Quantum Complexity of Minimum Cut

Simon Apers Ga
CWI, Amsterdam, The Netherlands
Université libre de Bruxelles (ULB), Brussels, Belgium

Troy Lee 2 a&

Centre for Quantum Software and Information, University of Technology Sydney, Australia

—— Abstract
The minimum cut problem in an undirected and weighted graph G is to find the minimum total
weight of a set of edges whose removal disconnects G. We completely characterize the quantum
query and time complexity of the minimum cut problem in the adjacency matrix model. If G has
n vertices and edge weights at least 1 and at most 7, we give a quantum algorithm to solve the
minimum cut problem using O~(n3/2ﬁ) queries and time. Moreover, for every integer 1 <7 <n
we give an example of a graph G with edge weights 1 and 7 such that solving the minimum cut
problem on G requires Q(ng/ 2/T) queries to the adjacency matrix of G. These results contrast with
the classical randomized case where Q(n?) queries to the adjacency matrix are needed in the worst
case even to decide if an unweighted graph is connected or not.

In the adjacency array model, when G has m edges the classical randomized complexity of
the minimum cut problem is (:)(m) We show that the quantum query and time complexity are
O(y/mnt) and O(y/mnt 4+ n®/?), respectively, where again the edge weights are between 1 and 7.
For dense graphs we give lower bounds on the quantum query complexity of Q(n/2) for 7 > 1 and
Q(mn) for any 1 <7 < n.

Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de
Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and
Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient
implementation builds on Karger’s tree packing technique (STOC 1996).

2012 ACM Subject Classification Theory of computation — Quantum query complexity; Mathem-
atics of computing — Graph algorithms; Theory of computation — Quantum complexity theory

Keywords and phrases Quantum algorithms, quantum query complexity, minimum cut
Digital Object Identifier 10.4230/LIPIcs.CCC.2021.28

Funding Simon Apers: Supported in part by the Dutch Research Council (NWO) through QuantERA
ERA-NET Cofund project QuantAlgo 680-91-034.
Troy Lee: Supported in part by the Australian Research Council Grant No: DP200100950.

Acknowledgements We would like to thank Ronald de Wolf for discussions which started this paper,
and in particular a conversation which led to Theorem 35. We also thank Debmalya Panigrahi and
Miklos Santha for helpful conversations on this topic.

1 Introduction

Let G = (V,w) be a weighted graph, where w : (‘2/) — R>¢ assigns a non-negative weight to
every edge slot. We denote the edges of G, i.e. the edge slots that are given positive weight,
by E(G). For a nontrivial set §) # X C V let Ag(X) be the set of edges of G with exactly
one endpoint in X and one endpoint in X = V' \ X. A cut of G is a set of edges of the
form Ag(X) for some nontrivial set X C V. We call X and X the shores of the cut. The
minimum cut problem is to determine the minimum of) . Ac(X) w(e) over all non trivial
subsets X . This is equivalent to the minimum total weight of edges that need to be removed
from G in order to disconnect it. We call this minimum value A(G). A set of edges Ag(X)
realizing A(G) is called a minimum cut of G. If G is unweighted A(G) is known as the edge
connectivity of G and is the minimum number of edges whose removal disconnects G.

© Simon Apers and Troy Lee; COMPUTATIONAL
37 licensed under Creative Commons License CC-BY 4.0 COMPLEXITY
36th Computational Complexity Conference (CCC 2021). CONFERENCE

Editor: Valentine Kabanets; Article No. 28; pp. 28:1-28:33

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:smgapers@gmail.com
https://simonapers.github.io
mailto:troyjlee@gmail.com
https://troylee.org
https://doi.org/10.4230/LIPIcs.CCC.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

Quantum Complexity of Minimum Cut

Computing the weight of a minimum cut of a graph is a fundamental computational
problem that has been extensively studied in theoretical computer science since at least
the 1960s [18, 13]. It is also a problem of great practical importance, with applications to
clustering algorithms [8] and evaluating network reliability, among others (see [33] for a
survey of applications). Classically it is known that edge connectivity can be computed in
nearly linear time even by deterministic algorithms [26, 21]. For weighted graphs with m
edges, the weight of a minimum cut can be determined in nearly linear time’ O(m) by a
randomized algorithm [25, 30, 16] and in almost linear time O(m!*°(1)) by a deterministic
algorithm [27].

In this work we study quantum algorithms for the minimum cut problem in two standard
models for graph problems, the adjacency matrix and the adjacency array models. In the
adjacency matrix model a query consists of a pair {u,v} of vertices, and the answer is
w({u,v}). The adjacency array model allows 3 types of queries: one can query the degree of
a vertex v, the name of the i*" neighbor of v, according to some arbitrary ordering, and the
weight of the edge between v and its i*" neighbor.

For classical randomized algorithms, in the adjacency matrix model it is known that
even deciding if a graph is connected or not requires Q(n?) queries in the worst case [11].
More recently, the randomized query complexity of edge connectivity was studied by Bishnu,
Ghosh, Mishra and Paraashar 7] in a common generalization of the adjacency matrix and
adjacency array models called the local query model. This model allows queries to the degree
of a vertex and to the " neighbor of a vertex v, as in the adjacency array model, and also
queries as to whether or not {u, v} is an edge, as in the adjacency matrix model. Over simple
graphs G with m edges, they show an (m) lower bound on the number of local queries
needed by a randomized algorithm to succeed with probability 2/3 for both the problems of
determining the edge connectivity and outputting a cut realizing the edge connectivity [7,
Theorems 2 and 3.

In this work we completely characterize the quantum query and time complexity of the
minimum cut problem in the adjacency matrix model. The complexity depends on what
we call the edge-weight ratio. We say a graph has edge-weight ratio 7 if the ratio of the
largest weight of the graph to the smallest is at most 7. When the edge-weight ratio of an
n-vertex graph is 7, we give a bounded-error quantum algorithm to solve the minimum cut
problem using O(n3/2,/7) queries and time in the adjacency matrix model (Theorem 5). For
the unweighted case, i.e. the case 7 = 1, one can see this bound is tight as Diirr, Heiligman,
Hgyer, and Mhalla [11] show that even deciding if a graph is connected or not requires
Q(n3/?) quantum queries in the adjacency matrix model. We extend this bound by showing
that for any 1 < 7 < n there is a graph family with edge-weight ratio 7 for which solving
the minimum cut problem requires Q(nS/ 2/7) quantum queries to the adjacency matrix
(Theorem 35). For 7 > n one can always use the trivial O(n?) algorithm, thus our results
characterize the quantum query complexity of the minimum cut problem in the adjacency
matrix model for any value of 7.

For the adjacency array model, we give a bounded-error quantum algorithm that solves the
minimum cut problem in an n vertex, m edge graph with edge-weight ratio 7 using O(y/mn7)
quantum queries (Theorem 21). The quantum algorithm runs in time O(y/mn7 + n®/?)
(Theorem 5). In this case we do not know whether the bound is tight in all regimes. For
unweighted graphs (7 = 1) the best lower bound we know of is Q(n), which again follows
from a lower bound for connectivity [11]. For any 7 > 1 we show that the minimum cut

b The O() notation hides polylogarithmic factors in its argument.

S. Apers and T. Lee

problem requires Q(n3/ 2) quantum queries to the adjacency array (Theorem 37). Finally, for
any 1 <7 < 5n/8 we show a lower bound of ©(7n) on the number of quantum adjacency
array queries for solving the minimum cut problem (Theorem 40).

In addition to computing the weight A(G) of a minimum cut, all of our upper and lower
bounds also apply to outputting the edges or shores of a cut realizing A\(G).

1.1 Previous work

We are not aware of any previous work on the quantum complexity of ezact global minimum
cut. The closest work to ours in topic is the recent paper of Apers and de Wolf [2], which in
particular shows that in a weighted graph a (1+¢)-approximation to the weight of a minimum
cut can be found in time O(n?/?/e) in the adjacency matrix model and time O(y/mn/¢) in
the adjacency array model. The sparsifier construction of Apers and de Wolf that yields this
approximation also plays a key role in our algorithm.

Another key work for us is the seminal paper of Diurr, Heiligman, Hgyer and Mhalla [11]
which gives tight bounds for the quantum complexity of many graph problems in both the
adjacency matrix and adjacency array models. In particular, they show that determining if
a graph is connected or not, i.e. determining if the minimum cut value is zero or positive,
requires Q(n3/ 2) queries in the adjacency matrix model and §2(n) queries in the adjacency
array model. These are still the best lower bounds we know of for simple graphs? even for
the more general problem of computing the edge connectivity. Indeed, we show the Q(n3/ 2)
connectivity lower bound in the adjacency matrix model is a tight lower bound even on the
quantum complexity of edge connectivity. In [11] it is also shown that finding a spanning
forest in the adjacency matrix model can be done with a quantum algorithm in queries and
time O(n%/2), which is a result we will make use of in our time efficient algorithm.

Two classical papers which inspired our algorithm are the works of Kawarabayashi and
Thorup (KT) [26] and Rubinstein, Schramm, and Weinberg (RSW) [35]. KT give the first
near-linear time deterministic algorithm to compute the edge connectivity of a simple graph
G = (V,E). A key idea of KT is to look at a contraction of the original graph G. Let
P ={Py,..., P} be a partition of V. The contraction G’ = Contract(G, P) is a multi-graph
whose vertices are labeled by the sets in P and which has all the edges of G whose endpoints
lie in different sets of P. KT first check the cardinality of all star cuts of the form Ag({v}),
which can be done deterministically in linear time. To find the minimum non-star cut, KT
show that any simple graph G with minimum degree d has a contraction G’ = Contract(G, P)
that preserves all of the near-minimum non-star cuts of G, but which has only O(n/d) vertices
and O(n) edges. Moreover, they show how to find such a contraction deterministically in
near-linear time. They then use Gabow’s O(A(G)|E(G)|) mincut algorithm [15] to find a
minimum cut in G'. If G has m edges then \(G') = A\(G) < m/n, and as |E(G")| € O(n),
this gives a time bound that is nearly linear in m.

RSW follow a similar high-level approach to give a classical randomized algorithm that
computes the edge connectivity of a simple graph with cut queries. In the cut query model,
when the input is a graph G, an algorithm can query any nontrivial set X and receive the
answer |Ag(X)|. RSW show that the edge connectivity of a simple graph can be computed
with high probability by a randomized algorithm after O(nlog(n)?) cut queries. In fact, this
algorithm finds a!l minimum cuts of the graph. The RSW algorithm again first evaluates all

2 We use the term simple graph to mean an undirected, unweighted graph with no self-loops and no
multiple edges.

28:3

CCC 2021

28:4

Quantum Complexity of Minimum Cut

star cuts. They then remove the log factors from the KT result to show there is a partition
P of V such that G’ = Contract(G,P) preserves all near-minimum cuts of G and has only
O(n) edges.> Moreover, they show how to efficiently learn this contraction with cut queries.
The log factors of the original KT proof were also removed via another algorithmic proof by
Lo, Schmidt, and Thorup [28].

Our quantum algorithm will follow the approach taken by RSW to learn such a contraction
of GG, as is detailed in the next section.

1.2 Technical overview

In this overview we focus on the adjacency matrix model. Apart from the lower bound, most
ideas carry over in a straightforward way to the adjacency array model. We start off by
explaining the lower bound, as this clearly shows the origin of the n?/ 2/7 complexity.

Lower bound on the quantum query complexity

For the lower bound we construct a family of graphs on 2n vertices with edge weights in
{1,7}. Partition the 2n vertices into two sets A and B each of size n. Make a complete
graph among the vertices in A where every edge has weight 7 and do the same to B. This
ensures that w(Ag(X)) > 7(n—1) for any) # X C A, and the same for B. This large value
gives us “cover” to hide either k — 1 or k edges of weight 1 between A and B. If k < 7(n — 1)
these edges will constitute the unique minimum cut, and thus an algorithm that outputs the
weight of the minimum cut must determine if we hid £ — 1 or k edges. This is equivalent to
determining if there are k — 1 or k marked items in a search space of size n?, for which a
quantum query lower bound of Q(vAn2) is known [32]. In our case, with k = 7(n — 1) — 1
this gives a bound of Q(n3/2,/7). Thus we see that ultimately the lower bound for minimum
cut boils down to the difficulty of counting for quantum algorithms. We will see how a similar
task arises in the upper bound as well.

Upper bound on the quantum query complexity

We first describe a quantum algorithm for computing the edge connectivity of an unweighted
graph. We will follow the outline of the RSW cut query algorithm, which proceeds in
the following way. The algorithm first computes the degree of every vertex of G, thereby
determining the minimum cardinality of a star cut. The task is then reduced to finding the
minimum cardinality of a non-star cut. To do this, the RSW algorithm first produces an
e-cut sparsifier of the graph, following an algorithm due to Benczir and Karger [5]. An e-cut
sparsifier of G = (V| E) is a sparse weighted graph H whose edge set is a subset of F, but
where edges are allowed to be weighted. For every nontrivial X the weight of the cut Ay (X)
in H is within a factor of 1 + ¢ of |Ag(X)].

For e = 1/100, the algorithm finds an e-cut sparsifier H of G. The algorithm is able to
write H down in memory and then, without further queries, it can compute the weight of a
minimum cut in H, say it is A(H), and enumerate all non-star cuts of H whose weight is at
most (1 + 3e)A\(H). With high probability this includes the shores of all non-star minimum
cuts of G. Let T be the set of all shores of these cuts. The algorithm then computes the
coarsest partition P = {Py,..., Py} of the vertex set with the property that for all P; € P

3 An O(n) bound on the number of edges implies an O(n/d) bound on the number of vertices in a
black-box way.

S. Apers and T. Lee

and u,v € P; it holds that u,v € X or u,v € X for all X € T. We call P the set of atoms of
T, denoted atoms(7). As T is the set of shores of all non-star near-minimum cuts, this means
that, for every P; € P, no non-star near-minimum cut has an edge with both endpoints in
Pj; as P is the coarsest partition with this property, among such partitions it minimizes the
number of edges between components of the partition. A key fact is that Contract(G,P) is a
sparse graph.

» Lemma 1 ([26, 35, 28]). Let G = (V,E) be a simple n-vertex graph with minimum
degree d. For a nonnegative ¢ < 1, let T = {X : |X|,|X| > 2 and |Ac(X)| < MNG) + &d},
that is the set of shores of all non-star cuts whose weight is at most A(G) + ed, and let
G’ = Contract(G, atoms(T)). Then |E(G")| = O(n).

By the definition of P in this lemma, one can also see that G’ preserves all of the non-star

near-minimum cuts of G. As we already know the minimum degree of G, to determine A(G)

it suffices to compute the edge connectivity of G’. For a query algorithm, to do this it suffices

to learn the O(n) edges of the graph G’; then one can compute the edge connectivity of G’

without further queries. The edge connectivity of G is then the minimum of the minimum

degree of G and the edge connectivity of G'.

We phrase the RSW algorithm in an abstract way in terms of four computational
primitives. We indicate oracle access to G by square brackets and put the parameters
explicitly given to the routines in parentheses.

1. FindMinStar[G](d) — a routine that given oracle access to G finds the minimum weight of
a star cut of G with error probability at most ¢.

2. Cut-Sparsifier[G](e, d) — a routine that given oracle access to G outputs an e-cut sparsifer
of G with error probability at most J.

3. LearnCutAtoms(H,)\, d) — a routine that given an explicit description of a graph H, a
cut threshold A, and an error probability d, outputs P, the atoms of the shores of all cuts
of weight at most A, with error probability at most d.

4. LearnContraction[G](P, M, §) — a routine that given oracle access to G and a partition P
of the vertex set, learns Contract(G, P) if it has at most M edges and otherwise outputs
NULL, again with error probability at most ¢.

In Theorem 19, we show a general upper bound on the query complexity of edge connectivity

in terms of the sum of the query complexity of the routines in steps (1), (2), and (4). Step (3)

requires no queries. It is somewhat surprising that a randomized algorithm designed for cut

queries leads to an optimal quantum query algorithm in the adjacency matrix model. We
hope that phrasing the algorithm in this abstract way will make it easy to further apply it
to other computational models.

In terms of quantum query complexity in the adjacency matrix model, the cost of the 4
steps are as follows. Item (1) can be done with O(n®/?) queries by composing the O(y/n)
query quantum minimum finding algorithm over the n vertices with the n query classical
algorithm to evaluate the degree of a vertex. The quantum complexity of (2) was recently
studied by Apers and de Wolf [2]. They show that even an e-spectral sparsifier can be found
in time O(n3/2 /) in the adjacency matrix model. For our purposes, we take ¢ = 1/100
giving an O(n%/2) bound here. Ttem (3) costs no queries as the routine is given an explicit
description of H. Ttem (4) is very similar to the problem that we saw in the lower bound:
we have to learn up to M edges in a search space of size O(n?) which can be done with
O(nv/M) queries. By Lemma 1 we can take M = O(n) resulting in an O(n?/?) quantum
query bound for this step.

These bounds when taken together imply a quantum algorithm for edge connectivity
making O(n%/?) queries in the adjacency matrix model.

28:5

CCC 2021

28:6

Quantum Complexity of Minimum Cut

Extension to weighted graphs

The query complexity of steps 1-3 does not change for weighted graphs. The complexity
of step 4, however, depends on the upper bound M on the number of edges in the graph
Contract(G, P), which does depend on the edge weights. To extend the above algorithm to
weighted graphs, we prove the following generalization of Lemma 1.

» Lemma 2. Let G = (V,w) be a weighted graph with |V| = n and where every edge has
weight at most 7. Let d = miny,ey w(Ag({u})). For a nonnegative ¢ < 1, let T = {X :
|X|,|X] > 2 and w(Ag(X)) < AMG) +¢ed} and let G’ = Contract(G,atoms(T)). Then

, 68™n
w(E(G") < a—ae

This lemma is tight as can be seen from the cycle graph with all edge weights 7. Because
the bound necessarily depends on 7, applying this lemma back to the cut query or sequential
models does not seem to lead to good algorithms.* For quantum algorithms, however, it is
exactly what is needed.

If the edge-weight ratio is 7, for constant ¢ Lemma 2 implies an O(7n) upper bound on
the number of edges in the contracted graph Contract(G, P). This means that the LearnCon-
traction step can be performed with O(n3/2,/7) queries. Together with the Q(n®/2,/7) query
lower bound mentioned above we obtain the following tight characterization of the query
complexity of minimum cut in the adjacency matrix model in terms of the edge-weight ratio.

» Theorem 3. Let G = (V,w) be an n-vertex weighted graph with edge-weight ratio T.
There is a quantum algorithm that finds the weight and shores of a minimum cut of G with
probability at least 3/4 after O(n?’/Qﬁ) queries to the adjacency matriz of G. Moreover, there
is a family of graphs with edge-weight ratio T for which computing the weight of a minimum
cut with bounded-error requires Q(n3/ 2/T) quantum queries to the adjacency matriz.

The upper bound for this theorem is given in Theorem 21, and the lower bound in
Theorem 35.

Upper bound on the quantum time complexity

Let us now consider the time complexity of the above algorithm, corresponding to the total
number of queries and elementary gates in the quantum circuit model that the algorithm uses.
Steps (1) and (4) are ultimately applications of Grover’s algorithm and can be implemented
in time which is just a O(log(n)) factor more than their query complexity. For step (2), Apers
and de Wolf already give a time complexity upper bound of O(ng/ 2/¢). Thus to get an upper
bound on the time complexity it suffices to analyze the routine LearnCutAtoms(H, A, d) from
step (3). Given a graph H, this subroutine requires us to output the atoms of 7, where
T is the set of shores of all near-minimum cuts of H. For this discussion, one should take
near-minimum cuts to mean cuts of weight at most (1 + 1/100)A(H). It is known that an
n-vertex graph H has at most O(n?) cuts of weight < 3A(H)/2 [22]. Thus we know that |T|
is not too large. However, we still need to efficiently find these near-minimum cuts.

To do this we build on Karger’s seminal work [25] that connects near-minimum cuts with
tree packings. Consider a spanning tree T of H, as in Figure 1. A cut in H with shore X is
said to 2-respect T if it cuts at most 2 edges of T, that is |Ar(X)| < 2. Karger showed how

4 The randomized cut query complexity of minimum cut for weighted graphs was recently resolved using
different techniques by Mukhopadhyay and Nanongkai [30].

S. Apers and T. Lee

to efficiently construct a set of O(logn) spanning trees in H so that every near-minimum cut
2-respects at least one of them. As each tree has at most n — 1 + (”;1) = (Z) 2-respecting
cuts, this family of trees defines a set of shores 7' of cardinality O(n?logn) which necessarily
contains 7. A graph can potentially contain (g) minimum cuts, as witnessed by the cycle
graph, thus this bound is nearly tight. Unfortunately, iterating over 7" is still too costly
for us.

Figure 1 Graph H (thin grey edges) with spanning tree T' (thick black edges). The cut with
shore X 2-respects T since |Ar(X)| = |[{e,€'}| < 2. There are at most (Z) such cuts.

As we are only interested in atoms(7), and not T itself, it suffices for us to find a set
S such that atoms(S) = atoms(7). We call such an § a generating set for atoms(7). Our

next observation is that there necessarily exists a generating set for atoms(7") of size O(n).

This follows by a greedy argument: set S = () and iterate over all cut shores X € T, adding
X to S iff atoms(S U X)) # atoms(S). The resulting S has the same atoms as 7. Moreover,
|S| < n —1 since every element added to S creates at least one new atom, there are at most
n atoms in total, and S = () has 1 atom. While a good start, this still leaves the problem of
efficiently finding a small generating set.

We are able to give an explicit description of an O(nlog(n)) size generating set. First
consider a single spanning tree T of H. For any f € E(T) U E(T)® we let shore(f)
denote the cut shore such that Ar(shore(f)) = f. 5 Now define an unweighted graph
L(T) whose vertex set is E(T) and where f € E(T)® is an edge of L(T) iff shore(f) is a
near-minimum cut of H (i.e., shore(f) € 7). We show an example in Figure 2. Further,
let O(T)={ec E(T):3X € T : Ap(X) = {e}} index the set of near-minimum cuts that
1-respect T. We prove the following lemma.

> Lemma 4. Let T' ={X € T : |Ap(X)| < 2} be the shores in T whose corresponding cuts
2-respect T. If F is a spanning forest of L(T) then S(T) = {shore(f) | f € E(F)UO(T)} is
a generating set for atoms(T").

Moreover, since |E(F)| < n —2 and |O(T)| < n — 1 we have |[S(T)| < 2n — 3. Taking
the union of S(T) over all of the log(n) spanning trees T of Karger’s tree packing gives a
generating set S for T of size O(nlog(n)).

We cannot explicitly write down the graph L(T), but using an efficient data structure
for evaluating 2-respecting cuts [30, 17] we can in O(log(n)) time determine whether or not
{e,e'} is an edge of L(T). This essentially gives us adjacency matrix access to L(T'), and

5 As Ar(X) = Ap(X), for uniqueness we define a root r in T and choose shore(f) so that it does not
contain 7.

28:7

CCC 2021

28:8

Quantum Complexity of Minimum Cut

Figure 2 Left: A spanning tree T (thick black edges) of the graph H (thin grey edges) with
minimum cut A(H) = 2. Right: The associated graph L(T') with vertex set E(T) and f € E(T)®
an edge of L(T) iff shore(f) is the shore of a near-minimum cut in H (in this case, a near-minimum
cut is a cut of weight < 2A(H)).

hence we can use the O(n3/2) time quantum algorithm from [11] to construct a spanning
forest F' of L(T). We note that it is conceivable that there exists an efficient classical
algorithm to do this. However this would require using further properties of L(T') since
classically computing a spanning forest in the adjacency matrix model requires Q(n?) queries.

Once we have the O(nlogn) size generating set S, we still cannot naively compute the
atoms of § because this would again be too costly. Rather, we find the atoms of S in
é(n) time by combining a random hashing scheme with an efficient data structure based
on Euler tour trees [20]. This shows that a quantum algorithm can implement step (3),
LearnCutAtoms, in time O(n®/?). Note that this running time is independent of the kind of
oracle access we have to GG. This gives the following theorem.

» Theorem 5. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight
ratio T. There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 2/3 in query and time complexity O(n3/2ﬁ) in the adjacency
matriz model and O(y/mnt 4+ n®/?) in the adjacency array model.

1.3 Open problems

A few open problems remain from this work.

1. In the adjacency array model there remains a significant gap between the upper and lower
bounds we are able to show. For dense graphs the upper bound is O(ng/ 2/7) and we
have the lower bounds Q(n3/2) for 7 > 1 and Q(7n) for 1 < 7 < n. We suspect that the
quantum query complexity of the minimum cut problem in the adjacency array model is
O(n) for simple graphs (7 = 1) and ©(,/mn7) for weighted graphs (1 < 7 < m/n), but
were unable to prove this.

2. We have given a quantum algorithm with running time O(m +n3/ 2) for the subroutine
LearnCutAtoms. By building on our insights we believe that this routine can even be
performed by a classical randomized algorithm in near-linear time O(m) This would
improve the running time of our quantum algorithm for the minimum cut problem in
the adjacency array model from O(y/mnt + n3/?) to O(y/mn7). It also seems of more
general interest, giving a weighted (but potentially randomized) generalization of the
algorithm by Kawarabayashi and Thorup [26] for finding a contraction of G that preserves
all near-minimum cuts and only has O(rn) total weight of edges.

3. What is the quantum complexity of determining a (1 + €)-approximation of the minimum
cut weight? Apers and de Wolf [2] gave a (1 + £)-approximation algorithm with time and
query complexity O(y/mn/e) in the adjacency array model. For the unweighted case, our
algorithm improves this in terms of query complexity by exactly computing the minimum
cut with O(y/mn) queries. Can one approximate the weight of a minimum cut in an
unweighted graph with even fewer queries?

S. Apers and T. Lee

2 Preliminaries

For a natural number n > 1 we let [n] = {1,...,n}. For a real number = we let |z] denote
the closest integer to x.

2.1 Graph basics and notation

Let V be a finite set and V() the set of all subsets of V of cardinality 2. We represent
a weighted undirected graph as a pair G = (V,w) where w : V() — R is a non-negative
function. We let V(G) be the vertex set of a graph G and E(G) = {e € V(?) : w(e) > 0} be
the set of edges of G. We extend the weight function to sets S C V® by w(S) = 3" cgwl(e).
We say that G is simple if w : V(2 — {0,1} and in this case also denote G as G = (V, E),
where F is the set of edges. We call the ratio of the largest edge weight of G to the smallest
the edge-weight ratio of G.

For a subset X C V we use the shorthand X = V \ X, and we say X is non-trivial
if) #X C V. For disjoint sets X, Y C V we use F(X,Y) for the set of edges with one
endpoint in X and one endpoint in Y. For a non-trivial set X, let Ag(X) = {{4,j} € E(G) :
i € X,j € X} be the set of edges of G with one endpoint in X and one endpoint in X. A cut
of G is a set of the form Ag(X) for some non-trivial set X. We call X and X the shores of
the cut Ag(X). We call a cut of the form Ag({u}) a star cut, and refer to all other cuts as
non-star cuts. The weight of a cut S is w(.S), which in the case of a simple graph equals |S].
We let A(G) = mingxcy w(Ag(X)) be the minimum weight of a cut in G. We call a cut
realizing this bound a minimum cut. We call a cut Ag(X) satisfying w(Ag(X)) < aA(G)
an a-near minimum cut. In the case where G is simple we call A(G) the edge connectivity of
G. We will only use the term edge connectivity in the context of unweighted graphs.

» Definition 6 (Vertex Contraction). Let G = (V,w) be a weighted graph and P = {S1,..., Sk}
be a partition of V.. Define Contract(G,P) to be the k-vertex weighted graph G' = (P,w’)
where w'({S;,S;}) = w(E(S;,S;)) for each {S;,S;} € PP.

Note that as long as |P| > 2 it will hold that A(Contract(G,P)) > A(G).
We will also need to make use of graph sparsifiers.

» Definition 7 (Cut sparsifier). For a weighted graph G = (V,w) and € > 0 an e-cut sparsifier
H = (V,w') of G satisfies

1. H is a reweighted subgraph of G, that is w'(e) > 0 only if w(e) > 0.

2. It holds that (1 — e)w(Ag(X)) < w'(Ax (X)) < (1+¢e)w(Ag(X)) forallD #X C V.

Cut sparsifiers were first defined by Benczir and Karger [5] who showed that a weighted
graph G has an e-cut sparsifier H with O(nlog(n)/e®) edges, and H can be constructed by
a randomized algorithm in time O(mlog®(n)). Fung, Hariharan, Harvey and Panigrahi [14]
have since shown that a cut sparsifier with the same bound on the number of edges can be
constructed by a randomized algorithm in time O(m) 4+ O(n/e?), and Batson, Spielman and
Srivastava [3] have given a deterministic polynomial time construction of sparsifiers with
only O(n/e?) edges.

2.2 Atoms

A family of subsets T = {X1,..., X} of V induces a partition of V' given by the regions in
the Venn diagram of 7. We call the resulting sets of this partition the atoms of T:

28:9

CCC 2021

28:10

Quantum Complexity of Minimum Cut

» Definition 8 (Atoms). Let V be a finite set and let T = {X1,...,Xx} where each X; C V.

Define atoms(T) = {Az1, ..., A} to be a partition of V' such that

1. For any A; € atoms(T) and u,v € A; it holds that for all X; € T either u,v € X; or
u,v € X;.

2. atoms(T) is the coarsest partition with property (1).

» Definition 9 (Generating set). Let V be a finite set and T a set of subsets of V. We say
that S C T is a generating set for atoms(7T) if atoms(S) = atoms(7).

» Proposition 10. Let V' be a finite set and T1, T two sets whose elements are subsets of
V. Let 81,82 be generating sets for atoms(71),atoms(7z2) respectively. Then S U Ss is a
generating set for atoms(71 U Tz).

Proof. As §; C 71,82 C 75 by the definition of a generating set, S; US; C 771 U T3 and
atoms(71 U 73) is a refinement of atoms(S; U Sz). Now we show that for any u,v that are in
different sets of atoms(77 U 7T2) there is a set S € §; U Sy which separates them. This will
imply that in fact atoms(7; U 73) = atoms(S; U Ss).

If u, v are in different sets of atoms(77U73) then there must be a T' € T;U7Ts which separates
them. Suppose without loss of generality that 7' € 77. Then since atoms(S;) = atoms(77)
and u, v are in different sets of atoms(77), there must be an S € S; which separates v and v.
This completes the proof. |

2.3 Quantum query and computational models

For general background on the quantum query model we refer the reader to [23]. Here
we restrict ourselves to describing the quantum implementation of the input oracles in the
adjacency matrix and adjacency array models.

In the adjacency matrix model, on input a weighted graph G = (V,w), classically one
can query any {u,v} € V) and receive the answer w({u,v}). We now describe how to
model this by a quantum query. We will assume that the edge weights are given as binary
decimal numbers with M, bits before the decimal and My bits after the decimal for a total
of M = Mi + M> bits. The state of the quantum query algorithm will have three registers, a
query register, an answer register, and a workspace register. The state of the algorithm will in
general be in a superposition of the basis states |{u, v})|b)|a) where {u,v} € V) b e {0,1}M
and a € A for an arbitrary finite set 4. On input graph G = (V,w), the input oracle O¢
acts on a basis state |[{u,v})|b)|a) as

Ocl{u, v})[b)|a) = {u, v})[b ® w({u, v}))|a) .

In the adjacency array model, on input a weighted n-vertex graph G = (V,w) one can
make two types of queries. In the first type, one can query a vertex v € V' and receive its
degree deg(v). The second type is specified by a family of functions {f, : [deg(v)] = V}yev
such that f,(7) corresponds to the i*® neighbor of vertex v (according to some arbitrary but
fixed ordering). A query consists of a pair (v,%) for ¢ € [deg(v)] and the returned answer
is the pair (f,(7), w({v, f,()})). In this paper we will only need to model the second type
of query quantumly. This is because our upper bounds are larger than n so we can let the
algorithm classically query all degrees at the start of the algorithm, and in our lower bound
on the query complexity of edge connectivity for weighted graphs we assume the algorithm
already knows the degree of every vertex. The state of the quantum query algorithm will
again have a query register, an answer register, and a workspace register, with the state of
the algorithm in general being in a superposition of the basis states |(v,))|x)|b)|a) where

S. Apers and T. Lee

v e Vi [deg(v)],z €{0,...,n—1},b€ {0,1}™ and a € A for an arbitrary finite set A.

We further let 7: V' — {0,1,...,n — 1} be a bijection where |[V| = n. Then the input oracle
O¢ acts on a basis state in the following way:

Oc|(v, 1))|z}|b}|a) = |(v,9))|x + 7(fu(2)) mod n)|b & w({v, fu(i)}))|a) -

In Section 5 we will further show that our query algorithms can be implemented in a
time efficient manner. We analyze the time complexity in terms of the standard quantum
circuit model augmented with two types of oracles. One is the oracle for the input, either
in the adjacency matrix or array model, and the second is an oracle to a classical memory
of O(n) bits. The latter corresponds to a quantum random-access-memory or QRAM. We
further assume that we can classically update a value in this O(n) bit classical memory in
time 0(1) The assumption of QRAM access is also required for the time efficiency of the
sparsifier construction in [2] which our algorithms build on, and in fact is a necessary (but
sometimes inexplicit) assumption in the time analysis of many quantum algorithms for graph

problems, e.g. [11, 1, 4].

2.4 Quantum algorithmic primitives

We now go over the quantum subroutines we will need. We need several variants of quantum
search.

» Theorem 11 (Quantum search [19]). Given oracle access to a string x € {0, 1} such that
|x| > 0, there is a quantum algorithm that with probability at least 9/10 returns an ¢ such that
x; = 1. The algorithm makes O(v/N) queries to = and has time complexity O(v/N log(N)).

» Theorem 12 (Exact quantum search, [9, Theorem 4]). Given a positive integer k and oracle
access to a string x € {0, 1} with |z| = k, there is a quantum algorithm that returns an i
such that x; = 1 with certainty. The algorithm makes O(\/N/k) queries to x and has time

complezity O(y/N/klog(N)).

» Theorem 13 (Based on [10, Theorem 3]). Given t, N € N with 1 <t < N and oracle access
to x € {0,1}, there is a quantum algorithm such that

if |x| <t then the algorithm outputs x with certainty, and

if |x| > t then the algorithm reports so with probability at least 9/10.
The algorithm makes O(VtN) queries to x and has time complexity O(vtN log(N)).

Proof. Initialize S = @. For k& = ¢ down to 1, do: (i) run exact quantum search (from
Theorem 12) on x with parameter k, returning an index i, (ii) query z; and if z; = 1 then
add i to S and “unmark” x; for all future iterations, i.e. implicitly return x; = 0 to future
queries of the algorithm.

Finally, run normal quantum search (from Theorem 11) on the indices of = outside of S
to check that there are no more solutions. If this returns an ¢ ¢ S such that x; = 1, then
report |x| > ¢, otherwise return the string y where y; = 1 if i € S and y; = 0 otherwise.

The query complexity of the algorithm is

0] <kzl ﬁ) +O(N)=0(tN) ,

and its time complexity is similarly O(vtN log(N)), as claimed. For correctness, first note

that if |z| > ¢ then necessarily an index 4 such that z; = 1 is remaining in the final step.

Quantum search Theorem 11 will find such an index with probability at least 9/10. It remains
to prove that x is learned with certainty if |z| < ¢. To this end, assume for contradiction that

28:11

CCC 2021

28:12

Quantum Complexity of Minimum Cut

|S| < |z|. Then necessarily there was an iteration &’ between ¢ and 1 such that ¥’ = |z|. In
such case, however, the remaining &k’ runs of exact quantum search will each return a nonzero
index, and so all nonzero indices will be found. This proves that necessarily all indices are
found in the first ¢ iterations of exact quantum search, and hence the final quantum search
step cannot find an additional nonzero index. >

» Theorem 14 (Quantum minimum finding [12]). Let N,M € N be positive integer and
f :[N] = R. There is a quantum algorithm that with probability at least 2/3 outputs an
element of argmin, ey f(é). The algorithm makes O(V'N) oracle calls to f and has time

complexity O(V'N).

» Theorem 15 ([2, Theorem 1]). Let G be a weighted n-vertex graph with m edges. There
is a quantum algorithm that with high probability outputs an explicit description of an e-
cut sparsifier H of G with O(n/e?) edges in query and time complexity O(y/mn/) in the
adjacency array model or O(n/?/€) in the adjacency matriz model.

Apers and de Wolf actually show a stronger theorem than this in that their algorithm can
output a spectral sparsifier instead of just a cut sparsifier. We will not need this additional
property, however.

2.5 Problems related to minimum cuts

Let G = (V,w) be a weighted graph. There are three outputs related to a minimum cut of
G that one could want from an algorithm: the weight of a minimum cut, the shores of a
minimum cut, or the edges in a minimum cut. The relationship between the complexity of
these problems is not always obvious, and can depend on the computational model one is
studying. All the upper and lower bounds we prove in this paper apply to all three problems.

Say the edge-weight ratio of G is 7. As an example of how we can apply the quantum
search algorithm Theorem 13, we show that, given the shores of a minimum cut in G, a
quantum algorithm can also find the edges of the cut with O(n?/2\/7) and O(y/mn7) queries
in the adjacency matrix and array models respectively. As this matches the complexity of our
upper bounds, we will only explicitly mention finding the weight and shores of a minimum
cut in Theorem 21.

» Proposition 16. Let G = (V,w) be an n-vertex weighted graph with edge-weight ratio 7. Let
Ag(X) be a minimum cut of G. Given X, a quantum algorithm can with probability at least
3/4 output Ag(X) with O(n®/%\/T) queries and time complexity O(n/?\/7) in the adjacency
matriz model, and O(/mnT) queries and time complexity O(/mnT) in the adjacency array
model.

Proof. Consider the adjacency matrix model first. With O(n) queries and time O(nlog(n))
we can identify the smallest and largest edge weights of G except error probability at most
1/8. Thus by rescaling we will henceforth assume that the smallest edge weight is 1 and
largest edge weight is at most 7.

Let x € {0, 1}(2) denote a bit string labeled by elements of V() and set z({u,v}) = 1
iff {u,v} € E(GQ) and u and v are not both in X or both in X. Given X, a query to x can
be answered by a single query to the adjacency matrix of G. As the largest weight of an
edge of G is at most 7 and Ag(X) is a minimum cut, w(Ag(X)) < 7(n —1). As every edge
of G has weight at least 1 we also have |z| < 7(n — 1). Thus by Theorem 13, except with
error probability 1/8, we can learn x, and therefore also Ag(X), with O(n3/2,/7) queries
and time O(n3/2,/7).

The statement for the adjacency array model follows from Theorem 13 by a similar
argument. <

S. Apers and T. Lee

3 Number of edges in near-minimum cuts

In this section, we generalize Lemma 1 to weighted graphs. Our proof follows that of
Rubinstein, Schramm, and Weinberg [35].

» Lemma 2. Let G = (V,w) be a weighted graph with |V| = n and where every edge has
weight at most 7. Let d = minyey w(Ag({u})). For a nonnegative ¢ < 1, let T = {X :
|X|,|X]| > 2 and w(Ag(X)) < A(G) +¢ed} and let G’ = Contract(G,atoms(T)). Then

68Tn

w(B(G) < 7255

Before proving this lemma we first state and prove a claim.

> Claim 17. Let V be a finite set of cardinality n and r < n be a positive integer. Let

T={X1,...,Xi} whereeach X; CV. Let To =V andfori=1,...,klet T, = {X1,..., X;}.

Suppose that 7 has the property that for all i = 0,...,k — 1 there is a set A; € atoms(7;)
that is refined into two sets each of cardinality > 7 in atoms(7;;1). Then |T] < % — 1.

Proof. To each 7; for i = 1,...,k we associate a binary tree B;. Each vertex of B; has a
label, which will be an element of U;zoatoms(’ﬁ). The tree B; has root v, labeled by V', and
two children vg, vy labeled by the two elements X1, X; € atoms(7;). Note that by definition
X, [Xa] > 7.

In general, the tree B;y; is formed from B; as follows. Initially, set B;1; = B;. Then for
every leaf u of B; which is labeled by a set Y € atoms(7;) of size > 2r, if YV is refined into
sets Y7,Y5 in atoms(7;41), then in B;;1 the node u is given two children labeled by Y7 and
Y5, respectively. Note that this construction has the property that only internal vertices of
B; that are labeled by sets of size > 2r have children. Call a vertex big if it is labeled by a
set of size > r and small otherwise. By construction, every internal vertex of B; has at least
one big child.

Let b; be the number of big leaves in B;. We now show by induction that ¢ < b; — 1. This
will prove the claim as the leaves of B; partition V and therefore b; < n/r.

For i = 1 we have that b; = 2 since | X;|, |X 1| > 7, thus the base case holds. Now suppose
that ¢ < b; — 1, we will show that i +1 < b;4; — 1. By definition of T, there must be
some set Y € atoms(7;) which is refined into two sets Y7, Y5 both of cardinality at least r in
atoms(7;+1). Further, Y will label some leaf of u of B; and u will have two children which
are big in B;y1. Any other big leaf of B; which becomes an internal vertex of B;y; must
have at least one child which is big. This shows that b; 11 > b; + 1 and gives the inductive
step. <

Now we are ready for the proof of Lemma 2.

Proof of Lemma 2. Let o = 8= 1(1 —¢) so that « + 8 < (1 —¢). Let K C T be formed
as follows. Initialize K to be empty. Then do the following: while there is an X € T
such that there is an A € atoms(K), A1, A2 € atoms(K U X) such that A = A; U Ay and
|A1], |As| > @, add X to K. By Claim 17, at the end of this process |[K| < 75. Let
K =UxerxAg(X) be the set of edges of cuts with shores in K. Throughout this proof, cuts
will always be with respect to G and we will henceforth drop the subscript to simply write
A(X).

Let S C V be the set of vertices v such that w(E(v,V \ {v}) NK) > a - w(v). We say
that v € V is small if for the A € atoms(K) with v € A there is an X € T such that
atoms(K U X) refines A into Ay, As with v € Ay and |A1] < @.

28:13

CCC 2021

28:14

Quantum Complexity of Minimum Cut

> Claim 18. If v is small then v € S.

Proof. Let X € T be the shore of a cut which witnesses that v is small. Let us assume
without loss of generality that v € X. Suppose for contradiction that v ¢ S. There are three
possibilities for an edge {u,v}: either {u,v} € K, or u € Ay, or u € Ay. Let the total weight
of these kind of edges be wi, w1, wa, respectively. Thus w(v) = wx + wy + we. We further
know that wx < aw(v) by the assumption that v ¢ S and that w; < fd since 41| < @ and
the maximum edge weight is 7. This means wy > w(v) — aw(v) — fd. Further note that v
contributes weight at least ws to the weight of A(X).

As A(X) is not a star cut, we can consider the cut A(X’) where X’ = X \ {v}. We
claim that w(A(X’)) < A, which is a contradiction. The only difference between w(A(X))
and w(A(X")) is the contribution of v. The weight of edges involving v in A(X') is at most
wi + w1 < aw(v) + Bd. Thus

w(A(X)) = w(AX")) = wy — (w +w1)
> w(v) — 20w(v) — 28d
> d(1 - 2a — 28)
>ed

implying that w(A(X’)) < A <

Let G' = Contract(G, atoms(7T)). We now bound w(E(G")). We claim that every edge in G’
is either in /I or is incident to a vertex in S. For if {u,v} € E(G’) but {u,v} € K, then for a
cut A(Y) for Y € T with {u,v} € A(Y) it must be the case that there is an A € atoms(K)
such that u,v € A and that for the Ay, Ay € atoms(K UY) with A = A; U Ay, one of Ay, A
has size < @. This means that either u or v is small and so by Claim 18, {u, v} is incident
to S.

The number of sets in K is at most 7 and for each X € K we have w(A(X)) < A+ed <
(14 ¢)d. Thus we have that w(K) < (1+¢)%".

Let us now bound the weight of edges incident to S. As each vertex v € S has weight at
least aw(v) amongst edges in K we have that § 5 _qw(v) < w(K). Thus overall we find

w(B@) <) (1+2)

<(1+e)(a+ 2)%
687N
< (1—¢)2 ° «

The bound in Lemma 2 is tight up to constant factors. To see this, consider a cycle
graph with uniform edge weight 7. Every edge participates in some minimum cut, and hence
G =G and w(E(G")) = mn.

4 Query-efficient quantum algorithm for minimum cut

We first describe a query-efficient quantum algorithm to find the weight and shores of
a minimum cut. In Section 5 we make this algorithm time-efficient. Our quantum query
algorithm for minimum cut mainly relies on Lemma 2, and is inspired by a classical randomized
algorithm for edge connectivity in the cut query model by Rubinstein, Schramm, and Weinberg
(RSW) [35]. The RSW cut query algorithm is based on 4 subroutines whose input/output

S. Apers and T. Lee

behavior we describe in Algorithms 1-4 below. For weighted graphs, we need an additional
subroutine to compute the maximum weight of an edge in the graph which is stated in
Algorithm 5. We describe all these subroutines in an abstract way to make it easy to (i)
describe the time-efficient algorithm in the next section, and (ii) to instantiate this algorithm
for other query models in the future. We indicate oracle access to G by square brackets and
put the parameters explicitly given to the routines in parentheses.

Algorithm 1 FindMinStar[G](9).
Input: Oracle access to a weighted graph G, error parameter §.
Output: With probability at least 1 — § output v € argmin,y w(Ag({u})) and
dmin = mingey w(Ag({u})).

Algorithm 2 Cut-Sparsifier[G](e, 9).
Input: Oracle access to a weighted graph G, sparsifier accuracy parameter €, error
parameter 0.

Output: With probability at least 1 — § output an integer-weighted e-cut sparsifier H
of G with O(n/€?) edges.

Algorithm 3 LearnCutAtoms(H, X, d).

Input: Adjacency array description of H, cut threshold A, and error parameter 6.

Output: Define the set T = {X : | X|,|X]| > 2,w(Ag (X)) < A}. With probability at
least 1 — § output atoms(7).

Algorithm 4 LearnContraction[G](P, M,).
Input: Oracle access to a weighted graph G, a partition P of V(G), a natural number

M, and error parameter 9.
Output: Let G’ = Contract(G,P). With probability at least 1 — ¢ return G’ if the
number of edges of G’ is at most M, and otherwise return NULL.

Algorithm 5 FindMaxWeight[G](9).

Input: Oracle access to a weighted graph G, error parameter 4.

Output: With probability at least 1 — § output 7, the maximum weight of an edge of G.

We combine these subroutines in Algorithm 6 to give a template for solving the minimum
cut problem in an abstract query model.

28:15

CCC 2021

28:16

Quantum Complexity of Minimum Cut

Algorithm 6 Query algorithm for minimum cut.

Input: Oracle access to a weighted graph G
Output: A(G) and the shores of a minimum cut of G.
¢ (v, dmin) FindMinStar[G](%).
: 7 < FindMaxWeight[G](55)-
H = (V,w') + Cut-Sparsifier[G] (155, 35)-
: Compute \(H).
P ={S1,..., S} + LearnCutAtoms(H, (1 + 155)AH), 55).
G’ + LearnContraction|G](P, 100rn, 55). If G’ = NULL then abort.
: Compute the weight A(G’) and shores (Y, V(G’) \ V) of a minimum cut in G'.
: If diin < A(G) output (dmin, ({v}, V\{v})). Otherwise, let Z = Ug,cyS; and output

(MG, (2,2)).

» Theorem 19. Let G be a weighted graph with n vertices, minimum edge weight at least 1,
and maximum edge weight 7. Algorithm 6 finds the weight and shores of a minimum cut
of G with probability at least 3/4. The number of queries of the algorithm is the sum
of the number of queries of the subroutines FindMinStar[G](55), FindMazWeight[G](35),
C’ut—Sparsiﬁer[G}(ﬁ, %), and LearnContraction|G](P, 1007n, 2—10)

Proof. Queries to the input graph G are only made in steps 1,2,3, and 6. This gives the
statement about the complexity of the algorithm.

Next let us deal with the error probability. With probability at least 16/20 steps 1-5
return correctly by the definition of these subroutines and the error parameter provided. Let
us now assume this is the case. Then H = (V,w’) is a valid e-sparsifier of G for £ = 1/100.
Let X € 7. Then we have

W(AG(X)) < (1 +)W (Ag(X)) < (1+€)(1+36)AH) < (1+)21+ 3)A(G) .

We have (14¢)2(1+3e) < 15 by the choice of £, and so w(Ag(X)) < HAG) < A(G) + 15dmin
since A(G) < dpin- Thus by Lemma 2, the total weight of edges in Contract(G,P) will be
at most 1007n. As we assume the minimum weight of an edge is at least 1, the number of
edges in Contract(G, P) will also be at most 1007n. Hence except with probability at most
1/20, LearnContraction will correctly return Contract(G,P) in step 5.

We have now argued that with probability at least 3/4 all subroutines will correctly
return. We now argue correctness assuming that this is the case. In this case, G’ will be
a valid contraction of G and so A(G') > A(G). Thus if A\(G) is achieved by a star cut the
algorithm will return correctly.

Let us now assume that dpyin > A(G) and let Ag(X) be a non-star cut with w(Ag(X)) =
A(G). We have

W (Bpr(X)) < (14 w(Ac(X)) = (1 +AG) < 1<

< T AH) < (L+32)N(H) |

where the last step holds as ¢ < %. This means X € 7 and therefore no edge of Ag(X)
will be contracted in G’ = Contract(G, P). Thus A(G') < A(G) and as the edge connectivity
cannot decrease in a contraction in fact A(G') = A(G). Hence the algorithm returns correctly
in step 8. <

S. Apers and T. Lee

» Lemma 20. Let G = (V,w) be a weighted graph with n vertices and m edges. Subroutines
FindMinStar|G)(55), FindMazWeight[G)(5), Cut-Sparsifier]G](1is. 55) can be implemented
by a quantum algorithm with query and time complexity O(n3/2) in the adjacency matrix and
O(y/mn) in the adjacency array model.

LearnContraction|G](P, 1007n, 2—10) can be implemented by a quantum algorithm with query
and time complexity O(n3/2\/T) in the adjacency matriz and O(\/mnt) in the adjacency

array model.

Proof. First note that in the adjacency array model we may assume that m > n. Otherwise,
vmn > m and we can perform each task classically in O(m) time and queries. We consider
each of the subroutines in turn:

FindMinStar[G](%): In the adjacency matrix model we can compute w(Ag({v}) with
n — 1 classical queries to the adjacency matrix. We can compose this with quantum minimum
finding to find the minimum weight of a star cut and a vertex realizing this in query and
time complexity O(n3/?) by Theorem 14.

In the adjacency array model we first classically query the degrees of all the vertices
with n queries. In a simple graph this suffices to determine the minimum weight of a star
cut. In a weighted graph we continue as follows. For 1 < ¢ < [logn|, define the bucket
By C V as the subset of nodes v that have degree in [2/71,2¢). As the sum of the degrees is
2m we have that |By| < 2m/2°~!. Finding the minimum min,ep, w(Ag({v})) over a single
bucket has quantum query and time complexity O(y/mn): we can compute w(Ag({v}))
for a single v € B, using at most 2¢ classical queries, and then do quantum minimum
finding over the |B,| < 2m/2°~! nodes in B,. This has total query and time complexity
0(2¢\/2m/20-1) € O(Vm2?) € O(\/mm). We do this for each of the [logn] buckets and we

output the minimum overall weight and a vertex realizing this. This yields a total time and

query complexity O(y/mn).

FindMaxWeight[G](%): This amounts to finding the maximum of a set of n? numbers in
the adjacency matrix model, or m numbers in the adjacency list model. By Theorem 14 this

has query and time complexity O(n) and O(y/m), respectively.

Cut—Sparsifier[G](ﬁ, %): A 1f5-cut sparsifier with O(n/€?) edges can be constructed
with high probability in query and time complexity O(n?/?) in the adjacency matrix model
or O(y/mn) in the adjacency array model by Theorem 15.

LearnContraction[G](P,1007Tn, %): First we handle a trivial case. If 7 > n then we can
classically learn the input in time n? = O(n3/2,/7) in the adjacency matrix model and time
m = O(y/mnT) in the adjacency array model. Thus we can assume 7 < n.

First we do the adjacency matrix case. Let x € R(2) be a vector whose entries are labeled
by elements of V(?) and where z(e) = w(e) if the endpoints of e are in distinct elements of P
and z(e) = 0 otherwise. A query to an entry of z can be answered with one query to the
adjacency matrix of G. Let & € {0, 1}@) be defined by Z(e) = 1 if w(e) > 0 and &(e) =0

otherwise. We can also answer a query to & with one query to the adjacency matrix of G.

By Theorem 13 in query and time complexity O(n?/2\/7) in the adjacency matrix model we
can with probability at least 9/10 output & if |#] < 1007n and otherwise output NULL. We
can then classically query z in the non-zero locations of & with 1007n = O(n®/2,/7) more
classical queries to output x. This fulfils the specification of LearnContraction.

28:17

CCC 2021

28:18

Quantum Complexity of Minimum Cut

Similarly, in the adjacency array model let € R be labeled by entries of the adjacency
array of G and define z(e) = w(e) if the endpoints of e are in distinct elements of P and
x(e) = 0 otherwise. Let Z(e) =1 if z(e) > 0 and Z(e) = 0 otherwise as before. A query to
an entry of z or & can be answered with one query to the adjacency array of G. Again by
Theorem 13, in query and time complexity O(/mn7) in the adjacency array model we can
with probability at least 9/10 output # if || < 1007n and otherwise output NULL. With

100Tn = O(y/mnT) more queries we can then output x. <

» Theorem 21. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight
ratio T. There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 3/4 after O(n3/?\/7) queries to the adjacency matriz of G or
O(y/mnT) queries to the adjacency array.

Proof. First we use the minimization analogue of FindMaxWeight to find the minimum edge
weight . Then by normalizing by 1/a we may assume that all edge weights are at least 1
and apply Theorem 19. The bound on the quantum query complexities then follows from
Lemma 20. <

5 Time-efficient quantum algorithm for minimum cut

In this section we describe a quantum algorithm for computing the weight of a minimum cut
of a weighted graph with time complexity O(\/W—f— n3/ %) in the adjacency array model and
é(n?’/ 2,/7) in the adjacency matrix model. In the adjacency matrix model this is optimal up
to polylogarithmic factors. Our algorithm is a time-efficient implementation of Algorithm 6.
The running time of this algorithm is the sum of the running time of its 4 subroutines, and
we have already analyzed the complexity of 3 of those subroutines in Lemma 20. Thus it
now suffices to give a time-efficient implementation of the subroutine LearnCutAtoms, as
formalized in the next lemma.

» Lemma 22. Let k(n) denote the maximum time complexity of a quantum algorithm for
the subroutine LearnCutAtoms(H, (1 + 155)A(H), 55) over weighted n-vertex graphs H with
O(n) edges. Let G be a weighted graph with n vertices, m edges, and edge-weight ratio 7.
There is a quantum algorithm to compute the weight and shores of a minimum cut of G with
probability at least 2/3 that runs in time k(n) + O(y/mnT) in the adjacency array model and
#(n) + O(n3/2\/T) in the adjacency matriz model.

Proof. First we use minimum finding Theorem 14 to determine the minimum a and maximum
B edge weights with error probability at most 1/12. This requires time O(y/m) in the
adjacency array model and O(n) in the adjacency matrix model and so will be low order to
the time bounds stated in the lemma. From «, 8 we compute the edge-weight ratio 7 = 8/«.
By multiplying all edge weights by 1/« we may assume that the minimum edge weight is 1
and the maximum edge weight is 7.

If 7 > m/n (in the adjacency array model) or 7 > n (in the adjacency matrix model),
then we simply run a randomized near-linear time algorithm (e.g., [25]) for calculating the
weight and shores of a minimum cut of G. This then takes time O(m) € O(y/mnt) in
the array model and O(n?) € O(n?/2\/7) in the matrix model. We can hence assume that
7 < m/n in the array model and 7 < n in the matrix model.

We use a quantum implementation of Algorithm 6. By Theorem 19 this algorithm has
error probability at most 1/4, thus our overall error probability will be at most 1/3 as
desired. For the running time it suffices to analyze the quantum time complexity of all 8

S. Apers and T. Lee

steps. In Lemma 20 we show that the time complexity of steps 1-3 and 6 is O(\/W) in the
adjacency array model and O~(n3/ 2,/7) in the adjacency matrix model. For step 4, we can use
a randomized near-linear time algorithm (e.g., [25]) for calculating the weight and shores of
a minimum cut of H. As H has O(n) edges this takes time O(n). In step 7, we compute the
weight and shores of a minimum cut in G’ which has at most 1007n edges by the definition
of LearnContraction. This takes time O(7n), which is O(y/mn7) in the array model (by

the assumption 7 < m/n) or O(n®/2\/7) in the matrix model (by the assumption 7 < n).

Finally, step 8 is trivial and the quantum time complexity of step 5 is exactly x(n). <

This section is hence devoted to proving the following theorem.

» Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum
algorithm that implements LearnCutAtoms(H, (1 + 155)A(H), 55) in time O(m +n?/?).

In particular, Theorem 23 implies that x(n) € O(n?/?), and hence we find a time-efficient
quantum algorithm.

» Theorem 5. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight
ratio T. There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 2/3 in query and time complexity ON(n3/2ﬁ) in the adjacency
matriz model and O(\/W + n3/2) in the adjacency array model.

Proof. Follows from Lemma 22 and Theorem 23. |

5.1 Tools

Our time efficient algorithm builds on a number of tools, which we first introduce here.

5.1.1 2-respecting cuts and Karger’s theorem

In his seminal work on a near-linear time randomized algorithm for minimum cut [25], Karger
combined sparsification with the notion of tree-respecting cuts. Consider an n-vertex graph
G = (V,w), a spanning tree T" and a cut with shore X. We say that the cut 2-respects T if it
cuts at most 2 edges of T, i.e., |Ar(X)| < 2, and strictly 2-respects T' if |Ap(X)| = 2. Note
that the set of cuts which 2-respect T' depends only on E(T") and not the weight of edges in
T. Note also that there are n — 1 + ("gl) = (%) cuts that 2-respect 7.

Karger proved that we can efficiently construct a set of O(logn) spanning trees of G such
that every minimum cut of G will 2-respect a constant fraction of them. This effectively
reduces the exponentially large search space for finding a minimum cut to the set of merely
O(n?logn) cuts that 2-respect one of the spanning trees. For our purpose, we will use these
spanning trees as an efficient representation of the near-minimum cuts of the graph. For
this, we need a slight generalization of Karger’s theorem on tree-respecting cuts. This shows
we can efficiently find O(logn) spanning trees such that any (1 4+ 1/16)-near-minimum cut
2-respects a constant fraction of them, while Karger’s statement was only for minimum cuts.
This only requires a minor modification of Karger’s proof, but for completeness we provide a
proof in Appendix A.

Throughout this section we will use the phrase “with high probability” to mean with
probability at least 1 — 1/n° for an arbitrary constant c.

» Theorem 24 ([25, Theorem 4.1]). Let G = (V,w) be a weighted graph with n vertices
and m edges. There is a randomized algorithm that in time O(mlog?(n) 4+ nlog*(n)) time
constructs a set of O(logn) spanning trees such that every (14 1/16)-near minimum cut of
G 2-respects 1/4 of them with high probability.

28:19

CCC 2021

28:20

Quantum Complexity of Minimum Cut

Karger states the runtime of the algorithm in this theorem as O(m + nlog®(n)), but we
opt for a simpler proof rather optimizing log factors.

5.1.2 Data structures

We will frequently need to refer to a 2-respecting cut both by its shores and the edges of the
tree it cuts. We develop some notation to make this easier.

» Definition 25 (Notation for 2-respecting cuts). Let T' be a tree on vertex set V with root r.
Define N(T) = E(T)UE(T)®. For f € N(T) define shore(f) to be the set X C V such that
Ap(X) = f and X does not contain r. For X CV such that |Ap(X)| < 2, let cutedges(X) =
Ap(X). We overload both these notations to sets so that shore(Q) = {shore(f) : f € @}
for @ C N(T) and similarly cutedges(T) = {Ar(X) : X € T} for a set T of shores of
2-respecting cuts of T.

With some preprocessing time, we can efficiently evaluate the weight of 2-respecting cuts.
The following lemma is very useful.

» Lemma 26 ([17, Lemma 1]). Given a weighted graph G = (V,w) with n vertices and m
edges, and a spanning tree T of G, we can construct in O(mlogn) time a data structure that,
for any f € N(T), reports the weight w(Ag(shore(f))) of the corresponding 2-respecting cut
in O(logn) time.

Another data structure that we use is based on the Euler tour technique [36, 20]. This is
a way of representing a tree that is useful to access and modify data in subtrees. Consider
an undirected tree T = (Vp, E7) with root r € V. To T we associate the directed graph
T = (Vp, ET) obtained by replacing every edge in Er by a pair of directed edges in opposite
directions. Now let & € (E7)2"1 denote an Euler tour in T starting and ending in root
r. Er is a sequence of 2(n — 1) edges as each directed edge is traversed exactly once.

For every node u in Vr, let f(u) be the index in Er of the edge that points toward wu,
and let ¢(u) be the index of the last edge that points toward u. Now if T'(u) is the subtree
of T induced by vertex u and all of its descendants, then the subsequence of £ starting
at f(u) and ending at £(u) (both included) is an Euler tour representation of T'(u). Hence
any subtree corresponds to a subsequence of &r. We can use this to prove the lemma below,
which will be useful to compute atoms(7) from a set T of shores of cuts that 2-respect a
given tree.

Given a tree whose nodes have some key value, we call a subtree-add the increasing or
decreasing of the key value in a subtree by some fixed amount.

» Lemma 27. Let T = (Vp, Er) be a tree with key values {k, | u € Vr} of O(logn) bits.
There is a data structure that implements M subtree-adds in time O(n + M).

Proof. Fix aroot node r. Represent 7' by an Euler tour & € (E7)2"~1 and define f(u), £(u)
for each u € V' as above. Associate to Er a list A of length 2(n — 1) to store the key values,
setting A(i) = k,, if the i-th entry of £ is an edge whose tail is u. Adding value « to the keys
of nodes in subtree T'(u) amounts to adding « to every entry in the subsequence in A starting
with f(u) and ending with ¢(u) (both included). Call such an operation ADD(a, f(u), £(u)).

To implement M ADD operations, create a second emtpy list B with length 2(n — 1). For
every operation ADD(a, f(u),£(u)), set B(f(u)) = B(f(w)) + a and if £(u) < 2(n — 1) set
B(¢(u) 4+ 1) = B(f(u) + 1) — a. Now do a partial sum transformation of B:

S. Apers and T. Lee

: Create list sp of length 2(n — 1) with sg(1) = B(1) and sg(i) = 0 for all i € [2,2(n — 1)].

1

2: fori=2,3,...,2(n—1) do

3 Set sp(i) = sp(i — 1) + B(i).
4: end for

In total this has time complexity O(n + M) (assuming O(1) cost for arithmetic operations).

The final key values are now given by setting k, = A(f(u)) + B(f(u)). <

5.2 Generating set for a single tree

Let G = (V,w) be an n-vertex weighted graph and T be a spanning tree of G. Let Q C E(T)()
and M = shore(Q). In words, M is an arbitrary set of shores of cuts that strictly 2-respect
T. The next lemma gives an explicit generating set S for atoms(M) with |S| < n —2. We
first make a definition that will be used throughout this section.

» Definition 28 (separate). Let V' be a finite set and X C V. For u,v € V we say that X
separates u, v if exactly one of them is in X.

» Lemma 29. Let T be a tree on a vertex set V of cardinality n. Let M C 2V be a set of
shores that strictly 2-respect T and let Q = cutedges(M). Define the graph L = (E(T), Q)
and let F' be a spanning forest of L. Then S = shore(E(F)) is a generating set for atoms(M).

Proof. Clearly E(F) C @ thus § € M. This means that atoms(M) is a refinement of
atoms(S). Thus to show atoms(S) = atoms(M) it suffices to show that any u,v € V that
are in different sets of atoms(M) are also in different sets of atoms(S).

The key fact we need is that if Ap(X) = {e, e’} then X separates u, v iff exactly one of
e, €’ is on the path from u to v in T. Suppose that u,v are in different sets of atoms(M),
that is there is an X € M which separates them. Say that Ar(X) = {ein, €out} Where
ein 18 on the u — v path in T and eqy is not. Then {ein, eout} € @ and therefore there
must be a path between ey, and eqyt in the spanning forest F. Let (e, e1, ez, ..., ex), where
€0 = €in, €k = €out, be the sequence of vertices on this path in F'. As e;, is on the u — v path
in T and eyt is not, there must be consecutive vertices e;, e; 1 where e; is on the u — v path
in T and e;41 is not. As {e;,e;41} € E(F) there is an X € § which separates u and v. <

» Lemma 30. Let G = (V,w) be an n-vertex weighted graph with m edges and T a spanning
tree of G. For a real number oo > 1, let T = {X CV : w(Ag(X)) < aA(GQ), |Ar(X)| < 2}.
There is a quantum algorithm that outputs with high probability a set Q@ C N(T) in time
O(m + n®/?) such that |Q| < 2n — 3 and S = shore(Q) is a generating set for atoms(T).

Proof. Let T; = {X € T : |Ap(X)| = 1} and To = {X € T : |[Ap(X)| = 2}. Let
Q1 = cutedges(T1) and Q2 = cutedges(7z). Let F be a spanning tree for L = (E(T), Q2).
By Lemma 29, R = shore(E(F)) is a generating set for atoms(7z) and [R| <n—2as Fisa
spanning tree of an n — 1-vertex graph. Thus by Proposition 10, S = 7; UR is a generating
set for T of size at most 2n — 3. Thus taking @ = Q1 U E(F) satisfies the conditions of the
lemma.

Now we must show how to efficiently output Q. We can first run a near-linear time
classical randomized algorithm to compute A(G) [25]. We then in near-linear time set up the
data structure given by Lemma 26. For an f € N(T') this lets us check in time O(log(n))
if f € Q1 UQ2. We can then cycle over the edges e € E(T) to create the set @1 classically
in time O(n). It now remains to construct a spanning tree of L = (E(T), Q). For any
f € E(T)® we can use the data structure to check in O(logn) time if f € Q,. This gives us
adjacency matrix access to L with O(logn) overhead for each query. Now we can use the

28:21

CCC 2021

28:22

Quantum Complexity of Minimum Cut

quantum algorithm from [11] that with high probability outputs a spanning forest of an n
vertex graph in the adjacency matrix model with O(n3/ 2) queries and time. Thus we can
use this algorithm to construct a spanning forest F' of L. We then output Q = Q1 U E(F) as
desired. <

Now we have an implicit representation cutedges(S) of a generating set S for atoms(T),
where 7 is the set of near-minimum cuts of a graph G that 2-respect a tree T. What we
need, however, is to actually output atoms(7). In the following lemma we show how to do
this efficiently by combining random hashing with Euler tour trees.

» Lemma 31. Let T be a tree on a vertex set V of sizen, Q C N(T), and S = shore(Q).
Given input Q there is a classical algorithm that with probability at least 1 — 1/n outputs
atoms(S) in time O(n + |Q|).

Proof. Let M be a large integer to be chosen later and consider the following algorithm.
Pick ¢ € Zjp; uniformly at random and give every vertex u € V the key value k, = ¢. For
every f € @, do:

Pick ¢ € Zps uniformly at random and set k,, = k,, + £ (mod M) for all u € shore(f).
Now if w and v are in the same set of atoms(S), that is no set of S separates them, then
ky = ky. On the other hand, if u and v are in different sets of atoms(S) then there is some
f € @ such that u € shore(f) and v ¢ shore(f), or vice versa. In this case, k, and k, are
pairwise independent and distributed uniformly at random in Zj,;. Hence k, = k, with
probability 1/M. Taking a union bound over all pairs u, v, we see that with probability at
least 1 — (5)/M we have that k, # k, for all u,v in different sets of atoms(S). If we set
M = n? and we let P({k,}) denote the partition induced by gathering nodes with the same
key value, then P({k,}) = atoms(S) with probability at least 1 — 1/n.

The cost of actually implementing this algorithm is dominated by sequentially updating
for every f € @ the key value for all nodes in shore(f). This amounts to changing the key
value in at most 2 subtrees of 1™

If f =e € E(T), then shore(f) is the subtree T'(u) of some node u and we have to change

the key value in T'(u).

If f={e,e'} € B(T)?), then we distinguish two cases. If one of the two cut edges is a

descendant of the other then shore(f) is of the form T'(u) \ T'(v) for two nodes u,v € V.

In this case we can update the key values by adding ¢ to T'(u) and subtracting ¢ from

T(v). If neither of the edge is a descendant of the other then shore(f) is of the form

T(u) UT(v), and we can update the key values by adding ¢ to T'(u) and T'(v).

In Lemma 27 we show how to change the key values in |Q| subtrees in total time O(n + |Q|)
using Euler tour trees. <

We can now put all these pieces together into the following algorithm.

Algorithm 7 Algorithm for finding atoms of the shores of 2-respecting near-minimum cuts.

Input: Explicit description of G = (V,w), a spanning tree T of G, a real number « > 1.
Output: atoms(7) where 7 = {X : w(Ag(X)) < aA(G) and |Ar(X)| < 2}.

1: Compute A\(G).

2: Create data structure as in Lemma 26 for evaluating the weight of cuts in G that 2-respect
T.

3: Compute @ such that shore(Q) is a generating set for atoms(7") by Lemma 30.

4: Use Lemma 31 to find and return atoms(shore(Q)) = atoms(7).

S. Apers and T. Lee

» Lemma 32. Let G = (V,w) be an n-vertex weighted graph with m edges and T a spanning
tree of G. Let o > 1 be a real number and T = {X : w(Ag(X)) < aA(G) and |Ap(X)| < 2}.
Algorithm 7 outputs atoms(7T") with high probability and can be implemented by a quantum
algorithm in time O(m 4 n®/?).

5.3 Time-Efficient quantum algorithm for LearnCutAtoms

We now describe a time-efficient quantum algorithm for outputting atoms(7), where 7 is the
set of shores of all (1 + 1/100)-near-minimum cuts of a weighted graph H. This algorithm
combines Karger’s tree packing Theorem 24 with the algorithm that produces the atoms of
shores of cuts that 2-respect a tree from the previous section (Lemma 32).

Algorithm 8 LearnCutAtoms(H, A, 9).

Input: Explicit description of an n-vertex weighted graph H = (V,w) with m edges, a
cut threshold A < (14 1/16)A(H), and an error parameter 0.

Output: atoms(7) where 7 = {X CV : w(Ag(X)) < A}

1: Construct set of K € O(logn) spanning trees {T;} using Theorem 24.

2: fori=1,2,...,K do

3: Use Algorithm 7 to find atoms(7;) where 7; = {X C V : w(Ag(X)) <
Aand |Ag (X)| <2}

4: end for

5: Output atoms(U;atoms(7;)).

» Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum
algorithm that implements LearnCutAtoms(H, (1 + 155)A(H), 5) in time O(m +n?/?).
Proof. We use Algorithm 8. First let us argue correctness. As A < (1 + 16)A(H), by
Theorem 24 for every X € T there will be a tree T; such that Ar, (X) < 2. This means that
T = UK T;. Hence atoms(7) = atoms(UT;) = atoms(Uatoms(7;)). By Lemma 32, step (3)
correctly outputs atoms(7;) for ¢ = 1,..., K with high probability, and thus step (5) will
output atoms(7) with high probability.

Now let us analyze the complexity. Step (1) can be done in O(m) time by a classical
randomized algorithm by Theorem 24. Step (3) can be done by a quantum algorithm in time

O(m 4+ n%/2) by Lemma 32, and thus the for loop has the same time bound as K = O(logn).

Finally, we need to explain how to (classically) implement step (5). First we give every
node v € V a key value k, = 0. Then, for each i = 1,..., K, we iterate over the node set
and append a log n-bit string to the key value of every node, indicating the component of
atoms(7;) of which it is part. At the end of this routine every node has a O(log? n)-bit key

value that indicates its component in atoms(7). The total runtime for this step is O(n).

Thus overall the running time is O(m + n3/?). |

6 Lower bounds

In this section we present lower bounds on the complexity of edge connectivity and weighted
minimum cut.

First we describe some existing lower bounds for the case of simple graphs. Let CON,, be
the problem of deciding if an input simple graph on n vertices is connected or not. This is a
special case of edge connectivity, where one wants to decide if the edge connectivity is zero
or positive. Diirr, Heiligman, Hgyer and Mhalla [11] proved the following quantum query
lower bounds on the complexity of CON,,.

28:23

CCC 2021

28:24

Quantum Complexity of Minimum Cut

» Theorem 33 ([11]). The bounded-error quantum query complexity of CON,, is ©(n*/?) in
the adjacency matriz model and ©(n) in the adjacency array model.

This theorem shows that, in the adjacency matrix model, Theorem 21 is tight up to
polylogarithmic factors for simple graphs. For the adjacency array model there is still
a gap between the Q(n) lower bound from Theorem 33 and the O(y/mn) upper bound for
simple graphs given by Theorem 21.

For the minimum cut problem in a weighted graph we prove separate and distinct lower
bounds for the adjacency matrix model and the adjacency array model. All our lower bounds
essentially follow by forcing the algorithm to solve a counting problem in order to compute
the weight of a minimum cut. We then use the following theorem by Nayak and Wu that
gives a lower bound on the quantum query complexity of exact counting.

» Theorem 34 ([32, Corollary 1.2]). Let k, N € N with 2k +1 < N. Assume query access to
x € {0,1} with the promise that || =k + 1 or |z| = k — 1. Any quantum algorithm that
correctly decides whether |x| =k + 1 or |x| = k — 1 with probability at least 2/3 must make

Q(VNE) queries.

6.1 Adjacency matrix model

In the adjacency matrix model we show that for any integer 1 < 7 < (|n/2] —1)/2, in
the worst case Q(n3/ 2,/7) adjacency matrix queries are needed to compute the weight of
a minimum cut of a graph with edge weights in {1,7}. This matches the upper bound in
Theorem 21, and hence settles the quantum query complexity of weighted minimum cut in
the adjacency matrix model. For 7 = 1 this reproduces the aforementioned Q(n?’/ 2) bound
which follows from [11].

» Theorem 35. Let n,7 € N satisfy 1 <7 < (|n/2| —1)/2. There is a family of n-vertex
graphs G all of which have edge weights in {0,1,7} such that any quantum algorithm that for
every graph G € G computes with probability at least 2/3 the weight of a minimum cut in
G must make Q(n3/?\/T) queries in the adjacency matriz model. Similarly, any quantum
algorithm that for every graph G € G computes with probability at least 2/3 the shores (X, X)
of a cut realizing the minimum weight must make Q(n3/2\/7) queries in the adjacency matriz
model.

Proof. Let V be an nm-element set and partition V into disjoint sets V' = V; U V; where
Vol = [n/2], |Vi| = [n/2]. Choose a distinguished vertex vy € Vp, and let Vj = Vo \ {vo}.
Let N =|Vy x Vi| and let g : VJ x Vi — [N] be a bijection. For every = € {0,1}" we define
a weighted graph G, = (V,w,) where

wy({u,v}) =7 if u,v € Vj or u,v € V7,

wy({u,v}) = z(g({u,v})) if (u € V§,v € Vi) or (u € V1,v e V),

wy ({u,v}) = 0 otherwise.
Let k = 7(|n/2] —1). In the following Ag, () will always be with respect to G, and we drop
the subscript. For any z it holds that w,(A(Vp)) = |z| and w,(A({ve})) = k. Now consider
any z and a subset () #Y C V different from Vj or V3. We can prove that w, (A(Y)) > k.
To this end note that either @ 2 Y NVy C Vo or @ #Y NVy C Vy. First assume that the
former is the case. Then

w(AY) = Y we({uv}) > > wa({u,v}) =k,

u€Y, vy u€Y NVy,weVp\Y

S. Apers and T. Lee

as k is the weight of a minimum cut in the complete weighted graph over |n/2| nodes
with all edge weights 7. If instead @ # Y N V4 C V; then a similar argument shows that
we(A(Y)) 2 7([n/2] =1) > k.

Thus if |z| < k then A(Vp) will be the unique minimum cut of G, and the weight of a
minimum cut in G, will be w,(A(Vp)) = |z|. On the other hand, if |z| > & then the weight
of a minimum cut in G, will be k, which is realized by the star cut A({vo}) (and potentially
other cuts in G,) but not by A(Vp) as w,(A(Vo)) = |x| > k.

Let S={z € {0,1}" :|z| € {k—1,k+1}} and G = {G, : € S}. Suppose there was a
T query algorithm in the adjacency matrix model that for any G, € G with probability at
least 2/3 output the weight of a minimum cut in G,. If the output is < k then we know that
|z| = k — 1 and if the output is k then we know that || = k + 1. Moreover, any query to the
adjacency matrix of G, can be simulated by a query to x, thus such an algorithm gives a
T query algorithm to determine if |z| =k — 1 or |2| = k + 1 when we are promised one of
these is the case. Since 7 < (|n/2] — 1)/2 we have 2k + 1 < N and therefore we may apply
Theorem 34 to obtain T € Q(v/Nk) = Q(n3/2,/7).

Similarly, a T" query algorithm in the adjacency matrix model that for any G, € G with
probability at least 2/3 outputs the shores of a cut realizing the minimum weight also implies
a T query algorithm to determine if |z] = k — 1 or |x| = k + 1. In this case, if |[z| =k — 1

then the output must be (Vj, V) as these are the shores of the unique minimum cut in G,.

On the other hand, if |z| = k + 1 then (Vo, V) is not a correct output. Thus the output of
the algorithm lets us determine with probability at least 2/3 if || =k — 1 or || = k+ 1 and
we again have T € Q(vVNk) = Q(n®/%/7). <
6.2 Adjacency array model

Given adjacency array access to a graph with edge-weight ratio 7, we showed an upper bound

of O(y/mn7) on the quantum query complexity of computing the weight of a minimum cut.
In this section we prove two distinct lower bounds, each of which is tight in a specific regime.

First we show that for any 7 > 1 there exists a family of dense graphs on n vertices with
edge-weight ratio 7 for which computing the weight of a minimum cut requires Q(n3/?) queries
to the adjacency array. This shows that the adjacency array upper bound of Theorem 21 is
tight for dense weighted graphs with constant (but non-unit) edge-weight ratio. Secondly
and using a different approach, for any 1 < 7 € O(n) we prove an Q(mn) lower bound for a
family of dense graphs with edge-weight ratio 7. This shows that we cannot get a quantum
speedup when 7 € Q(n).

6.2.1 Constant edge-weight ratio

For the first bound we first need a claim about the minimum cuts of a complete weighted
bipartite graph.

> Claim 36. Let n > 8 be a multiple of 4 and G = (L U R, w) be a weighted bipartite
graph with bipartition L, R where |L| = 3n/4,|R| = n/4. Further suppose that for every
x € L,y € R it holds that w({x,y}) > 1. Then any cut of G that is not of the form Ag({z})
for x € L has weight at least n/2.

Proof. First consider a star cut Ag({y}) for y € R. This has weight at least 3n/4, since this
is the degree of y and all edges have weight at least 1.

28:25

CCC 2021

28:26

Quantum Complexity of Minimum Cut

It now remains to show the claim holds for non-star cuts. Consider a general non-star
cut with shore X UY with X C L,Y C R. Let k = | X|,£ = |Y|. As it is a non-star cut we
have k + ¢ > 2. By complementing as needed we may also assume that k& < 3n/8. We also
have the obvious constraints that £ < n/4 and k, £ > 0.

As G is a complete weighted bipartite graph with every edge weight at least one we have

w(Ag(X UY)) > k(n/4—0) +£(3n/4 — k) .

As k < 3n/8 the term £(3n/4 — k) is greater than n/2 whenever ¢ > 2. Thus we can focus
on ¢ € {0,1}. If £ =0 then k > 2 and so the weight of the cut is at least k(n/4) = n/2 as
desired. If £ =1 then the weight of the cut is k(n/4 — 1) + 3n/4 — k which is always at least
3n/4 as long as n > 8. <

This claim means that if minger w(Ag({z})) < n/2 then this value will be the weight of
a minimum cut in G. We can leverage this to show a lower bound as follows. In the next
proof, for a function f: {0,1}" — {0,1} we will use @;/3(f) to denote the quantum query
complexity of computing f with error at most 1/3.

» Theorem 37. Let n > 8 be a multiple of 4 and 0 < e < 1. There is a family of n-vertex
graphs G all of which have edge weights in {1,1+¢} such that any quantum algorithm that for
every graph G € G computes with probability at least 2/3 the weight of a minimum cut in G
must make Q(n3/2) queries in the adjacency array model. Similarly, any quantum algorithm
that for every graph G € G computes with probability at least 2/3 the shores (X, X) of a cut
realizing the minimum weight must make Q(n3/2) queries in the adjacency array model.

Proof. Let X = {z € {0,1}"/*: |2| = [n/8] — 1} and Y = {y € {0,1}"/* : |y| = |n/8] + 1}.
For every x = (z(1), ..., 20"/4Y) € (XUY)3"/* we associate a bipartite graph G, = (LUR, w,,)
where L = {1,...,3n/4},R = {3n/4 +1,...,n} and w,({i,j}) = 1 + ¢ -2 (j — 3n/4) for
every i € L,j € R. Weset G = {G, :x € (X UY)?"/},

Define the function g : X UY — {0,1} where g(z) = 0iff 2 € X. We have Q;/3(g) € Q(n)
by Theorem 34. Let f : {0,1}*"/4 — {0, 1} be the AND function, for which @, /3(f) € Q(v/n).
By the composition theorem for quantum query complexity [23, 34], we have Q,,3(h) €
Q(n3/2) for the composed function h = f o g°"/4.

Let 2 = (2, ..., 2G"/D) € (X UY)3/4. If h(z) = 1 then 2() € Y for all i € [3n/4] and
the weight of the star cut Ag, ({i}) =n/4+e-(|n/8] +1). As e <1 this will be the weight
of a minimum cut in G, by Claim 36. On the other hand if h(x) = 0 then some (") € X
and Ag, ({i}) =n/4+¢-(|n/8] — 1) and this will be the weight of a minimum cut of G,.
Thus computing the weight of a minimum cut of G, lets us evaluate h(x). Further, given
oracle access to x we can simulate queries to G, in the adjacency array model. Let A, be a
3n/4-by-n/4 matrix whose i*® row is the vector 1 +ex(Y). Then the vertical concatenation of
A with AT is a valid adjacency array for G. To a degree query on vertex i we simply answer
n/4if 1 <3n/4 and 3n/4 if 3n/4 + 1 < i < n. We can also answer a query to the name and
weight of the j*" neighbor of i with one query to x. This shows that the (1/3)-error quantum
query complexity of computing the weight of a minimum cut on graphs in G in the adjacency
array model is at least Q1 /3(f o g°"/*) € Q(n3/?).

Finally, suppose a quantum query algorithm can compute a shore of a minimum cut in
G, with T queries. We know that this shore must be of the form {v} for a vertex v € L.
Thus with with O(n) more queries the algorithm can classically compute the weight of a
minimum cut by querying the weight of the neighbors of v. Thus T'4 O(n) € Q(n?/?), which
means T € Q(n?/2). This completes the proof. <

S. Apers and T. Lee

6.2.2 Large edge-weight ratio

Let n € N be a multiple of 4 and V' be a vertex set with |V| = n. Partition V into four sets
Vi, Vo, V3, Va.

Now consider an integer 7 such that 1 <7 < 5n/8 and 7n/10 is an integer. Fix a set S
of 7n/10 “edge disjoint” quadruples (u1,ug,us,us) € Vi x Vo x V3 x V4. By edge disjoint
we mean no pair of consecutive elements (u;,u;4+1) or (ug,u;) appears in more than one
quadruple. We fix an enumeration of S and refer to the vertices in the /** quadruple as
il

For every = € {0,1}7"/19 we define an n-vertex weighted graph G, = (V,w,) where
wy({u,v}) =7 if u# v € V; for some i € [4], and for £ € [Tn/10] we set

wa({ug, up}) = wo({ug, ui}) = o,

wa ({ug, ug}) = wo({ug,u}) =1 -z .

Otherwise, w;({u,v}) = 0. In words, on each V; we have a complete graph with all edge
weights 7, and for each ¢ € [rn/10] we either add unit weight edges {uf,ub}, {u§, u}} or
{ub, ub}, {uf,u’} depending on ;. The construction is depicted in Figure 3.

There are a few important points to note about this definition. First, the edge-weight
ratio of G, is 7. Second, for any X that nontrivially intersects some V; we have that
w(Ag, (X)) > 7(n/4 — 1). This means that such an X cannot be the shore of a minimum

cut of G,. Third, by construction the degree of every vertex of GG, is independent of z.

This means that degree queries to G, can be trivially answered and give us no information
about z.

Figure 3 Figure of graph G,. If ; = 1 then we add edges {uf,u5} and {u§,u%}. If £, = 0 then
we add edges {uf,u$} and {u§, uf}.

» Lemma 38. We can simulate a single query to G, in the adjacency array model using a
single query to x.

Proof. We first handle degree queries. This can be answered with no queries to x as the
degree of a vertex is independent of x.

Now consider a query (v,k) € V x [deg(v)] to which we must answer the name u of the
k-th neighbor of v and the edge weight w,({u,v}). For clarity of exposition, we assume
v =ut € Vi; the other cases are handled similarly.

28:27

CCC 2021

28:28

Quantum Complexity of Minimum Cut

If K < n/4—1 then return the k-th neighbor u of v inside V; and edge weight w,,({u,v}) =
T.
If k > n/4 then let j = k —n/4 + 1. Letting ¢ denote the index of the j*' quadruple of S
containing v we query zy.
If 2y = 1 then return neighbor u4 and edge weight w({v,u5}) = 1.
If £, = 0 then return neighbor u§ and edge weight w({v,u}}) = 1.
In total this takes a single query to x, which proves the lemma. |

Now we can prove the following lemma.

» Lemma 39. Fix integers n and 7 such that 1 < 7 < 5n/8 and 7m/10 € N. Consider a
string x € {0,1}7"/10 and the corresponding graph G,. If |x| < 7n/20 then G, has a unique
minimum cut with shores (X, X) = (V1 U Vo, V3 U Vy) and weight w(Ag, (X)) = 2|z|. If
|z| > 7n/20 then G, has a unique minimum cut with shores (X, X) = (V1 UVy, VaUV3) and
weight w(Ag, (X)) =2(mn/10 — |z]|).

Proof. First consider any cut shore that nontrivially intersects some V;. Since the subgraph
G[Vi] induced on V; is a complete graph with edge weights 7, this implies that such a cut
has weight at least 7(|V;| — 1) = 7(n/4 — 1). Now consider the small set of remaining cut
shores that trivially intersect the V;’s. The weight of each one of these cuts can be easily
expressed as a function of the Hamming weight |z| of the input:

w(Ag, (Vi) = /10,
w(Ag, (V1 UV3)) = w(Ag, (V2 UVY)) = 21n/10,
w(Ag, (ViU V2)) =w(Ag, (V3 U VL)) = 2|zl
w(Ag, (V1 UW)) = w(Ag, (Vo UV3)) = 2(mn/10 — |z|).

It is clear that all minimum weight cuts will be among these cuts, and the lemma easily
follows. <

Using this lemma we can prove the following theorem.

» Theorem 40. Let 7,n € N be such that 1 < 7 < 5n/8 and ™/20 € N. There exists
a family of n-vertex graphs G' with Q(n?) edges, all of which have edge weights in {1,7},
such that any quantum algorithm that for every graph G' € G' computes with probability at
least 2/3 the weight of a minimum cut in G’ must make Q(n7) queries in the adjacency
array model. Similarly, any quantum algorithm that for every graph G' € G' computes with
probability at least 2/3 the shores (X, X) of a cut realizing the minimum weight must make
Q(nT) queries in the adjacency array model.

Proof. First consider the set of strings X C {0,1}7"/!* with Hamming weight
|z| = [tn/100] £ 1 < 7n/20.

By Lemma 39 the graph G, € X, has a unique minimum cut with shores (V3 U V3, V3 U V)
and weight 2|z|. Now let ¢’ = {G, : © € X'} and assume the existence of a quantum
algorithm that for every G, € G’ computes with probability at least 2/3 the weight 2|x| of
a minimum cut in G’ with at most ¢ queries to the adjacency array of G,. By Lemma 38
this is equivalent to outputting the Hamming weight |z| with probability at least 2/3 for any
x € X while making only ¢ queries to x. Using Theorem 34 this implies the lower bound
q € Q(tn).

S. Apers and T. Lee

Next consider the set of strings &’ C {0,1}7"/1% that have Hamming weight |z| =

/20 + 1. By Lemma 39 the graph G,, * € X', again has a unique minimum cut. If
|z| = 7m/20 — 1 then its shores are (Vi U Va, V3 U Vy), while if |z] = /20 + 1 then its
shores are (V3 U Vy, Vo U V). Now assume that there exists a quantum algorithm that with

probability at least 2/3 returns the shores of a minimum weight cut of G, with at most

q queries to the adjacency array of G,. By Lemma 38 this is equivalent to distinguishing
|z| = ™/20 — 1 from |z| = 7n/20 + 1 with probability at least 2/3 for any x € X while
making only ¢ queries to z. Using Theorem 34 this implies the lower bound ¢ € Q(7n). <=

—— References

1

10

11

12

13

14

15

Andris Ambainis and Robert Spalek. Quantum algorithms for matching and network flows. In
Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 172-183. Springer, 2006.

Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut approximation
and Laplacian solving. In Proceedings of the 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 637-648. IEEE, 2020.

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM J. Comput., 41(6):1704-1721, 2012. doi:10.1137/090772873.

Aleksandrs Belovs, Andrew M Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez.
Time-efficient quantum walks for 3-distinctness. In International Colloquium on Automata,
Languages, and Programming, pages 105—122. Springer, 2013.

Andrés A. Benczir and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM J. Comput., 44(2):290-319, 2015. doi:10.1137/070705970.
Nalin Bhardwaj, Antonio M. Lovett, and Bryce Sandlund. A simple algorithm for minimum
cuts in near-linear time. In Proceedings of the 17th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), volume 162 of LIPIcs, pages 12:1-12:18. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2020. doi:10.4230/LIPIcs.SWAT.2020.12.

Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Query complexity of
global minimum cut. CoRR, abs/2007.09202, 2020. arXiv:2007.09202.

Rodrigo A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 116-125, New York, NY, USA, 1993. Association for Computing Machinery.
doi:10.1145/160688.160704.

Gilles Brassard, Peter Hgyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Quantum computation and quantum information: A millennium volume,
305, 2002.

Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for small-
error and zero-error quantum algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), pages 358-368. IEEE, 1999.

Christoph Diirr, Mark Heiligman, Peter Hoyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM J. Comput., 35(6):1310-1328, 2006. doi:10.1137/050644719.
Christoph Diirr and Peter Hgyer. A quantum algorithm for finding the minimum. CoRR,
quant-ph/9607014, 1996. arXiv:quant-ph/9607014.

Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,
1962. URL: http://www. jstor.org/stable/j.ctt183q0b4.

Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. STAM J. Comput., 48(4):1196-1223, 2019. doi:
10.1137/16M1091666.

Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. Syst. Sci., 50(2):259-273, 1995. doi:10.1006/jcss.1995.1022.

28:29

CCC 2021

https://doi.org/10.1137/090772873
https://doi.org/10.1137/070705970
https://doi.org/10.4230/LIPIcs.SWAT.2020.12
http://arxiv.org/abs/2007.09202
https://doi.org/10.1145/160688.160704
https://doi.org/10.1137/050644719
http://arxiv.org/abs/quant-ph/9607014
http://www.jstor.org/stable/j.ctt183q0b4
https://doi.org/10.1137/16M1091666
https://doi.org/10.1137/16M1091666
https://doi.org/10.1006/jcss.1995.1022

28:30

Quantum Complexity of Minimum Cut

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(mlog® n) time. In
Proceedings of the 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168 of LIPIcs, pages 57:1-57:15. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.57.

Pawel Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm for
minimum cut. In Symposium on Simplicity in Algorithms (SOSA), pages 74-79. SIAM, 2021.
Ralph E. Gomory and Te C. Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551-570, 1961. URL: http://www.jstor.org/
stable/2098881.

Lov Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 78:325-328, 1997.

Monika R. Henzinger and Valerie King. Randomized dynamic graph algorithms with polylog-
arithmic time per operation. In Proceedings of the 27th annual ACM symposium on Theory of
computing (STOC), pages 519-527, 1995.

Monika R. Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. SIAM J. Comput., 49(1):1-36, 2020. doi:10.1137/18M1180335.

Monika R. Henzinger and David P. Williamson. On the number of small cuts in a graph. Inf.
Process. Lett., 59(1):41-44, 1996. doi:10.1016/0020-0190(96)00079-8.

Peter Hgyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
526-535. ACM, 2007. doi:10.1145/1250790.1250867.

David R. Karger. Random sampling in cut, flow, and network design prob-
lems. Mathematics of Operations Research, 24(2):383-413, 1999. URL: http:
//ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.
edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/
docview/212675010/se-27accountid=17095.

David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. doi:
10.1145/331605.331608.

Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1-4:50, 2019. doi:10.1145/3274663.

Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd annual ACM
symposium on Theory of computing (STOC), 2021.

On-Hei S. Lo, Jens M. Schmidt, and Mikkel Thorup. Compact cactus representations of all
non-trivial min-cuts. Discrete Applied Mathematics, 2020. doi:10.1016/j.dam.2020.03.046.
David W. Matula. A linear time 2+epsilon approximation algorithm for edge connectivity. In
Vijaya Ramachandran, editor, Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms (SODA), pages 500-504. ACM /SIAM, 1993. URL: http://dl.acm.
org/citation.cfm?id=313559.313872.

Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,
and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 496-509, 2020.

Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discret. Math., 5(1):54-66, 1992. doi:10.1137/0405004.
Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median and
related statistics. In Proceedings of the 31st annual ACM symposium on Theory of computing
(STOC), pages 384-393, 1999.

Jean-Claude Picard and Maurice Queyranne. Selected applications of minimum cuts in
networks. INFOR: Information Systems and Operational Research, 20(4):394-422, 1982.
doi:10.1080/03155986.1982.11731876.

Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560-569. SIAM, 2011.
do0i:10.1137/1.9781611973082.44.

https://doi.org/10.4230/LIPIcs.ICALP.2020.57
http://www.jstor.org/stable/2098881
http://www.jstor.org/stable/2098881
https://doi.org/10.1137/18M1180335
https://doi.org/10.1016/0020-0190(96)00079-8
https://doi.org/10.1145/1250790.1250867
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663
https://doi.org/10.1016/j.dam.2020.03.046
http://dl.acm.org/citation.cfm?id=313559.313872
http://dl.acm.org/citation.cfm?id=313559.313872
https://doi.org/10.1137/0405004
https://doi.org/10.1080/03155986.1982.11731876
https://doi.org/10.1137/1.9781611973082.44

S. Apers and T. Lee

35 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In Proceedings of the 9th Innovations in Theoretical Computer

Science Conference (ITCS), pages 39:1-39:16. LIPICS, 2018. doi:10.4230/LIPIcs.ITCS.2018.

39.
36 Robert E. Tarjan and Uzi Vishkin. Finding biconnected components and computing tree

functions in logarithmic parallel time. In Proceedings of the 25th Annual Symposium on
Foundations of Computer Science (FOCS), pages 12-20. IEEE, 1984.

A Karger's theorem

In this appendix we prove a slight generalization of Karger’s theorem [25, Theorem 4.1]
which is needed for our time-efficient algorithm. We begin by introducing some needed tools.

A.1 Tools

Matula [29] gave an O(m/e) time deterministic algorithm to compute a (2+ ¢)-approximation
to the edge connectivity of a simple graph (or multigraph). The algorithm can also be adapted
to give a constant factor approximation to the weight of a minimum cut in an integer-weighted
graph in time O(mlog?(n)), see Appendix A of [16].

» Lemma 41 (Matula's approximation algorithm [29, 16]). Let G = (V,w) be an integer-
weighted graph with m edges and n wvertices. There is a constant ¢ and a deterministic
algorithm that in time O(mlog®(n)) outputs a value X such that \/c < A\(G) < \.

To efficiently construct a tree-packing we will also need to use random sampling. The
following lemma is the heart of Karger’s skeleton construction [24]. We recommend the
presentation in [6, Lemma 14].

» Lemma 42 ([24]). Let G be an unweighted multigraph with m edges. For an integer d > 2
and real numbers e,y with € < 1/3, let p = 3d(lnn)/(eA(G)). In time O(pmlog(n)) we can
randomly sample [pm] edges of G. With probability 1 — 1/n? the resulting graph H has the
properties that

1. The minimum cut of H is within a (1 + €) factor of pA(G) = 3dIn(n)/e2.

2. For every X CV we have (1 —e)w(Ag(X)) <w(Ap(X)) < (1 +e)w(Ag(X)).

Another very useful tool we use is the Nagamochi-Ibaraki construction which shows that
for an integer-weighted graph G with m edges, in time O(mlog(n)) one can construct a
graph G’ whose total edge weight is nc and which preserves all cuts of G' of weight at most c.

» Lemma 43 ([31]). Let G = (V,w) be an n-vertex integer-weighted graph with m edges.
For any positive integer c there is a deterministic algorithm that in time O(mlogn) produces
an integer-weighted graph G' = (V,w') with total edge weight O(cn) such that for all X CV
with Ag(X) < ¢ it holds that w(e) = w'(e) for all e € Ag(X). Thus in particular Ag(X) =
A (X) and w(Ag(X)) = w'(Ag/ (X)) for all X with Ag(X) < ec.

We combine the tools of Matula’s approximation algorithm, random sampling, and the
sparse certificate of Nagamochi-Ibaraki into the following lemma.

» Lemma 44. Let G = (V,w) be an integer-weighted graph and let 0 < § < 1 be a parameter.
There is an O(mlog?(n) + nlog(n)) time randomized algorithm to create a weighted graph
H = (V,wp) such that

1. H has O(nlog(n)/e?) edges.

2. The minimum cut of H has value A\(H) = O(logn).

3. If X CV is such that w(A(X)) < (14 0)A(G) then wy(A(X)) < (1+35)A\(H).

28:31

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2018.39
https://doi.org/10.4230/LIPIcs.ITCS.2018.39

28:32

Quantum Complexity of Minimum Cut

Proof. First, by Lemma 41, in time O(m log?(n)) we can find a constant factor approximation
\ satisfying ;\/ c<AG) < X . Next we apply the Nagamochi-Ibaraki algorithm to G with
threshold ¢ = (1 + §)A. In O(mlog(n)) time this produces an integer-weighted graph Gy =
(V,w') with total edge weight O(tn) such that for every X C V with w(Ag(X)) < (1+)X
it holds that w(Ag(X)) = w'(Ag(X)).

We now view G5 as an unweighted multigraph with O(¢n) edges and apply Lemma 42.
Let p = In(n)/X\. We randomly choose [pE(G2)] = O(nln(n)) edges of G and let the
resulting graph be H. This can be done in time O(nlog(n)). By Lemma 42 the graph has
the stated properties. The total running time is O(mlog?(n) + nlog(n)). <

A.2 Tree packing

With these preliminaries in place we now turn to actually constructing a tree packing. We
first need the definition, and a lemma of Karger.

» Definition 45 (Weighted tree packing). Let G = (V,w) be an integer-weighted graph. A
weighted tree packing is a set of spanning trees of G, each with an assigned weight, such
that the total weight of trees containing any edge e € E(G) is at most w(e). The value of the
packing is the total weight of trees in it.

» Lemma 46 ([25, Lemma 2.3]). Given a weighted tree packing of value Sc and a cut of
value ac, at least a (3 — a/B)/2 fraction of the trees by weight 2-constrain the cut.

Gabow gives an algorithm to construct a near optimal tree packing in an unweighted
multigraph. The following is an easy adaptation to an integer-weighted graph.

» Lemma 47 ([15]). Let G = (V,w) be an integer-weighted graph with n vertices and m
edges. There is a deterministic algorithm that finds an integer-weighted tree packing of G of
value at least A\(G)/2 in time O(m(A(G)?log(n) + log*(n))).

Proof. For a multigraph H with n vertices and m’ edges, Gabow [15] gives a deterministic
algorithm that finds a tree packing of weight A(H)/2 in time m/A(H)log(n). The only
difference with our case is that G is an integer-weighted graph instead of a multigraph. We
can of course view G as a multigraph but it becomes too expensive to run Gabow’s algorithm
if this significantly blows up the number of edges.

Thus we first use Lemma 41 to compute X such that A/c < A(G) < X in time O(m log?(n)).
Then we make a pass through the edges of G and form a graph G’ where any edge of weight
larger than A in G is thresholded down to A. Thus when viewed as a multigraph G’ will only
have O(mA(G)) edges. Any tree packing of G is also a tree packing of G’ as the value of any
tree packing is at most A\(G) < A. We can then apply Gabow’s algorithm to G to obtain the
theorem. <

We are finally ready to prove the slight generalization of Karger’s theorem that we require.

» Theorem 24 ([25, Theorem 4.1]). Let G = (V,w) be a weighted graph with n vertices
and m edges. There is a randomized algorithm that in time O(mlog?(n) 4+ nlog*(n)) time
constructs a set of O(logn) spanning trees such that every (1 + 1/16)-near minimum cut of
G 2-respects 1/4 of them with high probability.

S. Apers and T. Lee

Proof. In O(m) time we can find the minimum weight « of an edge of G. Multiplying all
edge weights by 1/« we obtain a graph where all edge weights are at least 1 and that has
the same set of (1 4 1/16)-near minimum cuts as G. Thus without loss of generality now
assume that G has all edge weights at least 1.

In O(m) time we create the integer-weighted graph G’ = (V,w’) where w’(e) = [100w(e)].

Note that as we assume that every edge of G has weight at least 1, for any X C V we have

w(Ag (X))

. Ag(X)) <
0.995w(Ag(X)) < =43

< 1.005w(Ag(X)) . (1)
Thus if Ag(X) is a (1 + €)-near minimum cut of G then Ag/(X) is a (1 + £)(1.005)?-near
minimum cut of G'. With € = 1/16 it follows that Ag/(X) is a 1 + 1/12-near minimum cut
of G'.

Next we apply Lemma 44 to G to in time O((m + n)log?(n)) create a graph H with the
properties specified there. We then use Lemma 47 to find a tree packing of weight at least
A(H)/2 and which contains O(log(n)) trees since A(H) = O(log(n)). Now let Ag(X) be a
(14 1/16)-near minimum cut of G. Then A/ (X) is a (1 4+ 1/12)-near mincut of G’ and by
Lemma 44, Ay (X) is a 1 + 1/4-near mincut of H. Therefore by Lemma 46 at least 1/4 of
the trees in the packing will 2-respect Ag(X). These trees must also 2-respect Ag(X) since
it has the same shore X. <

28:33

CCC 2021

	1 Introduction
	1.1 Previous work
	1.2 Technical overview
	1.3 Open problems

	2 Preliminaries
	2.1 Graph basics and notation
	2.2 Atoms
	2.3 Quantum query and computational models
	2.4 Quantum algorithmic primitives
	2.5 Problems related to minimum cuts

	3 Number of edges in near-minimum cuts
	4 Query-efficient quantum algorithm for minimum cut
	5 Time-efficient quantum algorithm for minimum cut
	5.1 Tools
	5.1.1 2-respecting cuts and Karger's theorem
	5.1.2 Data structures

	5.2 Generating set for a single tree
	5.3 Time-Efficient quantum algorithm for LearnCutAtoms

	6 Lower bounds
	6.1 Adjacency matrix model
	6.2 Adjacency array model
	6.2.1 Constant edge-weight ratio
	6.2.2 Large edge-weight ratio

	A Karger's theorem
	A.1 Tools
	A.2 Tree packing

