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—— Abstract
Advancements in metagenomics sequencing allow the study of microbial communities directly from
their environments. Metagenomics binning is a key step in the species characterisation of microbial
communities. Next-generation sequencing reads are usually assembled into contigs for metagenomics
binning mainly due to the limited information within short reads. Third-generation sequencing
provides much longer reads that have lengths similar to the contigs assembled from short reads.
However, existing contig-binning tools cannot be directly applied on long reads due to the absence
of coverage information and the presence of high error rates. The few existing long-read binning
tools either use only composition or use composition and coverage information separately. This may
ignore bins that correspond to low-abundance species or erroneously split bins that correspond to
species with non-uniform coverages. Here we present a reference-free binning approach, LRBinner,
that combines composition and coverage information of complete long-read datasets. LRBinner also
uses a distance-histogram-based clustering algorithm to extract clusters with varying sizes. The
experimental results on both simulated and real datasets show that LRBinner achieves the best
binning accuracy against the baselines. Moreover, we show that binning reads using LRBinner prior
to assembly reduces computational resources for assembly while attaining satisfactory assembly
qualities.
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1 Introduction

Metagenomics binning is an important area of study in metagenomics analysis. Broadly,
metagenomics enables the study of microbial genetic material directly from the source
environment [3]. This eliminates the necessity of lab culturing thus revealing the microbial
content of an environment as it is without culturing biases. Metagenomics binning is
one key problem in metagenomics study that facilitates the clustering of sequences into
different taxonomic groups. Mainly there are two approaches to address this problem; (1)
reference-based binning and (2) reference-free binning. Reference-based binning tools (e.g.,
Kraken [27], Centrifuge [8] and Kaiju [15]) bin sequences based on similarity by comparing with
a database of known reference genomes and thus face challenges when the reference database
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is unavailable or incomplete. At present, reference-free binning tools have been gaining
popularity over reference-based binning tools, especially in discovering novel or rare species
in complex metagenomics datasets. While Next-Generation Sequencing (NGS) technologies
produce short reads, existing reference-free binning tools typically rely on longer contigs that
are assembled from short reads and contain richer information for binning. Reference-free
binning tools (e.g., MetaBAT [6, 7], MaxBin [29, 28], BMC3C [30], BusyBeeWeb [12, 11],
SolidBin [24] and VAMB [18], etc.) bin contigs based on their composition and coverage
information, without using any reference database. For example, a recent work VAMB [18§]
introduced the use of deep variational auto-encoders to perform reference-free unsupervised
binning of contigs incorporating both the composition and coverage information. VAMB
then uses an iterative medoid clustering algorithm which extracts clusters (bins) in a local
search fashion. Thanks to the accurate composition and coverage information of contigs,
reference-free approaches show promising results in binning contigs from metagenomics
assemblies.

With the advent of Third Generation Sequencing (TGS) technologies such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), reads obtained are much
longer than NGS reads (>10kbp). Therefore, more information becomes available in the
reads themselves to support direct reads binning. However, contig-binning tools cannot be
directly applied to bin long reads (by treating them as contigs) because there is no coverage
information available for each long read. Moreover, while certain contig-binning tools make
use of single-copy marker genes to estimate the number of bins in the sample, the high
error rates of long reads and the varying coverages of different species make it infeasible to
derive accurate estimations. Furthermore, datasets containing raw long reads are much larger
in size compared to typical datasets containing contigs, and hence, demand more scalable
reference-free binning tools.

Recently, a long-read binning tool MetaBCC-LR [26] was introduced to bin error-prone
long reads. While MetaBCC-LR shows very promising results in binning long reads, it still
suffers from accuracy and scalability issues, especially in complex metagenomics datasets.
Firstly, MetaBCC-LR uses the composition and coverage information of long reads in a
separate manner. This can result in the ignorance of bins for species with low abundance
and incorrect bin split for species with non-uniform composition or coverage. Secondly, due
to its scalability issue, MetaBCC-LR has to employ a sampling strategy to work on a subset
of reads for large datasets, which affects its overall binning accuracy. In addition, binning
of long read datasets requires novel algorithms to detect clusters of vastly varying sizes
(hundreds to millions of reads per species), which is different from the contig-binning scenarios
(few hundreds of contigs per species [14]). Therefore, it is persistently demanding better
approaches to bin massive long-read datasets accurately and efficiently. The requirement is
further supported by the advent of PacBio HiFi technology [25] which produces accurate
and massive long-read datasets in metagenomics studies.

In this paper, we present LRBinner to bin TGS long reads without using any reference
databases. LRBinner combines the composition and coverage features and eliminates the need
to sub-sample large datasets. More specifically, LRBinner uses a variational auto-encoder to
obtain lower dimensional representations by incorporating both composition and coverage
information of the complete dataset. LRBinner further uses a distance-histogram-based
clustering algorithm that can capture confident clusters of varying sizes. LRBinner finally
assigns unclustered reads to obtained clusters using their statistical profiles. The experimental
results of LRBinner compared against other baselines show that LRBinner achieves better
binning results on both simulated and real datasets. Moreover, we show that binning long
reads by LRBinner prior to assembly helps to improve genome fraction of assemblies while
reducing the memory consumption for metagenomics assembly.
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2 Methods

LRBinner consists of three main steps; (1) learning lower dimensional latent representations
of composition and coverage, (2) clustering the latent representations and (3) obtaining
complete clusters. The complete workflow for LRBinner is demonstrated in Figure 1. In the
following sections, we will explain these three steps in details.

2.1 Stepl

LRBinner uses two typical binning features of metagenomic sequences, composition and
coverage. The composition and coverage of each long read is represented as trimer frequency
vectors and k-mer coverage histograms [26], respectively.

2.1.1 Computing Composition Vectors

Previous studies show that different species demonstrate unique genomic patterns [1, 4] and
thus can be used in composition-based metagenomics binning. Oligonucleotide frequency
vectors are one such genomic representation that can be used in metagenomics binning. Small
k-mer sizes (k varying from 3-7) have been used in the past to discriminate assembled contigs
of different origins [2, 7, 11, 20, 28] and 3-mers have been used in metagenomics binning of
error-prone long reads [26] which shows that trinucleotide frequency vectors provide stable
binning despite the noise level exist in TGS reads. Therefore in LRBinner, we utilise k=3 by
default which results in trinucleotide composition vectors. For each long read, we count the
frequencies of all 64 3-mers in this read and merge the reverse complements to form a vector
of 32 dimensions. The resulting vector is then normalised by the total number of 3-mers
observed in the read. We refer to this trimer frequency vector as V7.

2.1.2 Computing Coverage Vectors

While an all-vs-all alignment of long reads may provide coverage information for each long
read, it is usually too time-consuming to perform such alignments on large, long-read datasets
(requires indexing hundreds of thousands of reads, index searching of read minimizers and
pairwise-alignment of reads to filter false positives). Given a sufficiently large k, the frequency
of a k-mer is defined as the number of occurrences of this k-mer in the entire dataset. Long
reads from high-abundance species tend to contain k-mers with higher frequencies compared
to long reads from low-abundance species. Hence, a k-mer frequency vector can be computed
for each long read to represent coverage information without performing alignments [26]
to represent read coverage. In order to obtain such coverage histograms, we first compute
the k-mer counts of all long reads in the entire dataset by DSK [21] (the default value of
k=15). The counts are then indexed in memory by encoding each nucleotide in 2 bits as per
the encoding (i.e., A=00, C=01, T=10 and G=11) [21]. The resulting index is in the form
(ki, coverage(k;)) (as key, value pairs), where coverage(k;) is the number of occurrences of
the k-mer k; in the entire dataset. Now for each k-mer k; of a read, we obtain the frequency

from the index. These frequencies are then used to build a normalised histogram, V.

We chose a preset bin width (bin_width) for the histogram and obtain a vector of bins
dimensions. By default we set bin_width=10 and bins=32. All the k-mers with counts
exceeding the histogram limits are added into the last index of the histogram. We also
normalise the histogram by the total number of k-mers observed in the read.
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Figure 1 Overall workflow of LRBinner. (Step 1) The feature vectors of composition and coverage
information are computed from long reads. The feature vectors are fed into a variational auto-encoder
to obtain low-dimensional latent representations. (Step 2) Sample a seed point (read) in the latent
space and derive a confident cluster (bin) that contains this seed point. Step 2 is iterated until there
is no seed point. (Step 3) The unclustered points are assigned to the clusters using a statistical
model. Note that the 2-dimensional representation of points is only for the illustration purpose.
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2.1.3 Obtaining Latent Representations

For each long read, its coverage (V) and composition (V) vectors are concatenated to
form a single vector V of 64 dimensions. We use a variational auto-encoder to obtain lower
dimensional latent representations. The key motivation for using a variational auto-encoder
is to combine coverage and composition features effectively. Previous work shows that using
TSNE on concatenated coverage and composition reduced the effectiveness [26]. This is
mainly because TSNE do not attempt to learn meaningful weights for each feature, but rather
consider neighbourhoods using spatial distances. However, the variational auto-encoder
learns lower dimensional representations by meaningfully weighting features through a deep
neural network such that original data can be reconstructed from the decoding layers.

Our implementation of the variational auto-encoder consists of two hidden-layers in the
encoder and decoder. Each layer uses batch normalisation and dropout with p=0.1 during
the training phase. For each input vector V', the auto-encoder learns a latent representation
VL where VX ~ N(pi,0:;). The latent representation consists of 8 dimensions. Each
layer in the encoder and decoder contains 128 neurons. Similar to previous studies [18],
we use LeakyRELU (leaky rectified linear unit function) for p and softplus function for
o layers. Note that p and o represents neural network layers intended to learn the lower
dimensional means and standard deviations of each read’s distribution. We use the weighted
sum of reconstruction error E (equation 1) and Kullback-Leibler divergence [10, 18] Dg,
(equation 2) as the loss function. E.,, and E.., represent reconstruction errors of coverage
and composition respectively. Equation 3 demonstrates the complete loss function used.

E = Z(Vzn - Vout)2 (1)
Dy (latent|prior) = — Z %(1 +In(o) — p? — o) (2)

Total Loss = wco’chov + wcomEcom + wk:ldDKL (3)

Here we set Weop=0.1, Weom=1 and wgiq=1/500 as determined empirically using simulated
data. The decoder output was obtained through LeakyRELU activation in order to reconstruct
the scaled positive inputs. We train the auto-encoder with read batches of size 10,240 for 200
epochs. Finally, we obtain the predicted latent means of the input data from the encoder for
clustering. Each point in the latent mean corresponds to the relevant read in the original
input.

2.2 Step 2

In this step, we perform clustering of the latent means learnt by the variational auto-encoder.

The complete clustering algorithm of LRBinner is illustrated in Figure 2. Similar to previous
studies [18], we use the cosine distance as the distance measure for clustering. Note that
cosine distance between point a and b in latent space V* is defined as d(a,b)= Vi Vi
Given a point a, a distance histogram H, can be generated by computing the pairwise
distances between a and all other points and setting the bin width as A (A=0.005 in our
experiments). We define peak as the index of the first maximal of the distance histogram
H,. Similarly, the valley is defined as the index of the first minimal after the peak in the
distance histogram H,. Refer to the top right figure in Figure 2 for an example of the peak
and wvalley in a distance histogram.

TIVENIVE
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As shown in VAMB [18], a point with smaller valley-to-peak ratio H[valley]/H [peak]
is more likely to be the medoid of a cluster, where H[valley] and H[peak] are the number
of points corresponding to the valley and peak in the distance histogram H, respectively.
Therefore, VAMB randomly samples points, searches within a distance of 0.05 (up to 25
neighbouring points) and moves to another point if H[valley]/H [peak] can be further reduced.
This step is iterated until a local minimal point of H[valley]/H[peak] is inferred as a proper
cluster medoid and then the corresponding cluster is extracted by removing points within a
distance A X wvalley of the distance histogram. However, clusters of long reads are orders of
magnitude larger than clusters of contigs, thus mere local search of a cluster medoid may
be inefficient. Furthermore, while most contig clusters consist of hundreds of points per
species[14], the long-read clusters vary in size drastically (from hundreds of points to millions
of points), which demand for a more flexible search strategy rather than sampling points
within a fixed radius and up to a fixed number of neighbours. Hence, we design the following
strategy to dynamically extract clusters of varying sizes. Our algorithm consists of two steps;
(1) from a seed point to a candidate cluster and (2) from a candidate cluster to a confident
cluster.

2.2.1 From a Seed Point to a Candidate Cluster

A point s is called a seed point if its valley-to-peak ratio H[valley]/Hs[peak] < 0.5 in its
distance histogram H. Initially, LRBinner randomly picks a seed point s from the entire
dataset and obtains its distance histogram H,. Note that a distance histogram demonstrates a
candidate cluster. This candidate cluster consists of the points within the distance A x valley
in Hg, referred to as candidate cluster points. Compared to the seed point, some candidate
cluster points may have lower valley-to-peak ratio that result in more confident clusters.
However, the number of candidate cluster points may vary significantly depending on the
size of the ground-truth clusters. In the next section, we will show how to use sampling
strategies to find a confident cluster from a candidate cluster.

2.2.2 From a Candidate Cluster to a Confident Cluster

Given a candidate cluster, we sample 10% of candidate cluster points (up to 1,000 points)
to compare their corresponding distance histograms. For each point p in candidate cluster
points, we compute the valley-to-peak ratio Hy[valley]/Hp[peak] in its corresponding distance
histogram H,,. We chose a point x from the sample with the minimum H[valley]/H [peak]
value and extract a confident cluster which consists of points within a distance A x valley of
the distance histogram H,. In contrast with the iterative medoid search in VAMB [18], this
approach takes advantage of the rough estimation of the candidate cluster from a seed point
and thus allows us to dynamically and efficiently discover clusters with varying sizes. This
process is iterated until no further candidate clusters or seed points are observed. Please
refer to Section 5 for detailed information. The resulting clusters are depicted as detected
clusters in Figure 1. Note that few reads still remain unclustered due to the noise present in
composition and coverage vectors of error-prone long reads and we will show how to assign
them to existing bins in the next section.

2.3 Step 3
2.3.1 Obtaining Final Bins

Once all the clusters have been yielded, the points that are sparsely located are left aside.
However, such points could have the potential to improve the downstream assembly processes.
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histogram and derive a candidate cluster. Sample from the candidate cluster points and choose a
point with the minimum valley-to-peak ratio. Extract points before the valley to form a confident
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Hence, we assign such points to the detected clusters using a statistical model similar to
MetaBCC-LR [26]. For each cluster Cj the mean uf, uf and standard deviation o, of is
computed using the coverage and composition vectors; V¢ and V7T respectively.
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Finally the unclustered reads are assigned to the cluster C; using a maximum likelihood
computed using equation 4. The assignment of reads is performed such that equation 5 is
maximised. VZC and V2T are the coverage histogram and trimer frequency vectors of the
unclustered read (.

i = angax { PDP(VE . 0€) x PDF(T ) | (5)

K2

3 Experimental Setup

3.1 Datasets

We evaluated LRBinner using several simulated and real datasets containing long reads.
Detailed information about the datasets and constituent species are tabulated under Tables 3
and 4 of Appendix.

3.1.1 Simulated Datasets

We simulated two datasets using SimLoRD [23] to evaluate the performance of our method.
The first dataset consists of 8 species and the second dataset consists of 20 species. These
datasets are named as Sim-8 and Sim-20 respectively. We set the average read length
to be 5,000bp with default error model of SimLoRD (insertion probability=0.11, deletion
probability=0.04 and substitution probability=0.01).

3.1.2 Real Datasets

In order to evaluate LRBinner, we use several real datasets with known ground-truth
references. To determine the origins of the reads in these datasets, the reads were mapped to
the respective reference species using Minimap2[13]. The information about the datasets are
as follows.
Reads from ATCC MSA-1003 Mock Microbial Community with PacBio CCS reads from
NCBI BioProject number PRJNA546278 (MSA-1003). For the evaluation we used the
top 10 species which have more than 1% abundance.
PacBio-HiFi reads obtained from NCBI BioProject number PRJNA680590. There are 3
read samples (NCBI BioSample number SAMNI16885726) and each sample consists of 21
strains for 17 species as follows;
SRX9569057: Standard input library
SRX9569058: Low input library

SRX9569059: Ultra low input library (PCR amplified sample)

Detailed information about the simulated datasets is available in Section A of Appendix.
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3.2 Tools for Benchmarking

There is a limited number of tools that support binning of long reads. Remind that most
contig-binning tools cannot be directly applied to bin long reads (even for highly accurate

PacBio HiFi reads) because there is no coverage information available for each long read.

Hence, in our evaluation we use BusyBeeWeb [11] and MetaBCC-LR [26] which supports
error prone long-reads as input. However, BusyBeeWeb only supports up to 200MB of FASTA
formatted data. Hence, in our evaluation we have to provide BusyBeeWeb with a sub-sampled
set of reads and evaluated the binning precision and recall on this sub-sampled set.

3.3 Evaluation Criteria

In our evaluation we report precision (equation 6), recall (equation 7) and Fl-score (equation 8)
of binning. We transform the binning result to a matrix a of size K x S, where K denotes the
number of bins and S denotes the number of species. Note that axs; denotes the number of
reads assigned to bin k with ground truth species s. In order to evaluate the quality of binning,
we used AMBER [16] to obtain the completeness (defined as frue positives, for

true positives,+false negatives,
each bin b) and contamination (defined as 1—— posf;zzsf jjzz:s;ositivesb for each bin b). Please
note that we only compare AMBER results of MetaBCC-LR and LRBinner as BusyBeeWeb
does not bin the entire datasets due to limited input size. Furthermore, we assemble the
reads before and after binning using LRBinner. Metagenomics assemblies were performed
using wtdbg2 [22] and metaFlye [9]. We compare genome fractions, CPU-time and memory
usage in assembly evaluation. We used MetaQUAST [17] to obtain the genome fraction
(average percentage of bases aligned per reference genome) for the qualitative evaluation of

assembled contigs.

Yo mazg{ags}
Zk Zs ks

Precision =

(6)

> mazi{ags}
Recall = S an (7)

Precision x Recall
Fl1=2 8
% Precision + Recall (8)

4 Results and Discussion

We first compare precision, recall, F1 score and the estimated number of bins for binning
performance. We further present the completeness and contamination results of bins produced
by different binners. We finally evaluate assembly results using genome fraction and recorded
the resource utilisation for the chosen assembly tools.

4.1 Binning Results

We benchmarked the binning performance for BusyBeeWeb, MetaBCC-LR and LRBinner.

Table 1 demonstrates the binning results in terms of precision, recall, Fl-score and the
number of inferred bins. While BusyBeeWeb, MetaBCC-LR and LRBinner perform in a
comparable fashion on simulated datasets, LRBinner achieves the best estimation on the
number of bins with respect to the ground truth. As BusyBeeWeb has a limitation of input

11:9
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Table 1 Comparison of binning results of BusyBeeWeb, MetaBCC-LR and LRBinner.

Actual No. Evaluation

Dataset . o BusyBeeWeb  MetaBCC-LR  LRBinner
of Bins Criteria
Precision 90.41% 90.78% 99.14%
Sim.8 8 Recall 99.80% 96.18% 99.14%
im-
F1 score 94.87% 93.40 % 99.14%
Bins Detected 50 13 8
Precision 95.88% 82.97% 90.53%
. Recall 97.99% 81.95% 88.23%
Sim-20 20
F1 score 96.92% 82.46% 89.36%
Bins Detected 30 29 18
Precision 68.30% 93.69% 95.30%
MSA-1003 10 Recall 81.96% 95.50% 95.99%
F1 score 74.51% 94.59% 95.64%
Bins Detected 87 14 10
Precision 48.63% 80.94 80.47%
11 2. .82 .
SRX9569057 17 Reca 72.68% 85.8 90.68%
F1 score 58.27% 83.31 85.27%
Bins Detected 111 23 16
Precision 23.01% 70.18% 73.72%
SRX9569058 17 Recall 32.64% 86.63% 91.03%
F1 score 26.99% 77.54% 81.46%
Bins Detected 117 37 22
Precision 65.70% 66.69% 79.70%
11 . . 1.2
SRX9569059 17 Reca 95.36% 73.76% 91.25%
F1 score 77.80% 70.05% 85.08%
Bins Detected 124 16 20

data size (200Mb), its binning accuracy deteriorates on the real large datasets due to its
limited access to the complete dataset. Note that LRBinner improves binning results for all
the real datasets as indicated by the higher F1 scores.

Figure 3 illustrates the completeness of bins produced by MetaBCC-LR and LRBinner.
Note that BusyBeeWeb is not included in this comparison as it cannot handle the entire dataset
in most cases. LRBinner has been able to produce bins with better average completeness over
MetaBCC-LR. Figure 4 also illustrates the contamination levels of bins produced by MetaBCC-
LR and LRBinner. From the plots it is evident that LRBinner produces bins with lower
contamination in all datasets except for SRX9569059. Note that the dataset SRX 9569059
has been generated from a PCR amplified sample leading to a significant deviation from
the original sample abundances in contrast with SRX9569057 and SRX9569058 datasets.
For example, in SRX9569059, the abundance of Faecalibacterium prausnitzii drops from
~ 16% to ~ 8% whereas the abundance of Fusobacterium nucleatum surges from ~ 4% to
~ 7%, which may result in contamination of long reads in binning results.

4.2 Assembly Results

We assembled the reads binned by LRBinner to evaluate the potential assembly quality
changes. For the assembly, we chose the two state-of-the-art long-read assemblers wtdbg2 [22]
and metaFlye [9]. Table 2, demonstrates that binning long reads prior to assembly by
LRBinner improves the genome fraction for all wtdbg2 assemblies (up to 40%) and maintains
comparable genome fractions for metaFlye assemblies. This is not surprising as metaFlye is
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Figure 3 Comparison of bin completeness between MetaBCC-LR and LRBinner.

a metagenomics specialised assembler in contrast with wtdbg2. For example, in the datasets
SRX9569057, SRX9569058 and SRX9569059, binning via LRBinner enabled wtdbg2 to

recover low-abundance species which were ignored in the assembly of the entire raw dataset,

e.g., Methanobrevibacter smithii (from 0 to 96%), Saccharomyces cerevisiae (from 0 to 75%)
and Candida albican (from 0 to 70%). This is because LRBinner allows wtdbg2 to estimate
more appropriate parameters in each bin rather than applying the same parameters across
the entire dataset.
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Figure 4 Comparison of bin contamination between MetaBCC-LR and LRBinner.
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Another advantage of binning prior to assembly is the reduction of the computing resources
for assembly. As demonstrated in Table 2, the peak-memory usage has been drastically
reduced in both wtdbg2 (upto 10x) and metaFlye (upto 4x) assemblies. Note that the CPU
time is comparable as binning long reads may not lead to significant reduction of k-mer
indexing cost and the construction and simplification of assembly graphs.

Table 2 Comparison of assembled genome fractions, CPU time consumed for assembly and peak
memory usage of assembly before and after binning the reads.

Dataset Assembly Genome Fraction CPU Hours Peak Memory (GB)
atase
Tool Raw Binned Raw Binned Raw Binned
Sim-8 wtdbg2 98.80% 98.90% 0.26 0.84 9.28 0.96
im-
metaFlye  99.90% 99.85% 16.13 11.64 44.12 10.65
Sim-20 wtdbg2 97.84% 99.19% 0.16 2.28 10.60 0.92
metaFlye  99.80% 99.75% 19.44 20.28 44.70 11.23
MSA-1003 wtdbg2 67.45% 82.50% 0.31 1.05 23.43 19.61
metaFlye 91.40% 91.74% 155.96 158.59 62.28 45.38
2 40.4 .02 .2 1. 21.72 .
SRX9569057 wtdbg 0.40% 73.02% 0.26 56 7 3.88
metaFlye 77.73% 73.68% 122.00 116.20 57.91 26.31
SRX9569058 wtdbg2 37.51% 80.65% 0.30 1.98 30.79 3.86
metaFlye 79.16% 79.63% 211.61 212.58 87.62 41.37
2 41. . .2 1.82 25. .
SRX9569059 wtdbg 00% 80.38% 0.26 8 5.63 3.80

metaFlye 79.69 77.46% 152.64 129.41 62.62 30.56

5 Implementation

In order to restrict the iterative search for clusters, we use early termination parameters
in our algorithm. We stop drawing seed points when the remaining number of reads
reaches below min_ cluster__size (=5000 by default) or the number of iterations has passed
mazx__iterations (=1000 by default). We executed MetaBCC-LR and LRBinner on 5 sub-
sampled datasets from Sim-8. We set MetaBCC-LR to skip the sampling step to make a fair
comparison with LRBinner. Figure 5 illustrates the variation of time with increasing dataset
size. It is evident that LRBinner scales well whereas time consumption of MetaBCC-LR
grows much rapidly. Note that we do not consider BusyBeeWeb for this evaluation as it does
not bin complete datasets.

LRBinner was implemented using C+4 and Python version 3.7. The deep learning
component is implemented using PyTorch [19] and Numpy [5]. We conducted our assemblies
on NCI Australia with 2 x 24-core Intel Xeon Platinum 8274 (Cascade Lake) 3.2 GHz CPUs
192GB RAM and binning on Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 16GB RAM (4
core 8 threads) running Ubuntu Linux. We used 28 cores (with 56 threads hyper-threading)
for assembly and 8 threads for binning.

6 Conclusion

In this paper, we presented LRBinner, a long read binner capable of binning error-prone
long reads using both coverage and composition information. Our work extends the use of
variational auto-encoders to combine raw features and learn a better latent representation
for long-read binning. Furthermore, we presented a novel clustering strategy that can
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Figure 5 Wall time used by MetaBCC-LR and LRBinner without any sampling of data.

perform clustering on large datasets with varying cluster sizes. Performance of LRBinner

was evaluated against existing long-read binners using simulated and real datasets. Our
experimental results show that LRBinner outperforms state-of-the-art long-read binning
tools and also improves resource usage of downstream assembly.

One limitation of LRBinner is the inability to distinct shared reads that arise shared

genomic regions between different species. Resolution of such regions demands more experi-
ments and significant improvements to the methodology as future work. Furthermore, we

intend to introduce better noise handling to the clustering algorithm and investigate the
potential of combining the binning and assembly of long reads simultaneously.
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A Information About Datasets

Tables 3 and 4 demonstrate the simulated and real dataset information respectively. Note
that the Table 3 tabulates the coverages used for simulation using SimLoRD [23].

Table 3 Information of simulated datasets.

Dataset Number of Reads Total Size Species Coverage
Acetobacter pasteurianus 25
Bacillus cereus 50
Chlamydophila psittaci 80
Sim.-8 432,333 3 5Gh Escherichia coli 125
Haemophilus parainfluenzae 350
Lactobacillus casei 200
Thermococcus sibiricus 150
Streptomyces scabiei 100
Amycolatopsis mediterranei 25
Arthrobacter arilaitensis 65
Brachyspira intermedia 20
Corynebacterium ulcerans 40
Erysipelothrix rhusiopathiae 55
Enterococcus faecium 50
Mycobacterium bovis 80
Photobacterium profundum 85
Streptococcus pyogenes 100
Sim-20 666.735 5.3Gb Xanthobacter autotrophicus 150
Rhizobium leguminosarum 100
Francisella novicida 150
Candidatus Pelagibacter ubique 67
Halobacterium sp 65
Lactobacillus delbrueckii 60
Paenibacillus mucilaginosus 90
Rickettsia prowazekii 100
Thermoanaerobacter brockii 110
Yersinia pestis 105
Nitrosococcus watsonii 95
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Table 4 Information of real datasets.

Dataset Number of Reads Total Size Species Abundance
Acinetobacter baumannii 0.18%
Bacillus pacificus 1.80%
Bacteroides vulgatus 0.02%
Bifidobacterium adolescentis 0.02%
Clostridium beijerinckii 1.80%
Cutibacterium acnes 0.18%
Deinococcus radiodurans 0.02%
Enterococcus faecalis 0.02%
Escherichia coli 18.0%
MSA-1003 2.358.257 19Gb Helicoba?ter pylori ‘ 0.18%
Lactobacillus gasseri 0.18%
Neisseria meningitidis 0.18%
Porphyromonas gingivalis 18.0%
Pseudomonas aeruginosa 1.80%
Rhodobacter sphaeroides 18.0%
Schaalia odontolytica 0.02%
Staphylococcus aureus 1.80%
Staphylococcus epidermidis 18.0%
Streptococcus agalactiae 1.80%
Streptococcus mutans 18.0%
Faecalibacterium prausnitzii 14.82%
Veillonella rogosae 20.01%
Roseburia hominis 12.47%
Bacteroides fragilis 8.36%
Prevotella corporis 6.28%
Bifidobacterium adolescentis 8.86%
Fusobacterium nucleatum 7.56%
Lactobacillus fermentum 9.71%
SRX9569057 1,978,852 17Cb Clostridioides difficile 1.10%
Akkermansia muciniphila 1.62%
SRX9569058 2,770,833 25Gb  Methanobrevibacter smithii 0.17%
Salmonella enterica 0.0065%
SRX9569059 2,480,208 20Gb  Enterococcus faecalis 0.0011%
Clostridium perfringens 0.00009%
Escherichia coli (JM109) 1.83%
Escherichia coli (B-3008) 1.82%
Escherichia coli (B-2207) 1.65%
Escherichia coli (B-766) 1.66%
Escherichia coli (B-1109) 1.77%
Candida albicans 0.16%
Saccharomyces cerevisiae 0.16%
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