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1 Introduction

In algebra, model theory, and computer science, one encounters the notion of definable
automorphism (the nomenclature varies by discipline). In first-order logic for example (see
e.g. [13]), an automorphism α of a model M is called definable (with parameters in M) when
there is a formula φ(x, y) in the ambient language (possibly containing constants from M)
such that for all a, b ∈ M we have

α(a) = b ⇐⇒ M |= φ(a, b).

The case of groups is instructive: for a group M , consider the formula φ(x, y) given as

φ(x, y) : y = c−1xc

for some c ∈ M . This defines an (inner) automorphism of M . Note that in this case the
automorphism is also determined by a term t(x) := c−1xc via a 7→ t(a).
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26:2 Polymorphic Automorphisms and the Picard Group

These definable automorphisms have various interesting aspects: first of all, they are in
some sense polymorphic or uniform. This means roughly that the same term t, possibly after
replacing constants from M , can also define an automorphism of another model N . Secondly,
the definable automorphisms can also provide a generalized notion of inner automorphism,
even for theories where it does not make sense to speak of group-theoretic conjugation.
Indeed, Bergman [1, Theorem 1] shows that in the category of groups, the definable group
automorphisms, i.e. the inner automorphisms given by conjugation, can be characterized
purely categorically by the fact that they extend naturally along any homomorphism. That
is: an automorphism α : G ∼−→ G is inner precisely when for any homomorphism m : G → H

there is an extension αm : H ∼−→ H making diagram (a) commute and also making

(a) G

α

��

m // H

αm

��

G
m
// H

(b) H

αm

��

n // K

αnm

��

H
n
// K

diagram (b) commute for any further homomorphism n : H → K, so that in particular
α = αidG

by diagram (a). If α is conjugation by g ∈ G, then αm is conjugation by m(g) ∈ H.
Conversely, given any system of group automorphisms {αm : H ∼−→ H | m : G → H} with
α = αidG

that makes diagrams (a) and (b) commute, Bergman shows that there is a unique
element s ∈ G such that α is given by conjugation with s. Bergman therefore refers to such
a system {αm | m : G → H} as an extended inner automorphism of G.2

In categorical logic, we have a canonical method for studying this phenomenon. To any
category C, we may associate the functor

ZC : C → Grp ; ZC(C) := Aut(π : C/C → C). (1)

Let us unpack this. We have the co-slice category C/C whose objects are maps C → D and
whose arrows are commutative triangles. The projection functor π : C/C → C sends C → D

to D. We then consider the group of natural automorphisms of this projection functor, i.e.
the group of invertible natural transformations α : π ⇒ π. To give such an α is equivalent
to giving, for each object m : C → D of C/C, an automorphism αm : D ∼−→ D, subject to
the naturality condition that for any composable pair m : C → D,n : D → E in C, we have
αnmn = nαm as in diagram (b) above. Thus, in Bergman’s terminology, ZC(C) is the group
of extended inner automorphisms of C. We call ZC the (covariant) isotropy group (functor)
of C. Another useful way of thinking about this group is by noticing that the assignment
C 7→ Aut(C) is generally not functorial, unless C is a groupoid. The isotropy group offers a
remedy: the assignment C 7→ ZC(C) is functorial, as is straightforward to check, and for
each C there is a comparison homomorphism

θC : ZC(C) → Aut(C) ; α 7→ αidC
(2)

that sends an extended inner automorphism α to its component at the identity of C.3 We
can then turn Bergman’s aforementioned result for the category Grp into a definition for an
arbitrary category C, by defining an automorphism f : C ∼−→ C of an object C ∈ C to be
inner just if f is in the image of θC : ZC(C) → Aut(C). Less precisely, the automorphism
f : C ∼−→ C is inner if it can be coherently extended along any arrow out of C.

2 Earlier versions of this result were also proven by Schupp [12] and Pettet [10].
3 P. Freyd [2] studied a somewhat similar notion while modelling Reynolds’ parametricity for parametric

polymorphism. As a special case, his work leads to a monoid of natural endomorphisms of the projection
functor, whereas in our case, we would obtain the subgroup of invertible elements in this monoid.
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(For readers familiar with topos theory and/or earlier papers on the subject of isotropy
groups, we point out that in [4, 3] we consider instead the contravariant isotropy groups
Aut(π : C/C → C). Now if T is a suitable logical theory with classifying topos B(T), then (a
restriction of) the contravariant isotropy group of B(T) coincides with the covariant isotropy
group of the category fpTmod of finitely presented T-models. Moreover, calculation of the
latter group generally also yields a description of the covariant isotropy group of the larger
category Tmod of all T-models, which is our focus in the present paper.)

In [6], the case where C is the category of models of an equational theory is analysed.
Among other things, a complete syntactic characterization of covariant isotropy for such a C
is obtained, recovering not only Bergman’s result for C = Grp but also characterizing the
definable automorphisms of other common algebraic structures such as monoids and rings.
In applying the general characterization in specific instances, one typically needs to analyse
the result of adjoining one or more indeterminates to a given model, and this in turn leads
one to consider the word problem for such models.

The present paper, which is based on the PhD research [9] of the second author, is
concerned with the analysis of the notion of isotropy or definable automorphism for (strict)
monoidal categories and related structures. It hardly needs arguing that monoidal categories
play various important roles in mathematics and theoretical computer science, both as
objects of study in their own right, as models of logical theories, and as basic tools for
studying other phenomena. However, we should point out here an observation by Richard
Garner [5, Proposition 3] to the effect that both Cat and Grpd, the categories of small
categories and small groupoids respectively, have trivial covariant isotropy, in the sense
that for any category/groupoid C we have Z(C) = 1, the trivial group. The reason for
this is roughly as follows: when considering an inner automorphism α of a category C in
Cat, it must in particular extend to the categories obtained from C by freely adjoining a
new object or arrow; but these latter categories are just obtained from C via disjoint union,
which then (as Garner shows) easily entails that α can only be the identity on C (and an
identical argument works for Grpd). As such, it is perhaps surprising that the category of
strict monoidal categories has non-trivial isotropy. In fact, and this is the central result of
the present paper, the isotropy group of a strict monoidal category is precisely its Picard
group (its group of ⊗-invertible objects).

Since the theory of strict monoidal categories is not a purely equational theory, we cannot
directly use results from [6]. Instead, we need to work in the setting of quasi-equational
theories. These are multi-sorted theories in which the operations can be partial; equivalently,
they are finite-limit theories. These include the theories of categories, groupoids, strict
monoidal categories, symmetric/braided/balanced monoidal categories, and crossed modules.
They also include what one might call functor theories, which are theories describing functors
from a small category into a category of models. As a special case, one obtains theories
whose categories of models are presheaf categories.4 Our first main contribution of the paper
is then a generalization of the syntactic characterization of isotropy from equational theories
to this wider class of quasi-equational theories.

While we have indicated why the non-trivial isotropy of strict monoidal categories is
perhaps surprising, there is also a sense in which it is to be expected. Indeed, since strict
monoidal categories are monoids internal to Cat, we expect that the isotropy of strict monoidal

4 Not to be confused with the so-called theories of presheaf type, which are theories whose classifying
topos happens to be a presheaf topos.

FSCD 2021



26:4 Polymorphic Automorphisms and the Picard Group

categories is closely related to that of monoids. Since the isotropy of a monoid M is its
subgroup of invertible elements, the conjecture that the isotropy of a strict monoidal category
is its group of invertible objects is not unreasonable. However, it is not at all immediate
that the isotropy of a strict monoidal category should be determined completely by its set of
objects; the recognition that this is the case is the second main contribution of this paper.

A priori, one can try to establish this result in a variety of ways. First of all, it can be
approached purely syntactically, by making careful analysis of the word problem for strict
monoidal categories. However, several aspects of this analysis can also be cast in more
conceptual terms, giving rise to a categorical way of deriving the isotropy of strict monoidal
categories from that of monoids. We thus also include a more categorical viewpoint, which
applies to several other theories of categorical structures, including crossed modules.

2 Quasi-equational theories

We begin by reviewing the relevant notions from categorical logic. For more details concerning
quasi-equational theories and partial Horn logic, we refer to [8]. For a general treatment of
categorical logic, see [11].

▶ Definition 1 (Signatures, Terms, Horn Formulas, Horn Sequents, Quasi-Equational Theories).

A signature Σ is a pair of sets Σ = (ΣSort,ΣFun), where ΣSort is the set of sorts of Σ
and ΣFun is the set of function/operation symbols of Σ. Each element f ∈ ΣFun comes
equipped with a finite tuple of sorts (A1, . . . , An, A), and we write f : A1 × . . .×An → A.

Given a signature Σ, we assume that we have a countably infinite set of variables of each
sort A. Then one can recursively define the set Term(Σ) of terms of Σ in the usual way,
so that each term will have a uniquely defined sort. We write Termc(Σ) for the set of
closed terms of Σ, i.e. terms containing no variables.

Given a signature Σ, one can recursively define the set Horn(Σ) of Horn formulas of Σ in
the usual way, where a Horn formula is a finite conjunction of equations between elements
of Term(Σ). We write ⊤ for the empty conjunction.

A Horn sequent over a signature Σ is an expression of the form φ ⊢x⃗ ψ, where φ,ψ ∈
Horn(Σ) and have variables among x⃗.

A quasi-equational theory T over a signature Σ is a set of Horn sequents over Σ, which
we call the axioms of T.

One can set up a deduction system of partial Horn logic (PHL) for quasi-equational theories,
axiomatizing the notion of a provable sequent φ ⊢x⃗ ψ. Accordingly, for a theory T we have
the notion of a T-provable sequent; moreover, if ⊤ ⊢x⃗ φ is T-provable, then we simply say
that T proves φ, and write T ⊢x⃗ φ.

We refer the reader to [8, Definition 1] for the logical axioms and inference rules of PHL.
The distinguishing feature of this deduction system is that equality of terms is not assumed
to be reflexive, i.e. if t(x⃗) is a term over a given signature, then ⊤ ⊢x⃗ t(x⃗) = t(x⃗) is not a
logical axiom of partial Horn logic, unless t is a variable. In other words, if we abbreviate
the equation t = t by t ↓ (read: t is defined), then unless t is a variable, the sequent ⊤ ⊢x⃗ t ↓
is not a logical axiom of PHL. Furthermore, the logical inference rule of term substitution is
then only formulated for defined terms.
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▶ Example 2. We have the following examples of quasi-equational theories:
Every single-sorted algebraic theory is a quasi-equational theory; this includes the usual
algebraic theories of (commutative) monoids, (abelian) groups, (commutative) unital
rings, etc.
The theories of (small) categories, groupoids, categories with a (chosen) terminal object,
categories with (chosen) finite products, categories with (chosen) finite limits, locally
cartesian closed categories, and elementary toposes, can all be axiomatized as quasi-
equational theories over a two-sorted signature (with one sort O for objects and one sort
A for arrows). For details see [8, Example 4 and Section 6]. The theory of (small) strict
monoidal categories can also be axiomatized as a quasi-equational theory (see Section 4
below).
If T is any quasi-equational theory and J is any small category, then one can axiomatize
the functor category TmodJ by a quasi-equational theory TJ ; see [9, Chapter 5].

In the remainder of the paper, by theory we shall mean quasi-equational theory, unless
explicitly stated otherwise.

We now review the set-theoretic semantics of PHL. This follows the standard pattern
of algebraic theories, with the key difference being that function symbols are now only
interpreted as partial functions. We write f : A ⇁ B for a partial function from A to B,
which is by definition a total function f : dom(f) → B for some subset dom(f) ⊆ A. If
Σ is a signature, then a Σ-structure M is a family of sets MC indexed by the sorts C of
Σ, together with interpretations of the function symbols f : A1 × · · · × Ak → A as partial
functions fM : MA1 × · · · × MAk

⇁ MA. By induction on the structure of a term t in
variable context x1 : A1, . . . , xk : Ak, we obtain its interpretation as a partial function
tM : MA1 × · · · × MAk

⇁ MA in a Σ-structure M , while a Horn formula φ(x1, . . . , xk) is
interpreted as a subset φ(x1, . . . , xk)M ⊆ MA1 × . . .×MAk

.
A Σ-structure M satisfies a Horn sequent φ ⊢x⃗ ψ if φ(x1, . . . , xk)M ⊆ ψ(x1, . . . , xk)M .

When T is a theory, then a Σ-structure M is a T-model when it satisfies all the T-axioms,
and hence all the T-provable sequents (by soundness of partial Horn logic).

▶ Definition 3. Let Σ be a signature and M,N Σ-structures. A homomorphism h : M →
N is a family of total functions h = (hA : MA → NA)A:Sort with the property that if
f : A1 × . . . × An → A is any function symbol of Σ and (a1, . . . , an) ∈ dom

(
fM

)
, then

(hA1(a1), . . . , hAn
(an)) ∈ dom

(
fN

)
and hA

(
fM (a1, . . . , an)

)
= fN (hA1(a1), . . . , hAn

(an)).
The homomorphism h reflects definedness if moreover (hA1(a1), . . . , hAn

(an)) ∈ dom
(
fN

)
always implies (a1, . . . , an) ∈ dom

(
fM

)
.

Let us emphasize that the sort components hA : MA → NA of a homomorphism h : M → N

are total functions, rather than partial functions. One could theoretically choose to work
with other notions of homomorphism, but for our purposes we have chosen to use the total
homomorphisms. When working with homomorphisms we often suppress the sort subscripts.
The T-models and their homomorphisms then form a category Tmod, which is complete and
cocomplete.

▶ Definition 4. A morphism of theories ρ : T → S consists of a mapping A 7→ ρ(A) from the
sorts of T to the sorts of S and a mapping f 7→ ρ(f) from the function symbols of T to the
terms of S that preserves both typing and provability.

When ρ : T → S is a morphism of theories, we have an induced functor ρ∗ : Smod → Tmod
by [8, Proposition 28]. This functor ρ∗ sends an S-model M to the T-model ρ∗M with
(ρ∗M)A := Mρ(A) for each sort A of T and fρ∗M := ρ(f)M for each function symbol f of T.

FSCD 2021



26:6 Polymorphic Automorphisms and the Picard Group

In particular, for every sort A of T there is a forgetful functor UA : Tmod → Set sending
a model M to the carrier set MA (induced by the theory morphism from the single-sorted
empty theory to T that sends the unique sort of the former theory to the sort A). Each
such functor also has a left adjoint FA (see e.g. [8, Theorem 29]), giving for a set X the free
T-model FA(X) generated by X: FA ⊣ UA : Set ⇄ Tmod.

▶ Definition 5. For a T-model M , we can form the extension T(M), the diagram theory of
M , adapted from ordinary model theory [13]. It is the extension of T by

A constant a : A and an axiom ⊤ ⊢ a ↓ for every element a ∈ MA (for every sort A).
An axiom ⊤ ⊢ f(a1, . . . , ak) = f(a1, . . . , ak) for every function symbol
f : A1 × · · · ×Ak → A and tuple (a1, . . . , ak) ∈ dom

(
fM

)
.

For better readability, we will generally omit the bar notation on constants of M . Clearly
M is a model of T(M), and in fact it is the initial model: T(M)mod ≃ M/Tmod (see [9,
Lemma 2.2.4] for a proof). The obvious theory morphism T → T(M) corresponds to the
forgetful functor M/Tmod → Tmod.

One of the central constructions in the present paper is that of adjoining an indeterminate
to a model. Given a T-model M and a sort A of T, we form a new model M⟨xA⟩ which
is the result of freely adjoining a new element xA of sort A to M . Formally, one can
define M⟨xA⟩ as M + FA(1), where FA(1) is the free T-model on one generator of sort A.
Consequently, homomorphisms M⟨xA⟩ → N are in natural bijective correspondence with
pairs (h, n) consisting of a homomorphism h : M → N and an element n ∈ NA. We will
write T(M, xA) for the theory extending the diagram theory T(M) by a new constant xA : A
and a new axiom ⊤ ⊢ xA ↓. One can then equivalently define the T-model M⟨xA⟩ as the
initial model of T(M, xA). For a sequence of (not necessarily distinct) sorts A1, . . . , Ak, we
will also write T(M, x1, . . . , xk) for the theory extending T(M) by new, pairwise distinct
constants xi : Ai and axioms ⊤ ⊢ xi ↓ for each 1 ≤ i ≤ k.

Finally, we note that for a T-model M , an indeterminate xA of sort A, and an arbitrary
sort B, we have

M⟨xA⟩B = {t ∈ Termc (T(M), xA) | t : B and T(M, xA) ⊢ t ↓} /=, (3)

i.e. the carrier set M⟨xA⟩B of the T-model M⟨xA⟩ at the sort B is the quotient of the set
of provably defined closed terms of sort B, possibly containing xA and constants from M ,
modulo the partial congruence relation of T(M, xA)-provable equality. For more details, see
[9, Remark 2.2.7].

3 Isotropy

We now embark on the syntactic description of the covariant isotropy group of a theory.
First, let us briefly review the simpler situation of a single-sorted equational theory T. That
is, we describe the isotropy group of a T-model M (details are in [6]). The elements of the
model M⟨x⟩ (for x an indeterminate) can be described explicitly as congruence classes of
terms t(x), built from the indeterminate x, constants from M , and the operation symbols of
T. Two such terms are congruent if they are T(M, x)-provably equal. For example, if T is
the theory of monoids and M is a monoid with m1,m2,m3 ∈ M , unit e, and m1m2 = m3,
then the terms t = xm1xm1m2x and xem1exem3x are congruent.

For a set-theoretic T-model M , each congruence class [t] ∈ M⟨x⟩ can be interpreted as a
function tM : M → M , via substitution into the indeterminate x. We thus have a mapping

M⟨x⟩ → [M,M ] ; [t] 7→ tM
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where [M,M ] is the set of functions from M to itself (well-definedness follows from soundness
of the set-theoretic semantics of equational logic). Moreover, this mapping is a homomorphism
of monoids, where the monoid structure on M⟨x⟩ is given by substitution: [t] · [s] := [t[s/x]],
the unit being [x]. We then restrict on both sides to the invertible elements, obtaining a
group homomorphism Inv(M⟨x⟩) → Perm(M) from the group of substitutionally invertible
(congruence classes of) terms to the permutation group of the set M . However, we do not
wish to just consider arbitrary permutations of the set M , but rather automorphisms of the
T-model M ; in fact, we want to consider inner automorphisms, i.e. automorphisms that
extend naturally along any homomorphism M → N . On the level of terms [t] ∈ M⟨x⟩, this
is achieved by the following definition: [t] is said to commute generically with a function
symbol f : An → A (A being the unique sort of T) if

T(M, x1, . . . , xn) ⊢ t[f(x1, . . . , xn)/x] = f(t[x1/x], . . . , t[xn/x]).

We then form the subgroup DefInn(M) of Inv(M⟨x⟩) on those [t] that commute generically
with all function symbols of the theory. This ensures that such a [t] induces an automorphism
of the T-model M and not merely a permutation of its underlying set, thus yielding a
mapping (−)M : DefInn(M) → Aut(M). However, it turns out that such an automorphism
induced by an element of DefInn(M) is also inner. Indeed, given h : M → N , we obtain
a homomorphism h⟨x⟩ : M⟨x⟩ → N⟨x⟩ of the substitution monoids, which restricts to a
group homomorphism DefInn(M) → DefInn(N). It can then be shown that the subgroup
DefInn(M) is isomorphic to the covariant isotropy group of M , where θM : Z(M) → Aut(M)
is the comparison homomorphism (2):

DefInn(M)

(−)M

��

⊆
// Inv(M⟨x⟩)

(−)M

��

Z(M)

∼=
99r

r
r

r
r

θM

// Aut(M)
⊆
// Perm(M)

We now explain how to extend this result to a (multi-sorted) quasi-equational theory T. The
main technical difficulties in this extension involve accommodating multi-sortedness and the
possibility of certain terms not being provably defined. To handle multi-sortedness, we need
to consider, for a T-model M , the model M⟨xA⟩ obtained by adjoining an indeterminate
xA of sort A for any sort A of T. Since substitution corresponds to composition under the
interpretation mapping t 7→ tM , it follows that M⟨xA⟩A carries a monoid structure (recall (3)
for the definition of this set), defined as before in terms of substitution into the indeterminate
xA. We now write

M⟨x̄⟩ :=
∏

A:Sort
M⟨xA⟩A

for the sort-indexed product monoid of these substitution monoids. An element of
M⟨x̄⟩ is therefore a sort-indexed family of congruence classes of terms [sA]A, where
sA ∈ Termc(T(M), xA) is of sort A and T(M, xA) ⊢ sA ↓. Given such a tuple [sA]A,
its interpretation gives us, at each sort A, a total function sM

A : MA → MA (because sA is
provably defined in T(M, xA)), defined via substitution into the indeterminate xA (cf. [9,
Remark 2.2.12]). The central definitions towards characterizing those [sA]A ∈ M⟨x̄⟩ that
induce elements of isotropy for M are then as follows:

▶ Definition 6. Let M be a T-model and [sC ]C ∈ M⟨x̄⟩.
If f : A1 × . . .×An → A is a function symbol of Σ, then we say that ([sC ])C commutes
generically with f if the Horn sequent

f(x1, . . . , xn) ↓ ⊢ sA[f(x1, . . . , xn)/xA] = f (sA1 [x1/xA1 ], . . . , sAn
[xn/xAn

])

is provable in T(M, x1, . . . , xn).

FSCD 2021



26:8 Polymorphic Automorphisms and the Picard Group

We say that ([sC ])C is invertible if for each sort A there is some
[
s−1

A

]
∈ M⟨xA⟩A with

T(M, xA) ⊢ sA

[
s−1

A /xA

]
= xA = s−1

A [sA/xA].

We say that ([sC ])C reflects definedness if for every function symbol f : A1 × . . .×An → A

in Σ with n ≥ 1, the sequent

f (sA1 [x1/xA1 ], . . . , sAn
[xn/xAn

]) ↓ ⊢ f(x1, . . . , xn) ↓

is provable in T(M, x1, . . . , xn).
The condition that [sC ]C commutes generically with the function symbols of T then en-
sures that [sC ]C induces not just an endofunction of each carrier set MC but in fact an
endomorphism of the T-model M . Invertibility of [sC ]C then ensures that these endomor-
phisms are bijective. However, due to the fact that function symbols are interpreted as
partial maps, a (sortwise) bijective homomorphism is not in general an isomorphism in Tmod:
a bijective homomorphism is an isomorphism precisely when it also reflects definedness (cf.
[9, Lemma 2.2.33]). Thus, the third condition ensures that the inverses

[
s−1

A

]
also induce

endomorphisms.
Let us write DefInn(M) again for the subgroup of the product monoid M⟨x̄⟩ consist-

ing of those elements satisfying the three conditions above. We then have the following
characterization, of which detailed proofs can be found in [9, Theorems 2.2.41, 2.2.53]:

▶ Theorem 7. Let T be a quasi-equational theory. Then for any M ∈ Tmod we have

Z(M) ∼= DefInn(M) =
{

[sC ]C ∈ M⟨x̄⟩ [sC ]C
is invertible, commutes generically with
all operations, and reflects definedness.

}
.

4 Monoidal categories and the Picard group

With this description of the isotropy group of an arbitrary quasi-equational theory, we now
turn to the specific example of strict monoidal categories. We can axiomatize these using the
following signature Σ (where the first two ingredients comprise the signature for categories):

two sorts O and A (for objects and arrows);
function symbols dom, cod : A → O, id : O → A, and ◦ : A×A → A;
function symbols ⊗O : O ×O → O, ⊗A : A×A → A;
constant symbols IO : O and IA : A.

Whenever reasonable, we omit the subscripts on ⊗ and I. As axioms, we take those for
categories and add (omitting the hypothesis ⊤):

x⊗ y ↓, I ↓,
x⊗ (y ⊗ z) = (x⊗ y) ⊗ z, x⊗ I = x = I ⊗ x,
dom(f ⊗ g) = dom(f) ⊗ dom(g), cod(f ⊗ g) = cod(f) ⊗ cod(g),
f ◦ h ↓ ∧ g ◦ k ↓ ⊢ (f ⊗ g) ◦ (h⊗ k) = (f ◦ h) ⊗ (g ◦ k),
id(x⊗ y) = id(x) ⊗ id(y), id(IO) = IA.

Note that in this fragment of logic, we need to include axioms forcing the tensor products
and unit object to be total operations. Because of strict associativity, we may omit brackets
when dealing with nested expressions involving tensor products. We shall henceforth denote
this theory by T, and write StrMonCat for its category of models, whose objects are small
strict monoidal categories and whose morphisms are strict monoidal functors. Our goal is
now to prove the following:
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▶ Theorem 8. The covariant isotropy group Z : StrMonCat → Grp is naturally isomorphic
to the functor Pic : StrMonCat → Grp that sends a strict monoidal category C to its Picard
group Pic(C), i.e. the group of ⊗-invertible elements in the monoid of objects of C.

Because a strict monoidal category is a monoid object in Cat, we have two functors

Ob,Arr : Cat(Mon) = StrMonCat ⇒ Mon.

We shall ultimately prove that the diagram

StrMonCat Ob //

Z
%%K

KKK
KKK

KKK
Mon

ZMon||yy
yy
yy
yy

Grp

(4)

commutes up to natural isomorphism, showing that the covariant isotropy group of StrMonCat
is completely determined by the covariant isotropy group of Mon. Since we have proved
in [6, Example 4.3] that the latter sends a monoid M to its subgroup of invertible elements,
Theorem 8 then follows.5

4.1 Monoidal categories and indeterminates
In this section we analyse the process of adjoining an indeterminate to a strict monoidal
category. Let us first describe explicitly the result of adjoining an indeterminate to a monoid.

▶ Definition 9. Let M be a monoid, and X a set of symbols disjoint from M .
A word over M⟨X⟩ is formal string of symbols from the alphabet M ∪X.
A word w is in (expanded) normal form when it has the form w ≡ m0x0m1x1 · · ·xn−1mn

for mi ∈ M and xj ∈ X. In other words, w is in expanded normal form if it contains no
two consecutive elements of M , and if every occurrence of some x ∈ X in w is flanked on
both sides by an element of M .

We then have (by taking an arbitrary word, multiplying adjacent elements from M and
inserting the unit of M wherever necessary):

▶ Lemma 10. When M = (M, ·, e) is a monoid, every element w of the monoid M⟨x⟩ has a
canonical representative w = m0xm1x · · · xmn in expanded normal form.

Moreover, the unit of M⟨x⟩ is represented as the word e and multiplication is given by
(m0xm1x · · · xmj) · (m′

0xm′
1x · · · xm′

k) = m0xm1x · · · x(mj ·m′
0)xm′

1 · · · xm′
k.

We now turn to the process of adjoining an indeterminate object xO, i.e. an indeterminate
of sort O, to a strict monoidal category C. In order to determine the objects of C⟨xO⟩, we
note that the functor Ob : StrMonCat → Mon has both adjoints:

StrMonCat Ob
⊥
⊥

// Mon
∆

rr

∇
ll

Here ∆ sends a monoid M to the discrete strict monoidal category on M and ∇ sends M to
the indiscrete strict monoidal category on M . In fact, if E is any category with finite limits,

5 For a general functor F : E → F it is not the case that ZE ∼= ZF ◦ F . In fact, in [3] it is explained that
in general the relationship between ZE and ZF ◦ F takes the form of a span. The commutativity of (4)
may thus be expressed by saying that both legs of the span associated with Ob are isomorphisms.
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26:10 Polymorphic Automorphisms and the Picard Group

then the forgetful functor Ob : Cat(E) → E has both adjoints (the proof is a completely
straightforward analogue of the argument for E = Set). As such, Ob : StrMonCat → Mon
preserves all limits and colimits. Now by definition C⟨xO⟩ ∼= C + F1, where F1 is the
free strict monoidal category on a single object; moreover, the latter is easily seen to be
isomorphic to ∆(F1), the discrete strict monoidal category on the free monoid F1 on one
generator. We thus have

Ob(C⟨xO⟩) ∼= Ob(C + F1) ∼= Ob(C) + Ob(F1) = Ob(C) + F1 ∼= Ob(C)⟨x⟩.

This shows that the object forgetful functor preserves the process of adjoining an indeterminate
of sort O.6

We now describe the monoid of arrows of C⟨xO⟩. It is not true that Arr : StrMonCat →
Mon preserves arbitrary binary coproducts, but it does preserve the specific binary coproduct
C + F1:

▶ Lemma 11. If C ∈ StrMonCat, then Arr(C⟨xO⟩) ∼= Arr(C)⟨x⟩.

Proof. We sketch a syntactic proof, noting that the result can also be deduced categorically
from the fact that the endofunctor − + F1 : Mon → Mon preserves pullbacks.

An element of Arr(C⟨xO⟩) is a congruence class of terms t built up from the operations
of T, arrows of C, and the term id(xO). One can show by induction that every such term t is
congruent to one of the form t = f1 ⊗ id(xO) ⊗ f2 ⊗ id(xO) ⊗ · · · ⊗ id(xO) ⊗ fn where each fi is
an arrow of C. Thus, the monoid Arr(C⟨xO⟩) is isomorphic, by Lemma 10, to Arr(C)⟨x⟩. ◀

In fact, we may describe the relationship between the functor (−) + F1 adjoining an
indeterminate object to a strict monoidal category and the functor (−) + F1 adjoining an
indeterminate element to a monoid as follows.

▶ Proposition 12. The functor (−) + F1 : Cat(Mon) → Cat(Mon) is naturally isomorphic
to Cat(− + F1).

We thus obtain the following explicit description of the strict monoidal category C⟨xO⟩:

Objects: Words a1xa2x · · · xan where each ai is an object of C.
Morphisms: Words f1xf2x · · · xfn where each fi is an arrow of C.
Domain: dom(f1x · · · xfn) = dom(f1)x · · · xdom(fn).
Codomain: cod(f1x · · · xfn) = cod(f1)x · · · xcod(fn).
Identities: id(a1x · · · xan) = id(a1)x · · · xid(an).
Composition: (f1x · · · xfn) ◦ (g1x · · · xgn) = f1g1x · · · xfngn.
Tensors: (a1x · · · xan) ⊗ (b1x · · · xbm) = a1x · · · x(an ⊗ b1)x · · · xbm.
Tensor units: IO, IA (tensor units of C regarded as one-letter words).

Next, we address the issue of adjoining an indeterminate arrow xA to C. Here we cannot
invoke a simple categorical fact about coproducts, because Arr : StrMonCat → Mon does
not preserve coproducts of the relevant kind (which, to be explicit, is coproducts with the
free strict monoidal category F2, where 2 is the free-living arrow). We are thus forced to
carry out a direct syntactic analysis of the objects and arrows of C⟨xA⟩. Note that these are
generated, under the operations of domain, codomain, identities, composition, and tensor

6 Note that for a functor ρ∗ : Smod → Tmod induced by a theory morphism ρ : T → S it is not in general
the case that ρ∗(M⟨x⟩) ∼= (ρ∗M)⟨x⟩.
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product, from the objects and arrows of C, together with the new arrow xA. In particular,
there will be two new objects dom(xA) and cod(xA), and corresponding identity arrows
id(dom(xA)), id(cod(xA)).

▶ Definition 13. Let C ∈ StrMonCat. A closed term t ∈ Termc(C, xA) of sort O is in normal
form when it is of the form t = a1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ ak, where each ai is an object of C
and each xi ∈ {dom(xA), cod(xA)}. A closed term t ∈ Termc(C, xA) of sort A is in normal
form when it is of the form t = f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk, where each fi is an arrow of C and
each xi ∈ {xA, id(dom(xA)), id(cod(xA))}.

We may now describe C⟨xA⟩ in terms of normal forms. It is straightforward to prove,
by directly verifying the universal property, that the category described below is indeed
isomorphic to C⟨xA⟩. Alternatively, one can endow the set {t ∈ Termc(C, xA) | T(C, xA) ⊢ t ↓}
with a rewriting system and show that each term has a unique normal form.

Objects: closed terms of sort O in normal form.
Arrows: closed terms of sort A in normal form.
Domain: dom(f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk) = dom(f1) ⊗ y1 ⊗ · · · ⊗ yk−1 ⊗ dom(fk) where

yi = dom(xA) when xi = xA or xi = id(dom(xA)), and yi = cod(xA) otherwise.
Codomain: cod(f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk) = cod(f1) ⊗ y1 ⊗ · · · ⊗ yk−1 ⊗ cod(fk) where

yi = cod(xA) when xi = xA or xi = id(cod(xA)), and yi = dom(xA) otherwise.
Identities: id(a1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ ak) = id(a1) ⊗ id(x1) ⊗ · · · ⊗ id(xk−1) ⊗ id(ak).
Composition: For t = f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk and s = g1 ⊗ x′

1 ⊗ · · · ⊗ x′
k−1 ⊗ gk with

cod(t) = dom(s), define s ◦ t = (g1f1) ⊗ z1 ⊗ · · · ⊗ · · · ⊗ zk−1 ⊗ (gkfk), where zi is defined
from xi and x′

i in the evident way.
Tensors: (a1 ⊗ x1 ⊗ · · · ⊗ xn−1 ⊗ an) ⊗ (b1 ⊗ y1 ⊗ · · · ⊗ ym−1 ⊗ bm) =
a1 ⊗ x1 ⊗ · · · ⊗ xn−1 ⊗ (an ⊗ b1) ⊗ y1 ⊗ · · · ⊗ ym−1 ⊗ bm.

Tensor units: IO, IA (tensor units of C regarded as one-letter words).

4.2 Isotropy group
We are now in a position to analyse the isotropy group of a strict monoidal category. By
the results of the previous section, we know that an element of isotropy of a strict monoidal
category C may be taken to be of the form (sO, sA), where sO and sA are closed terms in
normal form of sort O and A respectively.

The first observation is that elements of isotropy of the monoid Ob(C) induce elements
of isotropy of C (as we shall see in the next section, this is not specific to strict monoidal
categories.) In what follows, we write Z(C) for the isotropy group of a strict monoidal
category C, and ZMon(M) for the isotropy group of a monoid M (which is the group of
invertible elements of M by [6, Example 4.3]).

▶ Lemma 14. Let C ∈ StrMonCat. When a is an invertible object in the monoid Ob(C) with
inverse b, the pair (a⊗ xO ⊗ b, id(a) ⊗ xA ⊗ id(b)) is an element of Z(C).

Proof. To show that (a ⊗ xO ⊗ b, id(a) ⊗ xA ⊗ id(b)) is an element of isotropy, one can
straightforwardly verify that it is invertible, commutes generically with all operations of T,
and reflects definedness (for details, see [9, Proposition 3.9.35]). However, it is less work to
show directly that given a strict monoidal functor F : C → D, we obtain an automorphism
αF of D as follows. On objects we set αF (d) = Fa ⊗ d ⊗ Fb, while on arrows we set
αF (f) = id(Fa) ⊗ f ⊗ id(Fb). It is routine to check that this defines an automorphism and
that the family αF is natural in F . ◀
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26:12 Polymorphic Automorphisms and the Picard Group

The above lemma gives us a mapping θC : ZMon(Ob(C)) → Z(C). It is easily verified
that this is in fact a group homomorphism, natural in C.

Next, we define a retraction σ of θ. This is done categorically using the right adjoint
∇ to Ob. Concretely, given an element of isotropy α ∈ Z(C), we define an element
σC(α) ∈ ZMon(Ob(C)) as follows: consider a monoid homomorphism h : Ob(C) → N . This
corresponds by the adjunction Ob ⊣ ∇ to a strict monoidal functor h̃ : C → ∇(N); the
component of α at h̃ is an automorphism of ∇(N), whence Ob (αh̃) is an automorphism of
N (using the fact that Ob ◦ ∇ = 1). This leads to:

▶ Lemma 15. If C ∈ StrMonCat, the map σC : Z(C) → ZMon(Ob(C)) is a group homomor-
phism.

Interpreting this syntactically, we find that if (sO, sA) ∈ Z(C), then sO ∈ ZMon(Ob(C)),
and hence sO = a⊗ xO ⊗ b for an invertible object a with inverse b. We also see that σC is a
retraction of θC, i.e. that σC ◦ θC = 1.

Since θC is a section, it now remains to show that θC is an epimorphism of groups, i.e. is
surjective. So we must show for any element of isotropy (sO, sA) = (a⊗ xO ⊗ b, sA) ∈ Z(C)
(with invertible object a and inverse b) that we have sA = id(a) ⊗ xA ⊗ id(b). To this end, we
first note that since (sO, sA) commutes generically with the operations dom and cod we get

a⊗ dom(xA) ⊗ b = sO[dom(xA)/xO] = dom(sA)

and likewise

a⊗ cod(xA) ⊗ b = sO[cod(xA)/xO] = cod(sA).

Thus, by uniqueness of normal forms, sA must have the form f ⊗ xA ⊗ g for some morphisms
f : a → a and g : b → b of C. So we must now show that f = id(a) and g = id(b), and for
that we use the fact that (sO, sA) commutes generically with id, giving

f ⊗ id(xO) ⊗ g = sA[id(xO)/xA] = id(sO) = id(a⊗ xO ⊗ b) = id(a) ⊗ id(xO) ⊗ id(b).

We now get the desired equalities f = id(a) and g = id(b) by appealing to the uniqueness of
normal forms. This concludes the proof of Theorem 8.

5 Further examples and applications

In this section we briefly explore some further theories of interest, and indicate the extent to
which the analysis of the case of strict monoidal categories can be generalized.

5.1 Internal categories
The analysis of strict monoidal categories reveals that it is profitable, at least for the purposes
of understanding isotropy, to regard strict monoidal categories as internal categories in the
category Mon of monoids. This naturally raises the following question: are there other
algebraic theories T for which the forgetful functor Ob : Cat(Tmod) → Tmod induces an
isomorphism on the level of isotropy groups?

Let us first state which of the ideas from the case of monoids carry over to a general
algebraic theory T. First of all, we still have a string of adjunctions
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Cat(Tmod) Ob
⊥
⊥

// Tmod
∆

rr

∇
ll

with Ob ◦ ∇ ∼= 1 ∼= Ob ◦ ∆, since Tmod has finite limits. This allows us to deduce the
existence of a pair of natural comparison homomorphisms

θC : ZT(Ob(C)) → Z(C) ; σC : Z(C) → ZT(Ob(C))

with σ ◦ θ = 1 (here Z denotes the isotropy of Cat(Tmod) and ZT that of Tmod). We thus
have:

▶ Lemma 16. Let T be any algebraic theory and C any internal category in Tmod. Then
ZT(Ob(C)) is a retract of Z(C), naturally in C.

In the case of strict monoidal categories, we were able to prove syntactically that the
embedding-retraction pair (θ, σ) is an isomorphism. The same proof can also be applied
in at least two other cases of interest. Recall that a crossed module (A,G, δ, a) consists of
a pair of groups A,G, a group homomorphism δ : A → G, and a group homomorphism
a : G → Aut(A) from G to the automorphism group of A, making certain diagrams commute.
If XMod denotes the category of crossed modules and their morphisms, then it is also true
that XMod is equivalent to the category Cat(Grp) of internal categories in Grp (cf. e.g. [7,
XII.8]).

▶ Proposition 17. The isotropy group of a crossed module (A,G, δ, a) is isomorphic to G.

Proof. When composing the functor Ob : Cat(Grp) → Grp with the equivalence XMod ∼−→
Cat(Grp), one obtains the forgetful functor which sends a crossed module (A,G, δ, a) to G.
Moreover, the isotropy group of a group G is G itself by [6, Example 4.1]. ◀

▶ Proposition 18. The covariant isotropy group Z : StrSymMonCat → Grp of strict sym-
metric monoidal categories is constant, with value the trivial group.

Proof. The isotropy group of commutative monoids is trivial by [6, Example 4.4]. ◀

We want to emphasize that the preceding proposition is not inconsistent with Theorem 8:
while Theorem 8 asserts that the covariant isotropy group of a strict symmetric monoidal
category C in the category StrMonCat is isomorphic to its Picard group (which may be
non-trivial), the preceding proposition asserts that the covariant isotropy group of C in the
full subcategory StrSymMonCat is trivial. In other words, if A is a full subcategory of B, with
covariant isotropy groups ZA : A → Grp and ZB : B → Grp, then ZA(A) may differ from
ZB(A) for an object A in the full subcategory A.

5.2 Presheaf categories
Using Theorem 7, we can also compute the covariant isotropy of any presheaf category
SetJ for a small category J . We first axiomatize SetJ as the category of models of a
quasi-equational theory.

▶ Definition 19 (Presheaf Theory). Let J be a small category. We define the signature
ΣJ to have one sort Xi for each i ∈ Ob(J ) and one function symbol αf : Xi → Xj for each
arrow f : i → j in J .

We define the presheaf theory TJ to be the quasi-equational theory over the signature
ΣJ with the following axioms:
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⊤ ⊢x:Xi αf (x) ↓ for any f : i → j in J (i.e. each αf is total).
⊤ ⊢x:Xi αidi

(x) = x for every i ∈ Ob(J ) (i.e. each αidi
acts as an identity).

⊤ ⊢x:Xi αg(αf (x)) = αg◦f (x) for any composable pair i f−→ j
g−→ k in J .

We will lighten notation and write i instead of Xi and f instead of αf . We write xi for an
indeterminate of sort i. It is completely straightforward to verify that we have an isomorphism
of categories TJ mod ∼= SetJ (for details, see [9, Proposition 5.1.8]). So to compute the
covariant isotropy group ZSetJ : SetJ → Grp of the category SetJ , it is equivalent to compute
the covariant isotropy group ZTJ : TJ mod → Grp of the theory TJ .

According to Theorem 7, we have for a TJ -model (i.e. a functor) F : J → Set that

Z(F ) ∼=

{
[si]i ∈

∏
i∈J

F ⟨xi⟩i | [si]i is invertible and commutes gen. with all f : i → j

}
.

Note that since all terms are provably defined in TJ , we can omit the condition that [si]i
reflects definedness. We now require the following preparatory lemma.

▶ Lemma 20. Let M ∈ TJ mod. If f, f ′ : i → j are parallel arrows in J and TJ (M, xi) ⊢
f(xi) = f ′(xi), then f = f ′.

Proof. The assumption TJ (M, xi) ⊢ f(xi) = f ′(xi) implies that for any homomorphism (i.e.
natural transformation) η : M → N in SetJ we have N(f) = N(f ′), since given any a ∈ Ni

there is a homomorphism [η, a] : M⟨xi⟩ → N sending xi to a (cf. also [9, Lemma 3.1.2]). We
now take N : J → Set to be N := M + J (i,−) and η to be the coproduct inclusion. Then
f = f ◦ id(i) = N(f)(id(i)) = N(f ′)(id(i)) = f ′ ◦ id(i) = f ′, as required. ◀

As a consequence of this lemma, we find that any term congruence class [t] ∈ M⟨xi⟩ has
a unique representation as t ≡ a for some a ∈ Mj or t ≡ f(xi) for some f with domain i,
depending on whether the indeterminate xi occurs in t.

Let Aut(IdJ ) be the group of natural automorphisms of the identity functor IdJ : J → J
of a small category J , which is sometimes called the center of J . We now have:

▶ Proposition 21. Let J be a small category. For any M ∈ TJ mod we have

Z(M) =
{

([ψi(xi)])i ∈
∏
i∈J

M⟨xi⟩i : ψ ∈ Aut(IdJ )
}
.

Proof. It is straightforward to prove the right-to-left inclusion using the assumption that ψ
is a natural automorphism of IdJ , so let us turn to the less obvious converse inclusion. So
suppose that ([si])i∈J ∈ Z(M) ⊆

∏
i M⟨xi⟩i. By the lemma, as well as the fact that invertible

terms must contain the indeterminate, we may represent si = ψi(xi), where ψi : i → i is a map
in J . We show that ψ := (ψi)i∈J is a natural automorphism of IdJ . First, each ψi : i → i

is an isomorphism: take the inverse ([ti])i of ([si])i, and represent this inverse as χi(xi) for
χi : i → i. Since TJ (M, xi) then proves the equations (ψi ◦χi)(xi) = ψi(χi(xi)) = xi = idi(xi)
and (χi ◦ ψi)(xi) = idi(xi), it follows by Lemma 20 that ψi is the inverse of χi.

To show that ψ is natural, let f : j → k be any arrow in J , and let us show that
ψk ◦ f = f ◦ ψj . We know that ([ψi(xi)])i = [si]i commutes generically with the function
symbol f : Xj → Xk of ΣJ , which implies that TJ (M, xj) ⊢ (ψk ◦ f)(xj) = (f ◦ψj)(xj), from
which we obtain the required ψk ◦ f = f ◦ ψj again by Lemma 20. Thus ψ : IdJ

∼−→ IdJ is
indeed a natural automorphism with ([si])i = ([ψi(xi)])i. ◀
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▶ Corollary 22. Let J be a small category. For any functor F : J → Set we have
Z(F ) ∼= Aut (IdJ ), and hence the covariant isotropy group functor of SetJ is constant on the
automorphism group of IdJ .

Proof. Given ([si])i∈J ∈ Z(F ), we know by Proposition 21 that there is some ψ ∈ Aut(IdJ )
with [si]i = [ψi(xi)]i. We now show that this assignment ([si])i 7→ ψ is a well-defined group
isomorphism Z(F ) ∼−→ Aut(IdJ ). It is well-defined, because if there is also some χ ∈ Aut(IdJ )
with [si]i = [ψi(xi)]i = [χi(xi)]i, then from Lemma 20 we obtain ψ = χ. It is clearly injective,
it is surjective by Proposition 21, and it is readily seen to preserve group multiplication, so
that it is indeed a group isomorphism. ◀

We can now use Corollary 22 to characterize the covariant isotropy groups of certain presheaf
categories of interest.

▶ Proposition 23. If M is a monoid, then the covariant isotropy group Z : SetM → Grp
of the category of M -sets and M -equivariant maps is constant on Inv(Z(M)), the subgroup
of invertible elements of the center of M . In particular, if G is a group, then the covariant
isotropy group Z : SetG → Grp is constant on Z(G).

Proof. The result follows immediately from Corollary 22 and the observation that the
automorphism group of the identity functor on the monoid M , regarded as a one-object
category, is isomorphic to Inv(Z(M)). ◀

▶ Proposition 24. Let J be a rigid category, i.e. a category whose objects have no non-
identity automorphisms (e.g. J could be a preorder or poset). Then the covariant isotropy
group Z : SetJ → Grp is trivial.

We point out that Corollary 22 illustrates an important difference between covariant
isotropy SetJ → Grp and contravariant isotropy

(
SetJ

)op
→ Grp. Indeed, the latter is

generally not constant, but is a representable functor F 7→ SetJ [F,Z] for a suitable presheaf
of groups Z, that is, an internal group object in SetJ . The connection between covariant
and contravariant isotropy is then as follows: the group of global sections of Z is isomorphic
to the group Aut(IdJ ):

Γ(Z) = SetJ (1, Z) ∼= Z(F ) for F : J → Set.

6 Conclusions and future work

We have shown how a syntactic description of polymorphic automorphisms can be fruitfully
applied to characterize the covariant isotropy of several kinds of structures of relevance
in logic, algebra, and computer science. Most notably, we have shown that the covariant
isotropy group of a strict monoidal category coincides with its Picard group of ⊗-invertible
objects. We have also shown that the covariant isotropy group of a presheaf category SetJ

behaves quite differently from the contravariant one, in that it is the constant group with
value Aut(IdJ ).

There are several open questions and possible lines for further inquiry:

1. The generalization from algebraic to quasi-equational theories presented in this paper is
the first step on a path upwards through the various fragments of logic. In particular,
we hope to generalize some of the techniques to determine the isotropy groups of some
geometric theories of interest.
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2. We have shown how to determine the covariant isotropy groups of presheaf categories,
but we have left open the question of how to determine the isotropy of sheaf toposes.
In particular, it would be of interest to determine the covariant isotropy of the topos of
nominal sets (also known as the Schanuel topos).

3. For a theory T and small category J , there is a theory S = S(T,J ) with Smod ∼= TmodJ

(in Section 5.2 we considered the special case where T is the theory of sets). In [9, Chapter
5] the second author has obtained, under mild assumptions on T, a description of the
covariant isotropy group of TJ mod in terms of Aut(IdJ ) and the isotropy group of T.

4. We have not yet investigated in detail how isotropy behaves with respect to morphisms of
theories ρ : T → S. We have seen a rather special case in Section 4 with Ob : StrMonCat →
Mon, but the general case is more involved.

5. One possible perspective on the theory of strict monoidal categories is that it is a tensor
product of the theory of categories with that of monoids. This leads to the question of
whether, under suitable hypotheses on the theories T and S, we can describe the isotropy
of the tensor product theory T ⊗ S in terms of that of T and S.

6. One can define, for a 2-category E and object X ∈ E , the 2-group of pseudo-natural
auto-equivalences of X/E → E . This leads to a 2-dimensional version of isotropy, taking
values in 2-groups. It is then possible to show that the 2-isotropy group of a (non-strict)
monoidal category (regarded as an object of the 2-category of monoidal categories and
strong monoidal functors) is the Picard 2-group. This will be presented in forthcoming
work.
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