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Abstract
Quantum-access security, where an attacker is granted superposition access to secret-keyed function-
alities, is a fundamental security model and its study has inspired results in post-quantum security.
We revisit, and fill a gap in, the quantum-access security analysis of the Lamport one-time signature
scheme (OTS) in the quantum random oracle model (QROM) by Alagic et al. (Eurocrypt 2020).
We then go on to generalize the technique to the Winternitz OTS. Along the way, we develop a
tool for the analysis of hash chains in the QROM based on the superposition oracle technique by
Zhandry (Crypto 2019) which might be of independent interest.
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1 Overview

1.1 Introduction
Recently, research and development efforts towards building a universal quantum computer
have intensified. As quantum computers will break currently deployed public-key cryptosys-
tems [27], finding adequate replacement schemes (called post-quantum secure) has been
increasingly a priority, too, as reflected by the ongoing NIST standardization effort for
post-quantum secure digital signature schemes and key encapsulation mechanisms [1].

Quantum-access security. While post-quantum security is the most important attack
model involving quantum computers, the stronger quantum-access or quantum world attack
model [7, 13], where attackers are granted quantum access to secret-keyed functionalities,
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has received considerable attention, too. There are a number of reasons why this stronger
attack model is important. On the one hand, it is of theoretical importance because it
captures the strongest-known achievable security notions for standard classical cryptographic
primitives. On the other hand, there are a number of conceivable scenarios where they
become relevant, e.g. for composability with obfuscation or when constructing quantum-
cryptographic schemes, or to prevent implementation-level vulnerabilities in a future hybrid
quantum-classical computing infrastructure. Finally, results in the quantum access model can
inform post-quantum cryptographic research, as exemplified by the offline Simon’s algorithm
attack [8].

Blind unforgeability. In this work, we study the security of signature schemes under quantum-
access attacks, in the quantum random oracle model (QROM) [6]. Here, generalizing the
standard notion of existential unforgeability under chosen message attacks, the attacker is
granted quantum query access to the signing algorithm. In the end, the adversary should
output a forgery that they did not obtain from a query. Formalizing such a security notion is
complicated due to the so-called quantum no-cloning principle according to which quantum
states cannot be copied. We use the notion of blind unforgeability introduced in [2] (see
[7, 15] for previous and complementary notions). We remark that the choice of the blind
unforgeability definition is due to the fact that it implies the previous notions, which are the
Boneh and Zhandry definition [7] and the one-time unforgeabilty [15], as established in [2].
Informally, blind unforgeability credits an adversary with a successful break of, e.g., a digital
signature scheme, if it outputs a valid message-signature pair given a modified signing oracle
that is “blinded” on a random subset of all messages, in the sense that it outputs a dummy
symbol instead of a signature, and if the output message is among these blinded messages
(see Section 2 for details).

Hash-based signature schemes. Hash-based signature schemes are prominent candidates
for the replacement of digital signature schemes based on quantum-broken number-theoretic
hardness assumptions. In particular, the stateful hash-based signature scheme XMSS [10]
has been standardized as RFC8391 [19], and the stateless hash-based signature scheme
SPHINCS+ [4] is an alternate candidate in the ongoing NIST standardization process for
post-quantum cryptographic schemes [1]. The security of hash-based signature schemes can
be based on weak computational assumptions, like e.g. the one-wayness of the underlying
hash function. Common hash-based signature schemes, including the mentioned examples,
are constructed using one-time1 signature (OTS) schemes in combination with a hash-based
authentication graph (e.g. a Merkle tree). The most well-known OTSs are the Lamport [21]
and Winternitz [24] OTS. Variations of the latter are used in both XMSS and SPHINCS+.

Previous work. In [2], the Lamport OTS is studied in the context of blind-unforgeability.
More precisely, a proof of one-time blind-unforgeability in the QROM is provided. That
proof, however, has a gap in the analysis of the adversarial success. In particular, an auxiliary
measurement is used to “collapse” an invariant property that holds in superposition into
holding classically, but the effect of the dependence of this auxiliary measurement on the
forgery message is not analyzed.

1 And sometimes few-time signature schemes, e.g. in SPHINCS+.
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Related work. Quantum-access security for encryption is an active research area, and
generalizing chosen-ciphertext security notions to the quantum-access setting has posed, and
poses, similar challenges as the ones encountered in the authenticity setting [7, 13, 14]. On
the negative side, key recovery attacks in the quantum-access model against a number of
symmetric-key primitives that are secure in the respective standard attack models have been
discovered [26, 20], and have lead to the discovery of quantum attacks that can be performed
without quantum access to secret-keyed functionalities [8].

There are a number of works that prove query lower bounds using variants of the
superposition oracle technique [22, 17, 11, 5]. The last two papers prove query complexity
lower bounds for creating hash chains, which are not directly useful for the analysis of
hash-based signatures.

1.2 Summary of results
The Lamport OTS is blind-unforgeable. We revisit the analysis of the Lamport OTS in
the QROM presented in [2] and give a complete proof of blind unforgeability as stated in the
following theorem.

▶ Theorem 1 (Blind unforgeability of the Lamport OTS, informal). The Lamport OTS is
blind-unforgeable if the underlying hash function h is modeled as a quantum-accessible random
oracle. More precisely, the success probability of any blind unforgeability adversary A against
the Lamport OTS that makes q > 0 quantum queries to the random oracle is bounded as

Pr[A succeeds] ≤ CLq
2l3 · 2−n,

where CL is a constant, n is the security parameter of the Lamport OTS and l is the message
length.

Compared to [2], our security proof features the following improvements:
We streamline the usage of the superposition oracle technique of Zhandry [28]. In
particular, our analysis only uses (a variant of) the superposition oracle technique to
sample the secret key. We reprogram, in superposition, the standard random oracle at
inputs contained in the secret key. This technique represents a general tool to analyze
hash chains in the QROM and might be of independent interest.
We give a full analysis of the success probability using an auxiliary measurement idea
from [2]. To tackle the problem mentioned above, we introduce a novel technique of
tracking an invariant property in superposition using projectors and commutators.

The Winternitz OTS is blind-unforgeable. With the full blind unforgeability analysis of
the Lamport OTS in hand, we generalize the approach to the Winternitz OTS.

▶ Theorem 2 (Blind unforgeability of the Winternitz OTS, informal). The Winternitz OTS
is blind-unforgeable if the underlying hash function h is modeled as a quantum-accessible
random oracle. More precisely, the success probability of any blind unforgeability adversary
A against the Winternitz OTS that makes q > 0 quantum queries to the random oracle is
bounded as

Pr[A succeeds] ≤ CW q2a3 w4

log3 w
· 2−n,

where CW is a constant, n is the security parameter of the Winternitz OTS, a is the message
length and w ≥ 2 is the Winternitz parameter used to trade off signature size versus signing
and verification time.

ITC 2021
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While the simplified analysis of hash chains in the QROM described above was advanta-
geous in proving the blind unforgeability security of the Lamport OTS, it is indispensable
in the analysis of the Winternitz scheme. Here, long hash chains are considered and the
technique of using the superposition oracle to detect which hash chain elements are known
to the adversary relies on the oracle register (or rather here: the hash chain register) being
in a product state.

1.3 Technical overview

In this technical overview, we give a high-level description of our techniques for analyzing
the blind unforgeability security of the Lamport and Winternitz OTSs in the QROM.

The superposition oracle technique and hash chains. As in many contexts that concern
message authenticity and integrity, the main roadblock we have to overcome in our analysis
is the so-called recording barrier : quantum oracle queries can, in general, not be recorded for
later use. In particular, after a single quantum signing query, it is not possible to reason
about the unused parts of the secret key. This is because, in general, all secret key strings
have been used in some part of the superposition.

In [2], Zhandry’s superposition oracle technique is used in a novel way to recover the
ability to reason about which secret key strings are (un)known to the adversary. There, the
secret key of the Lamport scheme, which is a 2× l array of independent uniformly random
n-bit strings, is essentially regarded as a random function from {0, 1} × {1, . . . , l}. This
function, as well as the hash function the Lamport OTS is constructed from, is then modelled
using the superposition oracle technique.

We improve this technique as follows. We use the fact that sampling two correlated
random variables X and Y can be done by first sampling X, and then Y according to
the conditional distribution, or vice versa. In the context of hash chains in the (Q)ROM,
i.e. sequences of strings x0, x1 = H(x0), x2 = H(x1), . . . for a random oracle H, this means
that instead of sampling x0 and H, and then computing the remaining hash chain elements,
we can as well sample x0, x1, . . . from their joint distribution, sample H, and reprogram
H to be consistent with the xi. This allows us to i) change the distribution of the xi to
a simpler one that is close in total variational distance, and ii) refrain from using the full
superposition oracle technique for H. In particular, we use i) to replace the hash chains
that are generated by the key generation algorithms of the Lamport and Winternitz schemes
by tuples of independent random strings. This incurs only a small error, as the uniform
distribution and the distribution of a hash chain in the (Q)ROM with random starting value
x0 are equal conditioned on all xi being distinct. But collisions between different hash chain
elements are unlikely.

Now that the hash chain elements are independent strings, we can use the full power of
the superposition oracle technique. In particular, the one-to-one correspondence between the
adversary’s ignorance of a hash chain element and the corresponding superposition oracle
register being in uniform superposition, is restored.

Throughout the paper, and in the rest of this technical overview, we perform the analysis
in a world where hash chains are formed using a superposition oracle modeling independent
uniformly random strings, and the random oracle is reprogrammed accordingly. We call this
the Quantum independent world. To conclude our analysis, we make use of the approximate
indistinguishability of the Real and the Quantum independent world.
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Blind unforgeability and classical invariants in superposition. With the tools for analyzing
hash chains in the QROM in hand, the next challenge consists of generalizing the classical
security arguments for the Blind Unforgeability (BU) of the Lamport and Winternitz OTSs
to the quantum-access setting. The core of these security arguments is, at a high level,
that for each unqueried message, any valid signature contains a string that is unknown
to the adversary.2 As mentioned above, this kind of reasoning does not generalize to the
quantum-access setting, as here an adversary can query all messages in superposition.

In the security game for the notion of BU instead of the full signing oracle the adversary
is provided with a modified oracle that is “blinded” on a random subset of messages, in the
sense that for these messages it outputs a dummy symbol ⊥ instead of a signature. These
“blinded messages” can now replace the unqueried messages in security arguments, as by
definition the adversary is prevented from obtaining a valid signature for them from the
blinded signing oracle.

For obtaining a quantum generalization, we need to reformulate this argument. The
statement that for each unqueried message any valid signature contains a string unknown to
the adversary, is equivalent to saying that, for each fixed message m∗ and all m ̸= m∗, some
information related to the secret key and not revealed by the signature of m is necessary to
compute the signature for m∗. For BU, it suffices to consider blinded m∗ and unblinded m.
In the superposition oracle framework, the statement “there exists an unblinded message
such that the registers corresponding to all parts of the secret key not revealed by that
message are in the uniform superposition state” defines a subspace I. By definition, the
global state after a BU-adversary makes a single query to the blinded signing oracle, and no
queries to the random oracle, is in that subspace.

The crucial step in our analysis is to show that the joint adversary-oracle state approx-
imately remains in the subspace I, even if the adversary performs a moderate number of
quantum queries to the random oracle. This means the subspace I can serve as an invariant.

Random oracle queries and commutators. To analyze the “leakage” from the invariant
subspace I, we use bounds on the norm of matrix commutators: to prove that the final
oracle-adversary state is approximately in the invariant subspace I, we can equivalently
show that applying the corresponding projector ΠI does not change the state by a lot. We
know, however, that the projector does not change the state at all before any random oracle
queries have been made. Therefore it suffices to bound the operator norm of the commutator
between the projector ΠI and the unitary operator that facilitates random oracle queries in
the Quantum independent world. We derive such a norm bound (see e.g. Lemma 15 for the
Lamport case), and the proof follows the classical intuition about the one-wayness of the
random oracle.

2 Preliminaries

We introduce some notation and conventions that will be used throughout the paper. Registers
of quantum systems will be denoted by capital letters. We say that ϵ = ϵ(n) is negligible
if, for all polynomials p(n), ϵ(n) < 1/p(n) for large enough n ∈ N. We use the notation
x

$← D to say that x is chosen uniformly at random from a set D. We write Sc to denote the

2 When basing the security on one-wayness, “unknown” is to be taken in a computational sense, but as
this paper is about security in the (Q)ROM, it is sufficient to interpret “unknown to” as “independent
of the state of”.
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complement of set S (in a superset that is clear from the context). We write s ∥ t to denote
the concatenation of strings s and t, and [A,B] = AB − BA to denote the commutator
of operators A and B. Throughout this paper, quantum adversaries refer to quantum
polynomial-time algorithms and are denoted by A.

Quantum computing. We use standard quantum computing notation, see e.g. [25]. A
d-level quantum system is associated with a d-dimensional complex Euclidean space H = Cd

with inner product ⟨·|·⟩. We refer to the standard basis of Cd as the computational basis. The
state of a system is described by a unit vector in |ψ⟩ ∈ H, and ⟨ψ| denotes its dual vector.
Given two quantum systems A and B, the composite system AB has state space equal to
the tensor product HA ⊗HB. We will often refer to the subsystems A and B as registers.
We denote the n-bit uniform superposition and the corresponding projector by

|Φ⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩, Φ = |Φ⟩⟨Φ|. (1)

Quantum computation proceeds by applying unitary transformations, i.e., complex d× d
matrices U such that UU† = I, where U† = ŪT denotes the conjugate transpose of U . We
omit tensor products with identity matrices, indicating which registers an operator acts on
by subscripts, e.g. UA|ψ⟩AB = (UA ⊗ IB)|ψ⟩AB .

We can extract information from a quantum state |ψ⟩ by performing a measurement. A
(projective) measurement is described by a set {P1, . . . , Pk} of orthogonal projectors (P †

i = Pi

and P 2
i = Pi) such that

∑k
i=1 Pi = I. When performing a measurement on a quantum state

|ψ⟩, the probability of getting outcome i is p(i) = ⟨ψ|Pi|ψ⟩. Upon getting outcome i, the
state |ψ⟩ collapses to Pi|ψ⟩/

√
p(i).

The standard way of modelling quantum black-box access to a function f : {0, 1}n →
{0, 1}m is by providing an oracle for the unitary operation Of that acts on n+m qubits as
Of |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩ for all x ∈ {0, 1}n and y ∈ {0, 1}m. Without loss of generality, an
algorithm A that makes q queries to such an oracle has the form UqOf · · ·U1OfU0|Ψ0⟩ =
V

Of

A |Ψ0⟩ = |Ψ⟩, possibly followed by a measurement. Here, |Ψ0⟩ is an initial state and Ui

are arbitrary unitary operations that do not depend on f .
We will deal with algorithms that have two oracles, O1 and O2, but may only query O2

at most once (O1 will be a random oracle and O2 a signing oracle for a one-time signature
scheme). We can regard such an algorithm AO1,O2 = (AO1

0 ,AO1
1 ) as a two-stage process:

AO1
0 prepares the input for O2 and an internal register, AO1

1 receives the internal state and
the output of O2, and produces the final output of A, |Ψ⟩ = V O1

A1
O2V

O1
A0
|Ψ0⟩.

The most well-known situation in cryptography that features a quantum oracle is the
so-called quantum random oracle model (QROM) [6]. In the QROM, just as in the classical
random oracle model (ROM) [3], a hash function is modeled as a uniformly random function
h that all agents have oracle access to.

Tools from linear algebra. In this section, we state a couple of simple lemmas used in
security proofs in Sections 4 and 5. For the first lemma, we use the formulation from [7]
(Lemma 2.1), and the proof is also provided in the same reference.

▶ Lemma 3 (Special case of the pinching lemma [18]). Let A be a quantum algorithm and x
any output value of A. Let A0 be another quantum algorithm obtained from A by pausing A
in an arbitrary stage of execution, performing a projective measurement that obtains one of k
outcomes, and then resuming A. Then, Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.
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▶ Lemma 4. Let A and {Bi}n
i=1 be operators, acting on the same space, with ∥A∥∞, ∥Bi∥∞ ≤

1. Then
∥∥[A,∏n

i=1 Bi

]∥∥
∞ ≤

∑n
i=1∥[A,Bi]∥∞.

▶ Lemma 5. Let X and Y be two n-qubit quantum systems and let P=
XY =∑

x∈{0,1}n |x⟩⟨x|X ⊗ |x⟩⟨x|Y be the projector onto the subspace spanned by those compu-
tational basis vectors where the two registers are equal. Let Φ = |Φ⟩⟨Φ| denote the projector
onto the uniform superposition, see Equation (1). Then ∥P=

XY ΦY ∥∞ = 2−n/2.

By applying the triangle inequality, Lemma 5 implies ∥[P=
XY ,ΦY ]∥∞ ≤ 2 · 2−n/2.

Hash-based one-time signature schemes. Hash-based signature schemes [21, 24] are digital
signature schemes whose security relies on cryptographic hash functions. In this paper, we
study hash-based one-time signatures (OTSs), i.e. schemes that use a pair of keys for a single
message. Below we introduce the Lamport and Winternitz OTSs.

The Lamport OTS is the simplest hash-based OTS. It uses a hash function h : {0, 1}n →
{0, 1}n for key generation and verification and is defined as follows:
1. Parameters: Security parameter n ∈ N and message length l ∈ N.
2. Key generation algorithm (KeyGen): On receiving the security parameter n in unary,

KeyGen outputs a secret signing key sk = (sj
i )j=0,1

i=1,...,l with sj
i

$← {0, 1}n and a public
verification key pk = (pj

i )j=0,1
i=1,...,l where pj

i = h(sj
i ) ∈ {0, 1}n.

3. Signature algorithm (Signsk): On input message m = m1 . . .ml ∈ {0, 1}l of length l,
Signsk outputs Signsk(m) = σ = σ1 . . . σl where σi = smi

i ∈ {0, 1}n.
4. Verification procedure (Verpk): Upon receiving a message m and a signature σ = σ1 . . . σl,

Verpk outputs acc if h(σi) = pmi
i for all i ∈ {1, . . . , l}, and rej otherwise.

The Winternitz OTS was introduced by Merkle [24]. In this work, we study a variant
that uses a hash function h : {0, 1}n → {0, 1}n and is defined as follows:
1. Parameters: Security parameter n, binary message length a, and the Winternitz parameter

w ≥ 2. Based on parameters a and w we define

l1 = ⌈a/ log(w)⌉, l2 = ⌊log(l1(w − 1))/ log(w)⌋+ 1, l = l1 + l2. (2)

2. Key generation algorithm (KeyGen): On receiving the security parameter n, choose
uniformly at random l values that form the signing key sk = (s1, . . . , sl)

$← ({0, 1}n)l.
Then, compute the public verification key pk = (p1, . . . , pl) =

(
hw−1(s1), . . . , hw−1(sl)

)
.

3. Signature algorithm (Signsk): For a given input message x ∈ {0, 1}a and secret key sk,
convert x to base w: m = (b1, . . . , bl1) where bi ∈ {0, . . . , w − 1}. Next, compute the
checksum C(m) =

∑l1
i=1(w−1−bi) and convert it to base w: C(m) = (bl1+1, . . . , bl). The

reader may refer to [12] for more details on the checksum. Then set b(m) = (b1, . . . , bl) =
m ∥ C(m). The signature is then computed as σ = (σ1, . . . , σl) =

(
hb1(s1), . . . , hbl(sl)

)
.

4. Verification algorithm (Verpk): Given input message m, signature σ and public verification
key pk, compute (b1, . . . , bl) as described above and output acc if hw−1−bi(σi) = pi for
all i ∈ {1, . . . , l}, and rej otherwise.

Blind unforgeability. Blind unforgeability (BU) [2] is a quantum-access replacement for
EU-CMA introduced in [16]. It uses the concept of blinding. Let f : X → Y be a function
and B ⊂ X a subset of X. The blinded function Bf with respect to the blinding set B is
defined as Bf(x) = ⊥ if x ∈ B and Bf(x) = f(x) otherwise, where ⊥ is a special blinding
symbol. One concrete way to instantiate this is by means of an extra bit: given a function
f : {0, 1}n → {0, 1}m, we define Bf : {0, 1}n → {0, 1}m+1 by setting ⊥ = 0n ∥ 1 and
replacing f(x) by f(x)∥0. We refer to Bc as the set of unblinded messages.

ITC 2021
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Let S = (KeyGen,Sign,Ver) be a digital signature scheme with a security parameter n
and message space M . Let A be an adversary and let ϵ : N→ R+ be a negligible function.
We define the blind forgery experiment BlindForgeS,A(n, ϵ) as follows:

Key generation: (sk,pk)← KeyGen(1n).
Generation of blinding set: Select B ⊆ M by choosing each m ∈ M independently at
random with probability ϵ(n) provided by the adversary A.
Forgery: (m,σ)← AB Signsk(1n).
Outcome: Win if Verpk(m,σ) = acc and m ∈ B, and lose otherwise.

▶ Definition 6 (Blind unforgeability (BU)). A digital signature scheme S is q-BU secure if for
any adversary A making at most q queries to B Signsk and for all ϵ, the success probability
of winning the blind forgery experiment is negligible in the security parameter n.

3 Hash chains in the QROM

3.1 Quantum hash chain sampling
In this section, we introduce hash chains and describe a technical tool consisting of modeling
hash chains as independent uniform superposition states akin to Zhandry’s compressed oracle
technique [28]. This technique will enable us to prove BU security for the Lamport and
Winternitz OTSs. Hash chain is a sequences of strings obtained by iteratively applying a
hash function. They provide key pairs for the Lamport and Winternitz OTS’.

In the (Q)ROM, to generate a hash chain based on a hash function h, we first sample an
initial string s0 uniformly at random and then compute si = h(si−1) for i = 1, . . . , w − 1 to
obtain a hash chain of length w. For key generation in the Lamport and Winternitz OTSs,
the secret key sk is, respectively, a tuple of 2l and l initial strings sampled uniformly at
random in the domain {0, 1}n. Then a tuple of hash chains γ = (γj

i )j=0,...,w−1
i=1,...,l is obtained

by querying the hash function h on each string of the secret key w − 1 times:

γ0
i = si, γj

i = hj(γ0
i ), pi = γw−1

i = hw−1(γ0
i ), j = 0, . . . , w − 1, i = 1, . . . , l,

where w is the length of the hash chain (w = 2 for Lamport) and l is the number of hash
chains. The final entry of each chain is used as a public key.

In the BlindForge game, the secret key is only used by the blinded signing oracle. When
analyzing this game, we can thus modify the key generation, signing and random oracle
algorithms in an arbitrary way, as long as the modified triple is indistinguishable from the
real one to an adversary.

In the proofs in Sections 4 and 5 we make use of the following modified triple, which we
will refer to as defining the Quantum independent world. We construct the secret key and the
intermediate hash chain elements initially in uniform superposition. That is, we prepare each
hash chain register (Γj

i )j=0,...,w−2
i=1,...,l in the uniform superposition state |Φ⟩, with the intention

of measuring them to sample the strings γj
i in mind. Then, we sample the final hash chain at

random. The random oracle is then “reprogrammed in superposition” to be approximately
consistent with the hash chains.

We proceed to show that the way of implementing the hash chain and the random oracle
in the Real world and in the Quantum independent world are indistinguishable. For that
purpose, we first formally define both worlds and some intermediate worlds between them.
Each world is specified by two oracles, H and Sign, replacing the random oracle h and the
signing oracle in the Real world (in each world, the KeyGen algorithm is implicitly replaced
by the setup described below that generates the initial state and the public key). The oracles
of the Quantum independent world are described below as well.
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Real world. In the Real world, the first element γ0
i of each hash chain γi is generated

at random and the hash function is evaluated to generate the rest of the hash chain, i.e.,
γj

i = hj(γ0
i ). Here, the random oracle is implemented at random, i.e. H = h, and the Sign

oracle uses the secret key sk consisting of the γ0
i .

Intermediate world 1. Here, the first hash chain element is generated at random and the
following elements are successively sampled uniformly except for the collision tuples. That is
si = γ0

i
$← {0, 1}n and γ1

i is uniform except for the cases where γ1
i = γ1

i′ if γ0
i = γ0

i′ ; γ2
i is

uniform except for the cases where γ2
i = γ1

i′ if γ1
i = γ0

i′ ; γ2
i′ = γ2

i if γ1
i = γ1

i′ , etc. This world
is very similar to the Real world, the only difference is that here we first sample the secret
and public key (hash chain), then we reprogram the random oracle according to the secret
and public key that we sampled, i.e. whenever the input to the random oracle is equal to
a hash chain element γj

i with j ≤ w − 2, we return γj+1
i , otherwise answer with the actual

random oracle. The Sign oracle is the same as in the Real world.

Intermediate world 2. In this world, the hash chain elements γj
i are first sampled uniformly

at random with possible collision tuples. It means that the γj
i are uniformly independent

strings. Afterwards, the random oracle is reprogrammed to be consistent with the secret
and public keys. When queried, it compares the input with the hash chain. If the input is
not equal to any of the hash chain elements, the oracle answers with a random function ĥ.
Otherwise, for each hash chain element the input is equal to, it XORs the next hash chain
element into the output register. If there are two hash chain elements that are the same, the
random oracle XORs both following hash chain elements into the output register. In this
case, the Sign oracle uses the full list of hash chains (γj

i )j=0,...,w−1
i=1,...,l to answer the query with

all the hash chain elements consistent with the input.

Quantum independent world. In this world, the hash chain registers (Γj
i )j=0,...,w−2

i=1,...,l are
initially prepared in the uniform superposition |Φ⟩, and the last hash chain elements
(γw−1

i )i=1,...,l are sampled uniformly at random. The random oracle is constructed in
such a way that it is compatible with the hash chain. When queried with register X and
Y , the random oracle compares the X and Γ registers, then answers the query in the Y
register. Abstractly speaking, H is implemented as in the Intermediate world 2, except
that the comparison and XOR operations involving γj

i are replaced by controlled unitary
operations with Γ as the control register. It can be expanded as3

(Uh)XY Γ =

 l∏
i=1

w−2∏
j=0

(U j
i )XY Γj

i
Γj+1

i

U ̸=
XY Γ, (3)

where the unitaries Uij apply CNOT from register Γj+1
i into Y , controlled on registers X

and Γj
i being equal, and U ̸= uses the actual random oracle in case X is not equal to any

of the registers Γj
i . The signing oracle on the other hand just uses the superposition hash

chain elements by means of a controlled unitary with control register Γ. For a detailed
mathematical description, see the full version [23].

3 Note that the ordering of the product is unimportant because the operators U j
i commute.
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3.2 Indistinguishability
The following lemma allows us to conclude the indistinguishability of the Real world and the
Quantum independent world.

▶ Lemma 7. Let p and q be output distributions over n-bit strings of an algorithm A
interacting with the Real and the Quantum independent world, respectively. Then

∥∥p− q∥∥1 ≤
3(wl)2/2n.

This lemma follows from the following three results (see the full version [23] for proofs).

▶ Lemma 8. The Real world and the Intermediate world 1 are indistinguishable.

▶ Lemma 9. The distribution p and q of hash chains in the Intermediate worlds 1 and 2 are
close:

∥∥p− q∥∥1 ≤ 3(wl)2/2n.

▶ Lemma 10. The way the random oracle is implemented in the Intermediate world 2 and in
the Quantum independent world are indistinguishable.

4 One-time BU security of the Lamport OTS

In the BlindForge experiment, the adversary has quantum access to both a blinded signing
oracle and a random oracle. For one-time signature schemes, the adversary is allowed only
to query the signing oracle at most once. So, to produce a forged message-signature pair,
the adversary can make a desired number of quantum queries to the random oracle, then
query the signing oracle once, and then query again the random oracle as many times as
desired. Our goal is to prove that the probability that an adversary outputs a correct forged
signature on a valid forged message is negligible.

In the Lamport OTS, the signature algorithm uses only half of the secret key to produce
the signature. Classically, the property that enables security is that the adversary does not
have any information about the other half, the invariant, of the secret key. Quantumly, since
in the BlindForge experiment the forged message must be outside the queried region, for any
queried message there exists at least one bit in which the forged and queried messages differ.
Thus, the secret key corresponding to that bit should still be in its initial state. To show
blind-unforgeability, we separately analyze three cases: hash queries before Sign query, Sign
query, and hash queries after Sign query. We describe below our proof strategy in these cases
on a high level.

For hash queries before Sign query, we know that before any query the entire secret key
is in uniform superposition. We therefore define a projector of the secret key register being
in uniform superposition, and show that this projector approximately commutes with the
random oracle unitary. This means that after a moderate number of queries, the secret key
registers will still be in uniform superposition, indicating that the adversary learns almost
no information about the secret key.

In the Sign query case, the first step is to track the unused part of the secret key. This
part can be easily determined in the classical setting since the adversary queries only one
message in each query. In contrast, in the quantum setting we consider quantum queries and
hence have to track the invariant in superposition over the different queried messages. This is
difficult because the invariant is different within each term of the superposition, so we cannot
simply describe the invariant for the whole state. We address this problem as follows. We
define an invariant projector that tracks the invariance of the unused superposition-secret-
keys under queries and show that this projector is orthogonal to the projector corresponding
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to the outcome where none of the secret key registers relevant to the forged signature belong
to the invariant. Then, we show that if there is only Sign query, this new projector does not
change the adversary state immediately after the signature. We also establish that if the
adversary state after forgery is in the range of this new projector, then the adversary has
negligible probability to win the BlindForge game. Besides, we prove that the new projector
approximately commutes with the random oracle unitary.

Finally, for the case of hash queries after Sign query, we use the latter argument of the
commutator to prove that after hash queries the final adversary state remains roughly in the
image of the invariant projector of the secret key.

The arguments from these three cases together constitute a proof of the following theorem.

▶ Theorem 11. The Lamport OTS is 1-BU secure if the hash function h is modeled as
a quantum-accessible random oracle. More precisely, let A be an adversary that plays the
BlindForge game for the Lamport OTS, making a total of q queries to the random oracle.
Then A succeeds with a probability bounded as

Pr[A wins BlindForge] ≤ l2 · 2−n
(
3137q2(l + 1) + 12

)
≤ 6286q2l3 · 2−n, (4)

where n is the security parameter of the Lamport OTS, l is the message length, and the
simplified bound holds for q > 0.

We present a proof of this result in subsequent sections. In particular, we prove it in the
Quantum independent world first, and then conclude the statement in the Real world via an
application of Lemma 7. In the remainder of the article, we use a subscript QI to indicate
that a probability statement holds in the Quantum independent world.

4.1 Q measurement for Lamport OTS
We begin by presenting some concepts and tools which will be used in the proof. Subsequently,
we prove the steps outlined above as separate lemmas. Our proof will make use of a projective
measurement to track an invariant on the Quantum independent world secret key register for
the verification of the forged message in the case of no hash queries. Let (m∗, σ∗) be a forged
message-signature pair with σ∗ = s

m∗
1

1 · · · sm∗
l

l , where (sj
i )j=0,1

i=1,...,l is the secret key and l is the
message length.

For any message m∗ ∈ {0, 1}l we define an (l + 1)-outcome projective measurement that
finds the smallest index i∗ ∈ {1, . . . , l} for which the register Sm∗

i∗
i∗ is in uniform superposition,

or determines that none of the relevant secret key registers are in uniform superposition (this
corresponds to the outcome l+ 1). We define projectors Qm∗

i∗ with i∗ ∈ {1, . . . , l} in terms of
projectors Φ = |Φ⟩⟨Φ| and Φ⊥ = I − |Φ⟩⟨Φ| placed onto different registers depending on the
message m∗ (they act as I on all other registers Sj

i that are not specified):

Qm∗

i∗ = Φ⊥
S

m∗
1

1

⊗ · · · ⊗ Φ⊥

S
m∗

i∗−1
i∗−1

⊗ Φ
S

m∗
i∗

i∗
, Qm∗

l+1 =
l⊗

i=1
Φ⊥

S
m∗

i
i

. (5)

4.2 Invariant projector
In this section we define a projector PS that will be useful for our analysis, and state some
of its properties as lemmas.

Let α = (αj
i )j=0,1

i=1,...,l be a 2l-bit string whose each bit αj
i ∈ {0, 1} indicates that the

projector Φ(αj
i ) is applied on the corresponding secret key register Sj

i where Φ(0) = Φ and
Φ(1) = Φ⊥. For each string α, we define the associated projector Φ(α) on the whole secret
key register S as Φ(α)S =

⊗l
i=1
⊗1

j=0 Φ(αj
i )Sj

i
. Note that

∑
α∈{0,1}2l Φ(α)S = IS .
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Since we are interested in the unused part of the secret key register S, we need to filter
those α’s for which Sj

i is in state |Φ⟩. Recall from our discussion of blind unforgeability in
Section 2 that B denotes the set of blinded messages. Since the blinded signing oracle has
signed (at most) a single, un-blinded message, the state after the oracle call can be written
as a superposition of states where, for some un-blinded message m ∈ Bc, the secret key
register of the complementary value m̄i is still in the uniform superposition |Φ⟩, for all i.
We collect all strings α that are consistent with no blinded messages having been signed
in B̂c =

⋃
m∈Bc

{
α ∈ {0, 1}2l

∣∣∣ αm̄i
i = 0 for all i = 1, . . . , l

}
. These strings indicate which

secret key registers were not used during hash queries and Sign query. Finally, we define
PS =

∑
α∈B̂c

Φ(α)S as the projector onto the subspace compatible with B̂c. Note that PS is
indeed a projector since it is a sum of mutually orthogonal projectors.

We proceed to state several lemmas used to prove our main results both for the Lamport
and Winternitz OTSs. Proofs of these lemmas are provided in the full version [23].

The first lemma says that hash queries do not affect the secret key registers significantly
as long as they are in their initial state Φ.

▶ Lemma 12. Let Uh be the random oracle unitary for any given function h (see Section 3)
and let Φ = |Φ⟩⟨Φ| denote the projector onto the uniform superposition. Then, for any
i ∈ {1, . . . , l} and j ∈ {0, 1},

∥∥[Uh,ΦSj
i

]∥∥
∞ ≤ 6/2n/2 = ϵL(n) is negligible in n.

The quantum analogue of the following property holds: signing a message m∗ requires at
least one secret key string that was not used to sign m ̸= m′.

▶ Lemma 13. For all m∗ ∈ B, the projectors Qm∗

l+1 defined in Equation (5) and PS are
orthogonal.

The projector PS defined above is an invariant of the secret key registers after a signing
query but no hash queries.

▶ Lemma 14. Let B Signsk be the blinded signing oracle for the Lamport OTS and let |ψ0⟩
be the adversary’s state before the Sign query. If there are no hash queries, PSB Signsk |ψ0⟩ =
B Signsk |ψ0⟩.

The invariant specified by PS approximately holds also after hash queries.

▶ Lemma 15. The invariant projector PS defined above and the random oracle unitary Uh

defined in the Quantum independent world approximately commute, i.e.,
∥∥[Uh, PS ]

∥∥
∞≤ δL(n),

where δL(n) = 32l/2n/2 is negligible in n.

In the following sections, we use the above lemmas to analyze the situation where the
adversary makes q0 hash queries before the Sign query and q1 hash queries after. Maximizing
the resulting bound under the condition q0 + q1 = q gives Theorem 11.

4.3 Hash queries before Sign query
In this section, we study the impact of hash queries before Sign query on the secret key
register S. Our main goal is to show that, for a moderate number of queries to the random
oracle, no adversary can learn a significant amount of information about the secret key.
Therefore, she cannot produce a valid forgery except with a small probability.

Let |ψ⟩XY MΣE be adversary’s initial state before any queries (see Table 1 for a summary
of registers and their roles). Before any query is performed, the whole secret key register S
is in the uniform superposition state |Φ⟩⊗2l. Assume the adversary A0 queries the random
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Table 1 Registers used in the analysis.

Register Meaning
X adversary’s input
Y adversary’s output
M Sign query input
Σ Sign query output
E adversary’s internal workspace
S secret key

oracle q0 times before querying the signing oracle. If V i
XY E denotes the unitary she performs

after the i-th query, the final adversary state after q0 hash queries is

|ψ0⟩XY MΣES = V q0
XY E(Uh)XY SV

q0−1
XY E · · ·V

2
XY E(Uh)XY SV

1
XY E(Uh)XY S |ψ⟩XY MΣE |Φ⟩⊗2l

S

(6)

where Uh is the random oracle unitary that answers hash queries. The following lemma
shows that secret key registers of this state are still close to the uniform superposition.

▶ Lemma 16. In the Quantum independent world, without querying the B Sign oracle, hash
queries leave the state of the secret key registers approximately unchanged:∥∥Φ⊗2l

S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2 ≤ 2lq0ϵL(n).

Proof. We want to show that after q0 hash queries, the state of the secret key register S is
still approximately in the uniform superposition state |Φ⟩⊗2l. Let us abbreviate the overall
unitary in Equation (6) by WXY ES . Since the only operations in WXY ES that act on the S
register are the hash queries Uh, and they are in fact controlled by the S register, we have
WXY ESΦ⊗2l

S = WXY ES . Using this, we get∥∥Φ⊗2l
S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2

=
∥∥Φ⊗2l

S WXY ES |ψ⟩XY MΣE |Φ⟩⊗2l
S −WXY ESΦ⊗2l

S |ψ⟩XY MΣE |Φ⟩⊗2l
S

∥∥
2 (7)

=
∥∥[Φ⊗2l

S ,WXY ES

]
|ψ⟩XY MΣE |Φ⟩⊗2l

S

∥∥
2 (8)

≤
∥∥[Φ⊗2l

S ,WXY ES

]∥∥
∞

∥∥|ψ⟩XY MΣE |Φ⟩⊗2l
S

∥∥
2︸ ︷︷ ︸

=1

(9)

=
∥∥∥[Φ⊗2l

S , V q0
XY E(Uh)XY SV

q0−1
XY E · · ·V

2
XY E(Uh)XY SV

1
XY E(Uh)XY S

]∥∥∥
∞

(10)

≤ q0
∥∥[Φ⊗2l

S , (Uh)XY S

]∥∥
∞ +

q0∑
i=1

∥∥[Φ⊗2l
S , V i

XY E

]∥∥
∞, (11)

where Equation (9) follows from the definition of the operator norm and the last inequality
follows from Lemma 4.

The first term in Equation (11) can be bounded as follows:∥∥[Φ⊗2l
S , (Uh)XY S

]∥∥
∞ ≤

∑
i∈{1,...,l}
j∈{0,1}

∥∥∥[ΦSj
i
, (Uh)XY S

]∥∥∥
∞
≤ 2lϵL(n),

which follows by first applying Lemma 4 and then Lemma 12. Since Φ⊗2l
S and V i

XY E act on
different registers, they commute and the second term in Equation (11) vanishes. Hence∥∥Φ⊗2l

S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2 ≤ 2lq0ϵL(n). ◀
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4.4 Query to the signing oracle
Now that we have control over the advantage an adversary can gain from making hash queries
before the sign query, we need to analyze the possible advantage from hash queries after the
sign query and bound the overall success probability using Lemma 16.

A crucial property of the Lamport OTS when analyzing classical security is that for all
messages m that have not been queried, there exists an index j such that smj

j is hidden from
the adversary by the one-wayness of the used hash function. In blind-unforgeability (for
classical adversaries), this property holds for all blinded messages. In the setting of quantum
queries, we have to track this property in superposition while the adversary is making hash
queries after the sign query. As this is complicated by the “for all”-quantifier, we begin by
analyzing the case where the adversary makes no hash queries after the sign query to ease
the reader into our proof technique.

The discussion in this section does not concern the random oracle, so we absorb the
random oracle query registers XY into E for the purpose of this section. In the 1-BlindForge
game, an adversary A is allowed to query the Sign-oracle at most once to produce a valid
forged message-signature pair (m∗, σ∗). To analyze the interaction between A and the signing
oracle, we will break it into the following steps:

|ψ0⟩MΣBES
B Signsk7−−−−−→ |ψ1⟩MΣBES

UMΣE7−−−−→ |ψ2⟩MΣBES
⟨m∗|M7−−−−→ |ψ3(m∗)⟩ΣBES

⟨σ∗|Σ7−−−−→ |ψ4(m∗, σ∗)⟩BES .

They correspond to applying the Sign-oracle and an arbitrary unitary UMΣE , followed by
measuring the message and signature registers M and Σ. Let us now analyze these steps in
more detail and write down the corresponding quantum states.

First, A prepares her input state as an arbitrary superposition of messages:

|ψ0⟩MΣBES =

 ∑
m∈{0,1}l

∑
σ∈({0,1}n)l

∑
b∈{0,1}

κmσb|m⟩M |σ⟩Σ|b⟩B |αmσb⟩E

⊗ (|Φ⟩⊗2l
)

S

(12)

where the B register indicates whether the message is blinded or not (|1⟩B for blinded and
|0⟩B for un-blinded). The adversary then supplies this to the Sign oracle which produces the
following signed state:

|ψ1⟩MΣBES = B Signsk |ψ0⟩MΣBES = |ψ1
1⟩MΣBES + |ψ0

1⟩MΣBES (13)

where superscripts 1 and 0 refer to blinded (B) and un-blinded (Bc) messages, respectively:

|ψ1
1⟩MΣBES =

∑
m∈B

∑
σ∈({0,1}n)l

κmσ1|m⟩M |σ⟩Σ|1⟩B |αmσ1⟩E |Φ⟩⊗2l
S ,

|ψ0
1⟩MΣBES =

∑
m∈Bc

∑
σ∈({0,1}n)l

1
2nl/2

∑
s∈({0,1}n)l

κmσ0|m⟩M |σ ⊕ s⟩Σ|0⟩B |αmσ0⟩E |Ω(s,m)⟩S ,

where m = m1 . . .ml, σ = σ1 . . . σl, and

|Ω(s,m)⟩S = |sm1
1 ⟩Sm1

1
· · · |sml

l ⟩Sml
l
|Φ⟩

S
m̄1
1
· · · |Φ⟩

S
m̄l
l

. (14)

Once the adversary A gets the signed state |ψ1⟩MΣBES , she performs some operations
with the intention of producing a forgery message m∗. Intuitively, those operations can
be considered as applying an arbitrary unitary UMΣE to |ψ1⟩MΣBES . Let us denote the
resulting state by |ψ2⟩MΣBES = UMΣE |ψ1⟩MΣBES .
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Next, A measures the registers M and Σ to produce a forgery candidate (m∗, σ∗),
collapsing the state to |ψ4(m∗, σ∗)⟩BES = ⟨σ∗|Σ|ψ3(m∗)⟩ΣBES = ⟨m∗|M ⟨σ∗|Σ|ψ2⟩MΣBES .
Similar to Equation (13), we can split the final (unnormalized) post-measurement state as

|ψ4(m∗, σ∗)⟩BES = |ψ1
4(m∗, σ∗)⟩BES + |ψ0

4(m∗, σ∗)⟩BES

where |ψi
4(m∗, σ∗)⟩BES = ⟨m∗|M ⟨σ∗|ΣUMΣE |ψi

1⟩MΣBES . We can rewrite |ψ0
4⟩BES as

|ψ0
4(m∗, σ∗)⟩BES =

∑
m∈Bc

1
2nl/2

∑
s∈({0,1}n)l

|η(m, s)⟩BE |Ω(s,m)⟩S (15)

where only |η(m, s)⟩BE depends on m∗ and σ∗:

|η(m, s)⟩BE =
∑

σ∈({0,1}n)l

κmσ0⟨m∗|M ⟨σ∗|ΣUMΣE |m⟩M |σ ⊕ s⟩Σ|0⟩B |αmσ0⟩E .

Finally, the adversary A outputs the measurement outcome (m∗, σ∗) as a forged message-
signature pair. The probability of producing this pair is ∥|ψ0

4(m∗, σ∗)⟩BES∥2.
The next step is to analyse the probability that A’s forgery candidate (m∗, σ∗) is correct.

For that purpose, we consider two cases. The first case, namely when m∗ /∈ B, is trivial since
then A has lost the BlindForge experiment because m∗ must be blinded by definition. The
rest of this section is devoted to analyzing the second case.

If m∗ ∈ B, the forged message m∗ has not been signed since the blinded signing oracle
signs only un-blinded messages. Hence, for any message m /∈ B, there exists at least one
index i ∈ {1, . . . , l} such that mi ≠ m∗

i . This implies that for some index i∗ ∈ {1, . . . , l}
the register Sm∗

i∗
i∗ has not been used for the signature of the adversary’s queried message

and is therefore still in the uniform superposition state |Φ⟩. Note that this holds only in
superposition over m. Indeed, i∗ depends on m and is in general different for each term of
the superposition.

We break that superposition by analyzing a modified BlindForge experiment, where an
additional measurement, the Q-measurement defined in Equation (5), is performed on the
secret key register after the adversary has output their forgery, but before the secret key
register is measured to actually sample the secret key as required in the Quantum independent
world. Since the measurement has few outcomes, its effect on the adversary’s winning
probability is limited and can be bounded by the pinching lemma (Lemma 3).

If the Q-measurement yields outcome i∗ ∈ {1, . . . , l}, then the secret key sub-register
Smi∗

i∗ is in uniform superposition, and the adversary is bound to fail as σ∗ is independent of
the secret key string smi∗

i∗ (the result of measuring Smi∗
i∗ ). Hence, it remains to analyze the

outcome l + 1 that corresponds to the projector Qm
l+1 = (Φ⊥)⊗l, see Equation (5), where

Φ⊥ = I − |Φ⟩⟨Φ| projects onto the orthogonal complement of |Φ⟩.
For the rest of our analysis, we fix the message m∗ and focus on the un-blinded term

|ψ0
4(m∗, σ∗)⟩BES whose expression is given by Equation (15). Given that for each m /∈ B

there is at least one index i ∈ {1, . . . , l} such that mi ̸= m∗
i , we define i(m) = min{j ∈

{1, . . . , l} | mj ̸= m∗
j} as the smallest index for which m ̸= m∗. Intuitively, it is the

first sub-register of S that still remains in uniform superposition. In the following, let
S(m) := Sm1

1 · · ·Sml

l . We want to split the first sum in Equation (15) into l parts, one
for each value of i(m), so that we can easily evaluate (Φ⊥)⊗l

S(m̄)|ψ
0
4(m∗, σ∗)⟩BES . For that
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purpose, we define Bc
j = {m ∈ Bc | i(m) = j} and note that

⋃l
j=1 B

c
j = Bc. We can now

rewrite |ψ0
4(m∗, σ∗)⟩BES as

|ψ0
4(m∗, σ∗)⟩BES =

l∑
j=1

∑
m∈Bc

j

1
2nl/2

∑
s∈({0,1}n)l

|η(m, s)⟩BE |sm⟩S(m)|Φ⟩⊗l
S(m̄)

=
l∑

j=1
|η̂(m∗, σ∗, j)⟩BES{(j,m∗

j
)}c |Φ⟩

S
m∗

j
j

, (16)

where we absorbed all registers except for Sm∗
j

j into the first system. The remaining register
S

m∗
j

j is still in the uniform superposition |Φ⟩ since j = i(m) is the smallest index such that
mj ≠ m∗

j . Applying Ql+1 hence clearly maps the state to zero, and so the situation where
none of the secret key sub-registers relevant for the verification of the forged signature σ∗ is
in state |Φ⟩ can ever occur.

Now, we execute the last part of the BlindForge experiment which consists of checking
the correctness of the forged signature σ∗. For this purpose, we perform a computational
basis measurement on the entire secret key register S to sample the strings sj

i . As mentioned
above, the probability of (m∗, σ∗) being valid is at most 2−n as smi

i is independent of σ∗
i ,

where i is the outcome of the Q-measurement. Applying the pinching lemma (Lemma 3) to
relate the success probabilities with and without Q-measurement, and Lemma 7 for w = 2 to
relate the success probabilities in the Real world and the Quantum independent world (see
details in the full version [23]), we arrive at

Pr
[
A wins BlindForge

]
≤ l + 1

2n
+ 12l2 · 2−n. (17)

Hence, the success probability of the adversary A in winning the BlindForge experiment game
is at most (l + 1)/2n, which is negligible since l is polynomial in n, and n is large enough.
We conclude that a Sign query does not help the adversary to get significant information
about the secret key.

4.5 Hash queries after Sign query
To complete the proof of Theorem 11 and bound the success probability an adversary can
achieve in the BlindForge game with a given number of queries, it remains to analyse hash
queries after Sign query. In this case, it is not obvious how to track the secret key invariant
(the fact that there is at least one unused part of the secret key that is relevant for the forged
signature). Therefore we use a special projector PS that projects onto the subspace of the
secret key register that is consistent with a single blinded sign query and no hash queries. If
the final adversary state after producing the forgery candidate is in the image of PS , then
according to Lemma 13 the outcome l + 1 corresponding to the situation when none of the
secret key sub-registers useful for the forged signature is in state |Φ⟩ can never occur. We
thus want to show that adversary’s final state is approximately in the range of PS .

If there are no hash queries before the Sign query, then from Lemma 14 the adversary
state after the Sign query remains completely in the range of PS , which means that the
outcome l+ 1 cannot occur. That is, PS |ψ1⟩ = PSB Signsk |ψ0⟩ = B Signsk |ψ0⟩ = |ψ1⟩ where
|ψ0⟩ and |ψ1⟩ are adversary’s states immediately before and after the Sign query.

Now, assuming there are hash queries before the Sign query, since the projector PS and
the random oracle unitary Uh approximately commute by Lemma 15, it follows that hash
queries before Sign query give no significant information to the adversary about the invariant
of the secret key register.
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Suppose there are hash queries after the Sign query and let us examine in detail what
happen in this case. From the previous case, we know that the adversary’s state directly after
the Sign query is |ψ1⟩MΣXY ES . Just like for hash queries before the Sign query, suppose that
the adversary makes q1 hash queries after querying the signing oracle. Let (W i

XY E)i=1,...,q1

be the unitaries applied between the hash queries. Then, let

|ψ′
1⟩MΣXY ES = (Uh)XY SW

q1
XY E(Uh)XY SW

q1−1
XY E · · ·W

2
XY E(Uh)XY SW

1
XY E |ψ1⟩MΣXY ES

be the adversary’s state after q1 hash queries and before performing some unitary operation
UMΣE on the post-hash-queried state, or any measurement leading to the forgery candidate.

▶ Lemma 17. In the Quantum independent world, the state |ψ′
1⟩MΣXY ES right before the

adversary’s measurement determining the forgery is applied is approximately in the range of
PS:∥∥PS |ψ′

1⟩MΣXY ES − |ψ′
1⟩MΣXY ES

∥∥
2 ≤ q1δL(n) + 4lq1ϵL(n) = q1(δL(n) + 4lϵL(n)). (18)

The proof uses commutator arguments via Lemma 15 akin to the ones used in the proof
of Lemma 16, and can be found in the full version [23].

Recall that, just like in Section 4.4, we want to analyze the modified BlindForge experiment
where the Q-measurement is applied after the adversary has output a forgery, but before
the secret key register is measured to sample the secret key and verify the forgery. It thus
remains to show that due to the fact that |ψ′

1⟩ is approximately in the range of PS , the
outcome l + 1 only occurs with small probability.

To that end, we define a new measurement given by projectors Q̃i that performs the
Q-measurement controlled on the content of the M -register, i.e., Q̃i =

∑
m |m⟩⟨m|M ⊗Qm

i .
Now, observe that applying the Q-measurement after the adversary has output a forgery is
equivalent to applying the Q̃-measurement right before the adversary’s measurement that
produces the forgery. If m∗ ∈ B, the outcome l + 1 occurs only with small probability in the
modified BlindForge experiment and it suffices to prove the following lemma.

▶ Lemma 18. In the Quantum independent world, for blinded messages, the outcome l +
1 occurs with small probability:

∥∥Q̃l+1ΠB
M |ψ′

1⟩MΣXY ES

∥∥
2 ≤ q1(δL(n) + 4lϵL(n)), ΠB =∑

m∈B |m⟩⟨m|.

The proof is a simple application of Lemma 13 and can be found in the full version [23].
We are now ready to combine our lemmas and prove Theorem 11.

Proof of Theorem 11. We begin by bounding the success probability of the adversary in
the modified BlindForge experiment, in the Quantum independent world. Abbreviating the
modified BlindForge experiment as MBF and writing “outcome i” to denote the event that
the Q-measurement yields outcome i,

Pr
QI,MBF

[A succeeds] =
l+1∑
i=1

Pr
QI,MBF

[A succeeds ∧ outcome i]

=
l∑

i=1

Pr
QI,MBF

[A succeeds ∧ outcome i] + Pr
QI,MBF

[A succeeds ∧ outcome l + 1]

≤
l∑

i=1

Pr
QI,MBF

[outcome i] × 2−n + Pr
QI,MBF

[outcome l + 1] ≤ 2−n + q2(δL(n) + 4lϵL(n))2,
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where the first inequality uses the fact that σ∗ and s
m∗

i
i are independent conditioned on

outcome i, and the last inequality uses the square of the inequality from Lemma 18.
Exactly as in the simplified case in Section 4.4, we can bound the success probability in

the actual BlindForge experiment using the pinching lemma (Lemma 3):

Pr
QI,BlindForge

[A succeeds] ≤ (l + 1)
(

2−n + q2(δL(n) + 4lϵL(n)
)2
)
.

Finally, plugging in the functions ϵL(n) and δL(n) from Lemmas 12 and 15, and applying
Lemma 7 for w = 2, we obtain

Pr
BlindForge

[A succeeds] ≤ (l + 1)
(

2−n + q2
(

32l
2n/2 + 4l 6

2n/2

)2
)

+ 12l22−n

≤ l2 · 2−n
(
3137q2(l + 1) + 12

)
. ◀

5 One-time BU security of the Winternitz OTS

The Lamport OTS that we analyzed in the last section is, in some sense, a special case
of the Winternitz OTS. Indeed, the Winternitz scheme for w = 2 is fairly similar to the
Lamport OTS, except that the public key is used to sign the bits that are equal to 1, which
is compensated for by the checksum encoding. As a result, the analysis of the Winternitz
OTS in the QROM is, in a similar sense, a generalization of the one of the Lamport OTS.

Before getting started, we give and overview of our strategy. In this section, we use the
same register labels as in Table 1, except that the secret key register S is now replaced by
the hash chain register Γ. The security proof follows a similar outline as in the Lamport
case. Some differences are as follows. After a Winternitz signing query, the adversary does
not have any information about the part of the hash chain below the queried position, and
this represents the invariant of the hash chain. Quantumly, this invariant has to be tracked
in superposition like for the Lamport scheme, requiring the definition of a new and slightly
more involved invariant projector (see details in the full version [23]).

▶ Theorem 19. The Winternitz OTS is 1-BU secure if the function chain C is modeled as
a quantum-accessible random oracle. More precisely, let A be an adversary that plays the
BlindForge game for the Winternitz OTS, making a total of q queries to the random oracle.
Then A succeeds with a probability bounded as

Pr[A wins BlindForge] ≤ 2−n
[(

1 + q2l2(w − 1)2(20w − 4)2) (l + 1) + 3w2l2
]

(19)
≤ 800w4q2l3 · 2−n. (20)

Here, l is the length of the encoded message in w-ary, see Equation (2), w ≥ 2 is the
Winternitz parameter, and the simplified bound in the last line holds for q > 0.

The main difference between the analyses of the Lamport and Winternitz OTS is as
follows. For the Lamport OTS, the public key is obtained from the private key by applying
a hash function once. For the Winternitz OTS, on the other hand, the secret and public
keys consist of the start and end points of length-w hash chains, respectively. Thus, while
following the same proof strategy, the Q projectors as well as the invariant projector P needs
to be defined differently. Thus, we start our analysis by describing the Q projectors and the
invariant projector for the Winternitz OTS.
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The Q-measurement for the Winternitz OTS. The Winternitz signature of a message
consists of l hash chain elements. In complete analogy to Equation (5) in Section 4.1, we
define a measurement whose projectors correspond, respectively, to the events that the i-th
hash chain element relevant for the forged signature is in state |Φ⟩ and none of them is in
state |Φ⟩:

Qb∗

i∗ = Φ⊥
Γ

b∗
1

1

⊗ · · · ⊗ Φ⊥

Γ
b∗

i∗−1
i∗−1

⊗ Φ
Γ

b∗
i∗

i∗
, Qb∗

l+1 =
l⊗

i=1
Φ⊥

Γ
b∗

i
i

(21)

where i∗ ∈ {1, . . . , l}, b∗
i = bi(m∗) and l is the number of blocks of the message and the

checksum, see Equation (2). These operators act as I on all other registers Γj
i not specified.

The Invariant projector for the Winternitz OTS. In this section, we define the invariant
projector PΓ, the analogue of PS for the Winternitz OTS. We also state several of its
properties. Just like in Section 4.2, for any string α = (αj

i )j=0,...,w−2
i=1,...,l we define an associated

projector Φ(α) on the whole hash chain (except for the last) register Γ. This is a complete
set of projectors:

∑
α∈{0,1}l(w−1) Φ(α)Γ = IΓ.

Since we are interested in the unused part of the hash chain register, we need to filter
those α’s for which Γj

i is in state |Φ⟩. By construction of the checksum, if a block b of a
message m is computed, then in the block b′ of any other message m′ there exists at least
one position i at which b′

i < bi, 1 ≤ i ≤ l. Therefore, since the blinded signing oracle signs
at most a single un-blinded message m ∈ Bc, the state after the signing oracle call can be
written as a superposition of states where, for some un-blinded message m′ ∈ Bc, b′

i < bi for
all i. The latter implies that the hash chain registers corresponding to those b′

i are still in
the uniform superposition |Φ⟩, for all i. Thus, we collect all strings α that are consistent
with no blinded messages having been signed in the set

B̂c =
⋃

m∈Bc

{
α ∈ {0, 1}l(w−1)

∣∣∣ αj
i = 0 for all i = 1, . . . , l and j < bi(m)

}
. (22)

Finally, we define the invariant projector as PΓ =
∑

α∈B̂c
Φ(α)Γ.

Using these definitions of the Qi and PΓ, a set of lemmas similar to Lemmas 12–15 forms
the basis of the BU security proof for the Winternitz OTS. In fact, Lemma 12 is a special
case of Lemma 20 where the register Γ is replaced by S and we set w = 2 (see Appendix A.1
of [23] for proof). Lemma 13 holds for the new projectors Ql+1 and PΓ by construction.
Finally, Lemmas 14 and 15 need to be changed slightly for the Winternitz OTS and are
stated below. Lemmas 21–23 are proved in the full version [23].

▶ Lemma 20. Let Uh be the random oracle unitary for any given function h (see Section 3)
and let Φ = |Φ⟩⟨Φ| denote the projector onto the uniform superposition |Φ⟩. Furthermore, let
Γ≤j

i = Γ0
i . . .Γ

j
i and ΦΓ≤j

i
=
(
Φ⊗j

)
Γ≤j

i

. Then, for any i′ ∈ {1, . . . , l} and j′ ∈ {0, . . . , w− 2},∥∥[(Uh)XY Γ,ΦΓ≤j′
i′

]∥∥
∞ ≤ 6(w − 1)/2n/2 = ϵW (n) is negligible in n.

▶ Lemma 21. Let B Signsk be the blinded signing oracle for the Winternitz OTS, and let |ψ0⟩
be the adversary’s state before the Sign query. If there are no hash queries, then after making
a single Sign query the adversary’s state |ψ1⟩ = B Signsk |ψ0⟩ is completely in the range of the
invariant projector PΓ defined below Equation (22). That is, PΓB Signsk |ψ0⟩ = B Signsk |ψ0⟩.

▶ Lemma 22. Let m∗ ∈ B and b∗ = b(m∗) the concatenation of m∗ and its checksum in
w-ary. Then the projectors Qb∗

l+1 defined in Equation (21) and PΓ are orthogonal, that is
Qb∗

l+1PΓ = 0.
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▶ Lemma 23. Let PΓ and Uh be, respectively, the invariant projector for the Winternitz
OTS and the random oracle unitary defined with respect to the Quantum independent world.
If there are hash queries after the Sign query, then

∥∥[Uh, PΓ]
∥∥

∞≤ δW (n) where δW (n) =
8l(w + 1)(w − 1)/2n/2.

The proof of Theorem 19 is based on the preceding lemmas and follows the same outline
as the proof for the Lamport OTS. It can be found in the full version [23].

6 Tightness

The notion of blind-unforgeability does not have as close of a relation to the intuitive security
property it strives to model as EU-CMA.4 The concrete security bounds, however, arguably
nevertheless provide an indication of concrete security levels. It is hence an interesting
question whether the bounds proven in Section 4 above and in Section 5 of the full version
[23] are tight. In the following, we present an attack against the BU security of the Lamport
scheme in the QROM and analyze its success probability to show that the bound in Theorem 11
is tight up to a factor l in the number of queries. The attack generalizes to the Winternitz
scheme in a straight-forward manner.

We begin by describing a straightforward classical attack based on search. To attack
the BU security of the Lamport scheme, choose a blinding probability of 1/2. Now make q
distinct queries to the random oracle to search for a preimage of one of the 2l public key
strings. This succeeds with probability

psearch(q) = 1− (1− 2l · 2−n)q ≥ 2ql · 2−n. (23)

Suppose this search succeeded, finding a preimage y∗ of pj∗

i∗ . Then chose m ∈ {0, 1}l such that
mi∗ = j̄∗ and query the oracle to obtain a signature for m. This succeeds with probability
1/2. Now output m′ obtained from m by flipping the i∗th bit, and σ′ obtained from σ by
replacing σi∗ with y∗. Note that m′ is blinded with probability 1/2, and y∗ is equal to
the correct secret key string sj∗

i∗ with constant probability. In summary, the entire attack
succeeds with constant probability if q = Ω(2n · l−1).

This search step can now be replaced by a Grover search in the QROM. Using the analysis
of Grover’s algorithm for multiple targets from [9], together with a basic analysis of the
number of targets (which follows a binomial distribution), a constant success probability can
be achieved if q = Ω(2n/2 · l−1/2). To compare this result with Theorem 11, note that the
inequality in Equation (4), implies that to achieve a constant success probability, at least
q ≥ C · 2n/2 · l−3/2 are necessary for some constant C, i.e. the upper and lower bounds on the
number of queries the optimal attack requires indeed differ by a factor of l up to constant
factors. For the Winternitz scheme, the bounds differ by a factor of w2l.
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