
Beyond PCSP(1-in-3, NAE)
Alex Brandts #

Department of Computer Science, University of Oxford, UK

Stanislav Živný # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
The promise constraint satisfaction problem (PCSP) is a recently introduced vast generalisation of
the constraint satisfaction problem (CSP) that captures approximability of satisfiable instances. A
PCSP instance comes with two forms of each constraint: a strict one and a weak one. Given the
promise that a solution exists using the strict constraints, the task is to find a solution using the
weak constraints. While there are by now several dichotomy results for fragments of PCSPs, they
all consider (in some way) symmetric PCSPs.

1-in-3-SAT and Not-All-Equal-3-SAT are classic examples of Boolean symmetric (non-promise)
CSPs. While both problems are NP-hard, Brakensiek and Guruswami showed [SODA’18] that given
a satisfiable instance of 1-in-3-SAT one can find a solution to the corresponding instance of (weaker)
Not-All-Equal-3-SAT. In other words, the PCSP template (1-in-3, NAE) is tractable.

We focus on non-symmetric PCSPs. In particular, we study PCSP templates obtained from
the Boolean template (t-in-k, NAE) by either adding tuples to t-in-k or removing tuples from
NAE. For the former, we classify all templates as either tractable or not solvable by the currently
strongest known algorithm for PCSPs, the combined basic LP and affine IP relaxation of Brakensiek
and Guruswami [SODA’20]. For the latter, we classify all templates as either tractable or NP-hard.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Constraint and logic programming

Keywords and phrases promise constraint satisfaction, PCSP, polymorphisms, algebraic approach

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.121

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2104.12800 [14]

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
Alex Brandts: Royal Society Enhancement Award and NSERC PGS Doctoral Award.
Stanislav Živný: Royal Society University Research Fellowship.

1 Introduction

How hard is it to find a 6-colouring of a graph if it is promised to be 3-colourable? We do not
know but believe it to be NP-hard. Despite sustained effort, this so-called approximate graph
colouring problem has been elusive since it was considered by Garey and Johnson almost 50
years ago [22]. The current state of the art, established in 2019, is NP-hardness of finding a
5-colouring of a 3-colourable graph [17]. Approximate graph colouring is an example of the
very general promise constraint satisfaction problem, which is the focus of this paper. We
start with (non-promise) constraint satisfaction problems to set the stage.

Constraint satisfaction. While deciding whether a graph is 2-colourable is solvable in
polynomial time, deciding 3-colourability is NP-complete [26]. The constraint satisfaction
problem (CSP) is a general framework that captures graph colourings and many other

EA
T
C
S

© Alex Brandts and Stanislav Živný;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 121; pp. 121:1–121:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alex.brandts@cs.ox.ac.uk
mailto:standa.zivny@cs.ox.ac.uk
https://www.cs.ox.ac.uk/standa.zivny/
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.ICALP.2021.121
https://arxiv.org/abs/2104.12800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

121:2 Beyond PCSP(1-in-3, NAE)

fundamental computational problems. Feder and Vardi initiated a systematic study of
so-called fixed-template decision CSPs. Let A be a fixed finite relational structure, called
the template or constraint language; i.e., A consists of a finite universe A and finitely many
relations on A, each of possibly different arity. The fixed-template CSP over A, denoted
by CSP(A), is the class of CSPs in which all constraint relations come from A. In more
detail, CSP(A) denotes the following computational problem: Given a structure X over the
same signature as A, is there a homomorphism from X to A, denoted by X → A? (Formal
definitions can be found in Section 2.) If A = K3 is a clique on 3 vertices then CSP(A) is
precisely the standard graph 3-colouring problem.

A classic result of Schaefer shows that, for any A on a 2-element set, CSP(A) is either
solvable in polynomial time or NP-complete. The non-trivial tractable cases from Schaefer’s
classification are taught in undergraduate algorithms courses: 2-SAT, (dual) Horn-SAT,
and linear equations over {0, 1}. Two concrete CSPs that are NP-hard by Schaefer’s result
are the (positive) 1-in-3-SAT and (positive) Not-All-Equal-3-SAT. For both problems, the
instance is a list of triples of variables. In 1-in-3-SAT, the task is to find a mapping from the
variables to {0, 1} so that in each triple exactly one variable is set to 1. Formally, 1-in-3-
SAT is CSP(A), where A = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). In Not-All-Equal-3-SAT,
the task is to find a mapping from the variables to {0, 1} so that in each triple not all
variables are assigned the same value. Formally, Not-All-Equal-3-SAT is CSP(A), where
A = ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

If A is a graph (i.e., a single symmetric binary relation) then, as shown by Hell and
Nešetřil [24], CSP(A) is either solvable in polynomial time or NP-complete. In this case,
essentially the only non-trivial tractable case is graph 2-colouring.

Based on these two examples and a connection to logic, Feder and Vardi famously
conjectured [20] that, for any finite A, CSP(A) is either solvable in polynomial time or
NP-complete. Bulatov [16], and independently Zhuk [31], proved the conjecture in the
affirmative, both relying on the algebraic approach to CSPs [25, 15, 6]. In this case, the
tractable cases are complicated and hard to describe in an elementary way.

Promise constraint satisfaction. Austrin, Guruswami, and Håstad [2] and Brakensiek and
Guruswami [8, 9] initiated the investigation of the promise constraint satisfaction problem
(PCSP), which is a vast generalisation of the CSP. Let A and B be two relational structures
such that A → B. The fixed-template PCSP over A and B, denoted by PCSP(A,B), is the
following computational problem: Given X such that X → A, find a homomorphism from X
to B (which exists by the composition of the promised homomorphism from X to A and the
homomorphism from A to B). If we take A = K3 to be a clique on 3 vertices and B = K6 to
be a clique on 6 vertices, then PCSP(A,B) is an instance of the approximate graph colouring
problem mentioned at the beginning of this article. Actually, what we described is the search
version of the PCSP. The decision version is as follows: Given X, return Yes if X → A and
return No if X ̸→ B. (The promise in the decision version is that it does not happen that
X ̸→ A but X → B.) It is well known that the decision version reduces to the search version
but it is not known whether there is a reduction the other way [5]. In most results (including
ours), hardness is established for the decision version and tractability for the search version.

If A = B then PCSP(A,B) is the same as CSP(A) and thus PCSPs indeed generalise
CSPs. For CSPs, the decision and search versions are known to be equivalent [15].

Building on the result of Barto, Opršal, and Pinsker [7] that the complexity of CSP(A)
is captured by certain types of identities of higher-order symmetries (called polymorphisms)
of A, Barto, Bulín, Krokhin, and Opršal showed that the basics of the algebraic approach
developed for CSPs [7] can be generalised to PCSPs [17, 5], thus introducing a general
methodology for investigating the computational complexity of PCSPs.

A. Brandts and S. Živný 121:3

Related work. Motivated by the goal to understand the computational complexity of all
fixed-template PCSPs, a recent line of research has focused on restricted classes of templates,
with the main directions being Boolean templates (i.e., templates on a two-element set) and
symmetric templates (i.e., all relations in the template satisfy that if a tuple belongs to a
relation then so do all of its permutations).

Austrin, Guruswami, and Håstad [2] considered the (1, g, k)-SAT problem: Given an
instance of k-SAT with the promise that there is an assignment satisfying at least g literals in
each clause, find an assignment that satisfies at least one literal in each clause. They showed
that this problem is NP-hard if g

k <
1
2 , and polynomial-time solvable otherwise. (1, g, k)-SAT

is a Boolean PCSP with a (symmetric) template that includes the binary disequality relation
and a relation containing all tuples of particular Hamming weights. The NP-hardness in [2]
was proved via reduction from the label cover problem using the idea of polymorphisms lifted
from CSPs to PCSPs. Building on the algebraic theory from [17, 5], Brandts, Wrochna, and
Živný [13] extended the classification of (1, g, k)-SAT to arbitrary finite domains.

Brakensiek and Guruswami [9] managed to classify all PCSPs over symmetric Boolean
templates with the disequality relation as NP-hard or solvable in polynomial time. Ficak,
Kozik, Olšák, and Stankiewicz [21] extended this result to all symmetric Boolean templates.

In very recent work, Barto, Battistelli, and Berg [4] explored symmetric PCSPs on three-
and four-element domains.

While the approximate graph colouring problem remains open, hardness was proved under
stronger assumptions (namely Khot’s 2-to-1 Conjecture [27] for k-colourings with k ≥ 4 and
its non-standard variant for 3-colourings) by Dinur, Mossel, and Regev [18]. Guruswami and
Sandeep [23] recently established this result under a weaker assumption, the so-called d-to-1
conjecture for any fixed d ≥ 2. For approximate hypergraph colouring, another important
PCSP, NP-hardness was established by Dinur, Regev, and Smyth [19]. There has been some
recent progress on approximate graph colourings [30] and related PCSPs, e.g. approximate
graph homomorphism problems [28, 30], and rainbow vs. normal hypergraph colourings [1].

Unlike most previous works, which focused on symmetric PCSPs, we investigate non-
symmetric PCSPs. Our first motivation is that a classification of more concrete PCSP
templates is needed to improve and extend the general algebraic theory from [17, 5]. At the
moment, even an analogue of Schaefer’s result, i.e., classifying all Boolean PCSPs, seems
out of reach. Our second motivation is the pure beauty of the template (1-in-3,NAE).
While PCSP(1-in-3,NAE) admits a polynomial-time algorithm [9, 10], Barto showed [3, 5]
that this tractability result cannot be obtained via an algebraic reduction to tractable
finite-domain CSPs.

Contributions. Consider the Boolean PCSP(t-in-k,NAE), which is a natural generalisation
of PCSP(1-in-3,NAE). This is a symmetric, tractable PCSP. When can we add tuples to
t-in-k to keep the PCSP tractable? When can we remove tuples from NAE to keep the
PCSP tractable? Note that these changes generally do not give symmetric templates.

For the second question, we give a complete answer in Theorem 11: If t is odd, k is even,
and tuples of only even Hamming weight are removed from NAE, the resulting PCSP is
solvable in polynomial time. In all other cases, the resulting PCSP is NP-hard.

For the first question, we give a second-best possible answer in Theorem 10: If t is
odd, k is even, and tuples of only odd Hamming weight are added to t-in-k, the resulting
PCSP is tractable. In all other cases, the resulting PCSP is not solved by the combined
basic LP and affine IP relaxation of Brakensiek and Guruswami [11], the currently strongest
known algorithm for PCSPs. The power of this relaxation has recently been characterised by
Brakensiek, Guruswami, Wrochna, and Živný [12].

ICALP 2021

121:4 Beyond PCSP(1-in-3, NAE)

2 Preliminaries

We denote by [n] the set {1, 2, . . . , n}. For a k-tuple x, we write x = (x1, . . . , xk). We denote
by ≤p a polynomial-time many-one reduction.

A relational structure is a tuple A = (A;R1, . . . , Rp), where A is a finite set called the
domain of A, and each Ri is a relation of arity ar(Ri) ≥ 1, that is, Ri is a non-empty
subset of Aar(Ri). A relational structure is symmetric if each relation in it is invariant
under any permutation of coordinates. Two relational structures A = (A;R1, . . . , Rp) and
B = (B;S1, . . . , Sq) have the same signature if p = q and ar(Ri) = ar(Si) for every i ∈ [p].
In this case, a mapping ϕ : A → B is called a homomorphism from A to B, denoted by
ϕ : A → B, if ϕ preserves all relations; that is, for every i ∈ [p] and every tuple x ∈ Ri, we
have ϕ(x) ∈ Si, where ϕ is applied component-wise. The existence of a homomorphism from
A to B is denoted by A → B. A PCSP template is a pair (A,B) of relational structures
over the same signature such that A → B.

▶ Definition 1. Let (A,B) be a PCSP template. The decision version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A
and B, output Yes if X → A and No if X ̸→ B. The search version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A
and B such that X → A, find a homomorphism from X to B.

We call PCSP(A,B) tractable if any instance of PCSP(A,B) can be solved in polynomial
time in the size of the input structure X. It is easy to show that the decision version
reduces to the search version [5]. Our hardness results will be for the decision version and
our tractability results for the search version. For a relational structure A, the constraint
satisfaction problem with the template A, denoted by CSP(A), is PCSP(A,A).

The following notion of polymorphisms is at the heart of the algebraic approach to (P)CSPs.
Intuitively, an arity m polymorphism of a PCSP template (A,B) is a homomorphism from
the m-th Cartesian power of A to B.

▶ Definition 2. Let (A,B) be a PCSP template. A function f : Am → B is a polymorphism
of arity m of (A,B) if for each pair of corresponding relations Ri and Si from A and B,
respectively, the following holds: For any (k ×m) matrix M whose columns are tuples in Ri,
the application of f to rows of M gives a tuple in Si. We denote by Pol(A,B) the set of all
polymorphisms of (A,B).

In a PCSP template (A,B) we view tuples from A and B as columns. When writing
tuples in text we may write them as rows to simplify notation but they should still be
understood as columns. For a k-ary relation R on the set [t], we denote by Rc = [t]k \ R
the complement of R. For a relational structure A, we denote by Ac the structure with
relations Rc for each relation R in A. Most of our relational structures will be on the Boolean
domain {0, 1} and contain a single relation of arity k. The (Hamming) weight of a tuple
x ∈ {0, 1}k, denoted throughout by d, is the number of 1’s in x. For 1 ≤ t < k, the Boolean
relational structure t-in-k consists (of one relation consisting) of all k-tuples with weight t.
The Boolean relational structure NAE contains all k-tuples except 0k and 1k.

We need a definition and some notation to state existing results on Boolean (P)CSPs.

▶ Definition 3. A function f : {0, 1}m → {0, 1} is
an ORm (ANDm) if it returns the logical OR (respectively logical AND) of its arguments;
an alternating threshold ATm if m ≥ 1 is odd and

f(x1, . . . , xm) = 1[x1 − x2 + x3 − · · · + xm] > 0;

A. Brandts and S. Živný 121:5

a parity function XORm if f(x1, . . . , xm) = x1 + · · · + xm mod 2;
a q-threshold THRq,m (for q a rational between 0 and 1 and mq not an integer) if
f(x1, . . . , xm) = 0 if

∑m
i=1 xi < mq and 1 otherwise;

a majority MAJm if f is a 1
2 -threshold.

We denote by OR and AND the set of all ORm and ANDm functions, respectively, for
m ≥ 2. We denote by AT and XOR the set of all ATm and XORm functions, respectively,
for odd m ≥ 1. Finally, THRq denotes the set of all THRq,m functions for qm ̸∈ Z.

Define f , the inversion of f , as the function x 7→ 1 − f(x), and for a family of functions
F , define the inversion of F by F = {f |f ∈ F}.

Schaefer’s celebrated dichotomy theorem classified all Boolean CSP templates.

▶ Theorem 4 ([29]). Let B be a Boolean CSP template. If Pol(B) contains a constant,
AND2, OR2, MAJ3, or XOR3, then CSP(B) is tractable. Otherwise, CSP(B) is NP-hard.

Ficak et al. classified all symmetric Boolean PCSP templates [21].

▶ Theorem 5 ([21]). Let (A,B) be a symmetric Boolean PCSP template. If Pol(A,B)
contains a constant or at least one of OR, AND, XOR, AT, THRq (for some q) or their
inversions, then PCSP(A,B) is tractable. Otherwise, PCSP(A,B) is NP-hard.

The only possibly unresolved promise templates are those with NP-hard CSP templates.

▶ Proposition 6. Let (A,B) be a promise template such that at least one of CSP(A), CSP(B)
is tractable. Then PCSP(A,B) is tractable.

Theorem 4 established NP-hardness of two natural CSPs: CSP(1-in-3) and CSP(NAE).
Interestingly, PCSP(1-in-3,NAE) is solvable in polynomial-time, as first shown by Braken-
siek and Guruswami [9]. (Note that this shows that the converse of Proposition 6 is
false.) A natural generalisation of 1-in-3 is t-in-k. Theorem 4 implies that CSP(t-in-k)
is NP-hard. Theorem 5 implies that the tractability of PCSP(1-in-3,NAE) also holds for
PCSP(t-in-k,NAE); both observations are proved in the full version [14].

▶ Proposition 7. For k ≥ 3 and 1 ≤ t < k,CSP(t-in-k) is NP-hard.

▶ Proposition 8. For k ≥ 2 and 1 ≤ t < k,PCSP(t-in-k,NAE) is tractable.

We now give a characterisation of the power of a certain convex relaxation useful for
tractability of (the decision version of) PCSPs. The relaxation is called the combined basic
LP and affine IP relaxation (BLP+AIP) and was introduced in [11]; see also [10]. All known
tractable PCSPs are solvable by either BLP+AIP or a reduction to a tractable CSP.

A (2m+ 1)-ary function f is called 2-block-symmetric if its 2m+ 1 coordinates of f can
be partitioned into two blocks of size m + 1 and m in such a way that the value of f is
invariant under any permutation of coordinates within each block. Without loss of generality,
we will assume that the two blocks are the odd and even coordinates of f .

▶ Theorem 9 ([12, Theorem 5.1]). Let (A,B) be a PCSP template. Then (the decision
version of) PCSP(A,B) is tractable via BLP+AIP if and only if Pol(A,B) contains 2-block-
symmetric functions of all odd arities.

In the proof of one of our results (Theorem 10) we will use Theorem 9 to rule out solvability
by BLP+AIP. However, for our tractability results, we will only need a characterisation
result (in terms of polymorphisms) of a weaker relaxation, namely the affine IP relaxation
(AIP) [5], which also works for the search version of PCSPs; details can be found in [14].

ICALP 2021

121:6 Beyond PCSP(1-in-3, NAE)

3 Our results

Our results are concerned with templates that arise from (t-in-k,NAE) by either adding
tuples to t-in-k or removing tuples from NAE. For a set of tuples S ⊆ {0, 1}k, we write
t-in-k ∪ S for the relational structure whose (only) relation contains all k-tuples of weight t
and the tuples from S, and similarly for NAE \ S.

▶ Theorem 10 (Main #1). Let k ≥ 3 and ∅ ̸= S ⊆ (t-in-k)c ∩ NAE. If t is odd, k is
even, and S contains tuples of only odd weight, then PCSP(t-in-k ∪ S,NAE) is tractable.
Otherwise, PCSP(t-in-k ∪ S,NAE) is not solved by BLP+AIP.

The tractability part of Theorem 10 follows easily from existing work, cf. [14]. Our
contribution is ruling out the applicability of BLP+AIP from [11]. Using Theorem 9, we
prove the second part of Theorem 10 for t = 1 in Section 4 and for general t in [14].

▶ Theorem 11 (Main #2). Let k ≥ 3 and ∅ ̸= S ⊆ (t-in-k)c ∩ NAE. If t is odd, k is
even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Again, the tractability part of Theorem 11 follows easily from existing work. Our
contribution is establishing the hardness. It essentially follows from the following result.

▶ Theorem 12. Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that CSP(T) is NP-hard.
Then PCSP(t-in-k,T) is tractable if and only if T = NAE.

Theorem 12 is proved in Section 5 and relies on Theorem 5, as well as a symmetrisation
trick (Proposition 14, observed independently in [4]) and the following simple observation.

▶ Proposition 13. Let t, t′ ≥ 1 and let R be a symmetric relation on [t]. For any function
f : [t] → [t′], the component-wise image of R under f , denoted f(R), is also symmetric.

Proof. Suppose that y ∈ f(R), so y = f(x) for some x ∈ R. We must show that π(y) ∈ f(R)
for an arbitrary permutation π. But since R is symmetric, we have π(x) ∈ R, and so
f(π(x)) = π(y) since f is applied component-wise. ◀

▶ Proposition 14. Let (A,B) be a PCSP template with A symmetric. For each relation
R ∈ B, let R′ be the largest symmetric relation contained in R. Let B′ be the relational
structure with the same domain as B but with relations R′ instead of R. Then PCSP(A,B)
is polynomial-time equivalent to PCSP(A,B′).

Proof. We must first check that (A,B′) is a valid PCSP template, i.e., that there is a
homomorphism A → B′. Let ϕ be a homomorphism from A to B. By Proposition 13, ϕ(A)
is symmetric, and since B′ is the largest symmetric relational structure contained in B, we
have ϕ(A) ⊆ B′. Therefore (A,B′) is a valid PCSP template.

The reduction PCSP(A,B) ≤p PCSP(A,B′) is trivial since B′ ⊆ B.
To see that PCSP(A,B′) ≤p PCSP(A,B), suppose that a relation R ∈ B gives rise to

the symmetric relation R′ ∈ B′ as described above. For each constraint C = R′(x1, ..., xk) of
the symmetrised instance of PCSP(A,B′), we create k! constraints by taking all coordinate
permutations of C. Homomorphisms to A are preserved since A is symmetric. Conversely,
suppose that we have a homomorphism ψ from the created instance to B and suppose that
the tuple x was removed from R to create R′. Then no constraint is assigned x under ψ,
since by our construction this would force all permutations of x to appear in constraints,
violating membership in the relation R. Therefore, for any removed tuple x, applying ψ does
not produce x in any constraint, so ψ is a homomorphism from the original input to B′. To
complete the reduction, we repeat this construction for each R ∈ B. ◀

A. Brandts and S. Živný 121:7

4 Adding tuples for t = 1

We will rule out 2-block-symmetric polymorphisms of certain odd arities for PCSP templates
of the form (1-in-k ∪ {x},NAE) such that the weight of x is even if k is even. This implies
the second part of Theorem 10 with t = 1. The more general case stated in Theorem 10, for
any t ≥ 1, can be found in [14].

Any 2-block-symmetric function f : {0, 1}2m+1 → {0, 1} of odd arity 2m+1 is determined
by the values on the (m+ 2)(m+ 1) possible combinations of weights of the two blocks. Thus
we will represent f by f(x, y), where x and y are the number of 1’s on the odd and even
coordinates, respectively.

▶ Proposition 15. Let k ≥ 3 and 2 ≤ d ≤ k+1
2 be such that if k is even then so is d. Let x

be a tuple of weight d. Then, Pol(1-in-k ∪ {x},NAE) has no 2-block-symmetric function of
arity 2(k − d+ 1) + 1.

Proof. Since NAE is symmetric, permuting the rows of a matrix of inputs to a polymorphism
permutes the values of the output tuple and does not affect membership in NAE. Hence we
will assume that x = 1d0k−d. Let f be a 2-block-symmetric function of arity 2(k− d+ 1) + 1.
Thus the odd block is of size k−d+ 2 and the even block is of size k−d+ 1. We exhibit a set
of tableaux such that for any f , one of these tableaux prevents f from being a polymorphism
of (1-in-k ∪ {x},NAE). Each tableau in this set contains the same construction on its even
coordinates: the tuple x as its first column, followed by the (k − d) × (k − d) identity matrix
below and to the right of x, so that every row has exactly one 1. An illustration is given in
Figure (1a).



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(a) Even block.



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(b) Odd block if f(0, 1) = f(1, 1).

Figure 1 Example with k = 9 and d = 4.

It remains to give only the description of each tableau’s odd coordinates.
If f(0, 1) = f(1, 1), then the block of odd coordinates consists of the (k−d+2)×(k−d+2)

identity matrix on top of d− 2 rows of zeros. Since 2 ≤ d < k, the dimensions of the identity
matrix are between 3 and k. An illustration is given in Figure (1b).

If f(1, 1) = f(2, 1), then we obtain the block of odd coordinates by adding any tuple of
weight 1 to the block of even coordinates.

Otherwise we have f(0, 1) ̸= f(1, 1) ̸= f(2, 1), so f(0, 1) = f(2, 1).
If the number of odd coordinates k − d + 2 is even, then we place two copies of the

k−d+2
2 × k−d+2

2 identity matrix in the first k−d+2
2 rows, followed by zeros in the remaining rows.

There are always enough rows to accommodate these matrices since k−d+2
2 ≤ k ⇔ k + d ≥ 2.

An illustration is given in Figure (2a).

ICALP 2021

121:8 Beyond PCSP(1-in-3, NAE)



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(a) Odd block with d = 5
and k − d + 2 = 6 even.



1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(b) Odd block with d = 4
and k − d + 2 = 7 odd.

Figure 2 Example with k = 9 and f(0, 1) = f(2, 1).

If k − d+ 2 is odd then so is k − d. By the assumption “even k implies even d”, we must
have k odd and d even. The construction consists of the tuple x with the d × d identity
matrix to its right. To fill the remaining k − 2d+ 1 columns (assuming d ≤ k+1

2), we place
two copies of the k−2d+1

2 × k−2d+1
2 identity matrix starting from row d+ 1 and column d+ 2,

and fill any remaining rows with zeros. There are always enough rows to accommodate the
identity matrices since k−2d+1

2 ≤ k − d. An illustration is given in Figure (2b). ◀

▶ Proposition 16. Let k ≥ 3 and k+1
2 < d < k be such that if k is even then so is d. Let x

be a tuple of weight d. Then, Pol(1-in-k ∪ {x},NAE) has no 2-block-symmetric function of
arity 2k + 1.

Proof. Without loss of generality let x = 1d0k−d. The proof is similar to the proof of
Proposition 15: We will again exhibit a set of tableaux such that for any f , one of these
tableaux prevents f from being a polymorphism of (1-in-k ∪ {x},NAE). Each tableau in
this set has the k × k identity matrix as its even coordinates, so it remains only to give
a description of each tableau’s odd coordinates. Consider the values f(1, 1), f(2, 1), and
f(3, 1): At least two of these must be equal since f takes only the values 0 and 1.

If f(1, 1) = f(2, 1), then taking the odd coordinates to be the k× k identity matrix along
with any other tuple of weight 1 prevents f from being a polymorphism.

If f(1, 1) = f(3, 1), the odd coordinates are as follows: the first column is the tuple x,
followed immediately below and to the right by the (k − d) × (k − d) identity matrix, and
then by two copies of the d

2 × d
2 identity matrix in the upper-right corner. The tuple x and

the (k − d) × (k − d) matrix occupy k − d+ 1 columns, leaving d columns to be filled by the
two d

2 × d
2 identity matrices, and since d is even, d

2 is always an integer. An illustration is
given in Figure (3a).

Finally, if f(2, 1) = f(3, 1), the odd coordinates are as follows: two columns of x, followed
immediately below and to the right by two copies of the (k − d) × (k − d) identity matrix,
and then by the (2d− k − 1) × (2d− k − 1) identity matrix in the upper-right corner. This
fills all the columns. To place the two (k − d) × (k − d) identity matrices requires 2(k − d)
columns after the x’s. This is always possible since 2(k − d) ≤ k − 1 ⇔ d ≥ k+1

2 . After
placing these, there remain 2d − k − 1 columns for the final identity matrix, and since
(2d−k− 1) ≤ k ⇔ d ≤ k+ 1

2 , the number of available rows is never exceeded. An illustration
is given in Figure (3b). ◀

A. Brandts and S. Živný 121:9



1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


(a) Odd block with f(1, 1) = f(3, 1).



1 1 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0


(b) Odd block with f(2, 1) = f(3, 1).

Figure 3 Example with k = 9 and d = 6.

5 Removing tuples

In this section, we will prove Theorem 12 and show how it implies Theorem 11.

▶ Theorem (Theorem 12 restated). Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that
CSP(T) is NP-hard. Then PCSP(t-in-k,T) is tractable if and only if T = NAE.

Proof. By Proposition 14, we can assume that T is symmetric. If T = NAE then
PCSP(t-in-k,T) is tractable by Proposition 8. Otherwise, we show that Pol(t-in-k,T)
does not contain any of the tractable polymorphism families identified in the symmetric
Boolean PCSP dichotomy (Theorem 5), and therefore PCSP(t-in-k,T) is NP-hard.

The families are constants, OR, AND, XOR, AT, and THRq for q ∈ Q, as well as
their inversions. We deal first with the non-inverted families. Since 0k ̸∈ T and 1k ̸∈ T,
Pol(t-in-k,T) does not contain constants. Let Ct

k be the k × k matrix containing the k
cyclic shifts of the column 1t0k−t. Then Ct

k prevents the polymorphism families OR, AND,
XOR (if k is odd), and THRq for all q ̸= t

k . For all k, it remains to show that Pol(t-in-k,T)
contains neither THR t

k
nor AT. For even k it remains to show that Pol(t-in-k,T) excludes

XOR when t is even, and likewise when t is odd and T is missing a tuple of odd weight.

THR t
k

: Suppose that T does not contain the tuple x = 1d0k−d of weight d where 1 ≤ d < k.
Note that we cannot have d = t as this would violate t-in-k → T, so either t < d or t > d.

If t < d, then the k × d matrix M formed by placing Ct
d on top of the (k − d) × d zero

matrix returns the forbidden tuple x when THR t
k ,d is applied. An illustration is given in

Figure (4a).
We must check that THR t

k ,d is indeed in THR t
k

, which requires that d× t
k ̸∈ Z. This is

equivalent to dt ̸≡ 0 (mod k). However this is not always true, for example when t = 2, k = 6
and d = 3. When dt ≡ 0 (mod k), we take instead THR t

k ,2d+1 and the k × (2d+ 1) input
matrix M ′ consisting of two side-by-side copies of M and any extra column from M . In the
first d rows of M , t of the d entries are 1’s, so THR t

k ,d returns 1 since t
d >

t
k . Alternatively,

in the first d rows of M ′, at least 2t of the 2d+ 1 entries are 1’s, so THR t
k ,2d+1 returns 1

since 2t
2d+1 > t

k . Both THR t
k ,d and THR t

k ,2d+1 return 0 when applied to any of the last
k − d rows of M and M ′, respectively, since these rows contain only 0’s. This completes the
case t < d.

If t > d, let M be the d× (k − d) 1’s matrix on top of Ct−d
k−d. Then applying THR t

k ,k−d

THR t
k

to M returns the forbidden tuple x. An illustration is given in Figure (4b).

ICALP 2021

121:10 Beyond PCSP(1-in-3, NAE)

THR 3
7 ,5



1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0


=

1
1
1
1
1
0
0

(a) t = 3 and d = 5.

THR 4
7 ,5



1 1 1 1 1
1 1 1 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


=

1
1
0
0
0
0
0

(b) t = 4 and d = 2.

Figure 4 Example with k = 7.

Again we have to check that (k − d) × t
k ̸∈ Z, or equivalently, that (k − d)t ̸≡ 0 (mod

k). If (k − d)t ≡ 0 (mod k), then d ̸= 1, and we use instead THR t
k ,k−d+1 and the input

matrix M ′ which is equal to M but with any one column repeated. Both THR t
k ,k−d and

THR t
k ,k−d+1 return 1 when applied to the first d rows of M and M ′, respectively. In the last

k− d rows of M , t− d of the k− d entries are 1’s, so THR t
k ,k−d returns 0 as t−d

k−d <
t
k . In the

last k − d+ 1 rows of M ′, at most t− d+ 1 of the k − d+ 1 entries are 1’s, so THR t
k ,k−d+1

returns 0 since t−d+1
k−d+1 <

t
k (note that d > 1 in this case). This completes the proof for t > d,

and thus we conclude that THR t
k

̸⊆ Pol(t-in-k,T).

AT: Again we split into the cases t < d and t > d.
Let t < d and suppose that T does not contain the tuple x = 1d0k−d of weight d where

1 ≤ d < k. We construct an input that returns x when a specific AT function is applied.
This is done in two stages. First, we construct a matrix M such that for some AT function
f , f(M) agrees with x on all coordinates but one. Next we pad the input M with a matrix
P such that for another AT function f ′, we have f ′(M |P | · · · |P) = x.

To ease readability, we will separate the odd and even columns into two contiguous blocks,
with the odd columns appearing first in the matrices. We take f = AT2d−1 and define M
to be the following k × (2d− 1) matrix. In the d odd columns, we fill the first d rows with
the matrix Ct

d. We fill the remaining k − d rows with 0’s. In the d − 1 even columns, we
place on top a row of 1’s, followed by d− 1 rows of 0’s, then t− 1 rows of 1’s, and finally
k − d− t+ 1 rows of 0’s. An illustration is given in Figure (5a).

AT9



1 0 0 1 1 1 1 1 1
1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0


=

0
1
1
1
1
0
0
0

(a) AT9.

P =



1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1


(b) P .

Figure 5 t = 3, k = 8, and d = 5.

A. Brandts and S. Živný 121:11

Notice that AT2d−1(M) agrees with x everywhere except the first coordinate. This
happens because the first row of M has too many 1’s in the even columns; we would require
at least (d− 1) − t+ 1 = d− t more 1’s in the odd columns for f to output 1 on the first
row. We can achieve this by padding M with a matrix P that increases the proportion of 1’s
in the odd coordinates of the first row but does not affect the output of AT functions on the
other rows.

Take f ′ = AT2d−1+2t(d−t) and define the k× 2t matrix P as follows. In the t odd columns
of P , we place t rows of 1’s followed by k − t rows of 0’s. In the even columns of P , we place
Ct−1

t in the first t rows, followed by k − t− 1 rows of 0’s, and then by a final row of 1’s. An
illustration is given in Figure (5b).

By padding M with copies of P , we increase the proportion of 1’s in odd columns in the
first t < d rows, and in particular in the first row. The 0’s in rows t+1, . . . , k−1 do not affect
the output, and the 1’s in the last row do not affect the output since they are in even columns
and the last coordinate of x is always zero since d < k. Therefore f ′(M |P | · · · |P) = x, where
P appears d− t times. This completes the case t < d.

Now let t > d and again suppose that T does not contain the tuple x = 1d0k−d of weight
d. Define the k× (2d− 1) input matrix M to AT2d−1 as follows. In the d odd columns of M ,
we first place d rows of 1’s. Then in next t− d+ 1 rows, we place side-by-side as many copies
of Ct−d

t−d+1 as we can, removing columns of the last copy if necessary. We fill the remaining
rows with 0’s. In the d− 1 even columns, we place a row of 0’s, then t rows of 1’s, and then
fill the remaining rows with 0’s. An illustration is given in Figure (6).

AT7



1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 0 1 1 1
0 0 0 0 0 0 0


=

1
1
1
1
0
0
0
0

Figure 6 t = 6, k = 8, and d = 4.

We have AT2d−1(M) = x, which concludes the case t > d. Therefore AT ̸⊆ Pol(t-in-k,T).

XOR: Let t and k be even. Applying XORk to the matrix Ct
k returns the tuple 0k, so

applying XORk−1 to the first k − 1 columns of Ct
k returns the last column 1t−10k−t1. We

can “fill in” the 0’s in the output by swapping 0-1 pairs of values in the input matrix. In
particular, in the columns k − 1, k − 3, . . . , t + 1, we swap the entries in the pairs of rows
(k − 1, k − 2), (k − 3, k − 4), . . . , (t+ 1, t), respectively. The resulting k × (k − 1) matrix M
then satisfies XORk−1(M) = 1k and the arity k − 1 is odd as required. An example with
swapped values in bold is illustrated in Figure (7a).

Now let t be odd, k be even, and suppose that T does not contain the tuple x = 1d0k−d

of odd weight d. If t < d, then XORd applied to the input matrix Ct
d padded with k− d rows

of 0’s returns x. If t > d, let M be the k × (t− d+ 1) matrix with d rows of 1’s followed by
the matrix Ct−d

t−d+1. Fill any extra rows with 0’s. Then XORt−d+1(M) = x. An illustration
is given in Figure (7b). Therefore XOR ̸⊆ Pol(t-in-k,T).

ICALP 2021

121:12 Beyond PCSP(1-in-3, NAE)

XOR7



1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0
1 1 1 1 1 0 0
0 1 1 1 0 0 0
0 0 1 1 1 1 1
0 0 0 1 1 1 0
0 0 0 0 1 1 1


=

1
1
1
1
1
1
1
1

(a) t = 4 and k = 8.

XOR3



1 1 1
1 1 0
1 0 1
0 1 1
0 0 0
0 0 0


=

1
0
0
0
0
0

(b) t = 3, k = 6, and d = 1.

Figure 7 XOR.

Inversions: Let F be a family of functions. We reduce the task of showing F ̸⊆ Pol(t-in-k,T)
to the already completed task of showing F ̸⊆ Pol(t-in-k,T). Let x ∈ {0, 1}k \ T, let
f ∈ F be a function of arity m, and let M be a k × m matrix of inputs to f whose
columns are t-in-k tuples. We established F ̸⊆ Pol(t-in-k,T) by finding f and M with
f(M) = x, and in the remaining cases we must find f ∈ F and M such that f(M) = x.
But since f(M) = x ⇔ f(M) = x, it suffices to find f ∈ F such that f(M) = x, where
x = (1 − x1, . . . , 1 − xk) if x = (x1, . . . , xk).

The families AND, OR, and XOR (except when t is odd and k is even) are excluded from
Pol(t-in-k,T) in the same way as AND, OR, and XOR, with the same matrices serving
as counterexamples. To see that AT and THR t

k
are also excluded, let x ̸∈ T be a tuple

of weight d, d ̸= t, 1 ≤ d < k. Then the tuple x of weight k − d can be returned by an AT
function and a THR t

k
function by the arguments above. If k − d = t, then the AT and

THR t
k

functions of arity 1 output x on input x.
Finally, when t is odd and k is even, and T does not contain the tuple x of odd weight

d, the XOR argument above applies since x also has odd weight k − d. Again, if k − d = t,
then the XOR function of arity 1 outputs x on input x. ◀

Schaefer’s dichotomy theorem (Theorem 4) allows us to obtain a simple description of all
T with CSP(T) tractable and t-in-k → T; a proof can be found in [14].

▶ Proposition 17. Let k ≥ 3, 1 ≤ t < k, and suppose that t-in-k → T. Then CSP(T) is
tractable if and only if
1. 0k ∈ T or 1k ∈ T, or
2. t is odd, k is even, and T contains all tuples of odd weight.

Observe that Proposition 17 in particular implies Proposition 7, NP-hardness of
CSP(t-in-k).

With Proposition 17 in hand, we can prove Theorem 11.

▶ Theorem (Theorem 11 restated). Let k ≥ 3 and ∅ ̸= S ⊆ (t-in-k)c ∩ NAE. If t is odd, k
is even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Proof. The tractability in the first statement of the theorem is proved in [14]. Otherwise, t
is even, or k is odd, or S contains a tuple of odd weight. Take T = NAE \ S. Observe that
case (1) of Proposition 17 does not apply as neither 0k nor 1k is part of the template. Moreover,

A. Brandts and S. Živný 121:13

case (2) of Proposition 17 does not apply either: If t is odd and k is even then S contains a tuple
of odd weight and hence NAE\S cannot have all odd weight tuples. Thus, by Proposition 17,
CSP(T) is NP-hard. Then, by Theorem 12, PCSP(t-in-k,T) = PCSP(t-in-k,NAE \ S) is
NP-hard. ◀

References
1 Per Austrin, Amey Bhangale, and Aditya Potukuchi. Improved inapproximability of rainbow

coloring. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’20), pages 1479–1495, 2020. doi:10.1137/1.9781611975994.90.

2 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ϵ)-Sat is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.

3 Libor Barto. Promises Make Finite (Constraint Satisfaction) Problems Infinitary. In Proceedings
of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’19), pages
1–8. IEEE, 2019. doi:10.1109/LICS.2019.8785671.

4 Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction
Problems: Beyond the Boolean Case. In Proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science (STACS’21), volume 187 of LIPIcs, pages 10:1–10:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.
10.

5 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 2018. arXiv:1811.00970.

6 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In
Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

7 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel Journal
of Mathematics, 223(1):363–398, February 2018. doi:10.1007/s11856-017-1621-9.

8 Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hypergraph
colorings. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC 2016),
volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:27,
Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.CCC.2016.14.

9 Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Structure
Theory and a Symmetric Boolean Dichotomy. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’18), pages 1782–1801. SIAM, 2018. doi:
10.1137/1.9781611975031.117.

10 Joshua Brakensiek and Venkatesan Guruswami. An Algorithmic Blend of LPs and Ring
Equations for Promise CSPs. In Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’19), pages 436–455. SIAM, 2019. doi:10.1137/1.9781611975482.
28.

11 Joshua Brakensiek and Venkatesan Guruswami. Symmetric polymorphisms and efficient
decidability of promise CSPs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 297–304, 2020.
doi:10.1137/1.9781611975994.18.

12 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. The
power of the combined basic LP and affine relaxation for promise CSPs. SIAM Journal on
Computing, 49:1232–1248, 2020. doi:10.1137/20M1312745.

13 Alex Brandts, Marcin Wrochna, and Stanislav Živný. The Complexity of Promise SAT on
Non-Boolean Domains. In Proceedings of the 47th International Colloquium on Automata,
Languages, and Programming (ICALP’20), volume 168, pages 17:1–17:13. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.17.

ICALP 2021

https://doi.org/10.1137/1.9781611975994.90
https://doi.org/10.1137/15M1006507
https://doi.org/10.1109/LICS.2019.8785671
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.4230/LIPIcs.STACS.2021.10
http://arxiv.org/abs/1811.00970
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1137/1.9781611975482.28
https://doi.org/10.1137/1.9781611975482.28
https://doi.org/10.1137/1.9781611975994.18
https://doi.org/10.1137/20M1312745
https://doi.org/10.4230/LIPIcs.ICALP.2020.17

121:14 Beyond PCSP(1-in-3, NAE)

14 Alex Brandts and Stanislav Živný. Beyond PCSP(1-in-3,NAE), 2021. arXiv:2104.12800.
15 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints

using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

16 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017.
doi:10.1109/FOCS.2017.37.

17 Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC ’19), New York, NY, USA, 2019. ACM. doi:10.1145/3313276.3316300.

18 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
SIAM J. Comput., 39(3):843–873, 2009. doi:10.1137/07068062X.

19 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005. doi:10.1007/s00493-005-0032-4.

20 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

21 Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. Dichotomy for Sym-
metric Boolean PCSPs. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP’19), volume 132, pages 57:1–57:12. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.57.

22 M. R. Garey and David S. Johnson. The complexity of near-optimal graph coloring. J. ACM,
23(1):43–49, 1976. doi:10.1145/321921.321926.

23 Venkatesan Guruswami and Sai Sandeep. d-To-1 Hardness of Coloring 3-Colorable Graphs with
O(1) Colors. In Proceedings of the 47th International Colloquium on Automata, Languages,
and Programming (ICALP’20), volume 168 of LIPIcs, pages 62:1–62:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.62.

24 Pavol Hell and Jaroslav Nešetřil. On the Complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

25 Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997. doi:10.1145/263867.263489.

26 Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a Symposium
on the Complexity of Computer Computations, pages 85–103, 1972. URL: http://www.cs.
berkeley.edu/%7Eluca/cs172/karp.pdf.

27 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC’02), pages 767–775. ACM, 2002.
doi:10.1145/509907.510017.

28 Andrei Krokhin and Jakub Opršal. The complexity of 3-colouring H-colourable graphs. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS’19), pages
1227–1239, 2019. doi:10.1109/FOCS.2019.00076.

29 Thomas Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
Annual ACM Symposium on the Theory of Computing (STOC ’78), pages 216–226, 1978.
doi:10.1145/800133.804350.

30 Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable
graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’20), pages 1426–1435, 2020. doi:10.1137/1.9781611975994.86.

31 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

http://arxiv.org/abs/2104.12800
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1137/07068062X
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://doi.org/10.1145/321921.321926
https://doi.org/10.4230/LIPIcs.ICALP.2020.62
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1145/263867.263489
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
http://www.cs.berkeley.edu/%7Eluca/cs172/karp.pdf
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/FOCS.2019.00076
https://doi.org/10.1145/800133.804350
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1145/3402029

	1 Introduction
	2 Preliminaries
	3 Our results
	4 Adding tuples for t = 1
	5 Removing tuples

