
The Expressive Power of One Variable Used Once:
The Chomsky Hierarchy and First-Order Monadic
Constructor Rewriting
Jakob Grue Simonsen !

Department of Computer Science, University of Copenhagen, Denmark

Abstract
We study the implicit computational complexity of constructor term rewriting systems where
every function and constructor symbol is unary or nullary. Surprisingly, adding simple and natural
constraints to rule formation yields classes of systems that accept exactly the four classes of languages
in the Chomsky hierarchy.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Equational logic and rewriting; Theory of computation → Computability

Keywords and phrases Constructor term rewriting, Chomsky Hierarchy, Implicit Complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.5

Acknowledgements I wish to thank the anonymous referees for diligent comments that have helped
improve the presentation of the paper.

1 Introduction

A natural means of studying the expressive power of declarative programming languages
is via constructor term rewriting systems; In these, the set of symbols are partitioned into
defined symbols and constructor symbols, the former representing function names, and the
latter representing data constructors.

The study of implicit complexity for a class of rewrite systems is, roughly, the study of
the set of problems that can be accepted, decided, or otherwise characterized by the class.
Implicit complexity has been studied extensively in functional programming (see – amongst
many others – [4, 18, 22]), and in term rewriting [3, 2, 9, 19, 8].

In this paper, we study the implicit complexity of constructor term rewriting systems
where all function and constructor symbols are restricted to have arity at most one (monadic
systems); the rewriting systems are characterized according to the computational complexity
of the constructor terms they accept. Unsurprisingly, the most general class of monadic
systems accept the entire class of recursively enumerable sets. However, imposing simple and
natural restrictions leads to exact characterization of the three other classes in the Chomsky
hierarchy [7]: Context-sensitive, context-free, and regular languages. The results hold for the
unrestricted rewriting relation, that is, we impose no evaluation order, and no typing beyond
partitioning into sets of defined symbols and constructor symbols.

The restrictions we impose echo the usual intuition about classes in the Chomsky hierarchy:
R.e. languages are accepted by Turing machines (finite state + two stacks), context-free
languages by PDAs (finite state + one stack), regular languages by DFAs (finite state
+ no stacks), and context-sensitive languages by LBAs (finite-state + two stacks with a
boundedness condition). The novel bits are that (i) we do not enforce machine-like restrictions
on the rewrite relation (e.g., rewriting is not required to be innermost), and (ii) that both
the encoding of the stacks and the behaviour of tail vs. general recursion have to be done
with some finesse.

© Jakob Grue Simonsen;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simonsen@diku.dk
https://doi.org/10.4230/LIPIcs.FSCD.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

Classes:
Type Restriction on rules

l → r

Example(s) of rule(s) Expressive power

Unrestricted None f(c(x)) →
g(h((a(d(x)))))

RE

Non-length-
increasing

|r| ≤ |l| f(c(d(x))) →
g(h(a(x)))

CSL

(Strongly) cons-free No constructor sym-
bols in r

f(c(x)) → g(h(x)),
f(c(d(x))) → x

CFL

(Strongly) cons-free &
tail recursive

cons-free, and the or-
der of defined symbols
in r respect a certain
preorder

f(c(x)) → g(x),
f(x) → f(g(h(x))
(with f not appearing
below g or h in the
rhs of any rule with g

or h in the lhs)

REG

Figure 1 Classes of monadic constructor TRSs and the classes of sets they accept.

Figure 1 gives an overview of the four classes of systems we consider and their relation to
the language classes in the Chomsky hierarchy.

Related work

For characterizing context-free and regular languages, we disallow constructors in the right-
hand side of rules; this idea stems from Jones’ work on the expressive power of higher-
order types in functional programming [18] where a number of complexity classes were
characterized in programs with call-by-value semantics and where functions may have
arbitrary arity. Similar ideas have since been used in rewriting with less strict constraints on
the evaluation order [9, 19], but for symbols with arbitrarily high finite arity. Correspondences
between context-free languages and so-called monadic recursion schemes – essentially function
declarations where all functions and data constructors are unary – were investigated some
40 years ago [14, 11, 10, 12]; the research focused mostly on decidability results, but close
correspondences between monadic programs with very limited data construction abilites and
context-free languages, was established there. Caron [6] proved undecidability of termination
for non-length-increasing TRSs by encoding a certain class of linear bounded automata; we
use a very similar approach to show that non-length-increasing constructor TRSs precisely
accept the context-sensitive languages. Implicit complexity for term rewriting systems has
been investigated in a number of papers; see the references above. Finally, the restriction to
unary and nullary symbols means that all results in the paper can be viewed as concerning an
especially well-behaved class of string rewriting; we refer the reader to [27, 28] for overviews
of the correspondence between string rewriting and rewriting with unary symbols.

2 Preliminaries

We assume a non-empty alphabet, A, of characters and consider languages L ⊆ A+ where
A+ is the set of non-empty strings of characters from A. The empty string over any alphabet
will be denoted ϵ. We presuppose general familiarity with the Chomsky hierarchy, including
the four classes of recursively enumerable languages (RE, type-0), context-sensitive languages
(CSL, type-1), context-free languages (CFL, type-2), and regular languages (REG, type-3).

J. G. Simonsen 5:3

Ample introductions can be found in [15, 26]. For (constructor) term rewriting, we refer
to [27] for basic definitions; we very briefly recapitulate the most pertinent notions in the
below definition.

▶ Definition 1. We assume a denumerably infinite set Var of variables; given a signature Σ
of symbols with non-negative integer arities, we define the set of terms Ter(Σ, Var) over Σ
and Var inductively as usual: Var ⊆ Ter(Σ, Var) and if s1, . . . , sn ∈ Ter(Σ, Var) and f ∈ Σ
has arity n, then f(s1, . . . , sn) ∈ Ter(Σ, Var).

A rule is a pair of terms, written l → r such that l and r are terms with l /∈ Var and such
that every variable occurring in r occurs in l. A term rewriting system (abbreviated TRS) is
a set of rules.

Let Σ = F ∪C where F and C are disjoint sets of defined symbols and constructor symbols,
respectively. A constructor TRS is a TRS where each rule l → r satisfies l = f(t1, . . . , tn)
where f ∈ F and t1, . . . , tn ∈ Ter(C, Var).

A TRS is said to be monadic if the arity of all function and constructor symbols is at
most 1. If R is monadic and l → r is a rule of R, we occasionally write l(x) → r(x) where x

is the unique variable occurring in l and r (and we extend the notation to the case where
there are no variables in l or r – in which case the choice of x does not matter).

A substitution is a partial map θ : Var −→ Ter(Σ, Var). In monadic systems, each term
s contains at most one variable, and we shall write sθ for the term obtained by replacing the
variable x in s by θ(x) (if x ∈ dom(θ)).

A context in a monadic TRS is a term over the variable set Var∪{□} where □ /∈ Σ∪Var;
if C is a context and w is a term, we denote by C[w] the term obtained by replacing the
(unique!) □ in C by w. For s, t ∈ Ter(Σ, Var), we write s → t if there is a context C, a rule
l → r, and a substitution θ such that s = C[lθ] and t = C[rθ], and we call (C, l → r, θ) a
redex in s; The redex is said to be contracted in the step s → t. The position of a redex
is 1k where k is the number of symbols in C (we set 10 = ϵ); we say that the rule l → r is
applied to s at position p. We write →∗ for the reflexive, transitive closure of → and →+ as
the transitive closure. We call s →∗ t a reduction or rewrite sequence.

Two redexes (C, l → r, θ) and (C ′, l′ → r′, θ′) in s = C[lθ] = C ′[l′θ′] overlap if a symbol
in l and a symbol in l′ share the same position in C[lθ] = C ′[l′θ′].

A redex v at position p in s is innermost if, for any redex w at position p′ > p, w overlaps
v (intuitively: v is innermost if no other redex occurs “to the right of v”). The size of a
term s in a monadic TRS is defined by induction as: |s| = 1 if s is a variable or a nullary
function symbol, and |s| = 1 + |s′| if s = g(s′) where g ∈ Σ.

Throughout the paper, we assume that all rewrite systems have a finite set of rules.

▶ Definition 2. Let A be an alphabet and ▷ a nullary constructor symbol. For every a ∈ A,
we associate a unary constructor symbol ã, and we define Ã = ∪a∈A{ã}. For any string
α = a1 · · · an ∈ A+, we associate the constructor term α̃ = ã1(· · · ãn(▷)), and set ϵ̃ = ▷.

▶ Remark 3. Throughout the paper, every term is built from unary or nullary symbols. Hence,
there is a natural correspondence between terms and strings: If f1, . . . , fm are unary symbols
and b is nullary, then f1(f2(· · · fm(b))) corresponds to the string of symbols f1f2 · · · fmb.

▶ Definition 4. Let A be an alphabet and let R be a constructor TRS with Σ = F ∪ C, such
that (Ã ∪ {▷}) ⊆ C where ▷ is a nullary symbol. R is said to accept L ⊆ A+ if there is
a defined symbol f0 ∈ F – the “start function” – such that for every α ∈ A+, there is a
reduction f0(α̃) →∗ ▷ iff α ∈ L.

FSCD 2021

5:4 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

▶ Remark 5. The use of ▷ in f0(α̃) →∗ ▷ can be replaced by a fresh constructor (instead of
the “nil” constructor ▷), or a nullary defined symbol when characterizing the classes RE or
CSL. For CFL and RE, we consider systems where rules cannot contain any constructors in
the right-hand side; there, acceptance by ▷–the last constructor in the representation α̃ of
any string α ∈ A+–is completely natural (it could wlog. be replaced by introducing rules of
the form f(▷) → h with h a nullary symbol in F , but there seems to be no good reason to
do so).

▶ Definition 6. Let R be a monadic constructor TRS with alphabet Σ = F ∪ C. R is said
to be tail recursive if there is a preorder ≤ on F such that for every rule f(w) → r in R

and every occurrence of a defined symbol g ∈ F in r, either (i) f > g, or (ii) f ≥ g and the
occurrence of g is at position ϵ.

The reason for requiring ≤ to be (only) a preorder as in [8] (rather than a partial order
as in, e.g. [18]) is that recursion should be limited to tail calls (so, in rewriting terms, at the
root of the rhs), but that the tail call does not need to be the same defined symbol as in the
left-hand-side, merely a symbol having the same rank in the ≤-order.

3 Recursively enumerable languages: General monadic systems

For each of the class of languages we consider, we first remind the reader of their associated
class of accepting machine; for recursively enumerable languages, these are Turing machines.

▶ Definition 7. A (one-tape, non-deterministic) Turing machine is a tuple (Q, A, Γ, δ, q0, qh)
where Q is a set of states, A is the input alphabet (which does not contain blanks), Γ
is the tape alphabet (with A ⊆ Γ and a designated symbol □ ∈ Γ representing “blank”),
δ : Q × Γ −→ P(Q × (Γ ∪ {ϵ}) × {L, R}) is the transition function, q0 ∈ Q is the start state,
and qh ∈ Q is the accept state.

We write δ(q, a) → (q′, b, H) if (q′, b, H) ∈ δ(a, b); note that several such transition rules
may exist for each (q, a). On a transition rule δ(q, a) → (q′, b, H), the machine is said to
transition, when reading symbol a in state q, to state q′, writing symbol b (or not writing
anything when b = ϵ), and moving either left or right on the tape, according to whether
H = L or H = R.

As usual, we define Turing machine configurations as a (tape contents, tape head position,
state)-triple:

▶ Definition 8. A configuration of a machine M = (Q, Γ, A, δ, q0, qh) is a triple (T, n, q)
where T ∈ Γ+ is the current content of the tape (disregarding the infinite strings of blanks
to the left and right of the portion of the tape that contains the input and the set of cells
scanned by M so far; T is assumed to have length at least 1, possibly consisting of a single
blank symbol), n is an integer where 1 ≤ n ≤ |T | (the position of the tape head in T), and
q ∈ Q. M transitions in one step on configuration (T, n, q) to configuration (T ′, n′, q′) on
transition δ(q, b) → (q′, b′, H) if the nth element of T is b and (T ′, n′, q′) represents the
machine state after the corresponding move. We say that “A transitions to B” if A reduces
to B by a sequence of ≥ 0 steps. M accepts input α if it transitions from (α, 1, q0) to a
configuration (T, n, qh) – we also say that M transitions to qh on input α. A language L ⊆ A+

is recursively enumerable if there is a Turing machine that, for each α ∈ A+, accepts α iff
α ∈ L.

Huet and Lankford proved that monadic TRSs can simulate Turing machines [16]. For
completeness, we re-prove Huet and Lankford’s result in a new setting, giving a new proof of
simulation of Turing machines by constructor TRSs with unary function and constructor

J. G. Simonsen 5:5

M = (Q, A, Γ, δ, q0, qh)
Sets of function and constructor symbols:

F = {fq : q ∈ Q} ∪ {fb : b ∈ Γ} ∪ {f0, f◁}
C = {b : b ∈ Γ} ∪ {cq : q ∈ Q} ∪ {▷}

Note: f□ ∈ F and □ ∈ C. If b ∈ A, then b = b̃. The constructors cq are fresh symbols designed
to “store” the state of M on left-moves.

Rewrite rules induced by transition rules of M :
(L/R)-move rewrite rules (for each q ∈ Q, b ∈ Γ)

δ(q, b) → (q′, b′, R) fq(b(x)) → fb′ (fq′ (x))
δ(q, b) → (q′, ϵ, R) fq(b(x)) → fb(fq′ (x)))
δ(q, b) → (q′, b′, L) fq(b(x)) → cq′ (b′(x))
δ(q, b) → (q′, ϵ, L) fq(b(x)) → cq′ (b(x))

Housekeeping rules for endmarkers:
rewrite rules (for each q ∈ Q \ {qh})

fq(▷) → fq(□(▷))
f◁(cq(x)) → f◁(fq(□(x))))

Propagation and start rules:
rewrite rules (for each q ∈ Q, b ∈ Γ)

fqh (x) → cqh (x)
f◁(cqh (x)) → ▷

fb(cq(x)) → fq(b(x))
f0(x) → f◁(fq0 (x))

Figure 2 Basic encoding ∆1(M) of a Turing machine M : The part of the tape to the left of the
single read/write head is represented by a string of defined symbols f , and the part to the right by
a string of constructor symbols c.

symbols. The constructor TRS simulating a given Turing machine is given in Figure 2;
the construction is similar to that given in [27], but uses only unary function and unary
and nullary constructor symbols. The simulation serves as illustration of an observation
we shall exploit throughout the paper: A term f1(· · · fm(c1(· · · cn(▷)))) may be viewed as
composed of a “call stack” of defined symbols and a “memory stack” of constructor symbols;
intuitively, we thus obtain the expressive power of the (Turing-complete) class of 2-counter
machines [23].

The following is tedious, but not hard, to prove:

▶ Lemma 9. Let α ∈ A+. Then, f0(α̃) →∗ ▷ iff M transitions to qh on input α.

We then have:

▶ Theorem 10. Let L ⊆ A+. The following are equivalent: (i) L is recursively enumerable,
(ii) L is accepted by a monadic constructor TRS.

Proof. If R is a monadic constructor TRS accepting L, we may construct a (non-deterministic)
Turing machine accepting L by encoding the finitely many rules of R and non-deterministically
applying the rules to input α. If this simulation reaches ▷, the machine halts. It therefore
suffices to prove that every recursively enumerable language is accepted by a monadic
constructor TRS. By standard results (see e.g. [25, Thm. 17.2]), L is recursively enumerable
iff it is accepted by a non-deterministic Turing machine. Lemma 9 then furnishes that, for
each α ∈ A+, we have f0(α̃) →∗ ▷ iff M accepts α, as desired. ◀

FSCD 2021

5:6 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

4 Context-sensitive languages: Non-length-increasing rules

The class of context-sensitive languages is characterized by its class of acceptors: the linearly
bounded automata. The following definition is standard.

▶ Definition 11. A non-deterministic Turing (multi-tape) machine M accepts L ⊆ A+ in
non-deterministic linear space if there is a k such that all computation branches halts on all
inputs and any computation scans at most k · |x| distinct cells on each of its tapes. The set
of languages acceptable by such machines is called NLINSPACE.

▶ Proposition 12. Let L ⊆ A+ be a language accepted by an m-tape Turing machine in
space O(n). Then there is a one-tape Turing machine with input alphabet A (but possibly a
much larger tape alphabet) that accepts L in space ≤ n on all inputs.

Proof. Standard exercise in linear space reduction, see e.g. [17, Prop. 21.1.5] for the reduction
to one-tape machines (at the cost of an input-independent constant factor of more space use),
and [24] for the technique of getting rid of constant space factors on one-tape machines. ◀

By Proposition 12 we may restrict attention to machines that accept their input using
no more space than that originally allocated to the input: The linear bounded automata.
To ensure that linear bounded automata do not exceed their tape allowance, we make the
provision that inputs are always bookended by special stoppers ◀ and ▶. For example, if
A = {0, 1} the string 10010 will be fed to the automaton as ◀ 10010 ▶.

▶ Definition 13. A linear bounded automaton (LBA) over alphabet A is a one-tape Turing
machine (Q, A, Γ, δ, q0, qh) with input alphabet A′ = A ∪ {◀,▶} and where ◀ and ▶ are
the left and right stoppers, respectively, and such that: (i) ◀,▶/∈ Γ, (ii) for every rule
δ(q, b) → (q′, b′, H), we have b′ /∈ {◀,▶} (i.e. stoppers are not written on the tape), (iii)
for every rule δ(q,◀) → (q′, b′, H), we have b′ = ϵ and H = R (i.e. the left stopper is
not overwritten, and the tape head cannot move left of the left stopper), (iv) for every rule
δ(q,▶) → (q′, b′, H), we have b′ = ϵ and H = L (the right stopper is not overwritten and the
tape head cannot move to the right of the stopper endmarker). An LBA is said to accept
input α ∈ A+ if its underlying Turing machine accepts the string ◀ α ▶.

Thus: A linear bounded automaton can only use the space that its input originally occupies:
Space exactly n where n is the size of the input. The following proposition makes this precise:

▶ Proposition 14. Let M be an LBA. If (◀ b1 · · · bm ▶, n, q) is a configuration of M and
b1, . . . , bm ∈ Γ\{◀,▶}, and M transitions to configuration (T ′, n′, q′), then T ′ =◀ b′

1 · · · b′
m ▶

for b′
1, . . . , b′

m ∈ Γ \ {◀,▶}.

Proof. By the assumptions on the form of the rules of the LBA in Definition 13, neither of
the symbols ◀ and ▶ can be overwritten by M , nor can any symbol be overwritten by ◀ or
▶. By the same assumptions on the form of rules, M cannot move to the left of a ◀, nor to
the right of a ▶. ◀

▶ Theorem 15. Let L ⊆ A+. The following are equivalent: (i) L is accepted by an LBA,
(ii) L is context-sensitive, (iii) L ∈ NLINSPACE.

Proof. Standard textbook exercise, see e.g. [21, Exerc. 6.29], or [25, Thm. 24.3]. For the
original proof, see [20]. ◀

J. G. Simonsen 5:7

For every (a, b, d) ∈ A3:

Mabd = (Qabd, A ∪ {◀,▶}, Γ, δabd, qabd
0 , qh)

(where Mabd is given by Proposition 16)

Fabd = {fq : q ∈ Qabd} ∪ {fb : b ∈ Γ} ∪ {f◁}

Cabd = {b : b ∈ Γ} ∪ {cq : q ∈ Qabd} ∪ {▷}

Note that as A ∪ {◀,▶} ⊆ Γ, we have f◀, f▶ ∈ Fabd, and ◀,▶∈ Cabd.

Rules induced by transition rules of Mabd:
(L/R)-move rewrite rules (q ∈ Qabd, b ∈ Γ)

δ(q, b) → (q′, b′, R) fq(b(x)) → fb′ (fq′ (x))
δ(q, b) → (q′, ϵ, R) fq(b(x)) → fb(fq′ (x)))
δ(q, b) → (q′, b′, L) fq(b(x)) → cq′ (b′(x))
δ(q, b) → (q′, ϵ, L) fq(b(x)) → cq′ (b(x))

Propagation rules:
rewrite rules (q ∈ Qabd, b ∈ Γ)

fqh (x) → cqh (x)
f◁(cqh (x)) → ▷

fb(cq(x)) → fq(b(x))

Figure 3 Non-length-increasing constructor TRS defined from an LBA Mabd. Observe that
f0 /∈ Fabd and that the constructor TRS will not accept any strings on its own. .

Due to our convention that constructor TRSs must start their computations on terms on
the form f0(α̃), we encounter the problem that non-length-increasingness prevents us from
setting up the simulation of the LBA tape and state: We would need a rule of the form
f0(x) → f◁(fq0(· · ·)). The problem is solved by the following proposition:

▶ Proposition 16. Let LBA M accept the language L ⊆ A+ and let (a, b, d) ∈ A3. Then
there exists an LBA Mabd with input and tape alphabets identical to those of M that accepts
the language L′ = {β ∈ A∗ : abd · β ∈ L}.

Proof. If the input to M has size n ≥ 3, we may encode all possible configurations of the
leftmost 3 cells of the tape of M in |Γ|3 states. If M has |Q| states, we may construct an
LBA Mabd with (4|Γ|3) × |Q| states that encodes any changes to the leftmost 3 cells in its
states (the factor 4 is used by Mabd to keep track of where the tape head is (either of the
first three “cells” encoded by the states, or to their right), and only uses n − 3 tape cells
(where it simply simulates M) . ◀

For each LBA M and (a, b, d) ∈ A3, we define a non-length-increasing constructor TRS
∆abd

LBA(M) by the translation given in Figure 3 – effectively the same translation as that in
Figure 2, except for the absence of a start rule and the addition of rules for stopper fitting.
For each LBA M , we define a corresponding non-length-increasing system ∆LBA(M) by
taking the union of all rules from all of the |Γ|3 LBAs Mabd and adding rules to start the
computation. The resulting constructor TRS is shown in Figure 4.

▶ Proposition 17. If M is an LBA, then ∆LBA(M) is a non-length-increasing monadic
constructor TRS.

Proof. Observe that every rule of M is translated by ∆LBA(·), whence ∆LBA(M) is defined
for all M . Furthermore, every rule of ∆LBA(M) is non-length-increasing, and the general
result follows. ◀

FSCD 2021

5:8 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

F =

 ⋃
(a,b,d)∈A3

Fabd

 ∪ {f0} C =
⋃

(a,b,d)∈A3

Cabd

The rules of ∆LBA(M) are the union of
⋃

(a,b,c)∈A3 Rabd with the set of rules below:
Start rules and stopper rules:

rewrite rules (for each a, b, d ∈ A, not necessarily distinct)
f0(ã(▷)) → ▷ if M accepts a

f0(ã(̃b(▷))) → ▷ if M accepts ab

f0(ã(̃b(d̃(x)))) → f◁(fqabd
0

(◀ (e(x))))
e(ã(x)) → ã(e(x))

e(▷) →▶ (▷)

Figure 4 Encoding ∆LBA(M) of an LBA M as a non-length-increasing system.

Again, the following is tedious, but not hard, to prove:

▶ Lemma 18. Let α ∈ A+. Then LBA M transitions to the halting state on input ◀ α ▶
iff f0(α̃) →∗

∆LBA(M) ▷.

We can now prove the main result of the section:

▶ Theorem 19. Let L ⊆ A+. The following are equivalent: (i) L is context-sensitive, (ii) L

is accepted by a monadic non-length-increasing constructor TRS.

Proof. If L is context-sensitive, it is accepted by an LBA M by Theorem 15. Then,
Lemma 18 furnishes that ∆LBA(M) accepts L, and by Proposition 17, ∆LBA(M) is a
monadic non-length-increasing constructor TRS. Conversely, if L is accepted by a monadic
non-length-increasing constructor TRS R over alphabet Σ, we can define a non-deterministic
Turing machine with tape alphabet Σ that runs in linear space and accepts L: In every rule
l → r, both l and r are terms over unary and nullary symbols, hence essentially strings. As
|l| ≥ |r|, a rewrite step corresponds to replacing a substring by a substring of at most the
same size. Thus, we may simply encode the rules of R in the states M . The current state of
the term f1(f2(· · · fm(b))) is encoded in m + 1 symbols f1f2 · · · fmb on the Turing machine’s
tape, and application of a rule is simply done by replacing the symbols on the relevant tape
cells. Choosing what rule to apply and where to apply it is selected non-deterministically by
M . As |l| ≥ |r|, the number of tape cells used will never increase, whence the machine runs
in linear space, and Theorem 15 furnishes that L is context-sensitive. ◀

5 Context-Free Languages: (Strongly) cons-free systems

We now treat context-free languages; we first need their corresponding notion of accepting
machine.

▶ Definition 20. A pushdown automaton (PDA) is a tuple (Q, A, Γ, δ, q0, Z0) where Q is a
finite set of states, A is a finite set of input symbols, Γ is a finite stack alphabet, q0 ∈ Q is
the start state, Z0 ∈ Γ is the start stack symbol, and δ is a relation consisting of a finite
number of transition rules of the form δ(q, a, X) → (p, γ) where q ∈ Q, a ∈ A ∪ {ϵ}, X ∈ Γ,
p ∈ Q, and γ ∈ Γ∗.

J. G. Simonsen 5:9

The definition of PDA above has no final states, and will thus accept by empty stack
(and empty input), as is common in the literature [26]. We make the convention that the
bottom of the stack is written to the left and the top to the right; hence, symbols are pushed
and popped to the right.

As we shall only consider one-state PDAs in this paper; the below definition of acceptance
has been specialized to that case (for the general case, see any standard textbook, e.g. [26]):

▶ Definition 21. A one-state PDA is said to accept input α ∈ A+ if α = a1 · · · am where
each ai ∈ A∪{ϵ} and there is a sequence of strings s1, . . . , sm from Γ∗ such that: (i) s0 = Z0,
(ii) for i = 0, . . . , m − 1, there is a rule δ(ai+1, Z) → Z ′ where si = tZ and si+1 = tZ ′ for
some Z, Z ′ ∈ Γ ∪ {ϵ} with Z ̸= ϵ, and t ∈ Γ∗ (that is, the PDA moves according to the stack
and next input symbol)1, (iii) am = ϵ and sm = ϵ (that is, empty input and empty stack are
reached at the end). Otherwise, the PDA is said to reject the input.

The following proposition is standard; see for example [13] for a proof.

▶ Proposition 22. If L ⊆ A∗ is accepted by a PDA, it is accepted by a one-state PDA
({q0}, A, Γ′, δ, q0, Z0) (where we assume acceptance by empty stack).

The following theorem is standard (see e.g. [26, Thm. 2.12])

▶ Theorem 23. A language L ⊆ A+ is context-free iff it is accepted by a PDA with input
alphabet A.

By Proposition 22 and Theorem 23, a language is thus context-free iff it is accepted by a
one-state PDA.

As with the language classes RE and CSL, we shall prove that a particular class of
monadic rewrite systems corresponds to CFL; this class consists of the (strongly) cons-free
systems:

▶ Definition 24. A constructor TRS is said to be (strongly) cons-free if, for every rule l → r

there are no constructor symbols in r.

▶ Remark 25. Cons-freeness has been used for multiple characterizations of complexity
classes (see, e.g., [18, 5, 19, 8]). The gist is that, during rewriting, no new constructor terms
can be built; thus, the definition of cons-freeness is usually less restrictive than the strong
cons-freeness of Definition 24 [19, 8]2, but we believe that the restriction to the very simple
notion of strong cons-freeness is cleaner and simpler to work with here.

▶ Remark 26. As pointed out by a referee, there are likely simpler grammar-based proofs
that the class of strongly cons-free constructor TRSs characterizes CFL compared to the one
we give using PDAs. However, the proof via PDAs shed light on the intuition that rewriting
in monadic constructor TRSs essentially consist of manipulation of up to two stacks – and
that for (strongly) cons-free systems, the manipulation is essentially a single “general” stack
and a “restricted” stack that can only be decremented, exactly as in a PDA.

The following proposition shows that we may disregard nullary defined symbols in the
remainder of the paper:

1 As the PDA has only a single state, we have suppressed the state in the notation of the rule δ(ai+1, Z) →
Z′.

2 For example, cons-freeness of a rule l → r in [8] is defined as the requirement that every subterm of the
form c(s) in r (where c ∈ C) either occurs in l, or is a ground constructor term.

FSCD 2021

5:10 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

M = ({q0}, A, Γ, δ, q0, Z0)

F = {fZ : Z ∈ Γ} ∪ {f0} and C = {ã : a ∈ A} ∪ {▷}
Rewrite rules induced by transition rules in δ:

transition rule in δ rule of Rm

δ(a, Z) → Z1 · · · Zm fZ(ã(x)) → fZ1 (· · · fZm (x))
δ(a, Z) → ϵ fZ(ã(x)) → x

δ(ϵ, Z) → Z1 · · · Zm fZ(x) → fZ1 (· · · fZm (x))
δ(ϵ, Z) → ϵ fZ(x) → x

Start rule:
rewrite rules

f0(x) → fZ0 (x)

Figure 5 Rules of the cons-free system RM induced by the PDA M . As M has only one state,
the state argument has been omitted from δ.

▶ Proposition 27. Let R be a cons-free, monadic constructor TRS that accepts L ⊆ A+,
and let R′ be the monadic, cons-free constructor TRS obtained by omitting all rules in R

that contain a nullary defined symbol. Then R′ accepts L.

To greatly simplify our proofs for context-free and regular languages, we introduce normal
systems:

▶ Definition 28. A rule l → r is normal if l contains at most one constructor symbol, and
that constructor symbol is unary, that is either l = f(c(x)), or l = f(x) (for some f ∈ F
and c ∈ C). A constructor TRS R is normal if every rule is normal.

The following lemma shows that we can transform a set of rules with “large” left-hand
sides into (a larger set of) normal rules that accept the same language:

▶ Lemma 29. If L ⊆ A+ is accepted by a monadic, cons-free constructor TRS R, then L is
accepted by a monadic, cons-free, normal constructor TRS R′ with C = Ã ∪ {▷}. If R is tail
recursive, then R′ may be chosen to be tail recursive as well.

For each one-state PDA, we define a cons-free constructor TRS RM as given in Figure 5.
In Figure 5, the presence of transition rules of the form δ(ϵ, Z) → r force us to let RM

contain rules of the form f(x) → r′. By the definition of TRSs, application of such a rule may
occur anywhere in a term. However, as we want to simulate the PDA stack by a string of
defined symbols, applying a rule f(x) → r′ corresponds to removing a symbol in the middle
of the stack rather than popping it off the top. Hence, we are forced to require that redexes
in RM are contracted only at places corresponding to the top of the stack – which is the
case if the redexes are innermost. This is also sufficient, as we shall see shortly.

▶ Definition 30. Let p be a non-negative integer. A ground term s has a border position at
p if s = f1(· · · (fp(t)) · · ·) where p ≥ 1, f1, . . . , fp ∈ F and t is a ground constructor term.

The following proposition is proved by induction on the length of the involved rewrite
sequence:

▶ Proposition 31. Let R be a monadic, cons-free constructor TRS. If t is a ground term
with a border position such that t −→∗ ▷, then every term in the rewrite sequence, except the
last, has a border position, and an innermost redex at the border position.

Even if R contains overlapping redexes, innermost rewite steps can be retracted across
non-innermost ones (and efficiently so, as monadic systems cannot make more than a single
copy of each subterm):

J. G. Simonsen 5:11

▶ Proposition 32. Let R be a monadic, cons-free constructor TRS, let s be a term containing
a redex at a border position, and let m ≥ 0. If s →k t′ by non-innermost steps, and t′ →IM t,
then there is a term s′ such that s →IM s′ →k t, where →IM is innermost reduction.

Proof. As R is a constructor TRS, every redex at a border position is innermost, whence s

contains an innermost redex. As every non-innermost redex cannot overlap an innermost
redex, all innermost redexes in s are preserved across any non-innermost reduction, and
remain innermost. Consider the redex u contracted in the step t′ → t; as the innermost redex
at border position in s is preserved across s →k t′, it overlaps with u. But as the left-hand
sides of all redexes in R are of the form f(w) where w is a constructor term, no redexes
created in the reduction s →k t′ can overlap with the descendants of redexes at innermost
position in s. Hence, u is the descendant of an innermost redex u′ in s. Furthermore,
contracting an innermost redex cannot destroy any redexes except those that overlap with it
(and are thus, by definition, also innermost), and thus we may contract u′ to obtain the step
s →IM s′, followed by mimicking the steps in s →k t′ starting from the term s′ (all of which
can be performed, as u′ does not overlap with any non-innermost redex). Thus, s′ →k t,
concluding the proof. ◀

▶ Lemma 33. Let R be a monadic, cons-free, normal constructor TRS. If s = f0(α̃) →∗ ▷,
then s −→∗

IM ▷.

Proof. By Proposition 31, every term in s −→∗ ▷, except the last, contains an innermost
redex at a border position. Divide s −→∗ ▷ into subsequences, each of the form s′ →∗

IM
s′′ →k t′ →+

IM t′′ where s′′ →k t′ consists solely of non-innermost steps for some k ≥ 1.
Observe that this is always possible because the last step of s −→∗ ▷ must be innermost
as R is cons-free and ▷ is a constructor. By repeated application of Proposition 32, we
obtain s′ →+

IM s′′′ →k t′′ for some term s′′′. Hence, a straightforward induction on the length
of s −→∗ ▷ shows that all innermost steps can be retracted across non-innermost steps,
resulting in a reduction s →∗

IM t′′′ →∗ ▷ of length no more than the original where t′′′ →∗ ▷
contains no innermost steps. But as the last step of any reduction s →∗ ▷ must be innermost,
the length of t′′′ →∗ ▷ is zero, and thus s →∗

IM ▷, as desired. ◀

As with our previous simulation results, the following result is tedious to prove, but not
difficult:

▶ Lemma 34. Let M be a one-state PDA accepting language L ⊆ A+. Then RM accepts L

by innermost evaluation.

We now show how to simulate any cons-free constructor TRS by a one-state PDA. We
consider only normal systems, as this suffices by Lemma 29. For any normal, monadic,
cons-free constructor TRS with C = Ã∪{▷}, we define a one-state PDA as shown in Figure 6.

Again, the following is tedious, but fairly straightforward:

▶ Lemma 35. Let L ⊆ A+ be accepted by innermost reduction by a normal, cons-free,
monadic constructor TRS R. Then PDAR accepts L.

We thus have:

▶ Theorem 36. The following are equivalent for a language L ⊆ A+: (i) L is context-free,
(ii) L is accepted by a monadic cons-free constructor TRS.

FSCD 2021

5:12 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

PDAR = ({q0}, A, {Zf : f ∈ F}, δ, q0, Zf0)

rule of R transition rule in δ

f(c(x)) → f1(· · · fm(x)) δ(c, Zf) → Zf1 · · · Zfm

f(x) → f1(· · · fm(x)) δ(ϵ, Zf) → Zf1 · · · Zfm

f(c(x)) → x δ(c, Zf) → ϵ
f(x) → x δ(ϵ, Zf) → ϵ

Figure 6 Definition of the pushdown automaton PDAR from a normal, monadic, cons-free
constructor TRS R with signature F ∪ C = F ∪ (Ã ∪ {▷}).

Proof. If L is context-free, Theorem 23 yields that L is accepted by a PDA M , which we
may assume by Proposition 22, has exactly one state. Lemma 34 yields that RM accepts
L by innermost reduction, and Lemma 33 shows that the elements of A∗ accepted by RM

are exactly those accepted by innermost reduction. Clearly, RM is a monadic, cons-free
constructor TRS.

Conversely, if L is accepted by a monadic, cons-free constructor TRS R, Lemma 33 yields
that R accepts L by innermost reduction, and by Lemma 29 we may assume wlog. that
R is normal. Lemma 35 now shows that PDAR accepts L, whence L is context-free by
Theorem 23. ◀

6 Regular languages: tail recursive cons-free systems

We shall now consider the class of regular languages. We assume the reader to be familiar
with the fact that a language is regular iff it is accepted by an NFA iff it is accepted by a
DFA. To fix notation, we give the following definition:

▶ Definition 37. A non-deterministic finite automaton (NFA) is a tuple (Q, A, δ, q0, Qaccept)
such that Q is a non-empty set of states, A is the input alphabet, δ is a set of transition
rules on one of the forms δ(q, a) → q′ or δ(q, ϵ) → q′ where q, q′ ∈ Q and a ∈ A, q0 ∈ Q is
the start state, and Qaccept ⊆ Q is the set of accept states. Furthermore, for any q ∈ Q and
any a ∈ A, there is at least one transition of the form δ(q, a) → q′. A deterministic finite
automaton (DFA) is an NFA such that there are no transitions of the form δ(q, ϵ) → q′, and
if there is a transition of the form δ(q, a) → q′, then there is no transition δ(q, a) → q′′ with
q′ ̸= q′′.

The class REG is characterized by the monadic constructor TRSs that are both cons-free
and one-call (see Definition 40).

In tail-recursive functional programming, the height of the call stack is bounded above
by a constant; a similar result holds here for innermost reduction:

▶ Proposition 38. Let R be a monadic, normal, cons-free, tail-recursive constructor TRS.
Then there is a constant c such that for any α ∈ A∗ and any innermost reduction f0(α̃) →∗

IM ▷,
the number of defined symbols in any term of the reduction is at most c.

Proof. By Proposition 31, any term in the reduction f0(α̃) →∗
IM ▷ contains an innermost

redex at border position. Hence, the position of any rewrite step in a term t in the reduction
will occur at the rightmost element of F in t. Thus, redex contraction in innermost reduction
will always occur at the rightmost element of F in t. Let f ∈ F be such an element, and let
f(c(x)) → f1(· · · fm(x)) be the rule of a redex at that position (if there is no variable in the

J. G. Simonsen 5:13

right-hand side of the rule, the supposition that R is cons-free entails that no future steps
will be able to produce ▷, a contradiction). As R is tail recursive, we have f > f2, . . . , fm,
and f ≥ f1.

Let l be the maximum number of occurrences of symbols from F in any right-hand side
among rules of R. Any totally ordered chain f1 > f2 > · · · > fm in F has length at most
|F|, and thus, the maximal number of defined symbols in any term in f0(α̃) →∗

IM ▷ is at
most c ≜ 1 + l · |F|. ◀

▶ Example 39. The assumption that f0(α̃) →∗
IM ▷ in Proposition 38 cannot be omitted

(that is, the presence of ▷ as the final term is crucial). Consider the following constructor
TRS:

R =


f0(x) → f0(g(x))
f0(x) → f0(h(x))
f0(x) → g(x)

g(ã(x)) → x for all a ∈ A


Observe that R is tail recursive and accepts A+ (because f0(α̃) →∗ f0(g|α|−1(α̃)) →
g|α|(α̃) →∗ ▷. But the number of elements of F in terms occurring in reductions starting
from f0(α̃) is unbounded, as witnessed by f0(α̃) → f0(g(α̃)) → · · · and f0(α̃) → f0(h(α̃)) →
f0(h(h(α̃))) → · · · ; in particular, the latter reduction shows that there are infinite reductions
with an innermost redex at the root of every term, and where the number of elements of F
in the terms has no upper bound.

We now define one-call systems:

▶ Definition 40. A monadic constructor TRS is said to be one-call if, for every rule l → r,
the right-hand side r contains at most one element of F .

The following lemma shows that instead of tail recursion, we could instead have considered
one-call systems:

▶ Lemma 41. Let R be a monadic, cons-free, tail-recursive constructor TRS accepting
language L ⊆ A+. Then, there is a one-call, normal, monadic, cons-free constructor TRS
that accepts L.

Proof. By Lemma 29, we may assume wlog. that R is normal. By Lemma 33, for every
α ∈ A+, if f0(α̃) →∗ ▷, then f0(α̃) →∗

IM ▷. By Proposition 38, there is a constant c such
that for every α ∈ A+, for every reduction of the form f0(α̃) →∗

IM ▷, the number of elements
of F in any term of the reduction is at most c.

We now construct a one-call (and normal, monadic, cons-free) constructor TRS R′ that
accepts L. R′ will have a new set of defined symbols F ′ and use the same set of constructors
C as R. For every integer k with 0 < k ≤ c and every (f1, . . . , fk) ∈ Fk, create a defined
symbol gf1···fk

∈ F ′. As R is normal and cons-free, every rule of R is on one of the forms
f(c(x)) → r or f(x) → r. For each symbol gf1···fk

∈ F ′, and each rule l → r of R such that
the root symbol of l is fk, create a rule of R′ as follows:

gf1···fk
(c(s)) → gf1···fk−1h1···hm(s) if l → r = fk(c(x)) → h1(· · · hm(s)) (where s = x or

s ∈ F).
gf1···fk

(x) → gf1···fk−1h1···hm(s) if l → r = fk(x) → h1(· · · hm(s)) (where s = x or s ∈ F).

Define S to be the resulting TRS. By construction, S is one-call, monadic, and cons-free.

FSCD 2021

5:14 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

NFAR = (Q, A, δ, {qf0 }, {qh}) where Q = {qf : f ∈ F} ∪ {qh}

Transition rules in δ:
rule(s) of R transition rule in δ

f(c(x)) → g(x) δ(qf , c) → qg

f(x) → g(x) δ(qf , ϵ) → qg

f(c(x)) → x δ(qf , c) → qh

f(x) → x, δ(qf , ϵ) → qh

Figure 7 The NFA–NFAR–defined from a normal, monadic cons-free, one-call constructor TRS R.

We claim that, for each α ∈ A+, we have f0(α̃) →∗
R ▷ iff f0(α̃) →∗

S ▷.
If f0(α̃) →∗

IM ▷, write the reduction as t0 = f0(α̃) →IM t1 →IM→ · · · → ▷ = tn. Observe
that each term ti = f1(· · · fk(c)) (where c is a constructor term) in the reduction can be
mimicked in S by a term of the form gf1···fk

(c).
By Proposition 31, every term of f0(α̃) →∗

R,IM ▷, except the last, contains at
least one innermost redex at border position, and hence, the step ti → ti+1 must be
f1(· · · fk(c)) → f1(· · · fk−1(h1(· · · hm(· · ·))) using some rule fk(c(x)) → h1(· · · hm(s)) or
fk(x) → h1(· · · hm(s)) (for some m ≥ 0). Hence, the step can clearly be mimicked by
application of a rule in S, and we have f0(α̃) →∗

S ▷.
Conversely, if f0(α̃) →∗

S ▷, by construction of S, every term in the reduction is of
the form gf1···fk

(c) for some constructor term c. For each such term, there is a step
gf1···fk

(c) → gf1···fk−1h1···hm(s′{x 7→ c}) iff there is a rule fk(s) → h1(· · · hm(s′)) in R, and
hence f1(· · · fk(c)) →R f1(· · · fk−1(h1(· · · hm(s′{x 7→ c)))).

Thus, every step of f0(α̃) →∗
S ▷ can be mimicked by an innermost step in R, whence

f0(α̃) →∗
R ▷, as desired. Hence, S accepts L, and by construction, S is normal, monadic,

and one-call. ◀

▶ Lemma 42. Let R be a normal, monadic, cons-free, one-call constructor TRS deciding
language L ⊆ A+. Then, the NFA NFAR (see Fig. 7) accepts L.

Proof. Recall from basic automata theory that we may wlog. assume that an NFA only
accepts if it is in an accepting state when all of its input has been consumed. Denote by
L(NFAR) the language accepted by NFAR. By construction of NFAR, any run of NFAR

clearly mimicks reductions of R: every rewrite step is mimicked by exactly one transition
in NFAR, and conversely, any transition in NFAR can be mimicked by a rewrite step in R.
If f0(α̃) →∗ ▷, there is in particular a run of NFAR ending in qh with the entire input α

having been consumed in the run, and hence L ⊆ L(NFAR). Conversely, if α ∈ L(NFAR,
there is a run of NFAR on input α that (i) consumes all the input, and (ii) ends in qh, and
hence there is a rewrite sequence starting from f0(α̃) that ends with one of the two rewrite
steps f(c(▷)) → ▷ or f(▷) → ▷, whence L(NFAR) ⊆ L. ◀

By the equivalence of DFAs and NFAs, it suffices to simulate DFAs by rewriting systems.
In Figure 8 we show how to obtain such a system.

▶ Lemma 43. If M = (Q, A, δ, Qaccept) is a DFA accepting language L ⊆ A+, then RDFA
M

(see Fig. 8) accepts L.

J. G. Simonsen 5:15

M = (Q, A, δ, q0, Qaccept) F = {fq : q ∈ Q} C = Ã ∪ {▷}

Rules:
transition in δ rewrite rule

δ(q, a) → q′ fq(ã(x)) → fq′ (x)

Accepting run:

Rule (for every q ∈ Qaccept)
fq(x) → x

(recall that DFAs do not have ϵ-transitions)

Figure 8 Monadic cons-free, tail recursive constructor TRS RDFA
M induced by a DFA M .

Proof. As the DFA is deterministic, there are no ϵ-transitions, and for every (q, a) ∈ Q × A,
there is at most one transition δ(q, a) → q′. Thus, the constructor TRS RDFA

M is monadic,
cons-free and one-call. Furthermore, if q0 is the start state, set f0 = fq0 . We claim that for
any α ∈ A+, we have f0(α̃) →∗ ▷ iff there is an accepting run of the automaton on input α

starting in q0. To see this, note that there is a transition on string b1b2 · · · bk from state q to
state q′ /∈ Qaccept iff there is a rule δ(q, b1) → q′ iff fq (̃b1(̃b2 · · · b̃k(▷))) → fq′ (̃b2 · · · b̃k(▷))).
Thus, M reaches an accepting state after emptying the input iff f0(α̃) →∗ fq(▷) where
q ∈ Qaccept; and fq(▷) → ▷ iff q ∈ Qaccept. Hence, the DFA accepts string α iff the above
system accepts string α, and the result follows. ◀

We thus have the final result of the paper:

▶ Theorem 44. The following are equivalent for a language L ⊆ A+: (i) L is regular, (ii) L

is accepted by a one-call, monadic, cons-free constructor TRS, (iii) L is accepted by a tail
recursive, monadic, cons-free constructor TRS.

Proof. If L is regular, it is accepted by a DFA, hence by Lemma 43 accepted by a monadic,
cons-free, one-call constructor TRS. Conversely, if L is accepted by a monadic cons-free,
one-call constructor TRS, Lemma 29 shows that we may wlog. assume that R is normal
and one-call. Lemma 42 then shows that there is an NFA accepting L, whence L is regular.
Finally, observe that a one-call TRS is always tail-recursive (by relating all defined symbols in
the weak component of the ordering), and that Lemma 41 shows that any language accepted
by a tail-recursive monadic, cons-free constructor TRS is also accepted by a one-call monadic,
cons-free constructor TRS. ◀

7 Conclusion and future work

While we have characterized the original 4 language classes in the Chomsky hierarchy, it is
clear that similar characterizations should exist for other classes, e.g., the visibly pushdown
languages [1], or for deterministic context-free languages (where it is natural to conjecture
that non-overlapping (strongly) cons-free constructor TRSs suffice). However, the proofs of
the correspondences asserted in this paper followed from intuition about the (set of) stacks
maintained by the restricted computational models traditionally used to characterize the
classes; it is unclear whether this intuition can be used for more esoteric classes of languages.

On a different note, while the restriction to monadic systems plays well with the Chomsky
hierarchy, it seems to be less amenable to characterizations of the usual complexity classes
of interest in implicit complexity theory, e.g. PTIME, and it would be interesting to find
natural constraints on monadic systems that allowed characterization of these classes in
a liberal rewriting setting (i.e., no typing beyond what is strictly necessary, and with no
restrictions on the evaluation order).

FSCD 2021

5:16 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

Finally, it should be investigated whether strong cons-freeness can be relaxed to more
lenient versions of cons-freeness, but for the reasons noted in the paper, this may not give as
short and clean a characterization as for strongly cons-free systems.

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor, Proceedings

of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 202–211. ACM, 2004.

2 M. Avanzini, N. Eguchi, and G. Moser. A path order for rewrite systems that compute
exponential time functions. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, RTA 2011, volume 10 of
LIPIcs, pages 123–138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

3 M. Avanzini, G. Moser, and A. Schnabl. Automated implicit computational complexity analysis.
In Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR
’08), volume 5195 of Lecture Notes in Computer Science, pages 132–138. Springer-Verlag, 2008.

4 S. Bellantoni and S.A. Cook. A new recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992.

5 Guillaume Bonfante. Some programming languages for logspace and ptime. In Michael Johnson
and Varmo Vene, editors, Algebraic Methodology and Software Technology, 11th International
Conference, AMAST 2006, Kuressaare, Estonia, July 5-8, 2006, Proceedings, volume 4019 of
Lecture Notes in Computer Science, pages 66–80. Springer, 2006.

6 A.-C. Caron. Linear bounded automata and rewrite systems: Influence of initial configurations
on decision properties. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT,
Vol.1, volume 493 of Lecture Notes in Computer Science, pages 74–89. Springer, 1991. doi:
10.1007/3-540-53982-4_5.

7 N. Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137–167,
1959.

8 L. Czajka. Term rewriting characterisation of LOGSPACE for finite and infinite data. In
Hélène Kirchner, editor, 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages
13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

9 D. de Carvalho and J. G. Simonsen. An implicit characterization of the polynomial-time
decidable sets by cons-free rewriting. In G. Dowek, editor, Rewriting and Typed Lambda
Calculi - Joint International Conference, RTA-TLCA 2014, volume 8560 of Lecture Notes in
Computer Science, pages 179–193. Springer, 2014.

10 E. P. Friedman. Equivalence problems for deterministic context-free languages and monadic
recursion schemes. Journal of Computer and Systems Sciences, 14(3):344–359, 1977.

11 E. P. Friedman. Simple context-free languages and free monadic recursion schemes. Mathem-
atical Systems Theory, 11(1):9–28, 1977.

12 E. P. Friedman and Sheila A. Greibach. Monadic recursion schemes: The effect of constants.
Journal of Computer and Systems Sciences, 18(3):254–266, 1979.

13 J. Goldstine, J. K. Price, and D. Wotschke. On reducing the number of states in a pda.
Mathematical Systems Theory, 15(4):315–321, 1982.

14 S. A. Greibach. Theory of Program Structures: Schemes, Semantics, Verification, volume 36
of Lecture Notes in Computer Science. Springer-Verlag, 1975.

15 J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Pearson Education International Inc., 2 edition, 2003.

16 G. Huet and D.S. Lankford. On the uniform halting problem for term rewriting systems.
Rapport Laboria 283, IRIA, 1978.

17 N. D. Jones. Computability and Complexity from a Programming Perspective. The MIT Press,
1997.

https://doi.org/10.1007/3-540-53982-4_5
https://doi.org/10.1007/3-540-53982-4_5

J. G. Simonsen 5:17

18 N.D. Jones. The expressive power of higher-order types, or: Life without cons. Journal of
Functional Programming, 11(1):55–94, 2001.

19 C. Kop and J. G. Simonsen. Complexity hierarchies and higher-order cons-free term rewriting.
Log. Methods Comput. Sci., 13(3), 2017.

20 S. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, 1964.

21 H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
1981.

22 J.-Y. Marion. Analysing the implicit complexity of programs. Information and Computation,
183(1):2–18, 2003.

23 M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of
Turing machines. The Annals of Mathematics, 74(3):437–455, 1961.

24 C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
25 E. Rich. Automata, Computability and Complexity: Theory and Applications. Pearson Prentice

Hall, 2008.
26 M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2nd

edition, 2006.
27 Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.
28 R. Thiemann, H. Zantema, J. Giesl, and P. Schneider-Kamp. Adding constants to string

rewriting. Appl. Algebra Eng. Commun. Comput., 19(1):27–38, 2008. doi:10.1007/
s00200-008-0060-6.

FSCD 2021

https://doi.org/10.1007/s00200-008-0060-6
https://doi.org/10.1007/s00200-008-0060-6

	1 Introduction
	2 Preliminaries
	3 Recursively enumerable languages: General monadic systems
	4 Context-sensitive languages: Non-length-increasing rules
	5 Context-Free Languages: (Strongly) cons-free systems
	6 Regular languages: tail recursive cons-free systems
	7 Conclusion and future work

