
Treewidth-Based Algorithms for the Small
Parsimony Problem on Networks
Celine Scornavacca #

Institut des Sciences de l’Evolution, Université de Montpellier, CNRS, IRD, EPHE, France

Mathias Weller #

LIGM, CNRS, Université Gustave Eiffel, Paris, France

Abstract
Phylogenetic reconstruction is one of the paramount challenges of contemporary bioinformatics.
A subtask of existing tree reconstruction algorithms is modeled by the Small Parsimony problem:
given a tree T and an assignment of character-states to its leaves, assign states to the internal
nodes of T such as to minimize the parsimony score, that is, the number of edges of T connecting
nodes with different states. While this problem is polynomial-time solvable on trees, the matter
is more complicated if T contains reticulate events such as hybridizations or recombinations, i.e.
when T is a network. Indeed, three different versions of the parsimony score on networks have
been proposed and each of them is NP-hard to decide. Existing parameterized algorithms focus
on combining the number of possible character-states with the number of reticulate events (per
biconnected component). Here, we consider the treewidth of the undirected graph underlying the
input network as parameter, presenting dynamic programming algorithms for (slight generalizations
of) all three versions of the parsimony problem on networks. Our algorithms use a formulation of
the treewidth that may facilitate formalizing treewidth-based dynamic programming algorithms on
phylogenetic networks for other problems.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Applied
computing → Molecular sequence analysis

Keywords and phrases Phylogenetics, parsimony, phylogenetic networks, parameterized complexity,
dynamic programming, treewidth

Digital Object Identifier 10.4230/LIPIcs.WABI.2021.6

Funding This work was supported by French Agence Nationale de la Recherche through the
CoCoAlSeq project (ANR-19-CE45-0012).

Acknowledgements We thank Christophe Paul for sharing his expertise on treewidth formulations.

1 Introduction

Molecular phylogenetic reconstruction consists in inferring a well-founded evolutionary
scenario of a set of species from molecular data [12]. An evolutionary scenario, also called
a phylogeny, is usually represented by a directed tree with a unique source called root. In
a phylogeny, the tips of the tree are associated to extant species for which we have data,
and each internal node represents an extinct species giving rise to new species – a speciation.
Therefore, each internal node represents the hypothetical ancestor of all species below it, and
the root models the lowest common ancestor of all the species at the tips.

Parsimony on Trees

In this paper, molecular data consists of a set of molecular sequences (e.g. DNA or protein
sequences) of the same length (one sequence per species). This kind of data can be seen as
a matrix M of n sequences, each having m characters (exhibiting one of c possible states)
where the state Mi,j corresponds to the jth character of the ith species. There are several

© Celine Scornavacca and Mathias Weller;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:celine.scornavacca@umontpellier.fr
mailto:mathias.weller@u-pem.fr
https://doi.org/10.4230/LIPIcs.WABI.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

methods to reconstruct well-founded phylogenies from matrices of characters [12]. They
are all based on the idea of retrieving similarities among species by comparing the states
taken by these species at the different characters of M . Here, we will focus on parsimony
methods. The main hypothesis of these methods is that character changes are not frequent.
Thus, the phylogenies that best explain the data are those requiring the fewest evolutionary
changes, i.e. the ones having the optimal parsimony score, formally defined in Section 4. The
problem of finding the optimal parsimony score for a given phylogeny T with respect to a
matrix M is called the small parsimony problem and can be solved in O(n ·m · c) time [14]
since each column in the matrix can be analyzed independently in linear time. When T is
unknown, the problem of finding the phylogeny minimizing the parsimony score is called
the big parsimony problem. This latter is known to be NP-hard and numerous heuristic
techniques for it are known [12].

Parsimony on Networks

When the evolution of the species of interest include, in additions to speciations, reticulate
events such as hybridizations or recombinations, a single species may inherit from multiple
direct ancestors. In this case, the phylogenies are no longer represented by rooted trees
but by rooted DAGs [16] called networks. When scoring a given network, three very
different definitions of the parsimony score have been proposed: the hardwired [20], the
softwired [15, 26], and the parental parsimony score [32]. Roughly, the hardwired score takes
into account all edges of the given network (characters are inherited from all parents), the
softwired score takes only the edges of any “switching” (each character is inherited from one
parent), and the parental score allows embedding lineages into the network (each allele of a
character is inherited from one parent). See Section 4 for details and Figure 3 for an example.
While these definitions coincide for trees, they give rise to three different small parsimony
problems for networks.

When tracing mutually dependent characters (e.g. different genomic locations in a
same non-recombinant region) on networks, we also have to make sure that dependent
characters are inherited from the same parent (some columns of the matrix have to use the
same “switching”/“embedding”). To avoid dealing with this problem, the small parsimony
problems on networks have been studied predominantly under the assumption of independent
genomic locations. This boils down to having m = 1 since each column of the matrix can be
analyzed independently (as is the case for the small parsimony problem on trees). Another
popular restriction is to consider binary networks, in which the root has outdegree 2, tips
have indegree 1, and internal nodes have either indegree 1 and outdegree 2 (speciations) or
indegree 2 and outdegree 1 (reticulations).

The hardwired small parsimony problem has been proven NP-hard and APX-hard
whenever the number of states that a character can take, denoted c, is strictly greater
than 2, and polynomial time solvable for binary characters [13]. A polynomial-time 1.35-
approximation for all c and a 12/11-approximation for c = 3 have been proposed [13].
Additionally, the problem has been shown fixed-parameter tractable (FPT) in the parsi-
mony score [13], and with respect to c + r, where r is the number of reticulate events in
the network [21].

The softwired small parsimony problem is also NP-hard and APX-hard [19, 13] for binary
characters, and not FPT in the parsimony score (it is NP-hard to know if the softwired
parsimony score is 1). Also, it has been shown that, for any constant ϵ > 0, an approximation
factor of n1−ϵ is not possible in polynomial time, unless P = NP. On the positive side, the
problem is FPT in c+ r [26, 13] and c+ ℓ, where ℓ is the level of the network [18, 13] (the
maximum number of reticulations over all biconnected components of the network).

C. Scornavacca and M. Weller 6:3

Unsurprisingly, the parental small parsimony problem has also been proven NP-hard,
even for very restricted classes of networks [29], but is FPT both with respect to c+ r and
with respect to c+ ℓ.

In this paper, we consider the case of independent characters, showing that the three
variants of the small parsimony problem on networks are fixed-parameter tractable with
respect to c+ t, where t is the treewidth of the input network. Our proofs are constructive in
the sense that a dynamic programming algorithm is provided for each version of the problem.
Since the treewidth can be arbitrary small, even for growing values of ℓ, our algorithms can
potentially be orders of magnitude faster than the state-of-the-art solutions. Moreover, our
formulations are not limited to binary networks and they can take into account polymorphism
as well as external information controlling the states that ancestral species may take.

Treewidth for Phylogenetic Networks

The treewidth of a graph can roughly be described as a measure of “tree-likeness” and it ranks
among the smallest of such parameters [2] (in particular, the treewidth can be seen to be
smaller than the level ℓ on any network). Together with the fact that it facilitates the design
of dynamic programming algorithms, this explains the enormous popularity the treewidth
received in the parameterized complexity community [5]. Starting with the groundbreaking
work of Bryant and Lagergren [7] (using the celebrated result of Courcelle [9]), treewidth
also gained traction with researchers studying algorithms for phylogenetics-related problems
(surveyed in [8]). While this yielded some algorithms parameterized by the treewidth of
the display graph of multiple trees (the result of “gluing” all trees at their leaves), we are
not aware of any algorithms parameterized by the treewidth of the input network. In an
attempt to facilitate the use of this parameter in future work, we dedicate Section 3 to
presenting a “phylogenetics-friendly” formulation by representing tree-decompositions of the
input network as a rooted tree Γ on the same vertex set as the network. In particular, this
formulation generalizes our previously considered parameter “scanwidth” [3], which can be
expected to yield easier dynamic programming formulations at the cost of being slightly
larger than the treewidth.

Missing proofs are deferred to the appendix at the end of the paper.

2 Preliminaries

Mappings

For any x and y, we define δ(x, y) to be 0 if x = y and 1, otherwise, and we abbreviate
1 − δ(x, y) =: δ(x, y). We further abbreviate δ(ϕ(x), ϕ(y)) as δϕ(x, y) for any function ϕ.
We may denote a pair (x, y) as x → y if it is referring to an assignment of y to x by
some function and as xy if it refers to an arc in a network. We sometimes use the name
of a function ϕ : X → Y to refer to its set of pairs {x → y | ϕ(x) = y} and we let
ϕ |Z := {(x → y) ∈ ϕ | x ∈ Z} denote the restriction of ϕ to Z. We say ϕ(x) = ⊥ to indicate
that ϕ is not defined for x. We denote the result of forcing ϕ(x) = y (whether or not x is
mapped by ϕ) as

ϕ [x → y] :=
{
ϕ ∪ {x → y} if ϕ(x) = ⊥
(ϕ \ {x → ϕ(x)}) [x → y] otherwise

Finally, for sets Z, X and Y ⊆ X and functions ϕ and ψ, we write ψ ⊴ ϕ (and say that ψ is
a subfunction of ϕ) if

WABI 2021

6:4 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

(a) ϕ : X → Z and ψ : Y → Z and ψ(x) ≤ ϕ(x) for all x ∈ Y , or
(b) ϕ : X → 2Z and ψ : Y → Z and ψ(x) ∈ ϕ(x) for all x ∈ Y , or
(c) ϕ : X → 2Z and ψ : Y → 2Z and ψ(x) ⊆ ϕ(x) for all x ∈ Y .

Graphs and Phylogenetic Networks

In this work, we consider (weakly) connected directed acyclic graphs (DAGs) N that have
a unique source ρN called root. If the sinks (aka leaves) of N are labeled, we call N a
phylogenetic network. We denote the set of nodes of N with in-degree at least two by R(N)
and we call such nodes reticulations. If R(N) = ∅, then N is called a tree. The result of,
for each v ∈ R(N) removing all but one of its incoming arcs is called a switching of N and
S(G) denotes the set of all switchings of N (observe that all switchings are spanning trees).
Let v ∈ V (N). We denote the successors (or “children”) of v in G by SuccG(v) and its
predecessors (or “parents”) by PredG(v). If N contains a directed u-w-path, then we say
that w is a descendant of u and u is an ancestor of w (denoted as w ≤N u and w <N u

if u ̸= w). A set Z ⊆ V (N) such that u ̸<N w and w ̸<N u for all u,w ∈ Z is called an
anti-chain in N . The induced subgraph N [Z] of a set Z ⊆ V (N) is the result of removing all
nodes x ∈ V (N) \ Z from N (together with their incident arcs) and, for any v ∈ V (N), the
network Nv := N [{w | w ≤N v}] is called the subnetwork rooted at v.

Large parts of this work are in context of a rooted tree Γ on V (N) (see Figure 1).
Specifically for the tree Γ, we permit ourselves to abbreviate V (Γx) to Γx to increase
readability. In such context, we additionally define the following sets for any nodes y, z ∈
V (N): Pred↑y

G (z) := PredG(z) ∩ Γy and Pred↓y
G (z) := PredG(z) \ Γy denote the respective

predecessors of z in N that are or are not in Γy. Likewise, Succ↓y
G (z) := SuccG(z) ∩ Γy and

Succ↑y
G (z) := SuccG(z) \ Γy denote the respective successors of z in N that are or are not

in Γy – notice that the arrow in the notation indicates the direction of the arc between z

and the members of the set when drawing Γ top-to-bottom. If z = y, we drop y and simply
write Pred↓

G(z), Pred↑
G(z), Succ↓

G(z), and Succ↑
G(z). We also abbreviate Pred↓

G(z) ∩R(G) =:
PredR↓

G (z) and Succ↑
G(z) ∩R(G) =: SuccR↑

G (z) as well as Pred↓
G(z) \R(G) =: PredT↓

G (z) and
Succ↑

G(z) \R(G) =: SuccT↑
G (z). All these functions generalize to sets Z ⊆ V (N) (for example,

PredG(Z) :=
⋃
z∈Z PredG(z)\Z). Further, for any X ⊆ V (N), we define the sets of arcs of N

(a) from a node u ∈ X to any ancestor of u in Γ as A↑
X(N) := {uw ∈ A(N) | u ∈ X∧u <Γ w}

and (b) to a node u ∈ X from any ancestor of u in Γ as A↓
X(N) := {uw ∈ A(N) | w ∈

X ∧ w <Γ u}. For brevity, we abbreviate AX(N) := A↑
X(N) ∪ A↓

X(N), A↑
v(N) := A↑

Γv
(N),

A↓
v(N) := A↓

Γv
(N), and Av(N) := AΓv (N).

3 An Alternative Formulation of Treewidth

In this section, we give an alternative definition of the treewidth, which allows to tackle the
small parsimony problem for networks in a simpler and more intuitive way. Note that this
alternative definition is known in the FPT community (Dendris et al. [11] call it the “support”
of a vertex with respect to an ordering (when referring to Arnborg [1]) and Mescoff et al. [25],
call it “tree vertex separation”). However, in these works its connection to treewidth is
mostly touched in passing, so we felt the need to prove it explicitly here.

For a linear ordering σ of the nodes of an undirected graph G and a node x of G, let
σ[1..x] be the restriction of σ to the nodes preceeding x (that is, to {y | y ≤σ x}). We write
x⇝G,σ y if x and y are connected in G[σ[1..x]]. Note that ⇝G,σ is a partial order on V (G).

C. Scornavacca and M. Weller 6:5

ρΓ

x

v1 v2 v3 = vt

Succ↑
N

(Γx) Pred↓
N

(Γx)

y︸ ︷︷ ︸
Z2

x

A↑
x(N)

A↓
x(N)

A↑
{x}(N)

Figure 1 A tree Γ is depicted in gray and some arcs of N are depicted in black. Recall that t is
the number of children of x and Zi :=

⋃
1≤j≤i

Γvj . Note that x ∈ Succ↑
N (Z2) \ Succ↑

N (Γx) since x is
an ancestor of a node of Γv2 in N . Note that x is a reticulation of N with parents y (drawn) and z

(not drawn) with y <Γ v2 <Γ x <Γ z. Thus, z ∈ Pred↓
N (x) but y ∈ Pred↑v2

N (x) ⊆ Pred↑
N (x). Finally,

note that YWΓ
x = Pred↓

N (Γx) ∪ Succ↑
N (Γx) and

⋃
i≤t

YWΓ
vi

⊆ YWΓ
x ⊎{x}.

▶ Definition 1. Let σ be a linear order of the nodes of a graph G and let v ∈ V (G). Then,

ZWσ
v := {u >σ v | ∃w∈σ[1..v]uw ∈ E(G) ∧ v⇝G,σ w} and zwσ

v := | ZWσ
v |.

Further, we abbreviate zw(σ) := maxv zwσ
v and zw(G) := minσ zw(σ). Further, we call the

transitive reduction of the directed graph (V (G), A∗) with A∗ := {uv ∈ V (G)2 | u⇝G,σ v}
the canonical tree Γσ of σ for G (as it turns out, Γσ is a rooted tree, see below).

In the following, we say that a rooted tree Γ on V (G) agrees with a directed or undirected
graph G if, for all uv ∈ E(G) either u <Γ v or v <Γ u. We also extend the definition of
⇝G,σ to such trees by writing u⇝G,Γ v if u and v are connected in G[Γu].

▶ Definition 2. Let G be a graph and let Γ agree with G. For each v ∈ V (G), we define

YWΓ
v := {u >Γ v | ∃w≤Γvuw ∈ E(G)} and ywΓ

v := | YWΓ
v |

(see Figure 2). Then, we abbreviate yw(Γ) := maxv ywΓ
v and yw(G) := minΓ yw(Γ).

▶ Lemma 3. Let Γ and Γ′ be rooted trees agreeing with an undirected graph G and let ≤Γ′

be a subset of ≤Γ, that is, x ≤Γ′ y ⇒ x ≤Γ y for all x, y ∈ V (G). Then, yw(Γ′) ≤ yw(Γ).

Proof. Let x ∈ V (G) and let y ∈ YWΓ′

x , that is, y >Γ′ x and there is some z ≤Γ′ x with
yz ∈ E(G). Since ≤Γ is a superset of ≤Γ′ , we have y >Γ x ≥ z, implying y ∈ YWΓ

x . ◀

▶ Lemma 4. Let σ be a linear order of the nodes of an undirected, connected graph G and
let Γσ be its canonical tree. Then,
(a) for each u and v with v ≤Γσ u, we have v ≤σ u,
(b) for each u, v ∈ V (G), we have v ≤Γσ u if and only if u⇝G,σ v,
(c) Γσ is connected,
(d) Γσ is rooted at the last vertex r of σ,
(e) Γσ is a tree,
(f) for all uv ∈ E(G) with v <σ u, we have v <Γσ u,
(g) Γσ agrees with G, and
(h) YWΓσ

x = ZWσ
x for all x ∈ V (G).

WABI 2021

6:6 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

ρN

x

ρΓ

x

ρN

ρN x

Figure 2 Example of a network N (left) with a linear order σ of its nodes (below) as well as
their canonical tree Γσ (right) whose arcs are not drawn (the arcs of N are drawn in their stead).
Reticulations are black, leaves are boxes. For the first (wrt. σ) reticulation x, the set V (Γσ

x) is marked
(gray area), the arcs uv ∈ Ax(N) are dotted and the nodes in YWΓ

v = ZWσ
v are gray pentagons.

▶ Observation 5. Let Γ be a tree, let Γ′ be a contraction of Γ, and let x, y ∈ Γ′ be distinct.
Then, x <Γ′ y if and only if x <Γ y.

For the following lemmas, it makes sense to “normalize” some aspects of the structure of
agreeing trees. To this end, for a rooted tree T and for X ⊂ V (T) that does not contain the
root r of T , we let T ↑ X denote the result of (1) replacing each arc uv with uv ∩X = {u}
with the arc wv where w is the lowest ancestor of u that is not in X, and (2) removing all
nodes in X from T . Note that T ↑ X may have strictly larger out-degree than T , but does
not create new ancestor-descendant relations.

▶ Observation 6. Let T be a tree, let X ⊆ V (T) not contain its root, and let u ≤T↑X v.
Then, u ≤T v.

▶ Lemma 7. Let Γ be a rooted tree agreeing with an undirected graph G. There is some Γ∗

agreeing with G such that yw(Γ∗) ≤ yw(Γ) and, for all u, v ∈ V (G) with v ≤Γ∗ u, we have
u⇝G,Γ∗ v.

▶ Lemma 8. Let Γ be a tree agreeing with a graph G and let p be a non-empty path in G.
Then, p contains a unique maximum u with respect to Γ, that is, v ≤Γ u for all vertices v of p.

Proof. Let x on p be maximal with respect to Γ (that is, for all z on p, we have x ̸<Γ z) and
assume towards a contradiction that there is another vertex y ̸= x on p that is maximal w.r.t.
Γ. Without loss of generality, let x precede y in p and let pxy denote the unique x-y-subpath
of p. Since y ≰Γ x, there is an edge st ∈ E(G) on pxy with s ≤Γ x and t ≰Γ x. Hence,
t ≰Γ s. Further, s ≰Γ t since, otherwise, the unique t-s-path in Γ contains x, contradicting
its maximality. But then Γ does not agree with G. ◀

▶ Lemma 9. Let G be a graph. Then, zw(G) = yw(G).

C. Scornavacca and M. Weller 6:7

1100

1100

1100

1100

1100

Figure 3 Example for parsimony scores of a network (in gray). Black edges participate in the
score (solid = score 0, dotted = score 1). For the hardwired score (left), all edges of the network
are considered. For the softwired score (2 possible trees: middle), only edges of any switching are
considered. For the parental score (4 possible trees: middle & right), a tree is inscribed in the network.

▶ Definition 10. Let G be a graph and let T be a rooted tree whose vertices are associated to
subsets of V (G) by a function B : V (T) → 2V (G) such that
(a) for each uv ∈ E(G), there is some x ∈ V (T) with uv ⊆ B(x) and
(b) for each v ∈ V (G), the nodes x ∈ V (T) with v ∈ B(x) are weakly connected in T .
We call (T,B) a tree decomposition of G and its width is tw(T,B) := maxx∈V (T) twT,B

x

with twT,B
x := |B(x)| − 1. We call tw(G) := minT,B tw(T,B) the treewidth of G. We call

(T,B) nice if T is binary and all x ∈ V (T) fall into one of the following categories
“leaf”: x is a leaf of T and B(x) = ∅,
“root”: x is the root of T and B(x) = ∅,
“introduce v”: x has a single child y in T and B(y) = B(x) − v,
“forget v”: x has a single child y in T and B(x) = B(y) − v,
“join”: x has two children y and z and B(x) = B(y) = B(z).

All graphs G have a nice tree decomposition with |V (T)| ∈ O(tw(G) · |G|) and width
tw(G) [23]. Further, since all bags of (T,B) containing a vertex v of G are connected, we
can observe the following.

▶ Observation 11. Let (T,B) be a nice tree decomposition for an undirected graph G and let
v ∈ V (G). Then, T contains a single “forget v”-node x and y <T x for all y with v ∈ B(y).

▶ Proposition 12. Let G be a graph. Then, yw(G) = tw(G). Further, given a tree
decomposition (T,B) for G, we can compute a tree Γ agreeing with G such that yw(Γ) =
tw(T,B) in linear time.

4 Parsimony

Given states of a character, observed in extant species, as well as a species phylogeny, the
small parsimony problem asks to infer states of the same character for all ancestral species
such as to minimize the “parsimony score” of this assignment. This problem comes in
three flavors called “hardwired”, “softwired”, and “parental” parsimony. Throughout this
section, let C be a fixed finite set (a “character”). For convenient use of the ⊴-relation,
let C be an anti-chain (that is, for each x, y ∈ C, we have x ≤ y only if x = y). Formally,
for a phylogeny N and a function ϕ : V (N) → 2C , we define the hardwired and softwired
parsimony score as

parHN (ϕ) := min
ψ:V (N)→C, ψ⊴ϕ

∑
uv∈A(N)

δψ(u, v) parSN (ϕ) := min
ψ:V (N)→C, ψ⊴ϕ

T∈S(N)

∑
uv∈A(T)

δψ(u, v).

WABI 2021

6:8 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

The “parental parsimony” is defined using “parental trees” but, in this work, we use the
equivalent formulation using lineage functions [29].

▶ Definition 13. A lineage function for a phylogeny N is any function f : V (N) → 2C . The
cost of f is cost(f) :=

∑
v∈V (N) costf (v) where

costf (v) := |f(v) \
⋃

u∈Pred(v)

f(u)| +


−1 if v = ρN and |f(v)| = 1
0 if v ̸= ρN and |f(v)| ≤

∑
u∈Pred(v) |f(u)|

∞ otherwise

Given N and a function ϕ : V (N) → 2C , we denote the set of all lineage functions f on N

with f ⊴ ϕ as LFN,ϕ. Finally, the parental parsimony score is

parPN (ϕ) := min
f∈LFN,ϕ

cost(f) (1)

For each of the presented variants, we give a dynamic programming formulation using
a given tree Γ that agrees with the undirected graph G underlying the input network and
corresponds to Lemma 7, that is, each non-leaf x of Γ has a child v with x ∈ YWΓ

v . The
running time of the resulting algorithm will depend on the width yw(Γ) of Γ (recalling that
yw(Γ) coincides with the treewidth of G for optimal Γ).

As stated in the introduction, in this paper we focus on the case of analyzing a specific
position in the genome. Since the function ϕ can associate several states to a same leaf,
our definition permits to describe polymorphism in a population. While, in our current
formulation, the algorithms “choose” an optimal state to associate to each leaf, the parental
parsimony can be easily modified to explain all states of each leaf at the end of the run.
This allows keeping the information on polymorphism in all steps of the algorithm (see
Section 4.3). Note also that ϕ can associate information to internal nodes, thus permitting
the user to impose restrictions on the states associated to ancestral species.

In the presentation of the dynamic programming, a table entry Qyx[z] means that x and
y are considered fix for this table and z is a variable index. Further, tables Qy1

x1
and Qy2

x2

are independent of one another, allowing an implementation to forget Qy1
x1

if it is no longer
needed, even if Qy2

x2
still is. In the following, for an anti-chain Y in Γ and a class G of

subnetworks of N , a Y -substitution system of G is a series of subnetworks (Ny)y∈Y of N such
that, for all N ′ ∈ G, the digraph (V (N), (A(N ′) \

⋃
y∈Y Ay(N ′)) ∪

⋃
y∈Y Ay(Ny)) is also in G.

Roughly, we can “swap out” the arcs in Ay(N ′) for Ay(Ny) for each y ∈ Y without loosing
membership in G. Note that the Ny are not necessarily distinct, so a trivial Y -substitution
system for {N ′} would be (N ′)y∈Y . The formulations are based on the following lemma
about independent sub-solutions, showing that an optimal solution (S, ψ) for a sub-network
(of G) “below” an anti-chain Z in Γ is also optimal on any sub-network “below” an anti-chain
Y in Γ that is itself “below” Z (among all solutions with ψ’s behavior on

⋃
y∈Y YWΓ

y).

▶ Lemma 14 (see Figure 4). Let Y, Z ⊆ V (N) be anti-chains in Γ such that Y ⊆
⋃
z∈Z Γz.

Let G be a class of subnetworks of N and let S ∈ G and ψ : V (N) → C such that
(a)

∑
z∈Z

∑
uw∈Az(S) δψ(u,w) is minimum among all such S and ψ. Let (Sy)y∈Y be a

Y -substitution system for G and let ψy : V (N) → C for each y ∈ Y such that (b) ψy and ψ
coincide on YWΓ

y . Then,∑
y∈Y

∑
uw∈Ay(Sy)

δψy
(u,w) ≥

∑
y∈Y

∑
uw∈Ay(S)

δψ(u,w).

C. Scornavacca and M. Weller 6:9

ψ′ = ψ∗

⋃
y∈Y

Succ↑
S

(Γy)︷ ︸︸ ︷
⋃

y∈Y

Pred↓
S

(Γy)︷ ︸︸ ︷︸ ︷︷ ︸⋃
y∈Y

Succ↑
N

(Γy)
︸ ︷︷ ︸⋃

y∈Y

Pred↓
N

(Γy)

YZ

S Sy

S∗
⇒ ⇒

Figure 4 Lemma 14 proves that any solution (S, ψ) that is optimal on sub-trees rooted at Z in Γ
must also be optimal (among all solutions with ψ’s behavior on

⋃
y∈Y

YWΓ
y (gray box on top)) on

all sub-trees of Γ that are rooted below Z (at Y). That is, no solution (Sy, ψy) can be better than
(S, ψ) on the sub-network induced by Γy for any y ∈ Y . To prove this, a new solution (S∗, ψ∗) is
constructed by replacing the sub-solution of (S, ψ) below Y by the sub-solutions (Sy, ψy) below Y .

4.1 Hardwired Parsimony
To compute the hardwired parsimony score at a node v of N , we require knowledge of the
character assigned to v and its neighbors. For all u ∈ YWΓ

v , we thus “guess” the character ψ(u)
assigned to u by an optimal assignment. In our dynamic programming, we scan Γ bottom-up,
computing a table entry THW [x, ψ] for each x ∈ V (Γ) = V (N) and each ψ : YWΓ

x → C,
containing the parsimony cost incurred by all arcs in Ax(N), assuming that all nodes in
YWΓ

x receive their characters according to ψ. Note that Ax(N) =
⋃
iAvi

(N) ∪ A{x}(N),
where the vi are the children of x in Γ. Thus, THW [x, ψ] can be calculated as follows.

▶ Definition 15. Let Γ be a tree that agrees with N , let x ∈ V (N) and let ψx : YWΓ
x → C

with ψx ⊴ ϕ. Let v1, v2, . . . , vt denote the children of x in Γ (t = 0 if x is a leaf). Then, we
define a table entry

THW [x, ψx] := min
cx∈ϕ(x)

 ∑
1≤i≤t

THW
[
vi, ψx [x → cx] |YWΓ

vi

]
+

∑
z∈Pred↓

N
(x)∪Succ↑

N
(x)

δ(cx, ψx(z))

 (2)

▶ Lemma 16. Let x ∈ V (N) and let ψx : YWΓ
x → C with ψx ⊴ ϕ. Let ψ : V (N) → C with

ψx ⊴ ψ ⊴ ϕ such that ψ minimizes
∑
uw∈Ax(N) δψ(u,w). Then,

THW [x, ψx] =
∑

uw∈Ax(N)

δψ(u,w)

Proof Sketch. For “≥”, we construct a mapping ψ′ from mappings ψi that are optimal
on Avi(N) among all mappings with ψi(x) := cx. This is possible since all such ψi co-
incide with ψ′ and ψx on YWΓ

x . By induction hypothesis, the cost of ψ′ on Ax(N) is∑
1≤i≤t T

HW
[
vi, ψ

′ |YWΓ
vi

]
+

∑
uw∈A{x}(N) δψ′(u,w). Then, “≥” follows from optimality of

ψ on Ax(N).
For “≤”, it suffices to show that the cost of ψ on Ax(N) is equal to the result of setting cx :=

ψ(x) in the right hand side of (2) (which is a valid choice for the minimum since ψ(x) ∈ ϕ(x)).
First, the cost of ψ on Avi

(N) is THW
[
vi, ψ |YWΓ

vi

]
by independence of sub-solutions and

the induction hypothesis. Second, the cost of ψ on A↓
{x}(N) is

∑
z∈Pred↓

N
(x) δ(cx, ψx(z)) and

the cost of ψ on A↑
{x}(N) is

∑
z∈Succ↑

N
(x) δ(cx, ψx(z)) since ψ and ψx coincide on YWΓ

x . ◀

WABI 2021

6:10 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

In order to solve the hardwired parsimony problem given N , ϕ and Γ, all we have to do
is compute THW [x, ψx] for each x bottom-up in Γ and each of the (at most) |C|| YWΓ

x | many
choices of ψx : YWΓ

x → C with ψx ⊴ ϕ. Then, by Lemma 16, the hardwired parsimony score
of N with respect to ϕ can be read from THW [ρΓ,∅]. To compute THW, the sum over the
children of x for all x ∈ V (N) in (2) can be computed in amortized O(|A(N)|) time and,
with a bit of bookkeeping, it is possible to maintain the value of the second sum in (2) in
O(|A(N)|) amortized time per choice of ψ. Then the following holds:

▶ Theorem 17. Given a network N , some ϕ : V (N) → 2C and a tree Γ agreeing with N ,
the hardwired parsimony score of (N,ϕ) can be computed in O(|C|yw(Γ)+1 · |A(N)|) time.

Proposition 12 lets us turn tree decompositions of N into trees Γ agreeing with N , allowing
us to replace yw(Γ) by tw(N), incurring an additional running time of |N | · 2O(tw(N)3) [4].

▶ Corollary 18. Let (N,ϕ) be an instance of Hardwired Parsimony. Let t ≥ tw(N) and
let T be the time in which a width-t tree decomposition of N can be computed. Then, the
hardwired parsimony score of (N,ϕ) can be computed in O(T + |C|t+1 · |A(N)|) time.

4.2 Softwired Parsimony
In contrast to the hardwired parsimony score, where the computation of the cost of the
incident edges of a node x only required knowledge of the characters assigned to neighbors
of x, computing the softwired score additionally requires knowledge of which parent of x
remains a parent in the sought switching. A table entry TSW [x, . . .] contains the smallest
combined cost of all arcs in Ax(S) for a switching S of N minimizing this cost. To be able
to compute an entry for x ∈ V (N), we not only need to “guess” ψx but, additionally, some
representation of the switching S. In particular, in S, no child of x may have another parent
than x. However, since children of x in N may be above x in Γ, we have to “guess” which
children of x in N are still children of x in S. Such a guess manifests itself as an additional
index Rx of the dynamic programming table (note that we clearly only have to store this
information for children of x that are reticulations). Indeed, this information has to be
stored for all nodes considered below x who still have children in YWΓ

x . Thus, we index our
DP-table also by a subset Rx ⊆ YWΓ

x ∩R(N) containing a reticulation r ∈ R(N) if and only
if Γx contains a parent v of r and vr is an arc of an optimal switching S for N [Γx ∪ YWΓ

x].

▶ Definition 19. Let Γ be a tree that agrees with N , let x ∈ V (N), let ψx : YWΓ
x → C with

ψx ⊴ ϕ, and let Rx ⊆ SuccR↑
N (Γx). Let v1, v2, . . . , vt denote the children of x in Γ (t = 0 if x

is a leaf in Γ). Then, set

TSW [x, ψx, Rx] := min
cx∈ϕ(x)

min
R∗⊆Rx∩SuccR↑

N
(x)

∑
r∈R∗∪SuccT↑

N
(x)

δ(cx, ψx(r)) + min

Qψx
x,cx

[t, Rx \R∗] + min
y∈Pred↓

N
(x)
δ(cx, ψx(y)) if Pred↓

N (x) ̸= ∅

Qψx
x,cx

[t, (Rx \R∗) ∪ ({x} ∩R(N))] if Pred↑
N (x) ̸= ∅

(3)

where

Qψx
x,cx

[i, R′] :=


min

R∗⊆R′∩SuccR↑
N

(Γvi
)
Qψx
x,cx

[i− 1, R′ \R∗] + TSW [vi, ψi, R∗] if i ̸= 0

0 if i = 0 and R′ = ∅
∞ otherwise

(4)

where ψi := ψx [x → cx] |YWΓ
vi

for all i ≤ t. (Note how Qψx
x,cx

[i, R′] is used to assign the
nodes in Rx to the vi (with v0 = x) such that every node in Rx has a parent in some Γvi).

C. Scornavacca and M. Weller 6:11

In the following, for any anti-chainX in Γ and all Z ⊆
⋃
x∈X YWΓ

x , let SX→Z(N) denote
the set of all switchings S of N with SuccR↑

S (X) = Z.

▶ Lemma 20. Let Γ be a tree that agrees with N , let x ∈ V (N), let ψx : YWΓ
x → C with

ψx⊴ϕ, and let Rx ⊆ SuccR↑
N (Γx). If SΓx→Rx(N) = ∅, then TSW [x, ψx, Rx] = ∞. Otherwise,

let S ∈ SΓx→Rx(N) and ψ : V (N) → C such that
(a) ψx ⊴ ψ ⊴ ϕ and
(b)

∑
uw∈Ax(S) δψ(u,w) is minimum among all such S and ψ.

Then,

TSW [x, ψx, Rx] =
∑

uw∈Ax(S)

δψ(u,w). (5)

Proof Sketch. Let us abbreviate Zi :=
⋃
j≤i V (Γvj). We first show that the table Q does

what we expect it to do.

▷ Claim 21. Qψx
x,cx

[i, R′] =
∑
j≤i

∑
uw∈Avj

(Si) δψi
(u,w) for optimal Si ∈ SZi→R′ and ψi

coincides with ψx [x → cx] on
⋃
j≤i YWΓ

vj
.

Proof Sketch. For “≥”, let R∗ ⊆ R′ ∩ SuccR↑
N (Γvi

) such that equality holds in (4). We
consider a switching S′ ∈ SZi→R′ constructed from switchings Si−1 ∈ SZi−1→R′\R∗ and
S∗ ∈ SΓvi

→R∗ as well as a mapping ψ′ coinciding with ψx [x → cx] on
⋃
j<i YWΓ

vj
constructed

from mappings ψi−1 and ψ∗ such that
(a) ψi−1 coincides with ψx [x → cx] on

⋃
j<i YWΓ

vj
,

(b) ψ∗ coincides with ψx [x → cx] on YWΓ
vi

,
(c) the cost of ψi−1 is optimal on AZi−1(Si−1) and
(d) the cost of ψ∗ is optimal on Avi

(S∗).
By induction hypotheses, these costs are Qψx

x,cx
[i− 1, R′ \R∗] and TSW [vi, ψx [x → cx] , R∗],

respectively. Then, “≥” follows by optimality of Si and ϕi.
For “≤”, we let R∗ := SuccR↑

Si
(Γvi) and use independence of sub-solutions and the

induction hypotheses to show that the cost of ϕi on AZi−1(Si) is Qψx
x,cx

[i− 1, R′ \R∗] and
the cost of ϕi on Avi

(Si) is TSW [vi, ϕi, R∗]. Then, “≤” follows from the fact that R∗ is only
one of the possible choices for the minimum in (4). ◁

For “≥”, let cx ∈ ϕ(x) and R∗ ⊆ Rx ∩ SuccR↑
N (x) be such that equality holds in (3).

We consider a switching S′ ∈ SΓx→Rx constructed from switchings St and S∗ with St ∈
SZt→Rx\R∗ (if Pred↓

N (x) ̸= ∅) or St ∈ SZt→(Rx\R∗)∪{x} (if x ∈ R(N) and Pred↑
N (x) ̸= ∅),

and S∗ ∈ S{x}→R∗ , as well as a mapping ψ′ coinciding with ψx on YWΓ
x constructed from

mappings ψt and ψ∗ such that
1. ψt coincides with ψx [x → cx] on

⋃
i≤t YWΓ

vi
,

2. ψ∗ coincides with ψx on YWΓ
x ,

3. ψ∗(x) = cx,
4. the cost of ψt is optimal on AZt

(St) and
5. the cost of ψ∗ is optimal on A{x}(S∗).
Then, the cost of ψ∗ on A↑

{x}(S∗) is
∑
r∈R∗∪SuccT↑

N
(x) δ(cx, ψx(r)), the cost of ψ∗ on A↓

{x}(S∗)
is miny∈Pred↓

N
(x) δ(cx, ψx(y)) if the parent of x in St is above x in Γ (that is, x /∈ SuccR↑

St
(Zt))

and, by the claim above, the cost of ψt on AZt(St) is Qψx
x,cx

[
t,SuccR↑

St
(Zt)

]
. Then, as

S′ ∈ SΓx→Rx , “≥” follows by optimality of S and ϕ.

WABI 2021

6:12 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

For “≤”, let cx := ϕ(x) and let R∗ := SuccR↑
S (Γx). We use independence of sub-solutions

and the induction hypothesis to show that the cost of ϕ on AZt
(S) is Qψx

x,cx
[t, R′ \R∗]

(if x /∈ R(N) or the parent of x in S is above x in Γ) or Qψx
x,cx

[t, (R′ \R∗) ∪ {x}] (if
x ∈ R(N) and the parent of x in S is in Γx). Further, the cost of ψ on A↑

{x}(S) is∑
r∈R∗∪SuccT↑

N
(x) δ(cx, ψx(r)), the cost of ψ on A↓

{x}(S) is miny∈Pred↓
N

(x) δ(cx, ψx(y)) if the
parent of x in S is above x in Γ. Then, “≤” follows from the fact that our choices of cx and
R∗ are only one of the possible choices for the minimum in (3). ◀

In order to solve the softwired parsimony problem given N , ϕ and Γ, all we have to
do is compute TSW [x, ψx, Rx] for each x bottom-up in Γ, each of the (at most) |C|| YWΓ

x |

many choices of ψx : YWΓ
x → C with ψx ⊴ ϕ, and each Rx ⊆ SuccR↑

N (x) ⊆ YWΓ
x ∩R(N).

To this end, Qψx
x,cx

[i, Rx \R∗] and Qψx
x,cx

[i, (Rx \R∗) ∪ {x}] have to be computed for each
child vi of x in Γ and each R∗ ⊆ Rx ∩ SuccR↑

N (x). Then, by Lemma 20, the softwired
parsimony score of N with respect to ϕ can be read from TSW [ρΓ,∅,∅]. In the following,
let ψx be fix. Then, for fix cx, we can compute Qψx

x,cx
[i, R′] for all choices of x, i and R′ in

O(2|R′∩SuccR↑
N

(vi)| +
∑
x∈Γ | SuccΓ(x)|) ⊆ O(2| YWΓ

x |+1 + |Γ|) time total. Further, the values of
miny∈Pred↓

N
(x) δ(cx, ϕx(y)) can be pre-computed for all x ∈ Γ in O(|A(N)|) time total. Then,

to compute TSW [x, ψx, Rx] for all x and Rx, we have to check |V (N)| choices for x, as well as
|ϕ(x)| ≤ |C| choices for cx and 3| SuccR↑

N
(x)| choices for Rx and R∗ ⊆ Rx combined. Altogether,

the table TSW can be computed in O(|C|| YWΓ
x | · (3| YWΓ

x | · |C| · |V (N)| + |A(N)|)) time. The
computation of Qψx

x,cx
in O(2| YWΓ

x | + |A(N)|) time is absorbed by this. For practical purposes,
note that estimating | SuccR↑

N (x)| ≤ | YWΓ
x | is quite crude and equality will almost never be

attained. Then, the following result holds:

▶ Theorem 22. Given a network N , ϕ : V (N) → 2C and a tree Γ agreeing with N , the
softwired parsimony score of (N,ϕ) can be computed in O(|C|yw(Γ) · (3yw(Γ) · |C| · |V (N)| +
|A(N)|)) time.

Again, we can replace yw(Γ) by tw(N) using Proposition 12.

▶ Corollary 23. Let (N,ϕ) be an instance of Softwired Parsimony. Let t ≥ tw(N) and let
T be the time in which a width-t tree decomposition of N can be computed. Then, the softwired
parsimony score of (N,ϕ) can be computed in O(T + |C|t · (3t · |C| · |V (N)| + |A(N)|)) time.

4.3 Parental Parsimony
For ease of presentation, we introduce some additional notation. First, for any a and b, we
abbreviate max{a− b, 0} =: a .− b. Let ψ and ψ′ be functions with the same codomain. If ψ
maps all items to ∅ or to 0, then we say that ψ is a zero-function and we write ψ = −→0 . We
use ψ − ψ′ to denote the function defined on the domain of ψ for which (ψ − ψ′)(x) = ψ(x)
if ψ′(x) = ⊥ and (ψ − ψ′)(x) = ψ(x) − ψ′(x), otherwise. This definition extends to functions
mapping to sets in a natural way.

Each lineage function gives rise to one or more phylogenetic trees, called lineages, em-
bedded in N . For each x ∈ V (N), f(x) represents the set of branches of such a lineage
passing through x. Each such lineage-branch may “choose” a parent among the parents of
x in N . This models the biological circumstance that a character trait may be inherited
from any parent. We compute (the cost of) an optimal lineage function on N using a tree Γ
that agrees with N . To compute costf (x), we require knowledge of

∑
y∈Pred(x) |f(y)| as well

as
⋃
y∈Pred(x) f(y). For all y ∈ YWΓ

x , we thus store the set λ(y) := f(y) of lineages in y,

C. Scornavacca and M. Weller 6:13

the subset ψ(y) of lineages of y that also occur in parents (in N) of y that are below x in
Γ, that is, Pred↑x

N (y) (such lineages are inherited by y at no cost), and the total number
η(y) of lineages of y that can be inherited from parents (in N) of y that are below x in Γ,
that is, Pred↑x

N (y) (cost 0 or 1). Then,
∑
y∈PredN (x) |f(y)| = η(x) +

∑
y∈Pred↓

N
(x) |λ(y)| and⋃

y∈PredN (x) f(y) = ψ(x) ∪
⋃
y∈Pred↓

N
(x) λ(y).

In order to compute an entry TPT [x, λx, ψx, ηx], we “guess” the set U ⊆ ϕ(x) of lineages
passing through x in an optimal solution, as well as the set D ⊆ U of lineages inherited from
nodes in Pred↑

N (x). Then, the cost incurred by x is the number of lineages of x that are not
lineages of any r ∈ PredN (x), that is, the number of lineages in U \ (D ∪

⋃
r∈Pred↓

N
(x) λ(r)).

For the recursive table lookup, we have to make sure that λ(x) = U , ψ(x) = D, and that all
lineage branches of x that do not come from Pred↓

N (x) can be inherited from Pred↑
N (x), that

is, η(x) = |λ(x)| .−
∑
r∈Pred↓

N
(x) |λ(r)|. Further, each child y of x in N may inherit a lineage

from x and, if y is above x in Γ, this has to be registered by removing the lineages of U from
ψ(y) and subtracting |U | from η(y). Finally, the lineage branches represented by ψ and η

are distributed among the children of x in Γ using the table Q. In the following, in order
to avoid treating the case that x = ρN separately, we define ρ(x) := 1 − δ(x, ρN), that is,
ρ(x) = 1 if and only if x = ρN .

▶ Definition 24. Let Γ be a tree that agrees with N , x ∈ V (N), λx : YWΓ
x → 2C with

λx ⊴ ϕ and ψx ⊴ λx. Let {v1, v2, . . . , vt} = SuccΓ(x) (t = 0 if x is a leaf in Γ). Then, set
TPT [x, λx, ψx, ηx] to

min
D⊆U⊆ϕ(x)

U ̸=∅

Qλx[x→U]
x

[
t, ψx

[
x→D
∀

w∈Succ↑
N

(x)
w→ψx(w)\U

]
, ηx

[
x→|U | .−

∑
u∈Pred↓

N
(x)

|λx(u)|

∀
w∈Succ↑

N
(x)
w→ηx(w) .−|U |

]]

+

∣∣∣∣∣∣∣U \

D ∪
⋃

u∈Pred↓
N

(x)

λx(u)


∣∣∣∣∣∣∣ (6)

where Qλx [i, ψ, η] equals
min

ψ′⊴ψ|YWΓ
vi

min
η′⊴η|YWΓ

vi

Qλx [i− 1, ψ − ψ′, η − η′] + TPT
[
vi, λ |YWΓ

vi
, ψ′, η′

]
if i > 0

−ρ(x) if i = 0 and ψ = −→0 and η = −→0 [x → ρ(x)]
∞ otherwise

(7)

Note how the table Qλx distributes the lineage branches of x whose parents are in Γx among
the children of x in Γ. Observe that both TPT and Qλx are monotone in ψ and η (wrt. ⊴) by
construction.

▶ Lemma 25. Let x ∈ V (N), let i ∈ N, let λ : YWΓ
x → 2C , let η, η′ : YWΓ

x → N, and let
ψ,ψ′ : YWΓ

x → 2C such that ψ′ ⊴ ψ ⊴ λ and −→0 [x → ρ(x)]⊴ η′ ⊴ η. Then,

TPT [x, λ, ψ′, η′] ≤ TPT [x, λ, ψ, η] and Qλx [i, ψ′, η′] ≤ Qλx [i, ψ, η]

Proof Sketch. The lemma can be proved by induction on the height of x in Γ and the value
of i. If x is a leaf, then Qλx [0, ψ, η] is finite only if ψ = −→0 and η = −→0 [x → ρ(x)], implying the
second inequality. For monotony of TPT , fix the sets D ⊆ U ⊆ C for which the minimum in
the formula of TPT [x, λ, ψ, η] is attained. Then, by monotony of Qλx, replacing ψ by ψ′ and
η by η′ in this formula does not increase its value and this value is at most TPT [x, λ, ψ′, η′]

WABI 2021

6:14 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

since it is obtained for one of several possible choices for D and U . If x is not a leaf in Γ then
monotonicity of Qλx [i, . . .] is implied by monotonicity of Qλx [i− 1, . . .] and monotonicity of
TPT [v, . . .] for the children v of x. Finally, monotonicity of TPT follows from monotonicity
of Qλx as in the induction base. ◀

▶ Lemma 26. Let Γ be a tree agreeing with N , let x ∈ V (N), let ψx, λx : YWΓ
x → 2c

and ηx : YWΓ
x → N. Let f minimize cost(f) among all lineage functions in LFN,ϕ such

that, for all w ∈ YWΓ
x, λx(w) = f(w), ψx(w) = f(w) ∩

⋃
u∈Pred↑x

N
(w) f(u), and ηx(w) ≤∑

u∈Pred↑x
N

(w) |f(u)|. If there are no such f , then TPT [x, λx, ψx, ηx] = ∞. Otherwise,

TPT [x, λx, ψx, ηx] =
∑
z≤Γx

costf (z)

Proof Sketch. Let us abbreviate Zi :=
⋃
j≤i V (Γvj

). We first show that the table Q does
what we expect it to do.

▷ Claim 27. Let λ, ψ : YWΓ
x ∪{x} → 2C and η : YWΓ

x ∪{x} → N such that ψ ⊴ λ⊴ ϕ. Let
fi ∈ LFN,ϕ have minimum cost on

⋃
j≤i Γvj among all lineage functions for N that, for all

w ∈
⋃
j≤i YWΓ

vj
, satisfy

(a) λ(w) = fi(w),
(b) ψ(w) = fi(w) ∩

⋃
j≤i

⋃
u∈Pred

↑vj
N

(w)
fi(u), and

(c) η(w) ≤
∑
j≤i

∑
u∈Pred

↑vj
N

(w)
|fi(u)|

Then, Qλx [i, ψ, η] =
∑
j≤i

∑
u∈Γvj

costfi
(u).

Proof Sketch. For “≥”, let ψ′ ⊴ ψ |YWΓ
vi

and η′ ⊴ η |YWΓ
vi

such that equality holds in (7).
Let fi−1 ∈ LFN,ϕ minimize

∑
j<i

∑
u∈Γvj

costfi−1(u) among all lineage functions satisfying
(a)–(c) for i−1. Let f∗ ∈ LFN,ϕ minimize

∑
u∈Γvi

costf∗(u) among all lineage functions that,
for all w ∈ YWΓ

vi
, satisfy λ(w) = f∗(w), ψ′(w) = f∗(w) ∩

⋃
u∈Pred↑vi

N
(w) f

∗(u) and η′(w) =∑
u∈Γvi

|f∗(u)|. By induction hypotheses, the cost of fi−1 on Zi is Qλx [i− 1, ψ − ψ′, η − η′]

and the cost of f∗ on Γvi
is TPT

[
vi, λ |YWΓ

vi
, ψ′, η′

]
. From fi−1 and f∗, we construct a lineage

function f ′ ∈ LFN,ϕ whose cost on Zi is
∑
j<i

∑
u∈Γvj

costfi−1(u)+
∑
u∈Γvi

costf∗(u). Then,
“≥” follows by optimality of fi on Zi.

For “≤”, let ψ′ and η′ be such that, for all w ∈ YWΓ
vi

, we have ψ′(w) = fi(w) ∩⋃
u∈Pred↑vi

N
(w) fi(u) ⊆ ψ(w) and η′(w) =

∑
u∈Pred↑vi

N
(w) |fi(u)|. By independence of sub-

solutions, fi is optimal on Zi−1 and on Γvi
so, by induction hypotheses, the cost of fi on

Zi−1 is Qλx [i− 1, ψ − ψ′, η − η′] and the cost of fi on Γvi
is TPT

[
vi, λ |YWΓ

vi
, ϕ′, η′

]
. Since

ψ′ and η′ are only one of the possible choices for the minimum in (7), “≤” follows. ◁

For “≥”, let D ⊆ U ⊆ ϕ(x) such that equality holds in (6). We construct a lineage
function f ′ that assigns f ′(x) = U and such that the lineages of D are inherited from parents
of x (in N) that are below x in Γ. To this end, we ask the dynamic programming table for
the cost of a lineage function that is optimal on Zt and such that
1. ψ′(x) = D (lineages in D are inherited from parents of x in Γx)
2. ψ′(w) = ψ′(w) \ U for all w ∈ Succ↑

N (x) (children of x in YWΓ
x no longer need to inherit

the lineages in U from Γx)
3. η′(x) = |U | .−

∑
u∈Pred↓

N
(x) |λx(u)| (x needs to inherit |U | lineages in total: |λx(u)| come

from every parent u of x in YWΓ
x while the rest has to be inherited from Γx) and

4. η′(w) = ηx(w) .− |U | for all w ∈ Succ↑
N (x) (children of x in YWΓ

x can inherit a maximum
of |U | lineages from x).

C. Scornavacca and M. Weller 6:15

Since the functions λ′ := λx [x → U], ψ′ := ψx

[
x → D,∀u∈Succ↑

N
(x)w → ψx(w) \ U

]
and

η′ := ηx

[
x → |U | .−

∑
u∈Pred↓

N
(x) |λx(u)|,∀u∈Succ↑

N
(x)w → ηx(w) .− |U |

]
satisfy the conditions

of Claim 27, the optimal cost of such a lineage function f ′ on Zt is Qλx [t, ψ′, η′]. Further, the
cost of f ′ on x is the number of lineages in U that is not inherited “for free” from parents of
x, that is, |U \ (D ∪

⋃
u∈Pred↓

N
(x) λx(u))|. Then, “≥” follows by optimality of f on Γx.

For “≤”, let U := f(x) and let D := U ∩
⋃
u∈Pred↑

N
(x) f(x) be the set of lineages of U that

are inherited from parents of x in N that are below x in Γ. By independence of sub-solutions,
f is optimal on Zt so, by Claim 27, its cost on Zt is Qλx [t, ψ′, η′] where ψ′ := ψx [. . .]
and η′ := ηx [. . .] are defined as in (6) and its cost on x is |f(x) \ (

⋃
u∈Pred↑

N
(x) f(x) ∪⋃

u∈Pred↓
N

(x) f(x))| = |U \ (D∪
⋃

Pred↓
N

(x) f(x))|. Then, “≤” follows from the fact that U and
D are only one of the possible choices for the minimum in (6). ◀

To solve the parental parsimony problem given N , ϕ and Γ, we compute TPT [x, λx, ψx, ηx]
for each x bottom-up in Γ, each ψx, λx : YWΓ

x → 2C with ψx⊴λx⊴ϕ and each ηx : YWΓ
x →

{0, . . . , |C|} (by Definition 24, no value larger than |C| ever enters ηx and all modifications to
ηx decrease the mapped-to values). To this end, Qλx [i, ψ, η] is computed for each x, i, λ, ψ, and
η by making at most 2|C|·| YWΓ

x | · |C|| YWΓ
x | queries to Qψx

x,cx
and TPT . As there are O(|A(N)|)

valid combinations of x and i, the table Q can be computed in O(|A(N)| ·3|C|·yw(N) · |C|yw(N) ·
2|C|·yw(N) · |C|yw(N)) = O(|A(N)| · 6|C|·yw(N)| · 4yw(N)·log |C|) time. Further, computing each
TPT [x, λx, ψx, ηx] requires testing 3|ϕ(x)| ≤ 3|C| choices for D ⊆ U ⊆ ϕ(x) and computing
|U \ (D ∪

⋃
u∈Pred↓

N
(x) λx(u))| in O(|C|) time (we precompute

⋃
u∈Pred↓

N
(x) λx(u) for each

fix x and λx). Thus, the table TPT can be computed in O(3|C|·yw(N) · (|C|yw(N)+1 · 3|C| +
|A(N)|)) time, which is dominated by the construction of Q.

▶ Theorem 28. Given a network N , ϕ : V (N) → 2C and a tree Γ agreeing with N , the
parental parsimony score of (N,ϕ) can be computed in O(6yw(Γ)·|C| ·4yw(Γ)·log |C| ·|A(N)|) time.

Again, we can replace yw(Γ) by tw(N) using Proposition 12.

▶ Corollary 29. Let (N,ϕ) be an instance of Parental Parsimony. Let t ≥ tw(N) and
let T be the time in which a width-t tree decomposition of N can be computed. Then, the
parental parsimony score of (N,ϕ) can be computed in O(T + 6t·|C| · 4t·log |C| · |A(N)|) time.

Note that the parental parsimony setting supports assigning multiple states of a character
to a single species, thereby modeling species carrying multiple alleles of a single gene. By
forcing D ⊆ U = ϕ(x) instead of D ⊆ U ⊆ ϕ(x) if x is a leaf, we can trivially modify our
dynamic programming to explain multiple character states in extant species.

Corollaries 18, 23 and 29 give the running times of our algorithms as depending on the
treewidth of N . The state-of-the-art solutions for Hardwired Parsimony, Softwired
Parsimony and Parental Parsimony have the following respective running times:
O(|C|r+2|V (N)|) [21], O(2ℓ|C|2|V (N)||A(N)|) [13] and O(|2C |ℓ+3|V (N)|) [29]. Since the
scanwidth of N is potentially much smaller than its level ℓ [27], and the treewidth of N is
smaller than its scanwidth [3], we have tw(N) − 1 ≤ ℓ ≤ r. Thus, we expect that there will
be several cases where our algorithms will be faster than the current best-known ones.

5 Discussion

In this paper, we focused on the small version of the parsimony problem for networks given a
specific position in the genome. When markers can be assumed to be independent, as it is the
case when a certain distance is preserved between genomic locations included in the matrix,
each position can be analyzed separately, and the parsimony score of a network w.r.t. the

WABI 2021

6:16 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

matrix is simply the sum of the parsimony scores of the network for each genomic location.
Thus, the algorithms presented here can be easily expanded to several independent genomic
locations. Moreover, our formulations are defined for networks that are not necessarily binary,
can account for polymorphism and can impose restrictions on ancestral states. As discussed
above, our algorithms can be orders of magnitude faster than the state-of-the-art solutions.
A comparison of the reticulation number, the level, the scanwidth and the treewidth for
practically relevant classes of networks would thus be an interesting project for future work.

Our results are slightly overshadowed by the fact that optimal tree decompositions are
very hard to compute, with even the best-known parameterized algorithm being considered
impractical (see survey [5]). However, the treewidth can be 2-approximated in single-
exponential time [24] and, with development driven by recent issues of the PACE challenge [10],
more practical exact algorithms are now available as well [28]. We would welcome similar
efforts also for the scanwidth, which is also hard to compute [3].

The ability to fast-score phylogenetic networks under the parsimony framework could be
a big help in designing likelihood-based heuristics or bayesian methods to infer networks from
independent markers [31, 27] by providing fast heuristics to compute the initial networks
with which to start the likelihood or bayesian search, or to design fast local-search techniques.

In the future, we would like to tackle the small parsimony problem for several dependent
genomic locations (e.g. a gene). Little is known for this problem, except that it stays NP-
hard even for binary characters even on level-1 networks [22] and that it is fixed-parameter
tractable in the number of reticulations of the network [26]. Another important direction
would be to study the big parsimony problem, which is currently wide open, even lacking a
consensus of the definition of optimality [26, 17, 30, 6].

References
1 Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded

decomposability – a survey. BIT Numerical Mathematics, 25(1):1–23, 1985.
2 Various Authors. The graph parameter hierarchy. Available at https://gitlab.com/

gruenwald/parameter-hierarchy, 2021.
3 Vincent Berry, Celine Scornavacca, and Mathias Weller. Scanning phylogenetic networks is

NP-hard. In Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM’20), pages 519–530. Springer, 2020.

4 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

5 Hans L. Bodlaender. Discovering treewidth. In Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM’05), pages 1–16, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

6 Christopher Bryant, Mareike Fischer, Simone Linz, and Charles Semple. On the quirks of
maximum parsimony and likelihood on phylogenetic networks. Journal of Theoretical Biology,
417:100–108, 2017.

7 David Bryant and Jens Lagergren. Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science, 351(3):296–302, 2006.

8 Laurent Bulteau and Mathias Weller. Parameterized algorithms in bioinformatics: an overview.
Algorithms, 12(12):256, 2019.

9 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

10 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration.
In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017),
volume 89 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–30:12,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

https://gitlab.com/gruenwald/parameter-hierarchy
https://gitlab.com/gruenwald/parameter-hierarchy

C. Scornavacca and M. Weller 6:17

11 Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search games on
graphs and related parameters. Theoretical Computer Science, 172(1):233–254, 1997.

12 Joseph Felsenstein. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.
13 Mareike Fischer, Leo Van Iersel, Steven Kelk, and Celine Scornavacca. On computing the

maximum parsimony score of a phylogenetic network. SIAM Journal on Discrete Mathematics,
29(1):559–585, 2015.

14 Walter M Fitch. Toward defining the course of evolution: minimum change for a specific tree
topology. Systematic Biology, 20(4):406–416, 1971.

15 Jotun Hein. Reconstructing evolution of sequences subject to recombination using parsimony.
Mathematical Biosciences, 98(2):185–200, 1990.

16 Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press, 2010.

17 G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Inferring phylogenetic networks by the maximum
parsimony criterion: A case study. Molecular Biology and Evolution, 24(1):324–337, 2006.

18 G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Maximum likelihood of phylogenetic networks.
Bioinformatics, 22(21):2604–2611, 2006.

19 Guohua Jin, L. Nakhleh, S. Snir, and T. Tuller. Parsimony score of phylogenetic networks:
Hardness results and a linear-time heuristic. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(3):495–505, 2009.

20 Lavanya Kannan and Ward C. Wheeler. Maximum Parsimony on Phylogenetic networks.
Algorithms for Molecular Biology, 7(1):9, 2012.

21 Lavanya Kannan and Ward C. Wheeler. Exactly computing the parsimony scores on phylogen-
etic networks using dynamic programming. Journal of Computational Biology, 21(4):303–319,
2014.

22 Steven Kelk, Fabio Pardi, Celine Scornavacca, and Leo van Iersel. Finding a most parsimonious
or likely tree in a network with respect to an alignment. Journal of Mathematical Biology,
78(1-2):527–547, 2019.

23 Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

24 Tuukka Korhonen. Single-exponential time 2-approximation algorithm for treewidth. CoRR,
abs/2104.07463, 2021. arXiv:2104.07463.

25 Guillaume Mescoff, Christophe Paul, and Dimitrios Thilikos. A polynomial time algorithm to
compute the connected tree-width of a series-parallel graph, 2021. arXiv:2004.00547v5.

26 Luay Nakhleh, Guohua Jin, Fengmei Zhao, and John Mellor-Crummey. Reconstructing
phylogenetic networks using maximum parsimony. In 2005 IEEE Computational Systems
Bioinformatics Conference (CSB’05), pages 93–102. IEEE, 2005.

27 Charles-Elie Rabier, Vincent Berry, Marnus Stoltz, João D. Santos, Wensheng Wang, Glasz-
mann Jean-Christophe, Fabio Pardi, and Celine Scornavacca. On the inference of complicated
phylogenetic networks by Markov Chain Monte-Carlo. Submitted.

28 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. Journal of
Combinatorial Optimization, 37(4):1283–1311, 2019.

29 Leo Van Iersel, Mark Jones, and Celine Scornavacca. Improved maximum parsimony models
for phylogenetic networks. Systematic Biology, 67(3):518–542, 2018.

30 Ward C Wheeler. Phylogenetic network analysis as a parsimony optimization problem. BMC
Bioinformatics, 16(1):1–9, 2015.

31 Jiafan Zhu, Dingqiao Wen, Yun Yu, Heidi M Meudt, and Luay Nakhleh. Bayesian infer-
ence of phylogenetic networks from bi-allelic genetic markers. PLoS Computational Biology,
14(1):e1005932, 2018.

32 Jiafan Zhu, Yun Yu, and Luay Nakhleh. In the light of deep coalescence: revisiting trees
within networks. BMC Bioinformatics, 17(14):271–282, 2016.

WABI 2021

http://arxiv.org/abs/2104.07463
http://arxiv.org/abs/2004.00547v5

6:18 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

Γ w

u

Γ′ Γ∗

Figure 5 Example for the construction of Γ′ (middle) from Γ (left) in Lemma 7. Repeated
application yields Γ∗ (right), for which v ≤Γ∗ u ⇒ u⇝G,Γ∗ v. The rooted trees Γ, Γ′, and Γ∗ are
drawn with thick, gray lines. Thin, black lines are edges of G. For the indicated node u, the black
nodes are in X, that is, they are below u in Γ but not connected to u in G[Γu].

A Proofs of results in the main text

A.1 Proof of Lemma 4
Proof. (a), (b): We show for all vertices w on a u-v-path p in Γσ that w ≤σ u and u⇝G,σ w.
The base case w = u holds trivially. For the induction step, let q preceed w in p. Since Γσ
contains the arc qw, Definition 1 implies q⇝G,σ w and, since q ≤σ u by induction hypothesis,
w ≤σ q ≤σ u and u⇝G,σ w. For the reverse direction of (b), note that, by Definition 1, uv
is an arc of the DAG whose transitive reduction Γσ is.

(c),(d): Since G[σ[1..r]] = G and G is connected, there is an r-x-path in G[σ[1..r]] for all
x ∈ V (G) and, thus, Γσ is connected and rooted at r.

(e): To prove that Γσ is a tree, assume there is a vertex x ∈ V (G) with two distinct
parents y and z in Γσ. Without loss of generality, let y <σ z. By (b), y⇝G,σ x and z⇝G,σ x.
Since σ[1..y] ⊊ σ[1..z], we conclude z⇝G,σ y, implying zy ∈ A(Γσ) and contradicting Γσ
being a transitive reduction.

(f): Note that u⇝G,σ v, implying v ≤Γσ u by (b).
(g): For each uv ∈ E(G), either u <σ v, implying u ≤Γσ v, or v <σ u, implying v ≤Γσ u

(both by (f)).
(h) “⊆”: Let x ∈ V (G) and let y ∈ YWΓσ

x . By Definition 2, y >Γσ x (implying y >σ x
by (a)) and there is some z ≤Γσ x (implying z ≤σ x by (a)) with yz ∈ E(G). Then, by (b),
x⇝G,σ z. But then, y ∈ ZWσ

x by Definition 1.
(h) “⊇”: Let x ∈ V (G) and let y ∈ ZWΓσ

x , that is, x <σ y and there is some z ∈ σ[1..x]
with x⇝G,σ z and yz ∈ E(G). Then, z ≤σ x <σ y. By (b), z ≤Γσ x and, by (f), z ≤Γσ y.
Thus, as Γσ is a tree (by (e)), x and y are not unrelated in Γσ. Moreover, y ≰σ x implies
y ≰Γσ x by (b) and, thus, x <Γσ y. Together with z ≤Γσ x and yz ∈ E(G), this implies
y ∈ YWΓσ

x . ◀

A.2 Proof of Lemma 7
(See Figure 5).

Proof. Let u ∈ V (G) such that X := {v <Γ u | u⇝̸G,Γ v} ̸= ∅. We will modify Γ into Γ′

with yw(Γ′) ≤ yw(Γ) such that Γ′ agrees with G and the relation ≤Γ′ is a strict subset of
≤Γ. To this end, note that u has a parent w in Γ as, otherwise, G[Γu] = G, implying X = ∅.
Then, Γ′ results from Γ by
1. replacing Γ by Γ ↑ (Γu \X) and
2. dangling Γu ↑ X from w.

C. Scornavacca and M. Weller 6:19

First, we show that Γ′ agrees with G. To this end, let xy ∈ E(G) and let x and y be
unrelated in Γ′. If neither x nor y are in Γu then, by construction of Γ′, they are also
unrelated in Γ, contradicting that Γ agrees with G. So, without loss of generality, suppose
x ≤Γ u. Since xy ∈ E(G) and Γ is a tree agreeing with G, we thus know that u and y are not
unrelated in Γ. If u <Γ y, then w ≤Γ y and, thus, x ≤Γ′ y. Thus, suppose y ≤Γ u. Clearly,
if x, y ∈ X or x, y /∈ X, then x and y are also unrelated in Γ, contradicting its agreement
with G. Thus, without loss of generality, suppose x ∈ X and y /∈ X, that is, u⇝̸G,Γ x and
u⇝G,Γ y, contradicting xy ∈ E(G).

Second, we show that ≤Γ′ is a strict subset of ≤Γ. To this end, let xy ∈ A(Γ′) and assume
towards a contradiction that y ̸<Γ x. Clearly, if x ≰Γ′ w, then xy ∈ A(Γ) contradicting
y ̸<Γ x. Further, if x = w, then either y ∈ X or y is a child of w in Γ, all of which imply
y <Γ x. Thus, x <Γ′ w. Since xy ∩ X = {x} or xy ∩ X = {y} contradicts xy ∈ A(Γ′), we
have x, y ∈ X or x, y /∈ X. But then, y <Γ x by Observation 6. Thus, ≤Γ′ is a subset of ≤Γ
and it is strict since we have v ≤Γ u and v ≰Γ′ u for all v ∈ X ̸= ∅.

Third, yw(Γ′) ≤ yw(Γ) follows by Lemma 3. ◀

A.3 Proof of Lemma 9

Proof. “≥”: Let σ be an ordering of V (G) such that zw(σ) = zw(G). By Lemma 4(h), we
have zw(σ) = yw(Γσ) for the canonical extension tree Γσ of σ. Thus, zw(G) = zw(σ) =
yw(Γσ) ≥ yw(G).

“≤”: Let Γ be some rooted tree agreeing with G such that yw(Γ) = yw(G) and, by
Lemma 7, suppose

u ≤Γ v ⇒ v⇝G,Γ u. (8)

Let σ be any ordering of V (G) obtained by repeatedly picking and removing any leaf of Γ.

▷ Claim 30. For each u, v ∈ V (G), we have u ≤Γ v if and only if v⇝G,σ u.

Proof. First, note that all nodes below v in Γ are chosen before v, so Γv ⊆ σ[1..v].
“⇒”: Let u ≤Γ v, that is, u ∈ Γv, implying u ≤σ v. By (8), v is connected to u in G[Γv]

and, as Γv ⊆ σ[1..v], also in G[σ[1..v]].
“⇐”: Let p be a v-u-path in G[σ[1..v]]. By Lemma 8, p has a unique maximum w in Γ.

Hence, v ≤Γ w and, by “⇒”, we have v ≤σ w. Since p lives entirely in G[σ[1..v]], that is,
V (p) ⊆ σ[1..v], we also have w ≤σ v. Thus, v = w and, since u ∈ V (p), we have u ≤Γ w = v

by maximality of w. ◁

To prove the lemma, we show YWΓ
x ⊇ ZWσ

x for each x ∈ V (G). Let y ∈ ZWσ
x , that is

y >σ x and there is some z ∈ σ[1..x] with yz ∈ E(G) and x⇝G,σ z. By Claim 30, z ≤Γ x.
Further, as yz ∈ E(G) and Γ agrees with G, y and z are not unrelated in Γ and, since z ≤Γ x,
neither are x and y. Since y <Γ x implies y <σ x by Claim 30, contradicting y >σ x, we
conclude x <Γ y. Together with z ≤Γ x and yz ∈ E(G), this implies y ∈ YWΓ

x . ◀

WABI 2021

6:20 Treewidth-Based Algorithms for the Small Parsimony Problem on Networks

A.4 Proof of Proposition 12
Proof. “≤”: Let (T,B) be a nice tree decomposition for G of width tw(G) and let F ⊂ V (T)
denote the set of all “forget”-nodes in T (noting that the root of T is in F). We construct Γ
from T by contracting all nodes in V (T) \F onto their respective parents1 and identifying all
nodes x ∈ F with the vertex v ∈ V (G) \B(x) of G that is forgotten in x. By Observation 11,
V (Γ) = V (G).

First, we show that Γ agrees with G. To this end, let uv ∈ E(G) and let fu, fv ∈ V (T)
denote the unique “forget u” and “forget v”-nodes in T , which are distinct since T is nice.
By Definition 10(a), there is a node q ∈ V (T) with uv ⊆ B(q) and, by Observation 11,
q <T fu, fv. Thus, fu and fv are not unrelated in T and, by Observation 5, neither in Γ.

Second, we show for all v ∈ Γ and the unique “forget v”-node fv in T that YWΓ
v ⊆ B(fv).

Let u ∈ YWΓ
v , that is, u >Γ v and there is some w ≤Γ v with uw ∈ E(G) (note that

w ̸= u but w = v is possible). Let fu and fw be the unique “forget u” and “forget w”-
nodes in T , which are distinct since T is nice. Then, w ≤Γ v <Γ u and, by Observation 5,
fw ≤T fv <T fu. Since uw ∈ E(G), Definition 10(a) implies that there is a node q of T
with uw ⊆ B(q), implying q <T fu, fw. Then, by Definition 10(b), u ∈ B(x) for all x with
q ≤T x <T fu and, since q <T fw <T fv <T fu, we have u ∈ B(fv). Thus, YWΓ

v ⊆ B(fv),
implying yw(G) ≤ YWΓ

v ≤ |B(fv)| and, since fv has a child x with B(x) = B(fv) ∪ {v}, we
know |B(fv)| = |B(x)| − 1 ≤ tw(T,B) = tw(G).

“≥”: Let Γ be a tree with yw(Γ) = yw(G) that agrees with G. For all u ∈ V (G), we
define B(u) := YWΓ

u ∪{u} and show that (Γ, B) is a tree-decomposition for G noting that
its width is yw(Γ) = yw(G).

First, to prove Definition 10(a), let uv ∈ E(G). Since Γ agrees with G, either u <Γ v

or v <Γ u. Without loss of generality, suppose the latter. Then, u ∈ YWΓ
v by Definition 2

(using w = v), implying that uv ∈ B(v).
Second, let u, v ∈ V (G) be distinct such that u ∈ B(v) = YWΓ

v ∪{v}, implying u ∈ YWΓ
v

since u ̸= v. By Definition 2, there is some w ≤Γ v with uw ∈ E(G) and v <Γ u, implying
that Γ contains a unique u-v-path p. To show Definition 10(b), it suffices to prove u ∈ B(x)
for all x ∈ V (p) (since v has been chosen arbitrarily, a path with these properties exists
for all v′ with u ∈ B(v′), so they all contain the node u and are, thus, connected). For
x = u this follows by definition of B(u). Otherwise, x <Γ u since x ∈ V (p). But then,
w ≤Γ v ≤Γ x <Γ u and uw ∈ E(G), implying u ∈ YWΓ

x ⊆ B(x). ◀

A.5 Proof of Lemma 14
Proof. Towards a contradiction, assume that the lemma is false. We construct ψ∗ : V (N) →
C with

ψ∗(u) =
{
ψy(u) if u ∈ Γy for any y ∈ Y

ψ(u) otherwise

Note that ψ∗ and ψ coincide with ψy on YWΓ
y for all y ∈ Y . Thus, δψ∗(u,w) = δψy

(u,w) if
uw ∈ Ay(S∗) for any y ∈ Y and δψ∗(u,w) = δψ(u,w), otherwise. Further, we construct a
digraph S∗ := (V (N), (A(S) \

⋃
y∈Y Ay(S)) ∪

⋃
y∈Y Ay(Sy)) which is in G since (Sy)y∈Y is a

Y -substitution system for G. Since all Sy are subnetworks of N , we know that Γ agrees with
S∗. Furthermore, since Y ⊆

⋃
z∈Z Γz, we know that each y ∈ Y has a z ∈ Z with y ≤Γ z.

Thus,

1 One can also describe Γ as the transitive reduction of (F,>T ∩(F × F)).

C. Scornavacca and M. Weller 6:21

∑
z∈Z

∑
uw∈Az(S∗)

δψ∗(u,w) =
∑
z∈Z

∑
v∈Γz

∑
uw∈A{v}(S∗)

δψ∗(u,w)

=
∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S∗)

δψ∗(u,w) +
∑
y∈Y

∑
uw∈Ay(S∗)

δψ∗(u,w)

=
∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S)

δψ(u,w) +
∑
y∈Y

∑
uw∈Ay(Sy)

δψy (u,w)

assumption
<

∑
z∈Z

∑
v∈Γz

v/∈
⋃

y∈Y
Γy

∑
uw∈A{v}(S)

δψ(u,w) +
∑
y∈Y

∑
uw∈Ay(S)

δψ(u,w)

=
∑
z∈Z

∑
uw∈Az(S)

δψ(u,w)

contradicting optimality of S and ψ (that is, Lemma 14(a) since S∗ ∈ G. ◀

WABI 2021

	1 Introduction
	2 Preliminaries
	3 An Alternative Formulation of Treewidth
	4 Parsimony
	4.1 Hardwired Parsimony
	4.2 Softwired Parsimony
	4.3 Parental Parsimony

	5 Discussion
	A Proofs of results in the main text
	A.1 Proof of Lemma 4
	A.2 Proof of Lemma 7
	A.3 Proof of Lemma 9
	A.4 Proof of Proposition 12
	A.5 Proof of Lemma 14

