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Abstract
Motivated in part by applications in lattice-based cryptography, we initiate the study of the size of
linear threshold (‘t-out-of-n’) secret-sharing where the linear reconstruction function is restricted to
coefficients in {0, 1}. We also study the complexity of such schemes with the additional requirement
that the joint distribution of the shares of any unauthorized set of parties is not only independent of
the secret, but also uniformly distributed. We prove upper and lower bounds on the share size of
such schemes, where the size is measured by the total number of field elements distributed to the
parties. We prove our results by defining and investigating an equivalent variant of Karchmer and
Wigderson’s Monotone Span Programs [CCC, 1993].

One ramification of our results is that a natural variant of Shamir’s classic scheme [Comm. of
ACM, 1979], where bit-decomposition is applied to each share, is optimal for when the underlying
field has characteristic 2. Another ramification is that schemes obtained from monotone formulae
are optimal for certain threshold values when the field’s characteristic is any constant.

For schemes with the uniform distribution requirement, we show that they must use Ω(n log n)
field elements, for all thresholds 2 < t < n and regardless of the field. Moreover, this is tight up to
constant factors for the special cases where any t = n − 1 parties can reconstruct, as well as for any
threshold when the field characteristic is 2.
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12:2 Linear Threshold Secret-Sharing with Binary Reconstruction

1 Introduction

Threshold secret sharing, introduced by Blakley [7] and Shamir [23], allows a dealer to
distribute n shares of a secret value to n distinct parties, such that any t parties can
reconstruct the secret from their shares, but any cohort of fewer than t parties can glean
nothing about the secret value. While originally introduced in the context of secure data
storage, secret sharing has since found a myriad of applications in cryptography and beyond
(e.g., see references in [5]).

A particularly useful and well-understood variant of secret-sharing is linear secret-sharing
schemes: schemes where the secret is represented as a field element, the shares are comprised
of collections of field elements, and any t parties can reconstruct the secret by applying
a linear function to the field elements in their shares. A canonical example of a linear
secret-sharing scheme is Shamir’s scheme [23].1

Shamir’s scheme enjoys some desirable properties (in addition to linearity): each share is
comprised of just a single field element (an optimal share size), and additionally the residual
distribution of shares corresponding to any unauthorized set (any ≤ t − 1 shares) is uniform.
A major drawback of Shamir’s scheme is that it is not black-box in the underlying field: it
requires a field of size at least n + 1 (even when sharing a 1-bit secret). In particular, the
reconstruction coefficients may be arbitrary elements in this large field.

Another classical linear secret sharing scheme that is black-box in the underlying field is
that of Benaloh and Leichter [6]. Their scheme is recursively defined with respect to any
monotone formula computing the access structure (in our case, t-out-of-n threshold function):

Initialization. Assign the secret, s, to the output wire of the formula
Recursion. Given a (sub)-formula with output labeled s′:

If the top gate is OR, assign both input wires to that gate s′ and recurse on both
subformulas,
If the top gate is AND, assign left input wire to that gate uniformly random r and the
right input wire s′ − r, and recurse on both subformulas,
If the (sub)formula is an input variable, xi, concatenate s′ to the ith share.

This scheme works for any underlying field, and allows for reconstruction with binary,
or {0, 1}, coefficients. Unfortunately, it does not enjoy the advantages of Shamir’s scheme:
unauthorized shares are clearly not uniform in general, and moreover the size of shares is
comparable to the size of the formula, which can be quite large. For the particular case of
n/2-out-of-n thresholds, or majority, the smallest known formula is of size n5.3 [24] (and
in fact the smallest bound on explicit monotone formulas computing majority gives size
approximately n5000 [3, 22, 19]).

In this work, we ask whether it is possible to get the best of both worlds:

(Q1) Are there linear threshold secret sharing schemes that admit small shares and
reconstruction via binary coefficients?
(Q2) Moreover, are there such schemes where, additionally, unauthorized shares are
jointly uniformly distributed?

With the general question (Q1) in mind, we initiate the study of linear threshold secret-
sharing with binary reconstruction, where the coefficients of all linear reconstruction functions

1 Recall that to share a secret s in Shamir’s scheme, one chooses a random polynomial p of degree t − 1,
such that p(0) = s. The ith share is then simply p(αi) where {α1, . . . , αn} is a set of distinct non-zero
field elements.
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are simply 0 and 1 (See Definition 5). That is, the secret can be reconstructed by a sum of
some subset of the field elements making up (sufficiently many) shares. Specifically, we are
interested in the minimum size of the shares for such schemes, quantified in terms of the total
number of field elements. We observe how known and folklore results yield upper bounds
for this question, then prove lower bounds. We also investigate the minimum share size of
such schemes under the additional requirement from (Q2), that unauthorized sets of shares
are uniformly distributed. We again prove upper and lower bounds. Almost all our upper
bounds are black-box schemes that do not place any restrictions on the field (in particular,
when the secret is from a small field, each field element can be represented by a small number
of bits). Our lower bounds are tight in some cases (depending on the field characteristic and
the threshold). Our technical starting point is the tight connection between monotone span
programs and linear secret sharing, shown by Karchmer and Wigderson [20]. Following in
their footsteps and much subsequent work on linear secret sharing, we begin by defining
restricted models of monotone span programs that are equivalent to the notions of secret
sharing we are interested in, and prove our main results within these models.

While we believe this topic to be natural and interesting in its own right, in Section 1.3
we highlight some surprising applications of such schemes from recent results in lattice-based
cryptography.

1.1 Our Results

We summarize our results below. We focus on threshold 1 < t < n, since for t = 1 and t = n

there is an immediate upper bound of n (one field element per share),2 and this is clearly
optimal (since for linear schemes shares have to consist of field elements).

On threshold secret sharing with binary reconstruction

A simple folklore construction of secret sharing with binary reconstruction involves a simple
bit-decomposition of Shamir’s scheme. Suppose we are working over the field F = GF (pc)
with pc ≥ n + 1. Let L = GF (p), m = ⌈log(p)⌉ and let g ∈ F be such that F = L(g). If
Shamir’s scheme would deal a share s ∈ Fq then the corresponding shares in the modified
scheme is s′ = (s ·gi ·2j)i=c−1,j=m−1

i=0,j=0 . To see that such a scheme admits binary reconstruction,
suppose Shamir’s scheme would require multiplication by reconstruction coefficient α. Then,
we know that, for i ∈ {0, . . . , c − 1}, j ∈ {0, . . . , m − 1} there is βij ∈ {0, 1} such that
α =

∑c−1
i=0

∑m−1
j=0 βij · gi · 2j . So, in the modified scheme, the party can obtain the product

α · s as
∑c−1

i=0
∑m−1

j=0 βij · (gi · 2j · s), which uses only {0, 1} as coefficients.
This yields an upper bound of total share size O(n log |F|) for threshold secret sharing with

binary reconstruction, where F is required to be of size at least n + 1. To obtain a black-box
upper bound, we start instead with Benaloh and Leichter’s scheme [6]. As mentioned above,
for the special case of majority, instantiating with Valiant’s probabilistic construction of a
monotone formula for majority [24] gives a black-box linear threshold scheme with binary
reconstruction, where the total share size is O(n5.3). For the general case, Boppana [10] gave
a probabilistic construction of monotone formulas computing t-out-of-n Threshold functions
that yields total share size O((min{t, n − t})4.3n log n). To our knowledge, no fully-explicit
scheme of comparable size is known.

2 For t = 1 every share is the secret, and for t = n we can use additive secret sharing.
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We observe that it may be possible to improve on these upper-bounds if one starts from
small series-parallel undirected contact networks (See Definition 9) for the threshold function,
which are potentially smaller than corresponding monotone-formula. Explicit undirected
contact networks without the series-parallel restriction are known to beat Boppana’s bound.
Additionally, as is the case with [6], this connection applies for arbitrary access structures,
beyond threshold.

Finally, for the special case that the field has characteristic two, a O(n log n) upper bound
is given by Karchmer and Wigderson [20]. We note that this may also yield non-trivial
results for access structures other than threshold, as it makes use of a general connection to
monotone-span programs.

Moving to lower bounds, we first show that any linear threshold scheme with binary
reconstruction for 1 < t < n requires total share size at least 2n − 1. Next, we prove a lower
bound of n⌈logchar(F) n⌉ total share size for fields of characteristic char(F). This indicates
that the only hope of achieving linear total share complexity must follow the folklore scheme
and utilize large characteristic where char(F) = Ω(n).

Resolving the gap between the general upper and lower bounds remains an open problem.
However, for the specific case of secret sharing with binary reconstruction over finite fields
with characteristic 2, the second lower bound n⌈log2 n⌉ above is tight, matching the [20]
upper bound.

Note that Bogdanov, Guo, and Komargodski [8] gave a lower bound of Ω( n log(n)
log|F| ) for gen-

eral threshold schemes. Our bound (for linear threshold schemes with binary reconstruction)
is higher for any non-prime field, by a factor of log |F|

log char(F) .

On uniformly-distributed unauthorized shares in threshold secret sharing with binary
reconstruction

Note that neither the folklore construction specified above nor that of Benaloh and Leichter
yield schemes with uniformly distributed unauthorized shares. Do such schemes exist?

Yes, in fact, we prove that subfield decomposition applied to Karchmer and Wigderson’s
scheme for characteristic 2 [20] indeed yields uniformly distributed unauthorized shares (with
total share size O(n log n)). This is tight for the case of characteristic 2, as follows from the
above mentioned lower bounds.

More generally, for all fields and access structures, we show connections between share
size of secret sharing schemes with uniform unauthorized shares and the complexity of the
access structure in a new, restricted span program model (see Section 1.2). Furthermore,
we introduce various other connections to known models like contact networks and and we
show that constructions in these new models yield an upper bound on total share size for
threshold secret sharing of min{

(
n
t

)
t,

(
n

t−2
)
t(n − t) log(n − t)}. For the special cases of t = 2

and t = n − 1, we show an upper bound of O(n log(n)).
Using extremal set theory (and, alternately, graph theory) we show a general lower

bound of Ω(n log n) on total share size of threshold schemes with binary reconstruction and
uniform unauthorized shares for any underlying field. Recall that if unauthorized shares
may be arbitrarily distributed, we only know comparable bounds for fields with constant
characteristic. Also, observe that for the special case of t = n − 1, this lower bound is tight,
as follows from the upper bound mentioned above. However, there is a gap between these
bounds for various values of t, and we show that significantly improving either the upper
bound or the lower bound will require different techniques than the ones used here.

Our results are summarized in the following table.
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0,1 Re-
cons

Unauth-
uniform

Lower Upper Remarks (1 < t < n

in all cases)
✓ n [20] n [20] Upper bound requires

|F| ≥ n + 1
✓ max{n logchar(F)(n), 2n − 1}

If char(F) = O(1), this is
Ω(n log(n))

O((min{t, n − t})4.3n log(n)) [17] or
O(n log(|F|))

Second upper bound
requires |F| ≥ n +
1 and bit decomposi-
tion

✓ Ω(n log(n)) O(n log(n)) [20] char(F) = 2
✓ ✓ Ω(n log(n)) O(n log(n)) char(F) = 2
✓ ✓ Ω(n log(n)) min{O(

(
n

t−2

)
t(n − t) log(n − t)),(

n
t

)
t)}

2 < t < n

✓ ✓ Ω(n log(n)) O(n log(n)) t = n − 1

1.2 Technical Overview
As discussed above, we introduce two new models of linear secret sharing schemes with
perfect privacy. In the first, we restrict the linear reconstruction functions to use coefficients
only from a fixed, small set. While both for generality and for ease in some of the proofs, we
define the model in a general way to allow for any set here, we will mostly be interested in
the case where this set is {0, 1}. In the second model, we impose the additional requirement
that the joint distribution of the shares of any unauthorized set of parties be uniform. While
we also prove some general results about these models, our main focus will be computing
threshold functions in these models. For both models, we are concerned with the total
number of shares (field elements) distributed to the parties. To show upper and lower bounds
for this quantity, we use the following equivalence.

1.2.1 Equivalence to New Span Program Models
A monotone span program consists of a matrix, M , over some vector space where the rows
are labeled by input variables, x1, . . . , xn. A monotone span program accepts an input if
and only if the rows corresponding to inputs xi = 1 span the all ones vector (using arbitrary
coefficients).

The first model we define requires that any authorized submatrix be able to span the
fixed target only using a fixed set of span coefficients. However, note that the requirement
that the unauthorized submatrices cannot span the target vector stays the same, that is, it
has to hold for any span, without restrictions to the coefficients. In the second model, we
further add the uniformity requirement that any unauthorized submatrix have full row rank.
We extend the well-known equivalence between linear secret sharing schemes with perfect
privacy and monotone span programs to show that both the coefficients and the uniformity
are preserved between these new models.

1.2.2 Upper Bounds
While our focus will be on lower bounds, we explore some upper bounds for the case of
coefficient set {0, 1}, in order to show that some of our lower bounds are tight. On top of
the folklore version Shamir’s scheme which requires |F| ≥ n + 1 and bit decomposition of
field elements, we explore some other methods that yield upper bounds for the non-uniform
model for all fields. We define two new contact network variations that lead to upper bounds
for our monotone span programs, and hence for our secret sharing models. The first model
requires that the graph underlying the contact network be a series-parallel graph. We show

ITC 2021



12:6 Linear Threshold Secret-Sharing with Binary Reconstruction

that the contact network to span program construction of [20] leads to coefficients {0, 1}. For
the uniform scheme case, the second contact network model we define further requires that
the subgraph be acylic when the input is unauthorized. We show that the same construction
from this model yields uniform restricted span programs. We further define a new non-local
monotone formula model that forbids computing disjunction of small conjunctions. We show
that, for the case of threshold function, converting this type of formula to a contact network
using the known conversion gives us a network with the acyclicity property defined above.
We show upper bounds for this formula model that utilizes an existing explicit formula
construction for the special case of t = 2. We further show some lower bounds by using
extremal combinatorics regarding intersections of fixed size subsets of a set and prove that
such a model has to have distinct subtrees/subformulae computing almost all subsets of [n].
Our lower bounds show that the upper bounds we give are close to optimal.

We finally show that decomposing a program is the optimal method when we want to
restrict the coefficients to a subset that is a subfield, even when we working with the stronger
uniform model. This implies a tight lower bound for the case where the field characteristic
does not grow with the number of parties and the threshold value is constant.

1.2.3 Lower Bounds
Our lower bounds are in two cases. For the general case, we first show a new canonical
span program definition for our new span program models, and then show that the size
preserving conversion into the canonical model also preserves the coefficient set. Then, we
prove that there is a size-preserving conversion that lets us switch the coefficient set with
the matrix entry set, at the cost of taking the dual of the computed function. Using these
results, we show that the subfield decomposition method is optimal, as mentioned above.
For the uniform case, we show a field independent n log2(n) lower bound for computing
any threshold function (2 < t < n) in the uniform span program model. We do this by
showing that if we can find a large family of authorized subsets of parties that have a fixed
core subset and have large pairwise intersections, then the total share size must also be
large or else we can find cancellations in span equations, which leads to a violation of the
uniformity. We start with a primitive version of the argument that gives the lower bound
for some cases and then make it more flexible in the next step. Then, we go on to show
lower bounds for various threshold values. Finally, we show that a single, condensed and
graph-theoretic argument can show the same lower bound for (almost) all threshold values.
Finally, using Ahlswede-Khachatrian Complete Intersection Theorem [2] we also show that
the proof technique we present cannot give a lower bound that is asymptotically better than
the one shown here. More specifically for the case where the coefficient set is {0, 1}, the
lower bound we give matches the upper bound we give above for any threshold value and
a field of characteristic 2 or any field and threshold value t = n − 1. This shows that the
bound we give is optimal for both threshold-independent or field-agnostic lower bounds.

1.3 Secret Sharing with Binary Reconstruction in Lattice-Based
Cryptography

We describe two recent applications of linear threshold secret sharing in lattice-based cryp-
tography that require such restrictions on reconstruction coefficients. The first highlights the
utility of binary reconstruction coefficients, and the second highlights the additional utility
of requiring unauthorized shares to be uniformly distributed. Understanding the share size
of such schemes has immediate ramifications to the efficiency of these constructions. We
anticipate that schemes admitting such simple reconstruction will find applications beyond
those presented here.
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Threshold Cryptosystems

Threshold cryptography refers to settings where a cryptographic secret is shared amongst n

parties in such a manner that if any t of them come together they can accomplish a task,
but security is preserved so long as fewer than t parties are corrupted. Boneh et al. [9]
construct Threshold Fully Homomorphic Encryption (TFHE), a primitive that was effectively
complete for threshold cryptography in general. In TFHE, an encryption key is made public
and n parties are given shares for an associated decryption scheme. Given data encrypted
under the public key, each party can independently perform a computation on the encrypted
data, homomorphically, before using their share of the decryption key to perform a “partial
decryption.” Any t partial decryptions can be combined to recover the result of computation
in the clear and semantic security holds even if an adversary corrupts t − 1 parties. An
important property is compactness: the size of the ciphertext is independent of the number
of decryptors and does not grow with complexity of homomorphic computation. (Without
compactness there are trivial solutions.)

Boneh et al. [9] showed TFHE schemes could be constructed from the Learning with
Errors (LWE) assumption, and since publication numerous further applications have been
found in situations requiring secure computation with limited interaction. The authors, in
fact, gave two constructions of TFHE from LWE, both relying on linear secret sharing. At
a high level, both schemes take advantage of the fact that decryption in LWE-based FHE
schemes is effectively an inner product between the secret key and the ciphertext. As such,
the natural thing to do is secret-share the secret key using a linear secret sharing scheme
and perform the inner products locally with each share of the key and simply perform linear
reconstruction on the resulting partial decryptions. The problem is that taking an inner
product does not immediately decrypt, but instead yields the plaintext plus some small noise.
Thus, if the linear reconstruction function has large coefficients, this noise will not remain
small and the “reconstructed noise” may occlude the reconstructed plaintext.

Boneh et al. propose to get around this by using schemes that only use binary recon-
struction coefficients. The authors conclude by observing that such a scheme exists for any
access structure computable by monotone Boolean formulas (including threshold functions)
– the Benaloh and Leichter [6] scheme we described above. Unfortunately, as also noted
above, this results in a scheme where the share size scales polynomially with the circuit
size. Consequently, this also leads to large keys in the TFHE scheme, and comparatively
high noise growth. Hence, any improvement to linear threshold secret-sharing with binary
reconstruction will immediately result in an improved TFHE scheme.

Boneh et al. additionally proposed a solution that uses Shamir’s scheme as is and instead
modifies the noise distribution of a specific FHE scheme. Unfortunately, the resulting
ciphertext is not immediately compact and requires further compilation with a non-threshold
FHE scheme. As a result, new ideas are needed to yield a scheme with practical parameters.

Fuzzy Identity-Based Encryption and Attribute-Based Encryption

Attribute-Based Encryption (ABE) is a public-key encryption scheme with fine-grained
access control. Unlike in a traditional public-key encryption, in ABE an authority can issue
secret keys bound to predicates, skP , associated with some single public key, pk. Given a
encryption of m (encrypted under pk), a party holding skP can recover m if and only if
P (m) = 1. Fuzzy Identity-Based Encryption (Fuzzy IBE) refers to the specific case that the
family of allowable predicates are restricted to threshold functions.

ITC 2021
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Prior to 2013 [11, 16], ABE schemes for NC1 were known from pairing-based assumptions,
but not lattice-based assumptions. As outlined in [1, Appendix B], a tempting paradigm for
achieving such an object involves viewing the predicate P as specifying an access structure for
a linear secret sharing scheme and sampling LWE trapdoors with the shares baked in, which
in turn allow decryption when the receiver is holding authorized shares for the message. We
refer the reader to [1, Appendix B] for details, but this goes awry for similar reasons to the
above. Correctness is not achieved due to noise growth when the reconstruction coefficients
are large. Thus, small reconstruction coefficients are needed. However, in this case the classic
scheme of [6] does not yield a secure ABE via the recipe of [1], because unauthorized sets of
shares may contain correlations that damage the LWE security. If the secret sharing scheme
has the additional property that unauthorized shares are uniformly distributed, the scheme
is secure.

Agrawal et al. [1] invoke this recipe with Shamir’s scheme to construct Fuzzy IBE. However,
to deal with the large reconstruction coefficient in Shamirs scheme, they are required to
modify the noise distribution (in a similar manner to the second TFHE construction of [9]).
The resulting scheme requires a larger base field ((ℓ!)2 times larger, where ℓ is the length of
an “identity”). Consequently, linear secret sharing with binary coefficients and uniformly
distributed unauthorized shares immediately yields practical improvements to Fuzzy IBE
from LWE.

2 Preliminaries

▶ Notation. Unless otherwise specified, any column or row representation of a vector is
according to the standard basis of Fd for the appropriate value of d. Similarly, any matrix
Mk×ℓ is a representation over the standard bases of Fk and Fℓ. For a matrix Mk×ℓ over
a field F, and a subset A ⊂ F, RowspanA(M) denotes the set {vM |v ∈ A1×k}. When F
is clear from the context and A = F, we will drop the subscript. By 1 (0), we denote the
unique row vector whose entries are all ones (zeroes) in the implicit basis of appropriate
dimension, and its dimension will be clear from the context. We will consider elements of
{0, 1}n and subsets of [n] interchangeably in the natural way. Tht

n denotes the t-out-of-n
threshold function, i.e, the function Tht

n : {0, 1}n → {0, 1} where Tht
n(x) = 1 if and only if

|x| ≥ t. For any set A, x ∈ An and i ∈ [n], xi denotes the ith component of x. We show the
degree of a field extension F over L as |F : L|.

The following generalizes the span program model of [20].

▶ Definition 1. Fix a field F and two sets A, B ⊆ F. A restricted span program over
(F, A, B) is a labeled matrix M̂(M, ρ) where Mk×ℓ is a matrix over F with entries only in A

and ρ : rows(M) → {xϵ
i |i ∈ [n], ϵ ∈ {0, 1}}. For any v ∈ {0, 1}n, Mv denotes the submatrix

consisting of rows r ∈ rows(M) such that ρ(r) = xϵ
i with ϵ = vi for some i ∈ [n].

We say that M̂ computes f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,{
1 ∈ RowspanB(Mx), if f(x) = 1
1 ̸∈ RowspanF(Mx), if f(x) = 0

We define size(M̂) to be the number of rows in M , rows(M̂, i) to be the rows of i ∈ [n],
that is, {r ∈ rows(M)|ρ(r) = xϵ

i for some ϵ ∈ {0, 1}}, and rowcount(M̂, i) to be |rows(M̂, i)|.
More generally, for any P ⊂ [n], we take rows(M̂, P ) and rowcount(M̂, P ) to denote⋃

i∈P rows(M̂, i) and
∑

i∈P rowcount(M̂, i), respectively.
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For any f : {0, 1}n → {0, 1}, we denote the set of all restricted span programs over
(F, A, B) computing f as SPA,B,F(f) and the smallest program size in this set as
size(SPA,B,F(f)).

We will usually refer to the span program M̂ and its underlying matrix M interchangeably,
denoting both as M .

▶ Definition 2. Let M̂(M, ρ) be a restricted span program computing f : {0, 1}n → {0, 1}
over (F, A, B). If Mx has full row rank as an F-matrix for all x ∈ {0, 1}n such that f(x) = 0,
then we call M̂ a uniform program.

Similar to the above, SPA,B,F − Uniform(f) and size(SPA,B,F − Uniform(f)) denote the
set of uniform restricted span programs computing f and the size of the smallest program in
this set, respectively.

For both models defined above and similar models that will be defined below, the qualifier
monotone will mean that all labels are of the form x1

i . The corresponding sets will be denoted
as MSPA,B,F(f) and MSPA,B,F − Uniform(f).
▶ Remark 3. In the context of span programs, we will refer to 1 as the target vector. For
usual span programs, it is well known that any two definitions with different non-zero target
vectors are equivalent, since a program can be converted to be a program for another target
vector through a simple change of basis. However, we have to be more careful with the
restricted span programs.

It’s easy to see that the set of coefficients, B, is preserved when we change the basis. The
entry set, however, requires a more detailed investigation, and we avoid it since we won’t
need it here. The uniformity is similar to the set of coefficients and is preserved.

2.1 Restricted, Information-Theoretically Secure Linear Secret Sharing
Schemes

In this section, we define the new secret sharing models that motivate the definitions of
the restricted span program models of the previous section. We will also extend the known
equivalence between the linear secret sharing schemes with perfect privacy and monotone
span programs to between their new counterparts.

▶ Definition 4. [5] Fix number of parties n ∈ Z+, and sets R, S, S1, . . . , Sn. A secret
sharing with perfect privacy scheme realizing the access function f : {0, 1}n → {0, 1} over
the domain of secrets S and domains of shares S1, . . . , Sn with random input domain R is
a family of functions (share, (reconstructP )P ⊆[n]) where share : S × R → S1 × · · · × Sn and
reconstructP : (×i∈P

Si) → S satisfy the following for all P ⊆ [n].
Correctness If f(P ) = 1, then Prr∼R[reconstructP (share(s, r)P ) = s] = 1
Perfect Privacy If f(P ) = 0, then, for all a, b ∈ S, v ∈×i∈P

Si,

Pr
r∼R

[share(a, r)P = v] = Pr
r∼R

[share(b, r)P = v]

Here, shareP refers to the joint share vector of subset P , that is, components indexed
i ∈ [n] of shareP with i ∈ P .

In this work, unless otherwise stated, secrets and shares will be from a single field, that
is, S = F and Si = Fci , where ci ∈ N, for all i ∈ [n]. The size of a scheme is the total number
of field elements distributed, that is,

∑n
i=1 ci.

We call a scheme linear when the domain of secret and domain of shares are all a field F
and all the reconstruction functions are linear on the shares.
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12:10 Linear Threshold Secret-Sharing with Binary Reconstruction

▶ Definition 5. Fix a field F and a set B ⊆ F. A restricted secret sharing scheme
S(share, reconstruct) over (B,F) is a linear secret sharing scheme over F with perfect privacy
such that the reconstruction coefficients are only from B. If for a restricted secret sharing
scheme, the joint distribution of the shares of any unauthorized set is uniform, then the
scheme is called a uniform scheme.

To provide intuition, throughout the text, we sometimes use the secret sharing nomencla-
ture for span programs, such as referring to the rows labeled xϵ

i as the rows of party i or
referring to x with f(x) = 0 as an unauthorized input.

We extend the equivalence proof of [4] to show that the set of coefficients and uniformity
are preserved.

▶ Lemma 6. For any field F, sets A, B ⊆ F, function f : {0, 1}n → {0, 1} and M ∈
MSPA,B,F(f), there is a restricted secret sharing scheme S realizing f over (B,F) with
size(S) = size(M). Furthermore, if M is uniform, S is also uniform.

Proof. Let k × ℓ be the size of M . For each s ∈ F, define Ns = {v ∈ Fℓ×1|1v = s} and fix
an arbitrary indexing γs : [|Ns|] → Ns. Let R = [|N1|], also noting that |Ns| = |N1| for all
s ∈ F. We construct the scheme (share, reconstruct, R) over (B,F) as follows.

Define share(s, r) = Mγs(r) where in the resulting vector, an entry will be a share piece
for party j if the corresponding row in M is labeled x1

j .
Consider any P such that f(P ) = 1. Then, there is uP with entries in B such that

uP MP = 1. Hence, uP (MP γs(r)) = uP MP γs(r) = 1γs(r) = s. Therefore, we define
reconstructP (q) = uP q and we have correctness.

Now consider any P such that f(P ) = 0. Pick u ∈ Fℓ×1 such that MP u = 0 and
1u = 1. Such u exists since 1 ̸∈ RowspanF(MP ). For any s1, s2 ∈ F and any c ∈ F, we
will show that ϕ(r) = γ−1

s2
((s2 − s1)u + γs1(r)) is a bijection from {r ∈ R|MP γs1(r) = c}

to {r ∈ R|MP γs2(r) = c}. First of all, it’s well defined: β(x) = ((s2 − s1)u + x) is a
bijection from Ns1 to Ns2 since 1β(x) = s2 − s1 + 1x = s2. A similar argument shows that
γ−1

s1
((s1 − s2)u + γs2(r)) is also well-defined and acts as the inverse of ϕ(r), hence proving

our claim.
Lastly, we prove that uniformity is preserved. Assume that M is uniform, and we claim

the scheme constructed above is uniform. Again consider any P such that f(P ) = 0. Since
we want to show that all share vectors of the appropriate dimension have non-zero and equal
probability, observe that it’s enough to show that for each s ∈ F and c1, c2 ∈ Frowcount(M,P )×1,
there is a bijection between {r ∈ R|MP γs(r) = c1} and {r ∈ R|MP γs(r) = c2} and that
both are non-empty sets. But there is indeed a bijection since {v ∈ Fℓ×1|MP v = c1, 1v = s}
and {v ∈ Fℓ×1|MP v = c2, 1v = s} are both translations of {v ∈ Fℓ×1|MP v = 0, 1v = 0} and
since γs is also a bijection. Finally, observe that when we concatenate the row vector 1 to
MP it still has full row rank since MP has full row rank and 1 ̸∈ Rowspan(MP ). Hence,
{v ∈ Fℓ×1|MP v = c1, 1v = s} is always non-empty. ◀

▶ Lemma 7. For any field F, set B ⊆ F, function f : {0, 1}n → {0, 1} and a restricted secret
sharing scheme S realizing S over (B,F), there is M ∈ MSPF,B,F(f) with size(M) = size(S).
Furthermore, if S is uniform, M is also uniform.

Proof. Let R be the domain of the random input of share and fix any ordering of R and S.
We define the matrix Msize(S)×(|R||F|) as follows. Index the columns of M by (r, s) ∈ R × F,
ordering first by the index of s and then by the index of r. Set the column labeled (r, s) to
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share(s, r). Index the rows by the party indices. That is, if the ith entry of the joint share
vector belongs to party j, label the ith row of M with x1

j . Finally, let the target vector w be
the concatenation of

[
si si . . . si

]
1×|R| for i = 1 to |F| in that order.

Consider any fixed r ∈ R and s ∈ F. Take P ⊆ [n] such that f(P ) = 1. Let v be the joint
share vector of P and let k be its dimension. Then, by the correctness of the secret sharing
scheme, there is c =

[
c1 c2 . . . ck

]
1×|R| ∈ Bk such that, reconstructP (v) =

∑k
i=1 civi = s.

Then, we see that cMP = w. The case when f(P ) = 0 is proven similarly by contradiction.
Lastly, we show that uniformity is preserved. Take any P such that f(P ) = 0. Consider

MP and let ℓ be its number of rows. By the uniformity of the secret sharing scheme, for any
i ∈ [ℓ] and for all s ∈ F, there is r ∈ R such that the column labeled (r, s) is ei, the vector
with 1 in the ith coordinate and 0 in all the others. Hence, rank(MP ) = ℓ. ◀

▶ Remark 8. Observe that in the proof of Lemma 7, instead of requiring that the joint
distribution of the shares of the unauthorized sets be uniform, we could show the same
results with the weaker assumption that the support of those distributions are equal to their
respective spaces or even just that those supports span their respective spaces. In fact, based
on this observation, we can see that any such weaker scheme can be converted to a uniform
scheme by first applying Lemma 7 and then Lemma 6 while preserving the total share size.

3 Upper Bounds

In this paper, our focus will be lower bounds. However, we do present upper bounds for
reference.

3.1 Upper Bounds for MSPF,{0,1},F(T ht
n)

Note that, while the upper bounds here work for any field; for suitable fields, the folklore
construction discussed in the introduction, Shamir’s scheme with bit decomposition, yields
better upper bounds.

▶ Definition 9 ([17]). An undirected contact network (UCN) (G, s, t, µ) is an undirected
graph G = (V, E) with edges labeled by variables or their negations, that is µ : E → {xϵ

i |i ∈
[n], ϵ ∈ {0, 1}}, and two designated vertices, source s ∈ V and terminal t ∈ V . For any
u ∈ {0, 1}n, Eu is defined to be {e ∈ E : µ(e) = xϵ

i with ui = ϵ} and Gu is (V, Eu).
A UCN is said to compute a function f(x1, . . . , xn) : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,

f(x) = 1 if and only if there is a path from s to t in Gx. The size of a UCN is defined to be
the number of edges its graph has, |E|.

An undirected monotone contact network (UMCN) is a UCN where all edges are labeled
by (non-negated) variables, namely ϵ = 1. A UCN is series-parallel if the underlying network
graph is series-parallel.

Note that the same construction is named symmetric branching programs in [20] and we
will use the terms interchangeably. Also, as in the case of span programs, we will refer to the
contact network and its underlying graph interchangeably.

Now we present a lemma from [20] which allows us to obtain upper bounds for span
programs using known contact network and formula sizes. Additionally, we observe that
when the underlying graph of a contact network is series-parallel, the proof actually gives
a program in MSPF,{0,1},F(f). The proof, with this observation, can be found in the full
version of this paper.
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12:12 Linear Threshold Secret-Sharing with Binary Reconstruction

▶ Lemma 10. [20] Fix a field F. A UCN G = (V, E) computing a function f can be converted
into a span program of the same size computing f . Also, if the network is monotone, so is
the resulting program. Finally, if the network is series-parallel, the resulting program is in
MSPF,{0,1},F(f).

Using the monotone formula upper bounds stated in [10], we get the following upper
bounds.

▶ Theorem 11. [10] size(UMCN(Tht
n)) ≤ O((min{t, n − t})4.3n log(n))

▶ Corollary 12. size(MSPF,{0,1},F(Tht
n)) ≤ O((min{t, n − t})4.3n log(n))

3.2 Upper Bounds for MSPF,{0,1},F − Uniform(T ht
n)

While the monotone UCN model does not give MSPF,{0,1},F − Uniform directly, requiring
that the Gx be acyclic when f(x) = 0 is enough to get this property. Note that, in case of
Tht

n, this is equivalent to each cycle of the contact network having at least t distinct variables.
We use the following restricted models to get MSPF,{0,1},F − Uniform upper bounds.

▶ Definition 13. Let Ĝ(G, s, t, µ) be a UCN computing f : {0, 1}n → {0, 1}. If Gx is acyclic
for all x ∈ {0, 1}n such that f(x) = 0, then we call Ĝ a uniform network.

▶ Lemma 14. In Lemma 10, if the network is uniform, then so is the resulting program.

Proof. Let G be a uniform UCN computing f and let M be the corresponding span program
obtained using Lemma 10. For a contradiction, suppose there is x with f(x) = 0 such that
Mx does not have full row rank. Then, there is a linear dependency

∑
i ciui = 0 where {ui}i

is rows(Mx) and ci are not all 0. Consider only those i such that ci ≠ 0. Consider any ui

and its corresponding edge in the network, (v, w). ui is a difference of two basis vectors by
construction. Therefore, for those basis vectors to be eliminated, there should be distinct
j, k such that the edge of uj touches v, the edge of uk touches w and cj , ck ≠ 0. Continuing
like this, we get a connected subset of vertices of Gx such that each vertex of it has degree
at least 2 in Gx, which implies Gx is cyclic. ◀

▶ Definition 15. Restricted monotone formulae for threshold functions.
A restricted monotone formula for a threshold function is a monotone formula3 F computing
Tht

n for some t, n such that OR gates cannot have as their input a literal; their inputs can
only be outputs of other gates, and if an input of an OR gate is the output of a pure AND
subtree 4, that subtree must be effectively computing

∧
i∈S xi for some S ⊆ [n] with |S| ≥ t−1.

We will interchangeably consider formulae as functions and as trees. We denote the set of
restricted monotone formulae computing Tht

n as RestrictedFormula(t, n).

▶ Lemma 16. For any restricted monotone formula F ∈ RestrictedFormula(t, n) and for
any field F, there is an M̂ ∈ MSPF,{0,1},F − Uniform(Tht

n) with size(M̂) ≤ size(F ).

Proof. The proof is presented in the full version of the paper. ◀

Note that we are not claiming that this is the optimal way of constructing an MSPF,{0,1},F−
Uniform from a contact network or a formula, but these uniform network and restricted
formula definitions are natural and readily give such programs.

3 We require fan-in = 2 and allow only AND, OR gates. Formula size is the number of gates.
4 An AND gate which doesn’t have any OR gates below
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Now, we show some upper bounds for MSPF,{0,1},F − Uniform(Tht
n) that we obtain from

contact networks and restricted formulae.

▶ Theorem 17. size(MSPF,{0,1},F − Uniform(Tht
n)) ≤

(
n
t

)
t

Sketch. Use the sum of minterms form of f . ◀

Some optimal monotone formula upper bounds such as the one in [24] are shown proba-
bilistically. However, [13, Section 1] gives a code-based explicit construction, which is still
optimal for t = Θ(1) and t = n − Θ(1). In fact, below we will invoke his construction only
for t = 2.

The following is an elementary construction using [13], which nevertheless improves upon
the naive upper bound by a factor of n

log(n) in some cases.

▶ Theorem 18. size(RestrictedFormula(t, n)) ≤ O(
(

n
t−2

)
t(n − t) log(n − t)).

Proof. Observe that the threshold function Tht
n for t > 2 can be written in terms of Th2

n−t+2
as follows: Tht

n(x1, x2, . . . , xn) =
∨

S={i1,i2,...,it−2}⊂[n] xi1xi2 . . . xit−2Th2
n−t+2([n]−S). Based

on this, do the following for each S = {i1, i2, . . . , it−2} ⊂ [n] and OR the resulting formulae.
Apply the construction of [13] to get a formula for Th2

n−t+2, and then replace each literal xj

(where j ∈ [n] − S) with xjxi1xi2 . . . xit−2 . Note that this replacement only increases the size
of each formula for Th2

n−t+2 by a factor of t − 1.
Since the formula for Th2

n−t+2 is of size O((n − t) log(n − t)), the formula we get for Tht
n

is of size O(
(

n
t−2

)
t(n − t) log(n − t)). ◀

We show below that the upper bounds obtained above are close to optimal for this model.

▶ Theorem 19. size(RestrictedFormula(t, n)) ≥ Ω(( n
t−1)
n−t )

Proof. Consider any S ⊆ [n] with |S| = t. We will show that there must be S′ ⊆ S with
|S′| = t − 1 such that there is a pure AND subtree of the formula computing

∧
i∈S′ xi.

Assume this is true for now. Since we cannot re-use a computation result in a formula, we
conclude that the minimum size of the formula is t|F∗| where F∗ is the smallest collection of
size t − 1 subsets of [n] that includes a size t − 1 subset of each size t subset of [n]. Observe
that, for each K ⊆ [n], |K| = t − 1, F∗ has to include a subset K ′ ⊆ [n], |K ′| = t − 1
with |K

⋂
K ′| ≥ t − 2. Suppose otherwise. Then, let i be such that i ̸∈ K and consider

K
⋃

{i}. This size t subset won’t have any size t − 1 subsets that’s in F∗ (i.e., K
⋃

{i} won’t
be covered). Based on this, we conclude that |F∗| ≥ γ(J(n, t − 1)) where γ(J(n, t − 1)) is
the domination number of the Johnson graph J(n, t − 1). It’s an elementary result that
γ(G) ≥ |V (G)|

∆(G)+1 for any graph G, where ∆(G) is the maximum degree of G. Therefore, we

get |F∗| ≥ Ω( ( n
t−1)

(n−t)(t) ) since J(n, t − 1) is (t − 1)(n − t + 1) regular.
Now, we need to prove our initial claim. Consider any S ⊆ [n] with |S| = t and its

evaluation by this formula. First of all, it’s easy to see that the formula must contain at
least 1 OR gate. Start at the root vertex of the formula. Since an AND gate means both
subtrees evaluate to 1, we can descend down to an OR gate that must evaluate to 1. After
this point, if we get to an OR gate, we recursively call the descend procedure for the child
that evaluates to 1. We stop when we have reached an AND gate.

By the definition of RestrictedFormula, its easy to see that this descending procedure
will terminate at an AND gate that has output 1 in this case and that’s computing

∧
i∈S′ xi

for some S′ ⊆ [n] with |S′| ≥ t − 1 in general. If |S′| > t − 1, we must have S = S′, which
means (by descending one more level) that a subset of S is computed by a pure AND subtree.
If |S′| = t − 1, this implies S′ ⊂ S, which again proves our claim. ◀
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12:14 Linear Threshold Secret-Sharing with Binary Reconstruction

As discussed above, this model is not the only way we can obtain MSPF,{0,1},F − Uniform
upper bounds through contact networks or formulae. Below we use a more direct analysis to
obtain a better upper bound for a specific case.

▶ Definition 20. For a function f : {0, 1}n → {0, 1}, define its dual f ′ : {0, 1}n → {0, 1} as
f ′(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).

Observe that dual of a monotone formula is again a monotone formula of the same size.
It’s easy to see that dual of Tht

n is Thn−t+1
n .

▶ Theorem 21. size(MSPF,{0,1},F − Uniform(Tht
n)) ≤ O(n log(n)) for t = 2 and t = n − 1.

Proof. For t = 2, the requirement that each cycle contain at least t distinct variables is
trivially satisfied. This shows that any formula upper bound for t = 2 transfers to our
case. So we just use [13] formula directly to get O(n log(n)). We cannot hope for a better
upper bound through formulae since it is known that there is a Ω(n log(n)) lower bound for
monotone formulae for t = 2 [17].

For t = n − 1, take the dual of [13] formula constructed for t = 2. Any parallel part in
this construction corresponds to Aj

0 and Aj
1 of [13, Section 1], and their union contains all

the variables by the definition given there. Hence, any cycle contains all n variables. ◀

3.3 Subfield Decomposition
The method of converting a program over F to a program over the subfield L is useful for us
in the case when char(F) = 2, since then {0, 1} is a subfield.

[20, Theorem 12] uses subfield decomposition method to show upper bounds for
MSPF2,F2,F2(Tht

n) through Shamir’s secret sharing scheme over larger fields of characteristic
2. [12, Lemma 3] uses the same method for integer span programs. Here, we show that this
method also preserves uniformity. We modify the decomposition slightly to be able to show
the uniformity, so we first show in detail the correctness of the method in our context.

▶ Theorem 22. Let L be a subfield of F. Then, size(MSPL,L,L(f)) ≤ size(MSPF,F,F(f)) · |F :
L| and size(MSPL,L,L − Uniform(f)) ≤ size(MSPF,F,F − Uniform(f)) · |F : L|

Proof. Let {a0, a1, . . . , aℓ−1} be an L-basis of F where ℓ = |F : L| and a0 = 1. For any x ∈ F,
let Nx denote the ℓ × ℓ matrix whose kth row is the L-coordinates of akx as a row vector.
We omit the proof here, but it’s easy to show that Nxy = NxNy and Nx+y = Nx + Ny for
all x, y ∈ F using the fact that multiplication is linear. Finally, for any matrix A with entries
in F, let Â denote the matrix created by replacing each entry x of A with Nx.

Let Ms×k ∈ MSPF,F,F − Uniform(Tht
n) with target vector w1×k = [1, 0, . . . , 0]. We claim

M̂ ∈ MSPL,L,L(Tht
n) with target vector w1×kℓ = [1, 0, . . . , 0]. Note that it is fine to use these

target vectors since we can change target vectors at the end to return to the original model.
First, the correctness. Let A ⊆ [n] be such that f(A) = 1. Then, there is v such that

vMA = w1×k. Hence, v̂M̂A = ˆ(w1×k). Considering the L-coordinates of 0 and 1, it is easy
to see that only keeping the first row gives us (v̂)1M̂A = w1×kℓ.

Then, the security. Let A be such that f(A) = 0. Then, w1×k ̸∈ Rowspan(MA) Then,
M̃Av = ([0, . . . , 0, 1]T )(sA+1)×1 has a solution, where L̃ is the matrix obtained by appending
[1, 0, . . . , 0]T at the bottom of L for any matrix L. Then, consider the multiplication (̂M̃A)v̂,
and drop the last (ℓ − 1) rows of (̂M̃A) and all except the first column of v̂. Denote these as

P and u respectively. Observe that we have Pu = ([0, . . . , 0, 1]T )(sAℓ+1)×1 and P = (̃M̂A).
Therefore, wkℓ×1 ̸∈ Rowspan(M̂A).
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Finally, the uniformity. Let A be such that f(A) = 0. Assume for a contradiction that
M̂A does not have full row rank. Then, there is a row vector v ≠ 0 with entries in L such
that vM̂A = [0, . . . , 0]1×kℓ. Now, observe that there is (unique) (vc)1×sA

such that the first
row of v̂c is equal to v. Then, we can see that the first row of v̂cM̂A is all zeroes. We claim
this is a contradiction. Consider vcMA. Since v is not 0, vc is not 0 either. By definition, we
have that MA has full row rank. Hence, vcMA is not all zero. Therefore, the first row of
v̂cM̂A cannot be all zeroes. ◀

▶ Corollary 23. size(MSPF,{0,1},F −Uniform(Tht
n)) ≤ O(n log(n)) for any F with char(F) =

2.

4 Lower Bounds

4.1 MSPF,{0,1},F(Tht
n)

▶ Theorem 24. For any field F of finite characteristic char(F) and any t with 2 ≤ t ≤ n − 1,
we have size(MSPF,{0,1},F(Tht

n)) ≥ n logchar(F)(n)

Since we have the upper bound O(n log2(n)) for any field F with char(F) = 2, that is
obtained through bit decomposition, we conclude that the lower bound is tight for such F.
Furthermore, using monotone contact networks, we get the same upper bound for any field F
(of any characteristic including 0) and for threshold t = Θ(1) or n − Θ(1), we again conclude
that the lower bound is tight for the case of Θ(1) characteristic and such threshold values.

We begin by outlining the proof of the theorem. First, we will show that conversion into a
canonical form that preserves the program size and the coefficient set B. Then, we will prove
that there is again a size preserving conversion between MSPA,B,F(f) and MSPB,A,F(f ′) where
f ′ is the dual of f , inspired by [14]. Lastly, we show size(MSP{0,1},F,F(Tht

n)) ≥ n logchar(F)(n)
using an adaptation of a theorem of [20].

4.1.1 Canonical Forms
We start with canonical forms. The following definition is from [20].

▶ Definition 25. Let M be a span program computing f. We say that M is canonical if the
columns of M are in one-to-one correspondence with U = f−1(0) ⊂ {0, 1}n and for every
u ∈ U , the column corresponding to u in Mu is 0. We denote the class of canonical monotone
span programs as MSPCanonA,B,F.

Observe that this condition automatically implies the security condition: since the column
u of Mu will be 0, Mu cannot span 1. Therefore, we can think of this condition as replacing
the security condition.

With a small modification, construction of [20, Theorem 6] preserves the set of coefficients.
We observe this below and also the fact that in some cases the set of entries is also preserved.
Proof given in the full version.

▶ Lemma 26. For any M ∈ MSPA,B,F(f), there is N ∈ MSPF,B,F − Canonical(f) with
size(M) = size(N). Furthermore, if A is a subfield of F, then N ∈ MSPA,B,F − Canonical(f)

4.1.2 Switching the Sets A and B

The following lemma is inspired by [14, Theorem 3.4]. The complete proof is presented in
the full version.
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▶ Lemma 27. For any M ∈ MSPA,B,F − Canonical(f), there is N ∈ MSPB,A,F −
Canonical(f ′) with size(M) = size(N).

▶ Corollary 28. size(MSPA,B,F − Canonical(f)) = size(MSPB,A,F − Canonical(f ′))

4.1.3 Proof of the Main Theorem
▶ Definition 29. [20] An function g : {0, 1}ℓ → {0, 1} is called a restriction of a function
f : {0, 1}n → {0, 1} if g can be obtained by hardwiring (each to 0 or 1 independently) some
of the inputs of f .

▶ Lemma 30. Let g be a restriction of f : {0, 1}n → {0, 1}. Then, for any M ∈ MSPA,B,F −
Canonical(f), there is N ∈ MSPA,B,F − Canonical(g) with size(N) ≤ size(M).

Proof. See the proof of [20, Theorem 7]. It’s easy to see that the construction there preserves
A and B. ◀

▶ Lemma 31. If A, B,F are all fields such that A ⊆ B ⊆ F, then MSPA,B,F(f) =
MSPA,A,A(f)

Proof. Consider any M ∈ MSPA,B,F(f), we will show M ∈ MSPA,A,A(f). Let di be
rowcount(M, i) for i ∈ [n]. Consider any authorized input v ∈ f−1(1). Then, there is a row
vector r ∈ B

(
∑

i∈v
di) such that rMv = 1. Since 1 and Mv both have their entries in A, then

there is r′ ∈ A
(
∑

i∈v
di) such that r′Mv = 1, since a solution in an extension field implies a

solution in the subfield (see [18], for example).
The security condition is trivial: for an unauthorized input u ∈ f−1(0), since Mu cannot

F-span 1, then it cannot A-span it either.
Now, take any N ∈ MSPA,A,A(f), we will show N ∈ MSPA,B,F(f). Since A ⊂ B,

the coefficient set condition is trivially satisfied. Finally, consider any unauthorized input
u ∈ f−1(0). Assume for a contradiction there is r ∈ F(

∑
i∈u

di) such that rNv = 1. As above,
this would imply existence of r′ ∈ A

(
∑

i∈u
di) such that r′Nv = 1, which is a contradiction. ◀

Finally, the proof of the main theorem. [20, Theorem 11] gives an algebraic variation of
a lower bound proof for Th2

n formula size to show that size(MSPF2,F2,F2(Th2
n)) ≥ n log2(n).

Here, we use the same counting argument in a more general setting along with the lemmas
above to show results for the restricted model.

Proof. Let L be the prime subfield of F. Observe that size(MSPF,{0,1},F(Tht
n)) ≥

size(MSPF,L,F(Tht
n)) since {0, 1} ⊆ L. We will mainly work with L in the proof.

We will prove size(MSPL,F,F(Th2
n)) ≥ n log|L|(n). Assume this is true for now.

By Lemma 31, size(MSPL,F,F(Th2
n)) = size(MSPL,L,L(Th2

n)). Then, by Corol-
lary 28, size(MSPL,L,L(Th2

n)) = size(MSPL,L,L(Thn−1
n )). Again by Lemma 31,

size(MSPL,L,L(Thn−1
n )) = size(MSPL,F,F(Thn−1

n )). Therefore, size(MSPL,F,F(Thn−1
n )) ≥

n log|L|(n). Finally, again by using Corollary 28, we get size(MSPF,L,F(Th2
n)) ≥ n log|L|(n)

and size(MSPF,L,F(Thn−1
n )) ≥ n log|L|(n)

For any t ≤ n − 1, when we hardwire n − t − 1 inputs of Tht
n to 0, we get Tht

t+1. Hence,
by Lemma 30, size(MSPCanonF,L,F(Tht

n)) ≥ (t + 1) logchar(F)(t + 1). Therefore, for any
t with n

2 ≤ t ≤ n − 1, size(MSPCanonF,L,F(Tht
n)) ≥ Ω(n logchar(F)(n)). Lastly, note that

by Lemma 26, size(MSPCanonF,L,F(Tht
n)) = size(MSPF,L,F(Tht

n)). This proves the main
inequality for n

2 ≤ t ≤ n − 1.
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Similar to above, for any t ≥ 2, we can hardwire t−2 inputs of Tht
n to 1 and get Th2

n−t+2.
Therefore, for t with n

2 ≥ t ≥ 2, we get size(MSPF,L,F(Tht
n)) ≥ Ω(n logchar(F)(n)), hence

proving the main inequality for all 2 ≤ t ≤ n − 1.
Now we prove size(MSPL,F,F(Th2

n)) ≥ n log|L|(n). Take any M ∈ MSPL,F,F(Th2
n). Let ℓ

be the number of columns of M and di be the number of rows of i. For any a ∈ L\{0}, define
the set of column vectors Ra := {r ∈ Lt : 1r = a}. Also, for all i ∈ [n], Ri,a := {r ∈ Lt :
M ′

ir = wdi,a} where M ′
i is a matrix with di + 1 rows with first di rows set to M{i} and the

last row set to 1. wdi,a is the column vector of size di + 1 with first di rows equal to 0 and the
last row equal to a. It’s easy to see that

⋃
i∈[n] Ri,a ⊆ Ra. Also, for any i, j ∈ [n] with i ̸= j,

we have Ri,a

⋂
Rj,a = ∅. We prove the disjointness by contradiction as follows. Suppose there

is r ∈ Ri,a

⋂
Rj,a. Let {bm}m∈[di] and {ck}k∈[dj ] be the rows of parties i and j respectively.

Since t = 2, there is {βm}m∈[di], {γk}k∈[dj ] ⊆ L such that
∑di

m=1 βmbm +
∑dj

k=1 γkck = 1.
Multiplying by r on both sides and considering the definitions of Ri, Rj , we get 0 = 1r. This
is a contradiction since 1r = a ̸= 0 by definition.

Using disjointness, we get
∑n

i=1 |Ri,a| ≤ |Ra|. Now, observe that Ra is defined by a single
linear equation in L. Hence, |Ra| = |L|t−1. Similarly, |Ri,a| = |L|t−rankL(M ′

i). Note that here
we used the fact that 1 is not in L-span of M ′

i (since t > 1), which shows the non-homogeneous
equation system defining Ri,a is not inconsistent. Using the fact rankL(M ′

i) ≤ di + 1, we
now have

∑n
i=1 |L|t−1−di ≤ |L|t−1. Applying the arithmetic-geometric mean inequality (or

Jensen’s inequality directly), we get
∑n

i=1 di ≥ n log|L|(n). ◀

▶ Remark 32. To get a lower bound when the field characteristic grows with n, one approach
that looks promising is to consider r with entries in {0, 1} and consider programs with
entries in {0, 1}, instead of in L. In fact, one can use a linear recursion5 or use combinatorial
approaches directly to see that there are

∑⌊ ℓ−1
k ⌋

k=0
(

ℓ
char(F)k+1

)
solutions to 1r = 1 with r

having entries in {0, 1}. However, the other side is problematic: sets Ri,1 can have small
sizes that are independent of di. For example, in the case ℓ = 2n, char(F) = n2 + 1, it’s
possible that |Ri,a| = 1, no matter how large or small di is,6 which renders this approach
useless.

We finish this section with a lower bound that works for all fields, albeit it’s an asymp-
totically insignificant result. Nevertheless, the approach will be useful in the next section for
proving lower bounds for the uniform model.

▶ Theorem 33. size(MSPF,{0,1},F(Tht
n)) ≥ 2n − 1 for all t such that 1 < t < n.

Proof. Consider any M ∈ MSPF,{0,1},F(Tht
n). We will show that there can be at most one

i ∈ [n] such that rowcount(M, i) = 1. For a contradiction, without loss of generality, assume
that rowcount(M, i) = rowcount(M, t + 1) = 1.

Consider the following authorized sets A1, A2, A3 and the unauthorized set U1. A1 =
{1, 2, . . . , t−1, t}, A2 = {1, 2, . . . , t−1, t+1}, A3 = {2, 3, . . . , t−1, t, t+1}, U1 = {2, 3, . . . , t−
1, t}. Observe that, for any i ∈ [n], when A is a minterm, rowcount(M, i) = 1 and i ∈ A, the
coefficient of the single row of i must be nonzero.

5 This leads to a block diagonal matrix with block size char(F) and each block being circulant, which can
be solved with standard techniques.

6 Consider the case when there is a row of full of 1s expect the last column. Since ℓ < char(F), this forces
all of the first ℓ − 1 coordinates of r to be 0. Then, the last entry is forced to be 1 by the last row of the
linear system. Hence, there is only 1 solution.
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Since rows of A1 and A2 can span 1, there is a 0 − 1 combination of rows of these sets
that are equal to each other. Canceling out the row of party 1, we see that rows of parties
{2, . . . , t − 1, t} can F-span the only row of party t + 1.

A3 is also authorized, so it can span 1. But we can get rid of the row of party t + 1 in
this span equation by replacing it with what we obtained above. Thus, U1 can F-span the
target, which violates the security condition. ◀

4.2 Lower Bounds for Uniform Schemes via Extremal Sets
In this section, we prove a Ω(n log(n)) lower bound for computing thresholds functions with
uniform restricted span programs with {0, 1} coefficients. Recall such a restricted span
program, M̂(M, ρ), computing f is said to be uniform, if for all x such that Tht

n(x) = 0 Mx

has full row rank. Roughly, we show that if we can find a large family of authorized subsets
that have a fixed core subset and have large pairwise intersections, then the total share size
must also be large.

We start with a primitive version of the argument and then make it more flexible in the
next step. Then, we go on to show lower bounds for various threshold values.

Finally, we show that a single, condensed version can show the same lower bound for
(almost) all threshold values and then show that this is the optimal lower bound that can be
shown with the technique we give here.

▶ Theorem 34. Suppose t + (2c − 1)(t−1) < n for some 2 < t < n and c ∈ N+. Then, there
cannot be M ∈ MSPF,{0,1},F − Uniform(Tht

n) where rowcount(M, i) = c for all i ∈ [n].

Proof. Suppose otherwise. Let vi,j denote the jth row of party i for i = 1, . . . , n and
j = 1, . . . , c.

Consider the subset of parties A={1, 2, . . . , (t − 1)}. If we add any one more party to
this set, it will be able to 0,1 span the target vector w = 1. Note that no matter which party
we add, we will have that, for each i = 1, 2, . . . , t − 1, the coefficient of vi,j is non-zero for
at least one value of j = 1, . . . , c. (Assume otherwise for some party i. Then its rows are
contributing 0 to the span, so we can just drop party i and get a party set of (t − 1) parties
that can span w, which is a contradiction).

Therefore, there are (2c − 1)(t−1) possible coefficient combinations for the rows of parties
1, 2, . . . , t − 1 in any case where we add another party to them to span 1.

So, consider the parties t, t + 1, . . . , t + (2c − 1)(t−1) (this is where we use the inequality
assumption with c, t, n). If we add party t to the set A={1, 2, . . . , (t − 1)}, they will be able
to span 1. If we instead add party t + 1, again they will be able to span 1 (since that makes
t many parties). It continues like this for all values t, t + 1, . . . , (2c − 1)(t−1)

Now, we have (2c − 1)(t−1) + 1 span equations giving 1, where, in each of them we have
t parties (first t-1 parties and one another party). Furthermore, in each of them, not all
coefficients of the rows of a given party is 0 (due to reasoning above: we can go down to t-1
parties otherwise). By the pigeonhole principle, there must be two equations (without loss of
generality, say they are the ones with party t and party t+1 respectively) where all the row
coefficients of the parties 1, 2, . . . , t − 1 are the same. Remembering that both equations are
equal to 1, we can equate them and cancel everything related to rows of parties 1, 2, . . . , t − 1.

Now, we have an equation of the following form: b1vt,1 + b2vt,2 + · · · + bcvt,c = d1vt+1,1 +
d2vt+1,2 + · · · + dcvt+1,c. That is, some linear combination of rows of party t is equal to some
(not necessarily the same coefficients) linear combination of rows of party t + 1.

Finally, consider the unauthorized set of two parties: party t and party t + 1 (since
t > 2). By above, the submatrix of these two parties does not have full row rank, which is a
contradiction. ◀
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We generalize the proof method shown above by making the number of parties that we try
to cancel a parameter, along with the number of span equations we use. We will call these
parameters x and ℓ respectively, and the proof method x-fixed-ℓ-minterms proof.

Proof. x-fixed-ℓ-minterms proof. Suppose in the proof above, instead of considering (2c −
1)(t−1) + 1 equations, we consider ℓ different equations for some parameter ℓ, corresponding
to ℓ many distinct minimal (that is, of size t) authorized sets. We also require that all the
minimal sets contain the first x parties, for some parameter x. Finally, we require that the
union P of parties involved in pair of minimal sets, satisfy |P − [x]| < t. If there is a way
of choosing a family of minimal sets satisfying these, we will call it a minimal set choosing
strategy Yx,ℓ,t. It’s easy to see that we also need 1 < x < t.

Fix some x, ℓ, c such that there is a strategy Yx,ℓ,t and ℓ > (2c − 1)x. Then, there cannot
be an MSP01-Uniform program where all n of the parties get c rows each. We prove by
contradiction as follows.

Suppose otherwise. Then, we can invoke strategy Yx,ℓ,t to get ℓ different span equations.
Since ℓ > (2c − 1)x; by the pigeonhole principle, there has to be two equations where the first
x parties have exactly the same coefficients for each of their rows. Call the parties involved
in those two equations P1 and P2. By cancellation, we get a linear dependence between rows
of (P1 ∪ P2) − [x]. By the definition of a strategy, we have |(P1 ∪ P2) − [x]| < t. Hence, the
fact that the submatrix of (P1 ∪ P2) − [x] is not of full row rank is a contradiction.

We can remove the requirement that all parties get the same number of rows as follows.
Observe that the pigeonhole principle would still work if we assume that c is the largest
number of rows that a party among the first x parties has. However, we are not required
to invoke this proof with the actual first x parties. Instead, re-label parties so that parties
2, 3, . . . , x are the parties with smallest number of rows. Then, invoke the proof by re-labeling
the first party to be any party except one of those x − 1 parties with smallest number of rows.
Now, if we have the lower bound c∗ under the assumption that all parties get the same number
of rows, then in the general case, we get rowcount(M, i) ≥ c∗ for all i ∈ [n] expect x − 1
many of them. Hence, the total number of rows is lower bounded by (n − x + 1)c∗ + (x − 1).

Finally, it’s easy to see that the impossibility result for ℓ > (2c − 1)x corresponds to the
lower bound c > log2(ℓ)

x . Hence, we get the following theorem. ◀

▶ Theorem 35. If there is a strategy Yx,ℓ,t, then we have
size(MSPF,{0,1},F − Uniform(Tht

n)) > (n − x + 1) log2(ℓ)
x + (x − 1).

We now show some strategies for various cases and the corresponding lower bounds.

▶ Lemma 36. If t + ℓ − 1 ≤ n and x ≥ 2, then there is a strategy Yx,ℓ,t.

Proof. On top of the first x parties, for each minimal set, add parties {x + 1, x + 2, . . . , t −
1, t + i − 1} for i = 1, . . . , ℓ. This gives us ℓ minimal sets, and we never run out of parties
since t + ℓ − 1 ≤ n. Finally, the union of any two minimal sets contains t − 1 − (x + 1) + 1 + 2
parties, which is ≤ t − 1 since x ≥ 2. ◀

▶ Corollary 37. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω(n log(n − t)) for t ≥ 3.

Proof. Invoke the x-fixed-ℓ-minterms proof using the strategy Yx,ℓ,t for x = 2 and ℓ =
n − t + 1. ◀

▶ Corollary 38. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω(n log(n)) for the majority function

(t = ⌈ n
2 ⌉).
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▶ Lemma 39. If ℓ ≤
(

n−x
t−x

)
and x ≥ min{n − t + 1, t+1

2 }, then there is a strategy Yx,ℓ,t.

Proof. Simply pick all possible subsets of size (t−x) of the set {x+1, x+2, . . . , n}. ℓ ≤
(

n−x
t−x

)
guarantees that we can produce ℓ minimal sets without running out of possible subsets, and
x ≥ min{n − t + 1, t+1

2 } guarantees the pairwise union size requirement (We don’t prove
it here, but it can be obtained using the elementary inequalities |A ∪ B| ≤ |A| + |B| and
|U − A| ∪ |U − B| ≤ |U − A| + |U − B| where U contains both A, B.) ◀

▶ Corollary 40. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω((n − x) log((n−x

t−x))
x ) for t ≥ 3 where

x = min{n − t + 1, t+1
2 }

Proof. Use the strategy shown above with ℓ =
(

n−x
t−x

)
and x = min{n − t + 1, t+1

2 }. Again,
this is the best lower bound we can get from this family of strategies. ◀

▶ Corollary 41. For any t = n − Θ(1) and t = Θ(1), except for t = 0, 1, 2, n, we have
size(MSPF,{0,1},F − Uniform(Tht

n)) ≥ Ω(n log(n)).

Proof. Just use the elementary inequality
(

n
k

)
≥ (n

k )k with Corollary 40. The other side(
n
k

)
≤ ( en

k )k shows that this is the best lower bound we can get for these thresholds using
this family of strategies. ◀

It turns out that we can show all of these bounds, or in fact more, by a single graph
theoretic argument: one that uses the properties of Johnson graphs. This reduction is only
applicable when x = 2, but later we show that the lower bound (which applies to almost all
threshold values) we get from this is the best lower bound we can get for any value of x.

▶ Theorem 42. For any 3 ≤ t ≤ n − 1, we have size(MSPF,{0,1},F − Uniform(Tht
n)) ≥

Ω(n log(n)).

Proof. Let x = 2. Then, let P1, P2 be any pair of subsets of size t provided by a fixed
strategy. It’s easy to show that |(P1 ∪P2)− [x]| ≤ t−1 implies |(P1 − [x])∩ (P2 − [x])| ≥ t−3.
Since P1 ̸= P2 and |P1 − [x]| = |P2 − [x]| = t − 2, we get |(P1 ∪ P2) − [x]| = t − 3. This shows
that P1 − [x], P2 − [x] must be adjacent in the Johnson graph J := Jn−2,t−2. This was for
any pair P1, P2, which means that we are looking for the largest clique in J . Its size is the
clique number of the graph and is denoted ω(J).

[15, Section 16.6] states that χ(Jn,k) ≤ n, where χ(G) denotes the chromatic number of
graph G. Since χ(G) ≥ ω(G) for any G, we conclude that ω(J) ≤ n.

In fact, for t ≤ n
2 , the largest clique that gives us this lower bound is the elementary

sliding window family we used in Corollary 37. Furthermore, the same family/clique is one
of the two simple cliques demonstrated in [15, Section 6.1]. Taking into account the other
clique they show, we get ω(J) ≥ max{n − t + 1, t − 1} ≥ n

2 . Hence, we get a n log(n) lower
bound for all 3 ≤ t ≤ n − 1, thus proving Theorem 42. ◀

Lastly, we give the following result. It might indicate that x-fixed-ℓ-minterms method
might not be using the full power of the 0,1 restriction, and results specific for binary matrices
(and their ranks) might lead to better lower bounds for size(MSPF,{0,1},F − Uniform(Tht

n)).

▶ Corollary 43. Let B ⊆ F and 0 ∈ B. Any x-fixed-ℓ-minterms based lower bound we get
for size(MSPF,{0,1},F − Uniform(Tht

n)) also works for size(MSPF,B,F − Uniform(Tht
n)) when

we change the base of the logarithm from 2 to |B|. In particular, for constant |B|, the lower
bound stays the same asymptotically.

Proof. Just change the base 2 to |B| in the pigeonhole principle argument of x-fixed-ℓ-
minterms proof. ◀
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4.3 Limitations
While the fact that various values of x provided Ω(n log(n)) lower bound for various threshold
values was promising that better lower bounds could be obtained by setting x > 2, it turns
out that just using x = 2 is sufficient.

▶ Lemma 44. The best lower bound we can obtain using the x-fixed-ℓ-minterms method is
Ω(n log(n)).

Proof. Here, we give a sketch of the proof and the complete proof is presented in the full
version. By Ahlswede-Khachatrian Complete Intersection Theorem [2]7, which provides
bounds for strategies (or families of subsets in their terminology) for all possible values, we
conclude the following.

If there is an integer r such that 0 ≤ r ≤ x−1 and x(2+ t−2x
r+1 ) < n−x < x(2+ t−2x

r ), then
the largest family a strategy Yx,ℓ,t can provide is Fr = {A ⊂ {x + 1, x + 2, . . . , n} : |A| = (t −
x), |A∩{x+1, x+2, . . . , t−x+1+2r}| ≥ t−2x+1+r}. Then, under the assumption that such r

exists, it’s easy to see that ℓ = |Fr| ≤
∑t−2x+1+2r

j=t−2x+1+r

(
t−2x+1+2r

j

) ∑t−2x+1+2r
j=t−2x+1+r

(
n−t+2x−1−2r

t−x−j

)
Then, log(ℓ) ≤ log((r + 1)

(
t+1+2r

j

)
) + log((r + 1)

(
n−t+2x−1−2r

j

)
). Here, we used the fact that

r ≤ t−2x+1+2r
2 ≤ t−2x+1+2r

2 and x − 1 − r ≤ n−t+2x−1−2r
2 and that the binomial coefficients

are larger towards the middle.
Continuing by using r + 1 ≤ x, t + 1 + 2r ≤ 4n, x − 1 − r ≤ x, n − t + 2x − 1 − 2r ≤

n + 2x ≤ 4n and x ≤ 4n
2 , after multiple steps and by using the inequality

(
n
k

)
≤ ( en

k )k we get
log(ℓ) ≤ 4x log(4en). Hence, log(ℓ)

x ≤ O(log(n)).
Finally, the case where there is no such integer r. First of all, observe that if t ≤ 2x, we get

log(ℓ)
x ≤ log((n−x

t−x))
x ≤ t−x

x log(n) ≤ log(n). Similarly, n ≤ 3x implies log(ℓ)
x ≤ log(2n)

x = n
x ≤ 3.

Therefore, we can assume t > 2x and n > 3x. Under this, the inequality condition
provided for r above becomes x t−2x

n−3x − 1 < r < x t−2x
n−3x

It’s easy to see that if t−2x
n−3x ≤ 1, we can pick an integer r that both satisfies this and

is in the range 0 ≤ r ≤ x − 1. Hence, we only need to focus on the case t − 2x > n − 3x,
or x > n − t equivalently. In that case, log(ℓ)

x ≤ log((n−x
t−x))
x = log((n−x

n−t))
x ≤ n−t

x log( e(n−x)
n−t ) ≤

n−t
x log(en) ≤ O(log(n)) ◀

The fact that we have O(n log(n)) upper bound for fields of characteristic 2 shows that
field-agnostic approaches like the one here cannot yield lower bounds better than Ω(n log(n)).
With this lemma, we also showed that subset-counting approaches like the one presented is not
likely to yield better lower bounds even if they were specifically for fields with characteristic
different than 2.
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