, recombinations were found in the case of the genes M, ORF1ab,
ORF3a, ORF6, ORF8, and ORF10; therefore, our research was focused on this set of genes.
Multiple sequence alignments for the gene families were performed with MUSCLE [11] and
corrected by GBlocks [7] with less stringent correction option. The ML gene trees were
inferred using RAxML [40] with parameters described in [29]. All species were present in all
gene families except ORF8, which lacks the BM48-31-BGR species.

Phylogenetic networks: The coronavirus tree with marked intergenic recombinations (H1-
H7) identified in [29] is depicted in Fig. 6. Since the direction of three out of seven
recombinations was not certain, we prepared 8 networks corresponding to all combinations of
the directions of gene transfers. Each network is named with three letters L/R responding
to the direction of H5, H6 and H7, respectively, i.e. in the LRL network H5 and H7
are directed left and H6 is directed right. Please note that the inferred networks are not
tree-child and therefore in this experiment we use the extended version of our algorithm
described in Section 5.4.

Discussion: The results of the experiment are depicted in Fig 6. For each gene family, we
checked whether the expected reticulation edge was used by the inferred scenario with the
lowest DC cost. We can distinguish three possibilities for reticulation edge e: 1. e was used
by the expected gene, 2. e was used by one or more extra genes, and 3. the expected gene
didn’t use e. We were able to confirm most of the reticulations except two: H2 that was
reported in [29] with the lowest support wasn’t confirmed by any of the networks, and H7

https://www.ncbi.nlm.nih.gov/

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:15

H5

H2

H1

H4
H7

H6
H3

R
aT
G
13

B
at-C

o
V
Z
C
45

B
at-C

o
V
Z
X
C
21

R
f1

H
K
U
3-12

B
at-C

o
V
273

B
at-C

o
C
279

B
M
48
-31-B

G
R

G
uangdon

g-P
n
g

G
uangxi-P

ng-P
2V

H
u-W

uha
n

H
u-Italy

S
A
R
S

S
A
R
S
-B
J1
82-4

R
s3367

272727

H1H2H3H4H5H6H7
ORF1ab

ORF8
M

ORF6
ORF10
ORF3a

Recombination

G
en

er
na

m
e

RRL RLL

RRR LLR

RLR

LLL LRL

LRR

H1H2H3H4H5H6H7 H1H2H3H4H5H6H7

ORF1ab
ORF8

M
ORF6

ORF10
ORF3a

ORF1ab
ORF8

M
ORF6

ORF10
ORF3a

expectedruse

extraruse

lackrofr
expectedruse

unused

Figure 6 Left: Coronavirus species tree with recombinations H1-H7 reported in [29]. Genes-
recombinations assignment from [29]: H1:ORF1ab, H2:ORF8, H3:M, H4:ORF8, H5:ORF3a,
H6:ORF6, H7:ORF3a, ORF8, ORF10. Right: Results showing which recombination edges were
used by each gene tree in the scenarios with the lowest DC cost for each network variant.

was confirmed only by networks with H6 directed right. The most extra uses were found for
H5 and gene ORF10 which gene tree had low support values. Further research might be
performed for these cases. The least extra uses were present in RLL(5) and LLL(6), which
may be some lead when investigating the direction of H6 and H7.

We observed that, for a fixed gene tree, the set of optimal displayed trees inferred by
our algorithm and their cost, is independent of the network variant. This phenomenon
needs further theoretical investigation. Costs for each gene tree have the following values:
ORF3a: 0, ORF10: 5, ORF6: 1, M: 3, ORF8: 2, ORF1ab: 2. This observation may lead to
discovering some important property and can be a subject for further investigation.

7 Conclusions

In this work, we have investigated the problem of inferring an optimal tree displayed by
a network under the deep coalescence cost and proposed a new score to approximate the
cost. We have shown that the score has nice mathematical and computational properties
allowing us to bound the cost of an optimal displayed tree from below. We have proposed
a polynomial-time dynamic programming (DP) algorithm to compute the score together
with the set of used reticulation edges that yielded the score. Then, we have proposed a
new way to infer a displayed tree by a recursive procedure resolving conflicts detected in
multiple invocations of DP. In the worst case, our algorithm to infer an optimal tree requires
2r+1-1 DP invocations, where r is the number of reticulations. However, numerous tests on
simulated data have indicated that the exponent may be reduced by half on average. This
phenomenon is explained by similarity, i.e., we expect a low number of conflicts if a gene tree
is more congruent with its network. In other words, the average runtime of Ω(20.543r|G||N |)
can compete on empirical datasets with exhaustive enumeration strategies (either on the
level of a whole network or each biconnected component independently) commonly used
in alternative approaches to scoring tree-network pairs [25, 27, 43]. We also claim that
the statement holds for level-k networks by replacing r by k in the formula. We conclude
that our conflict resolution algorithm enables analyses of complex networks with dozens of
reticulation events. We also claim that resolving conflicts returned by dynamic programming
is a new alternative towards designing efficient algorithms that utilize internal similarities of
empirical datasets.

WABI 2021

17:16 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

Future Outlooks. Resolving conflicts in the usage of reticulation edges can be naturally
generalized to other cost functions, e.g., gene duplication cost. Also, it is not difficult to
extend DP to analyze unrooted gene trees. Another critical question is whether the runtime
exponent can be further reduced, e.g., by choosing optimal scenarios with the smallest
possible sets of conflicted reticulation edges. Furthermore, we would like to test the efficiency
and accuracy of the branch and bound algorithm to approximate the optimal cost. Also,
we plan to apply the methods in computationally demanding problems of network inference
from sets of gene trees, which may require reimplementation in a low-level programming
language (e.g., C/C++).

References
1 Eric Bapteste, Leo van Iersel, Axel Janke, Scot Kelchner, Steven Kelk, James O. McInerney,

David A. Morrison, Luay Nakhleh, Mike Steel, Leen Stougie, and James Whitfield. Networks:
expanding evolutionary thinking. Trends in Genetics, 29(8):439–441, 2013.

2 Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, and Eric W Sayers.
Genbank. Nucleic Acids Research, 39(suppl_1):D32–D37, 2010.

3 Luis Boto. Horizontal gene transfer in evolution: facts and challenges. Proceedings of the
Royal Society B: Biological Sciences, 277(1683):819–827, November 2009.

4 Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. Comparison of tree-child phylo-
genetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
6(4):552–569, 2008.

5 Gabriel Cardona, Francesc Rossello, and Gabriel Valiente. Comparison of tree-child phylo-
genetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
6(4):552–569, October 2009.

6 Gabriel Cardona and Louxin Zhang. Counting and enumerating tree-child networks and their
subclasses. Journal of Computer and System Sciences, 114:84–104, 2020.

7 Jose Castresana. Selection of conserved blocks from multiple alignments for their use in
phylogenetic analysis. Molecular Biology and Evolution, 17(4):540–552, 2000.

8 Ruchi Chaudhary, J Gordon Burleigh, and Oliver Eulenstein. Efficient error correction
algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep
coalescence. In BMC Bioinformatics, volume 13, pages 1–10. BioMed Central, 2012.

9 Charles Choy, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Computing the
maximum agreement of phylogenetic networks. Theoretical Computer Science, 335(1):93–107,
2005.

10 Beatrice Donati, Christian Baudet, Blerina Sinaimeri, Pierluigi Crescenzi, and Marie-France
Sagot. EUCALYPT: efficient tree reconciliation enumerator. Algorithms for Molecular Biology,
10(1):3, 2015.

11 Robert C Edgar. Muscle: a multiple sequence alignment method with reduced time and space
complexity. BMC Bioinformatics, 5(1):1–19, 2004.

12 Mareike Fischer, Leo Van Iersel, Steven Kelk, and Celine Scornavacca. On computing the
maximum parsimony score of a phylogenetic network. SIAM Journal on Discrete Mathematics,
29(1):559–585, 2015.

13 William Fletcher and Ziheng Yang. Indelible: a flexible simulator of biological sequence
evolution. Molecular Biology and Evolution, 26(8):1879–1888, 2009.

14 Andrew R. Francis and Mike Steel. Which phylogenetic networks are merely trees with
additional arcs? Systematic Biology, 64(5):768–777, June 2015.

15 Paweł Górecki, Oliver Eulenstein, and Jerzy Tiuryn. Unrooted tree reconciliation: A unified
approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(2):522–
536, 2013.

16 Paweł Górecki and Jerzy Tiuryn. DLS-trees: A model of evolutionary scenarios. Theoretical
Computer Science, 359(1-3):378–399, 2006.

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:17

17 Paweł Górecki and Jerzy Tiuryn. Urec: a system for unrooted reconciliation. Bioinformatics,
23(4):511–512, 2007.

18 Benjamin E. Goulet, Federico Roda, and Robin Hopkins. Hybridization in plants: Old ideas,
new techniques. Plant Physiology, 173(1):65–78, November 2016.

19 Stéphane Guindon, Jean-François Dufayard, Lefort Vincent, Maria Anisimova, Wim Hordijk,
and Olivier Gascuel. New algorithms and methods to estimate maximum-likelihood phylogenies:
Assessing the performance of phyml 3.0. Systematic Biology, 59(3):307–321, 2010.

20 Dan Gusfield. ReCombinatorics: the Algorithmics of Ancestral Recombination Graphs and
Explicit Phylogenetic Networks. MIT Press, Boston, 2014.

21 Klaas Hartmann, Dennis Wong, and Tanja Stadler. Sampling trees from evolutionary models.
Systematic Biology, 52(4):465–476, 2010.

22 Katharina T. Huber and Vincent Moulton. Phylogenetic networks from multi-labelled trees.
Journal of Mathematical Biology, 52(5):613–632, 2006.

23 Katharina T. Huber, Vincent Moulton, Mike Steel, and Taoyang Wu. Folding and unfolding
phylogenetic trees and networks. Journal of Mathematical Biology, 73(6-7):1761–1780, 2016.

24 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic Networks: Concepts
Algorithms and Applications. Cambridge University Press, New York, 2010.

25 Leo Van Iersel, Mark Jones, and Celine Scornavacca. Improved maximum parsimony models
for phylogenetic networks. Systematic Biology, 67(3):518–542, December 2017.

26 Remie Janssen and Yukihiro Murakami. Linear time algorithm for tree-child network contain-
ment. In International Conference on Algorithms for Computational Biology, pages 93–107.
Springer, 2020.

27 Matthew LeMay, Ran Libeskind-Hadas, and Yi-Chieh Wu. A polynomial-time algorithm for
minimizing the deep coalescence cost for level-1 species networks. bioRxiv, November 2020.

28 Wayne P. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536, 1997.
29 Vladimir Makarenkov, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Legendre. Hori-

zontal gene transfer and recombination analysis of SARS-CoV-2 genes helps discover its close
relatives and shed light on its origin. BMC Ecology and Evolution, 21(1):1–18, 2021.

30 Diego Mallo, Leonardo De Oliveira Martins, and David Posada. Simphy: Phylogenomic
simulation of gene, locus, and species trees. Systematic Biology, 65(2):334–344, 2015.

31 Alexey Markin, Tavis K. Anderson, Venkata SKT Vadali, and Oliver Eulenstein. Robinson-
foulds reticulation networks. In Proceedings of the 10th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics, pages 77–86, 2019.

32 Sarah M. McDonald, Martha I. Nelson, Paul E. Turner, and John T. Patton. Reassortment in
segmented RNA viruses: mechanisms and outcomes. Nature Reviews Microbiology, 14(7):448–
460, May 2016.

33 Siavash Mirarab and Tandy Warnow. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12):i44–i52, 2015.

34 Erin K Molloy and Tandy Warnow. Fastmulrfs: fast and accurate species tree estimation
under generic gene duplication and loss models. Bioinformatics, 36(Supplement_1):i57–i65,
2020.

35 Yukihiro Murakami, Leo van Iersel, Remie Janssen, Mark Jones, and Vincent Moulton.
Reconstructing tree-child networks from reticulate-edge-deleted subnetworks. Bulletin of
Mathematical Biology, 81(10):3823–3863, 2019.

36 Matthew D. Rasmussen and Manolis Kellis. Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Research, 22(4):755–765, 2012.

37 Celine Scornavacca, Joan Carles Pons Mayol, and Gabriel Cardona. Fast algorithm for the
reconciliation of gene trees and lgt networks. Journal of Theoretical Biology, 418:129–137,
2017.

38 Yuelong Shu and John McCauley. Gisaid: Global initiative on sharing all influenza data–from
vision to reality. Eurosurveillance, 22(13):30494, 2017.

WABI 2021

17:18 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

39 Claudia Solís-Lemus and Cécile Ané. Inferring phylogenetic networks with maximum pseudo-
likelihood under incomplete lineage sorting. PLOS Genetics, 12(3):1–21, 2016.

40 Alexandros Stamatakis. Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690, 2006.

41 Cuong Than and Luay Nakhleh. Species tree inference by minimizing deep coalescences. PLoS
Computational Biologie, 5(9):e1000501, 2009.

42 Cuong Than, Derek Ruths, and Luay Nakhleh. PhyloNet: a software package for analyzing
and reconstructing reticulate evolutionary relationships. BMC Bioinformatics, 9(1), July 2008.

43 Thu-Hien To and Celine Scornavacca. Efficient algorithms for reconciling gene trees and
species networks via duplication and loss events. BMC Genomics, 16(S10), 2015.

44 Yi-Chieh Wu, Matthew D Rasmussen, Mukul S Bansal, and Manolis Kellis. Most parsimonious
reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled
coalescent trees. Genome Research, 24(3):475–486, 2014.

45 Yun Yu, R. Matthew Barnett, and Luay Nakhleh. Parsimonious inference of hybridization in
the presence of incomplete lineage sorting. Systematic Biology, 62(5):738–751, July 2013.

46 Yun Yu, James H. Degnan, and Luay Nakhleh. The probability of a gene tree topology
within a phylogenetic network with applications to hybridization detection. PLoS Genetics,
8(4):e1002660, April 2012.

47 Yun Yu, Tandy Warnow, and Luay Nakhleh. Algorithms for MDC-based multi-locus phylogeny
inference: Beyond rooted binary gene trees on single alleles. Journal of Computational Biology,
18(11):1543–1559, November 2011.

48 Louxin Zhang. From gene trees to species trees ii: Species tree inference by minimizing deep
coalescence events. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
8(6):1685–1691, 2011.

49 Jiafan Zhu, Yun Yu, and Luay Nakhleh. In the light of deep coalescence: revisiting trees
within networks. BMC Bioinformatics, 17(S14), November 2016.

A Experimental evaluation

A.1 Random datasets results
Figure 7 presents complete set of diagrams for random datasets.

A.2 Simulated data preparation
A.2.1 Species trees parameters
To simulate species trees, we ran sim.bd.taxa.age function implemented in R package TreeSim
version 2.4 [21] with the following parameters: tree height = 1800000337.5 years, speciation
rate = 1.8 ∗ 10−9 events/year and extinction rate = 0 events/year. The number of taxa was
set to either 12 or 20.

A.2.2 Inferring networks from species trees
After simulating a species tree using the general sampling approach, we assigned a time value
to each of its nodes, corresponding to a length of a path connecting the root with the node.
Note that the general sampling approach produces ultrametric species trees, therefore time
values assigned to the leaves were equal.

Then we inferred a tree-child phylogenetic network with r reticulations from each of the
species trees. We added r reticulations one by one by repeating the following procedure. To
add a reticulation edge to a species tree/network, we start by randomly choosing a pair of
branches and subdivide them, making two new vertices. We then sample a time value for
each of the vertices from uniform(vertex.parent.time, vertex.child.time). Finally, we add a

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:19

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

vs
 n

ai
ve

 so
lu

tio
n

Same size random pairs (R1)

2 4 6 8 10
Number of reticulations

0.0

0.2

0.4

0.6

0.8

1.0
Random pairs (R2)

2 4 6 8 10
0

5

10

15

20

25

30

Random displayed tree (R3)

N with n=12 leaves
N with n=20 leaves

2 4 6 8 10
Number of reticulations

100

101

102

103

DP
 in

vo
ca

tio
ns

R1,n=12
R1,n=20
R2,n=12
R2,n=20
R3,n=12
R3,n=20
2r

Figure 7 Top: Performance of Alg. 1 vs naïve approach for random datasets R1, R2, R3. Bottom:
Average number of DP invocations necessary to calculate an answer for random datasets R1, R2
and R3.

reticulation edge from the vertex with the lower time value tl to the vertex with the higher
time value th. If the addition disturbs the tree-child property, we delete the reticulation edge
and contract the vertices. Otherwise, we set the length of the reticulation edge to th - tl.

Note that this way of introducing reticulation edges does not change time values of the
leaves, hence all displayed trees of the resulting network are ultrametric and have equal
heights.

A.2.3 Gene trees parameters
To simulate a gene tree from a randomly chosen displayed tree we ran SimPhy [30] with the
following command:

simphy_lnx64 -sr <displayed tree > -rg 1 -rl 1 -si F:1 \
-sp F:$ps su F :0.0000000004 -lb F:$dl -ld F:lb -ll 3\
-hg LN :1.5 ,1 -oc 1 -o <output folder > -v 0 -cs 22

where <displayed tree>is a nexus file containing the randomly chosen displayed tree, $ps is
a population size and $dl is a duplication/loss rate.

A.2.4 Sequences parameters
The sequences were simulated using INDELible v1.03 [13] by running a perl script IN-
DELIble_wrapper.pl included in SimPhy [30]. We used GTR model with substitution
rates (AC, AG, AT, CG, CT and GT respectively) sampled for each gene tree from Dirich-
let(12.776722, 20.869581, 5.647810, 9.863668, 30.679899, 3.199725). The nucleotide frequen-
cies (T, C, A and G respectively) were sampled from Dirichlet (113.48869, 69.02545, 78.66144,
99.83793), whilst α parameter was sampled from Lognormal(-0.470703916, 0.348667224).
The alignment length was set to 1000 bp.

WABI 2021

17:20 Conflict Resolution Algorithms for Deep Coalescence Phylogenetic Networks

A.3 Simulated datasets results
Figures 8 and 9 present the complete set of diagrams.

Lo
w

IL
S

1
·1

07

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

vs
 n

ai
ve

 so
lu

tio
n

Low DL-rate 1 10 10

2 4 6 8 10
Number of reticulations

0.0

0.5

1.0

1.5

2.0

Medium DL-rate 2 10 10

2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

1.25

1.50
High DL-rate 5 10 10

N with n=12 leaves
N with n=20 leaves

M
ed

iu
m

IL
S

5
·1

07

2 4 6 8 10
0.0

0.5

1.0

1.5

Sp
ee

du
p

vs
 n

ai
ve

 so
lu

tio
n

Low DL-rate 1 10 10

2 4 6 8 10
Number of reticulations

0.0

0.5

1.0

1.5

Medium DL-rate 2 10 10

2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

High DL-rate 5 10 10

N with n=12 leaves
N with n=20 leaves

Figure 8 Performance of Alg. 1 vs naïve approach for six simulated datasets.

2 4 6 8 10
Number of reticulations

100

101

102

103

DP
 in

vo
ca

tio
ns

low DL,n=12
low DL,n=20
med DL,n=12
med DL,n=20
high DL,n=12
high DL,n=20
2r

20.543 r 0.113

2 4 6 8 10
Number of reticulations

100

101

102

103

DP
 in

vo
ca

tio
ns

low DL,n=12
low DL,n=20
med DL,n=12
med DL,n=20
high DL,n=12
high DL,n=20
2r

20.543 r 0.113

Figure 9 Top: Average number of DP invocations necessary to calculate an answer for datasets
with low ILS. Bottom: Average number of DP invocations necessary to calculate an answer for
datasets with medium ILS. Recall that blue line represents coefficients calculated by linear regression
for data with low and medium ILS combined.

M. Wawerka, D. Dąbkowski, N. Rutecka, A. Mykowiecka, and P. Górecki 17:21

A.4 Empirical experiment dataset
Organism names and database accession numbers of all species used in our research are listed
in Table 1.

Table 1 List of the full names and database accession numbers of coronavirus species used in our
research. Species were chosen from the dataset studied in [29].

Abbreviated
name Organism name Accession Number

(GenBank/GISAID)
Host
organism

Hu-Wuhan BetaCoV Wuhan-Hu-1 NC_045512.2 Human

Hu-Italy hCoV-19/Italy/
ABR-IZSGC-TE4836/2020 EPI_ISL_418260 Human

RaTG13 Bat CoV RaTG13 MN996532.1 Bat

Guangdong-Png hCoV-19/pangolin/
Guangdong/1/2019 EPI_ISL_410721 Pangolin

Guanxi-Png-P2V Pangolin CoV isolate
PCoV_GX-P2V MT072864 Pangolin

Bat-CoVZC45 Bat SARS-like CoV isolate
bat-SL-CoVZC45 MG772933.1 Bat

Bat-CoVZXC21 Bat SARS-like CoV isolate
bat-SL-CoVZXC21 MG772934.1 Bat

Bat-CoV273 Bat CoV BtCoV/273/2005 DQ648856.1 Bat
Bat-CoV 279 Bat CoV BtCoV/279/2005 DQ648857.1 Bat
HKU3-12 Bat SARS CoV HKU3-12 GQ153547.1 Bat
Rf1 Bat SARS CoV Rf1 DQ412042.1 Bat
SARS SARS CoV BJ01 AY278488.2 Human
SARS-BJ182-4 SARS CoV BJ182-4 EU371562 Human
Rs3367 Bat SARS-like CoV Rs3367 KC881006.1 Bat

BM48-31-BGR Bat CoV BM48-31/
BGR/2008 GU190215.1 Bat

WABI 2021

	1 Introduction
	2 Definitions
	2.1 Deep Coalescence Cost: embedding a tree into a (displayed) tree
	2.2 Scenarios between gene trees and phylogenetic networks
	2.3 Deep Coalescence Score of Scenarios

	3 Scores of scenarios vs. costs of displayed trees
	4 Dynamic Programming (DP) Algorithm to solve DC-MinRec
	4.1 Inferring used reticulations edges from DP

	5 Inferring Optimal Displayed Trees
	5.1 Solution to ODT
	5.2 Lower and upper bounds of the optimal cost of a displayed tree
	5.3 Inferring optimal trees displayed by level-k networks
	5.4 Beyond tree-child networks

	6 Experimental evaluation
	6.1 Evaluation on random datasets
	6.2 Evaluation on simulated datasets
	6.3 Empirical tests

	7 Conclusions
	A Experimental evaluation
	A.1 Random datasets results
	A.2 Simulated data preparation
	A.2.1 Species trees parameters
	A.2.2 Inferring networks from species trees
	A.2.3 Gene trees parameters
	A.2.4 Sequences parameters

	A.3 Simulated datasets results
	A.4 Empirical experiment dataset

