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Abstract
In this work, we revisit the problem of testing membership in regular languages, first studied by Alon
et al. [1]. We develop a one-sided error property tester for regular languages under weighted edit
distance that makes O(ε−1 log(1/ε)) non-adaptive queries, assuming that the language is described
by an automaton of constant size. Moreover, we show a matching lower bound, essentially closing
the problem for the edit distance. As an application, we improve the space bound of the current
best streaming property testing algorithm for visibly pushdown languages from O(ε−4 log6 n) to
O(ε−3 log5 n log log n), where n is the size of the input. Finally, we provide a Ω̄(max(ε−1, log n))
lower bound on the memory necessary to test visibly pushdown languages in the streaming model,
significantly narrowing the gap between the known bounds.
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1 Introduction

A one-sided error ε-property tester for a language L is a randomised algorithm that accepts
an input u of length n if u ∈ L with probability one, and rejects if the distance from u to L

is at least εn with probability ≥ 2/3. In the property testing setting, we do not have access
to the whole input u, but instead must take the decision by querying as few symbols of the
input as possible. The number of queried symbols is called the query complexity of the tester.

The study of property testing of formal languages was initiated in the seminal paper
of Alon et al. [1], who showed a property tester for regular languages as well as lower bounds
for context-free languages. Property testing of regular languages has been also studied
in [6, 17, 19, 20]. Apart from regular languages, there is a series of work that studied the
question of testing membership in Dyck(s), the language of well-parenthesized expressions
with s types of parentheses [1, 4, 21]. When the distance allows sufficient modifications of the
input, such as moves of arbitrarily large factors, it was shown that any context-free language
is testable with a constant number of queries [3].

In this work, we revisit the problem of property testing of regular languages. Recall that
the Hamming distance is the number of mismatches between two equal-length strings, and
the edit distance between two strings is the smallest number of insertions, deletions, and
substitutions required to convert one string into another. The weighted edit distance is a
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119:2 Property Testing of Regular Languages

generalisation of the edit distance for weighted words (see Section 2 for a definition). Fix
a regular language specified by an automaton with m states and k connected components.
The first property tester for regular languages was given by Alon et al. [1]. The tester of
Alon et al. is for the Hamming distance, it queries O(k2m · ε−1 log3(m/ε)) symbols of the
input, and its runtime is exponential in the size of the automaton that defines the regular
language. Alon et al. [1] also showed a Ω̄(1/ε) lower bound for such testers1. Magniez and
De Rougemont [17] built upon [1] to show a property tester for regular languages under the
edit distance with moves. The query complexity of their algorithm is O(m3 · ε−1 log2(m/ε))
and its running time exponential. Later, Fischer et al. [3] improved the query complexity
to remove the dependency on m. Ndione et al. [19, 20] continued this line of work with
a goal of devising property testers that run in polynomial time, both for the Hamming
distance and the edit distance. Their tester for the Hamming distance has query complexity
O(k2m4 · ε−1 log3(km4/ε)) and runtime O(k2m10 · ε−1 log3(km4/ε)). Unfortunately, their
tester for the edit distance, which is of more interest to us, contains a fatal error in one of
the key lemmas, which is why we do not give its complexities here2. Finally, François et
al. [5, 6] gave a tester for regular languages under the weighted edit distance with query
complexity O(m3 · ε−2) and O(km5 · ε−2) running time.

Table 1 Summary of property testing algorithms for regular languages, assuming that a regular
language is described by an automaton on a constant-size alphabet Σ with m states and k strongly
connected components.

Queries Time Distance
Alon et al. [1] O(k2m · ε−1 log3(m/ε)) O(2m2

+ ε−k) Hamming
Magniez et
De Rougemont [17]

O(m3 · ε−1 log2(m/ε)) O(2mm5 · ε−1 log2(m/ε)) edit w. moves

Fischer et al. [3] O( Σ2/ε log |Σ|
ε4 ) m|Σ|O(1/ε)

edit w. moves
Ndione et al. [19, 20] O(k2m4 ·ε−1 log3(km4/ε)) O(k2m10·ε−1 log3(km4/ε)) Hamming
François et al. [6] O(m3 · ε−2) O(km5 · ε−2) weight. edit
This work O(km · ε−1 log(m/ε)) O(km3 · ε−1 log(m/ε)) weight. edit

Our main contribution is a tight bound on query complexity of property testing of regular
languages under the weighted edit distance. First, we show a new property tester with query
complexity O(km · ε−1 log(m/ε)) and time complexity O(km3 · ε−1 log(m/ε))(Theorem 5).
Essentially, our tester is very simple: it samples a set of short factors of the input string u,
and checks whether the factors can be complemented to a word that belongs to the given
regular language L. The analysis is much more involved. Our inspiration originates from the
ideas from [5, 19, 20], which we extend in a non-trivial way to show a better (and correct)
bound. In Theorem 15, we complement the upper bound with a matching lower bound. As
the Hamming distance is always larger than the edit distance, the bound also holds for the
Hamming distance, improving the lower bound by Alon et al. [1]. See Table 1 for a summary
of previously known results and comparison with our work.

1 We use the following asymptotic notation: For functions f, g : N → R≥0, f(n) = Ω̄(g(n)) holds if
f(n) ≥ c · g(n) for some c > 0 and infinitely many n ∈ N.

2 The error is in [19, Lemma 12], namely, the value l′ chosen in the last two sentences of the proof does
not necessarily exist (confirmed via personal communication with the authors).
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As an almost straightforward application of our result, in Section 4 we plug our property
tester into the algorithm of François et al. [5] to show an improved space bound for streaming
property testing for the class of visibly pushdown languages (VPL) (that, in particular,
contains regular languages and Dyck(s)). Informally, a streaming property tester for a
language L is an algorithm that receives an input word u of length n as a stream, one
symbol at a time, and must accept if u ∈ L with probability one and reject if the distance
from u to L is at least εn with probability at least 2/3. Assuming that the automaton that
specifies a VPL L is of constant size, the streaming property tester of François et al. [6]
requires O(ε−4 log6 n) bits of space. Our result improves this bound to O(ε−3 log5 n log log n)
(Corollary 22). François et al. [5] showed that for ε = 0, a streaming property tester for
visibly pushdown languages must use Ω(n) bits, even when randomisation is allowed. As our
final contribution, we show a space lower bound of Ω̄(max(ε−1, log n)) bits (Theorem 23),
thus narrowing the gap between the best existing bounds by log2 n/ log log n.

Apart from VPL, the problem of testing membership in formal languages in the streaming
setting has been studied for Dyck(s) [14, 16, 18], and for DLIN and LL(k) [2]. A variant of the
streaming setting, called the sliding window model, where one must decide the membership
for the n-length suffix of the stream after each symbol arrival, has been considered for regular
languages [9, 10, 11, 12], VPL [8], and context-free languages [13].

2 Preliminaries

An alphabet Σ is a finite set the elements of which are called symbols. The length of a
word u, denoted |u|, is the number of symbols in u. For 1 ≤ i ≤ j ≤ |u|, we let u[i] denote
the i-th symbol in u, and v = u[i, j] the word u[i] . . . u[j], which we call a factor of u. A
factor of length l is called an l-factor. If i = 1, then v is called a prefix of u, and if j = n, a
suffix. We let Σn denote the set of all n-length words over Σ and Σ∗ =

⋃
n∈N Σn ∪ ϵ, where ϵ

is the empty word. Any subset of Σ∗ is called a language.
The edit distance between two words u and v, ed(u, v), is defined as the minimum number

of deletions, insertions, and substitutions of symbols required to transform u into v. The
indel distance between two words u, v, δ(u, v), is defined as the smallest number of insertions
and deletions needed to convert u into v.

We say that a word u ∈ Σ∗ is weighted if each position i of u has a non-zero integer
weight that we denote by weight(u[i]). We define the weight of u, weight(u), as the sum of
the weights of its positions. The weighted edit distance between a weighted word u and a
(non-weighted) word v, wed(u, v), is defined as the minimum cost of deletions and insertions
of symbols that we must apply to u to obtain v. The cost of deletion or insertion of a symbol
is equal to its weight. (Substitutions are not allowed.) For example, if u = abb and the
weights of the positions are 3, 2, 2, and v = abc then wed(u, v) = 3: we delete u[2] = b with
weight 2, and insert c with weight 1.

▶ Observation 1. Consider two words u, v, and assume that the weight of any position in u

equals 1. We then have ed(u, v) ≤ wed(u, v) ≤ 2ed(u, v).

▶ Definition 2. The weight distribution over a word u ∈ Σn is the probability distribution
over {1, . . . n} where the probability to sample a position i is equal to weight(u[i])/weight(u).

▶ Definition 3. A non-deterministic finite automaton (NFA) is defined as a tuple A =
(Σ, Q, Qin, Qf , ∆), where:

Σ is a finite input alphabet,
Q is a finite set of states Qin ⊆ Q of initial states, and Qf ⊆ Q of final states,
∆ ⊆ Q× Σ×Q is the transition relation. For (p, a, q) ∈ ∆, we write p

a−→∆ q.

ICALP 2021



119:4 Property Testing of Regular Languages

For a word u = u[1] . . . u[n] and states p, q ∈ Q, we write p
u−→∆ q if there exists a sequence

of states p = q0, . . . , qn = q such that ∀i = 1, . . . , n qi−1
u[i]−−→∆ qi. The sequence q0, . . . , qn

is called a run labelled by u. A word u is recognized by A if there exists (qin, qf ) ∈ Qin×Qf

such that qin
u−→∆ qf . We write L(A) for the set of all words recognized by A. A language

L ⊆ Σ∗ is regular if there exists an NFA A such that L = L(A).

Property testing model

For a given distance function d on Σ∗, we define the distance from a word u ∈ Σ∗ to L,
d(u, L) = minw∈L d(u, w). If a word u is weighted, we say that it is ε-far from L if
d(u, L) ≥ ε · weight(u). In the unweighted case, if d(u, L) ≥ ε · |u|.

In the property testing model, we assume that we can query any symbol of the input
according to the weight distribution over it in constant time. In the unweighted case, this is
equivalent to constant-time random access.

▶ Definition 4 (Property tester). An ε-property tester for a language L for a distance d is a
randomised algorithm that:

accepts if u ∈ L with probability 1,
rejects with probability at least 2/3 if u is ε-far from L under d,
accepts or rejects otherwise.

In addition to standard complexity measures, we are interested in so-called query com-
plexity which is defined to be the number of symbols of u that a tester queries. The time
complexity is defined as usual, and the space complexity of a tester is defined as space used
beyond the space required to store the input.

Property testers can be non-adaptive (the symbols to query are selected offline) and
adaptive (the position of the i-th queried symbol depends on the first i− 1 queried symbols).
In this work, we focus on non-adaptive testers.

3 Property testing of regular languages

In this section, we show an improved upper bound and a matching lower bound on the query
complexity of property testing of regular languages under weighted edit distance.

3.1 Upper bound
We start by showing the following theorem:

▶ Theorem 5. Let A = (Σ, Q, Qin, Qf , ∆) be an NFA, m = |Q|, and k be the number of
strongly connected components in the underlying graph. There exists an ε-property tester for
membership of a weighted word u in the regular language L = L(A) under the weighted edit
distance. The query complexity of the tester is O(km · ε−1 log(m/ε)) and the time complexity
is O(km3 · ε−1 log(m/ε)), assuming constant-size alphabet.

3.1.1 Combinatorics of blocking factors and fragments
▶ Definition 6 (Blocking factor). Consider a strongly connected component C of A. We
say that a factor v of a word u is a C-blocking factor if for any two states p, q of C we
have p

v↛∆ q.
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We say that a sequence of components P = (C1, . . . , Cj) is a component path of A if for
any 1 ≤ i ≤ j − 1 there is p ∈ Ci, q ∈ Ci+1 such that p

a−→∆ q for some symbol a ∈ Σ. Note
that j ≤ k ≤ m.

▶ Definition 7 (P -partition, β-saturation). Let u ∈ Σ∗, β > 0 and P = (C1, . . . , Cj) be a
component path. We build the P -partition of u recursively. We start with i = 1. Let u = vxu′,
where v ∈ Σ∗, x ∈ Σ, and vx is the shortest Ci-blocking prefix of u. If weight(x) > β·weight(u),
we say that x is heavy, and otherwise we call it light. Consider three cases:

If x is not Ci-blocking, add vx to the set Bi(P );
If x is Ci-blocking and heavy, add it to the set Hi(P );
If x is Ci-blocking and light, add it to the set Li(P ).

Recurse for u = u′ and the value of i computed as follows:

i =


mini′({i′ | i′ > i,∃p ∈ Ci′−1 ∪ Ci′ , q ∈ Ci′ , p

x−→∆ q} ∪ {j + 1}), if x is heavy;
i + 1, if x is light and

(
|Bi(P )| ≥ β · weight(u) or weight(Li(P )) ≥ β · weight(u)

)
;

i, otherwise.

Stop if i = j + 1, if u is empty, or if there is no Ci-blocking factor in u. If we reach i = j + 1,
we say that u β-saturates P . The sets Bi(P ), Hi(P ), Li(P ), i ≤ j form the P -partition of u.

We show that if a word is ε-far from L, then it β-saturates P for β = ε/(6m). The proof
is by contradiction: we show that if a word does not β-saturate P , then we can obtain a
word in L by deleting the factors in ∪iLi(P ) and then inserting a small number of factors of
length and weight at most m.

▶ Lemma 8. Let u ∈ Σ∗ be such that weight(u) ≥ 6km/ε and P = (C1, . . . , Cj) be a
component path of A. Let β = ε/(6m). If u is ε-far from L, then u β-saturates P .

Proof. By contrapositive: assume that u does not β-saturate P , in other words, the algorithm
that built the P -partition of u reached the end of u but i ̸= j +1. We will show that there is a
word u′ ∈ L such that the weighted edit distance between u and u′ is at most ε ·weight(u). We
first delete all the elements in Li(P ), for all i. Note that weight(Li(P )) ≤ 2β · weight(u) for
any i, so the total weight of the deleted factors is at most 2kβ ·weight(u) = ε·weight(u)k/(3m).
Next, we edit the elements of Bi(P ) as follows: let v ∈ Bi(P ), v = v′x where v′ ∈ Σ∗, x ∈ Σ.
Since v is a minimal blocking prefix, v′ is not Ci-blocking, and there exist p, q ∈ Ci such
that p

v′

−→∆ q. Similarly, as v ∈ Bi(P ), x is not Ci-blocking and labels a run within Ci, from
p′ to q′. Therefore, we can edit v into v′′ = v′wx, where q

w−→∆ p′ and |w| ≤ |Ci|. Since Ci

is strongly connected, we can similarly insert factors of length at most |Ci| between the
elements of Bi(P ) to obtain a word wi that labels a run within Ci. Note that we can choose
the weights of the inserted symbols arbitrarily, and we put them equal to one. Hence, the
cost of this step is at most |Bi(P )| · |Ci| for each i. Finally, we insert factors of length at
most m in between the words wi and the heavy blocking 1-factors in Hi(P ), as well as before
and after the last factor, so that the resulting word u′ belongs to L. Again, we put the
weights of the symbols of the inserted factors equal to one, and hence the cost of this step is
at most 2km. We have the following bound on the weighted edit distance of u to L:

d(u, L) ≤ d(u, u′) ≤ ε · weight(u)k/(3m) + 2km +
j∑

i=1
2 · |Bi(P )| · |Ci|

≤ ε(weight(u)/3 + weight(u)k/(3m)) + 2km ≤ ε · weight(u)

A contradiction. ◀

ICALP 2021



119:6 Property Testing of Regular Languages

Suppose that u β-saturates a component path P = (C1, . . . Cj), in other words, the
algorithm that built the P -partition reached i = j + 1. For every 1 ≤ i ≤ j, let Si(P ) =
Bi(P ) ∪ Li(P ) ∪Hi(P ). We define indices 0 = a0 ≤ · · · ≤ aj so that for each i either Si(P )
is empty (because Ci was skipped by the algorithm of Definition 7 due to a heavy factor), or
all the factors in it are the factors of u[ai−1 + 1, ai]. For i = 0, we let a0 = 0, and then for all
i, ai = ai−1 if Si(P ) = ∅ and the largest index of a symbol in Si(P ) otherwise. If Si(P ) ̸= ∅,
then by Definition 7, one of the following holds:

The total weight of Ci-blocking 1-factors in Hi(P ) ∪ Li(P ) is at least β · weight(u);
|Bi(P )| ≥ β · weight(u).

Blocking factors are witnesses of the fact that u /∈ L. If there are many short blocking factors,
as in the first case, we can sample them with a few queries. However, in the second case, the
factors can be arbitrarily long. To develop an efficient tester, we must give a more accurate
bound.

▶ Corollary 9. Let γ = ⌈2/β⌉ = ⌈12m/ε⌉. If |Bi(P )| ≥ β · weight(u), then Bi(P ) contains
at least weight(u)/γ disjoint Ci-blocking factors of length at most γ.

Proof. Since the factors in Bi(P ) are disjoint and their total weight is bounded by weight(u),
at most weight(u)/γ of them can have weight (and length) larger than γ. Consequently,
Bi(P ) contains at least β · weight(u)− weight(u)/γ ≥ weight(u)/γ factors of length ≤ γ. ◀

Let us now introduce the notion of a fragment that will allow us to test the sampled
factors efficiently.

▶ Definition 10 (Fragment). Given a set of factors u[ir, jr], 1 ≤ r ≤ t, consider the
decomposition of the set S =

⋃
1≤r≤t[ir, jr] into maximal disjoint intervals, that is, S =

⊔1≤r≤t′ [i′
r, j′

r], where i′
1 ≤ j′

1 < i′
2 ≤ j′

2 < . . . i′
t′ ≤ j′

t′ . The fragment F formed by the factors
is the word F = ∗ u[i′

1, j′
1] ∗ u[i′

2, j′
2] ∗ · · · ∗ u[i′

t′ , j′
t′ ] ∗, where “∗” is a special symbol not

in Σ. A word v contains F as a fragment if there exist words w1, . . . wt′+1 ∈ Σ∗ such that by
replacing the i-th symbol “∗” with wi in F , we obtain v.

For example, for u = abbabbab the fragment formed by factors u[1, 2], u[2, 3], u[4, 4], and
u[6, 8], is F = ∗ u[1, 4] ∗ u[6, 8] ∗ = ∗ abba ∗ bab ∗. The word cabbadebabcde contains F .

▶ Definition 11 (Blocking fragment). A fragment F is A-blocking if none of the words that
contain F as a fragment belongs to L(A).

The following lemma relates Ci-blocking factors and A-blocking fragments and is crucial
for correctness of our tester. To show it, we prove by induction that any run that starts
in C1 and is labelled by the prefix of the fragment containing the factors in ∪1≤i≤tHi(P ) and
at least one Ci-blocking factor from each Si ≠ ∅, 1 ≤ i ≤ t, must end at a state in ∪i≥t+1Ci.

▶ Lemma 12. If for any component path P = (C1, . . . , Cj) and i, the fragment F contains
all factors in

⋃
i Hi(P ), and a Ci-blocking factor from u[ai−1 + 1, ai] for each i such that

Hi(P ) = ∅ and Li(P ) ∪Bi(P ) ̸= ∅, then F is A-blocking.

Proof. By contradiction, suppose that there is a word w ∈ L(A) that contains F as a
fragment. Since w ∈ A, there is a run in A labelled by w that goes through the connected
components C1, . . . , Cj . Consider the path P = (C1, . . . , Cj) and let 0 ≤ a0 ≤ a1 · · · ≤ aj

be the indices such that for each i either Si(P ) is empty (because Ci was skipped by the
algorithm of Definition 7 due to a heavy factor), or all the factors in it are the factors of
u[ai−1 + 1, ai]. Let wt be the shortest prefix of w that contains the blocking factors from each
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of the non-empty intervals u[ai−1 + 1, ai], 1 ≤ i ≤ t, as well as all factors in
⋃

1≤i≤t Hi(P ).
We show by induction on t that every run that starts at a state in C1 and is labelled by wt

ends after Ct, i.e. in a state of
⋃

t′>t Ct′ .
As w1 contains a C1-blocking factor, any run labelled by w1 that starts in C1 exits C1

and therefore ends after C1. Suppose that the induction hypothesis holds for some t′ < j.
We show that there is no run labelled by wt′+1 from C1 to Ct′+1. There are two possibilities.
First, Ct′+1 was skipped because of a heavy Ct-blocking factor, for some t ≤ t′, which
is therefore included in wt′+1, and ends after Ct′+1. The other possibility is that wt′+1
is wt′ with an additional Ct′+1-blocking factor. If any run labelled by wt′ ends after Ct′+1,
so does the run labelled by wt′+1, and we are done. If some of these runs end in Ct′+1,
the Ct′+1-blocking factor that appears in wt′+1 but not in wt′ ensures that the run labelled
by wt′+1 ends after Ct′+1.

Adding symbols to wj to obtain w, we get that there is no run labelled by w that starts
in C1 and ends in Cj , a contradiction. ◀

3.1.2 Tester
Our tester is as stated in Algorithm 1. We define the l-factor sampling over u as the
distribution over factors v of u that have length at most l, where a position i is selected
according to the weight distribution over u, and v = u[i, min(i + l − 1, |u|)].

Algorithm 1 ε-property tester for regular languages.

1: β ← ε/(6m), γ ← 2/β

2: if weight(u) ≤ 6km/ε then
3: Query all symbols of u and run the automaton A on it
4: Reject if A rejects, else accept
5: else
6: Query τ = ⌈2 ln(9k · 2k)/β⌉ 1-factors of u

7: for t = 0 to T = ⌈log(2γ)⌉ do
8: ℓt ← 2t, rt ← ⌈2 ln(9k · 2k)γ/ℓt⌉
9: Query u[1, 2ℓt]

10: Query rt factors of u according to the 2ℓt-factor distribution
11: Reject if the fragment formed by the sampled factors is A-blocking, else accept

If weight(u) ≤ 6km/ε, the length of u is at most 6km/ε as well, and hence Algorithm 1
queries O(6km/ε) symbols. Otherwise, Algorithm 1 first makes O(2 ln(9k · 2k)/β) = O(km ·
ε−1) queries to sample 1-factors, and then for each t = 0, . . . , T , another 2t+1 · (rt + 1) =
O(4 ln(9k2k)γ) = O(km · ε−1) queries. Hence, it has query complexity O(km · ε−1 log(m/ε)).
To estimate the time complexity, we must explain how we check if the sampled fragment F

is A-blocking. Given a fragment F and S ⊆ Q, let reach(F, S) denote the set of states that
can be reached from a state of S when following a run labelled by some word v that contains
F as a fragment, i.e.

reach(F, S) = {q ∈ Q | ∃p ∈ S, v ∈ Σ∗ : p
v−→∆ q and v contains the fragment F}

By definition, F is A-blocking if and only if reach(F, Qin) ∩Qf = ∅.

▶ Lemma 13. For any F, S, reach(F, S) can be computed in time O(|F | ·m2).

ICALP 2021



119:8 Property Testing of Regular Languages

Proof. Recall that a constant-size alphabet is assumed. If |F | = 1, reach(F, S) can be
computed in time and space O(m2). If F = a ∈ Σ, reach(a, S) = {q ∈ Q | ∃p ∈ S, p

a−→∆ q}.
In this case, we can compute reach(a, S) by following every transition that is labelled by a

and starts at a state p ∈ S. If F = ∗, reach(∗, S) is the set of states q such that there exists
a path from a state p ∈ S to q. It can therefore be computed using a breadth-first traversal
of the graph induced by the automaton, initialized at every p ∈ S. For any F , |F | > 1, we
have reach(F, S) = reach(F [2, |F |], reach(F [1], S)). Therefore, we can compute reach(F, S)
in a recursive manner: let S0 = S, and for every 1 ≤ i ≤ |F |, Si = reach(F [i], Si−1). By
induction, we have S|F | = reach(F, S). The algorithm makes |F | calls to the reach function
on a single symbol, which requires O(|F | ·m2) time. ◀

The fragment F constructed in Algorithm 1 has size O(km · ε−1 log(m/ε)), and therefore
the time complexity of the tester is O(km3 · ε−1 log(m/ε)).

3.1.3 Correctness of the tester

In what follows, let W := weight(u). If W ≤ 6km/ε, we query all symbols of u and run the
automaton on u, the answer is correct with probability 1. Below we assume that W > 6km/ε.

If u ∈ L, there is no A-blocking fragment in u, and therefore the tester accepts with
probability 1. We must now show that if u is ε-far from L, then the tester accepts with
probability at most 1/3, or in other words, the probability that F is not blocking is at most 1/3.
By Lemma 12, the probability that F is not blocking is smaller than the probability that
there exist a component path P = (C1, . . . , Cj) and an index i, 1 ≤ i ≤ j such that F contains
neither the factor from Hi(P ) (if Hi(P ) ̸= ∅), nor a factor from Li(P )∪Bi(P ) (if Hi(P ) = ∅).
Fix a path P and an index i. If weight(Hi(P )) ≥ β ·W or weight(Li(P )) ≥ β ·W , then
by sampling independently ln(9k · 2k)/β factors of length 1 w.r.t. the 1-factor distribution,
we miss such a factor with probability at most 1/(9k · 2k). Otherwise, if Si ̸= ∅, we have
|Bi(P )| ≥ β ·W .

▶ Lemma 14. Assume W > 6km/ε and |Bi(P )| ≥ β ·W . Algorithm 1 fails to sample a
Ci-blocking factor with probability at most 1/(9k2k).

Proof. Consider a fixed t ∈ [0, T ]. If u[1, 2ℓt] contains a factor from Bi(P ), u[1, 2ℓt] is
Ci-blocking and we are done. Assume that this is not the case.

We estimate the number of 2ℓt-factors that contain a factor from Bi(P ). For brevity, let
B′ = {v ∈ Bi(P ) : |v| ≤ γ}. Let v1, v2, . . . , vft

be the factors in B′ of length at most ℓt, in
the order of appearance in u. For all j > 1, the number of 2ℓt-factors such that vj is the first
factor appearing in them is equal to min(2ℓt − |vj |+ 1, dist(vj−1, vj)), where dist(vj−1, vj)
is the difference between the starting positions of vj−1 and vj . Since |vj | ≤ ℓt, we have
2ℓt− |vj | ≥ ℓt. We also have dist(vj−1, vj) ≥ |vj−1|, since the factors vj and vj−1 are disjoint.
Therefore, for all j > 1, min(2ℓt− |vj |+ 1, dist(vj−1, vj)) ≥ min(ℓt, |vj−1|) = |vj−1|. The first
term corresponds to the case where there is no interval of length 2ℓt that contains both vj−1
and vj : if vj starts at a position p in u, it ends at position p + |vj | − 1, and the interval can
start at any position p′ such that p′ ≤ p and p′ +2ℓt−1 ≥ p+ |vj |−1, i.e. p− (2ℓt−|vj |) ≤ p′.
The second term is equal to the number of positions between the start of vj−1 and the start
of vj in u: if an interval that contains vj also contains vj−1, then it does not contain vj as
its first blocking factor, and therefore it is associated with vj−1. By summing over all j, we
obtain that the number of 2ℓt-factors containing a factor from B′ is at least
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2ℓt − |v1|+
ft∑

j=1
|vj−1| ≥ ℓt +

ft−1∑
j=0
|vj | ≥ lvft

+
ft−1∑
j=0
|vj | ≥

ft∑
j=0
|vj |.

Let pt be the probability that a factor of length 2ℓt = 2t+1 sampled according to the
2ℓt-factor distribution is Ci-blocking. As any factor containing a factor from B′ is Ci-blocking,
from above we obtain that pt ≥ 1

W

∑ft

j=0 |vj | ≥ 1
W

∑
v∈B′:|v|≤ℓt

|v|.
Consequently, for a fixed t, the probability that none of the rt factors is Ci-blocking is at

most (1− pt)rt ≤ e−ptrt . By independence, the probability p that the algorithm failed to
sample a Ci-blocking factor for every t satisfies:

p ≤
T∏

t=0
exp(−ptrt) ≤ exp

(
T∑

t=0
−ptrt

)
≤ exp

− T∑
t=0

2 ln(9k · 2k)γ2−t

W

∑
v∈B′:|v|≤ℓt

|v|

 .

We now show that
∑T

t=0 2−t
∑

v∈B′:|v|≤ℓt
|v| ≥W/(2γ), which implies that p ≤ e− ln(9k·2k) =

1/(9k2k). We have:

T∑
t=0

2−t
∑

v∈B′:|v|≤ℓt

|v| =
∑

v∈B′

|v|
T∑

t=⌈log(|v|)⌉

2−t =
∑

v∈B′

|v| 1
2⌈log |v|⌉

1− 2−(T −⌈log |v|⌉+1)

1− 1/2

≥
∑

v∈B′

(
1− 2−(T −⌈log |v|⌉+1)

)
≥
∑

v∈B′

1− |v|2γ
≥
∑

v∈B′

1/2 ≥W/(2γ),

where the last inequality holds because of Corollary 9. ◀

Hence, for fixed P and i, the probability that the fragment F built by Algorithm 1
contains neither the factor from Hi(P ) (if Hi(P ) ̸= ∅) nor a factor from Li(P ) ∪Bi(P ) (if
Hi(P ) = ∅) is bounded from above by

( 1
9k2k + 1

9k2k + 1
9k2k

)
≤ 1

3k2k . By the union bound
over all P and all k, and since there are at most 2k component paths in A, we obtain that
Pr [F is not blocking] ≤ 1

3 . This concludes the proof of Theorem 5.

3.2 Lower bound
In this section we show that the query complexity of Theorem 5 is tight. Note that the indel
distance is the weighted edit distance when all weights are equal to one, and hence it suffices
to show the lower bound for the former.

▶ Theorem 15. There exists a regular language L and constants ε0, C > 0 such that on an
input of length n and for any 1/n1/3 < ε < ε0, a non-adaptive ε-property tester for L under
the indel distance has query complexity ≥ Cε−1 log(1/ε).

Note that by running a property tester twice, the error probability can be reduced from
1/3 to 1/9, while increasing the query complexity by a factor of two. From that and by
Yao’s minimax principle [23], it suffices to find a distribution D on {a, b, c, d}∗ and a constant
C > 0 such that any deterministic algorithm A that makes at most Cε−1 log(1/ε) queries
and accepts all inputs in L, errors with probability > 1/9.

Let n be the length of the input. Below, we fix arbitrarily a precision parameter 1/n1/3 ≤
ε < 1/2−48. Consider regular languages L0 = {u ∈ {a, c}∗ : u contains an even number of c}
and L = (a | bL0d)∗. Define the distribution D as follows. Let r be a fair coin. For ℓ = ⌈5/ε⌉,
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divide [1, n] into z = ⌊n/ℓ⌋ ≥ 1 intervals of size ℓ each, except for the last one that can be
longer. Let [aj , bj ] be the j-th interval. We associate with it a random variable τj , distributed
as follows:

τj =
{

t, with probability pt = 12ε2t/ log(1/ε) for t = 1, 2, . . . , ⌈log(1/ε)⌉;
0, with probability p0 = 1−

∑⌈log(1/ε)⌉
t=1 pt.

For any ε < 2−48, we have p0 = 1 −
∑⌈log(1/ε)⌉

t=1 pt > 0, and hence the distribution is
well-defined. The variable τj characterizes the length of the instances of L0 that we will put
in the j-th interval. If τj = 0, we put no instances at all: set u[aj , bj ] = aa . . . a. If τj = t > 0,
set u[aj , bj ] = (bwjd)⌈2−t/ε⌉aa . . . a, where wj is a word of length 2t chosen uniformly at
random from L0 if r = 0 and from {a, c}∗ \ L0 otherwise.

Notice that D produces a positive instance with probability at least 1/2, since whenever
r = 0, u ∈ L. We prove in the following lemma that D also produces a word ε-far from L

with constant probability.

▶ Lemma 16. Let u be a word of length n sampled w.r.t. D. With probability at least 1/4,
δ(u, L) ≥ εn.

Proof. Assume r = 1 and let ξj = ⌈2−τj /ε⌉ if τj > 0, and 0 otherwise (ξj is the number of
instances of L0 in the j-th interval). The variables ξj are independent, and for every j, we
have 1 ≤ ξj ≤ 1/ε. Let ξ =

(∑z
j=1 ξj

)
/z. We have:

E [ξ] = E [ξj ] =
∑
t>0

pt · ⌈2−t/ε⌉ =
∑
t>0

12ε2t

log(1/ε) · ⌈2
−t/ε⌉ ≥

∑
t>0

12
log(1/ε) ≥ 12.

By Hoeffding’s inequality, we have Pr [ξ ≥ 6] ≥ 1 − e
− 72z2

z/ε2 = 1 − e−72ε2z ≥ 1/2 and
z = ⌊n/⌈5/ε⌉⌋ ≥ εn/6, as 1/n1/3 ≤ ε < 2−48. Hence, Pr

[∑
j ξj ≥ εn

]
≥ Pr [ξ ≥ 6] ≥ 1/2.

It remains to show that conditioned on r = 1, the indel distance between u and L is
at least

∑
j ξj . As each word of form bwjd, where wj ∈ {a, c}∗ \ L0 requires at least one

insertion or deletion to become a factor of a word in L, the bound follows by construction.
Hence, Pr [δ(u, L) ≥ εn] ≥ Pr [r = 1] · Pr

[∑
j ξj ≥ εn

]
≥ 1/4. ◀

▶ Lemma 17. Let qj be the number of symbols queried by A in the j-th interval [aj , bj ].
Consider an input u sampled w.r.t. D. If for all j such that τj > 0 we have qj < 2τj , then A

must accept u.

Proof. Assume that A rejects u. If u ∈ L, we immediately get a contradiction. If u is a
negative instance, then for all j such that τj > 0 we have u[aj , bj ] = (bwjd)⌈2−τj /ε⌉aa . . . a,
where wj is a word of length 2τj not in L0. Since A queries less than 2τj symbols in u[aj , bj ],
there is a symbol of wj that A does not query. Hence, there is a word in L0 that we denote
by w′

j that has length 2τj and does not differ from wj on the queried symbols. We replace
all copies of wj by w′

j . Let u′ denote the resulting word. Notice that u′ ∈ L, and all the
symbols for u and u′ in the queried positions are equal and therefore A rejects it as well.
The probability of u′ under the distribution D is non-zero, and therefore there is a non-zero
probability that A rejects a positive instance, a contradiction. ◀

Proof of Theorem 15. We finally derive that if A queries
∑

j qj < 1/(3 · 192ε) log(1/ε)
symbols, then it errs with probability > 1/9, which implies the theorem.
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Consider an input u of length n generated according to the distribution D. Let A(u)
denote the output of A on u: 1 for accepting, 0 for rejecting. Let F denote the event
“δ(u, L) ≥ εn”. The probability that A rejects inputs that are far from L is given by:

Pr [A(u) = 0 | F ] = Pr [A(u) = 0 ∧ F ] /Pr [F ] ≤ Pr [A(u) = 0] /Pr [F ]
≤ 4 · Pr [A(u) = 0] (Lemma 16)
≤ 4 · Pr [∃j : qj ≥ 2τj ∧ τj > 0] (Lemma 17)

≤ 4 ·
∑

j

Pr [qj ≥ 2τj ∧ τj > 0] (union bound)

≤ 4 ·
∑

j

⌈log qj⌉∑
t=1

pt ≤ 4
∑

j

12ε

log(1/ε)

⌈log qj⌉∑
t=1

2t ≤ 192ε

log(1/ε)
∑

j

qj < 1/3.

The probability that A gives an incorrect answer is at least the probability that it accepts
a word that is ε-far. In other words, this probability is equal to Pr [A(u) = 1 ∧ F ] =
Pr [A(u) = 1 | F ] · Pr [F ] > (2/3) · (1/4) > 1/9, concluding the proof. ◀

4 Streaming property testing of VPLs

Let us start by reminding the formal definitions of visibly pushdown languages and streaming
property testers. Let Σ = Σ+ ⊔ Σ= ⊔ Σ−. We refer to the symbols in Σ+ as push symbols,
and the symbols in Σ− as pop symbols.

▶ Definition 18 (Visibly pushdown automaton). A visibly pushdown automaton (VPA) A
over Σ is a tuple (Σ, Γ, Q, Qin, Qf , ∆), where

Γ is a finite set of stack symbols,
Q is a finite set of states, Qin ⊆ Q of initial states, Qf ⊆ Q of final states,
∆ ⊆ (Q× Σ+ ×Q× Γ) ∪ (Q× Σ= ×Q) ∪ (Q× Σ− × Γ×Q) is the transition relation.

When running the automaton on a word u ∈ Σn, we maintain a stack. Let ⊥ /∈ Γ be
a special symbol to denote the bottom of the stack. A configuration of a VPA A is a tuple
(σ, q) ∈ (⊥ · Γ∗)×Q. For a ∈ Σ, there is a transition from a configuration (σ, q) to (σ′, q′),
denoted (σ, q) a−→∆ (σ′, q′), in the following cases:

if a ∈ Σ+, σ′ = σ · γ, γ ∈ Γ and (q, a, q′, γ) ∈ ∆ (we write q
a−→∆ (q′, push(γ))),

if a ∈ Σ−, σ = σ′ · γ, γ ∈ Γ and (q, a, γ, q′) ∈ ∆ (we write (q, pop(γ)) a−→∆ q′),
if a ∈ Σ= and (q, a, q′) ∈ ∆ (we write q

a−→∆ q′).
For a word u ∈ Σn, if for all 1 ≤ i ≤ n, (σi−1, qi−1) u[i]−−→∆ (σi, qi), we write (σ0, q0) u−→∆
(σn, qn). A word u is accepted by an automaton A if there exists a initial state qin ∈ Qin and
a final state qf ∈ Qf such that (⊥, qin) u−→∆ (⊥, qf ). We denote the language of all words
accepted by L(A). A language L ⊆ Σ∗ is a visibly pushdown language (VPL) if L = L(A)
for some VPA A.

▶ Definition 19 (Streaming property testing algorithm). A streaming ε-property testing
algorithm for a language L under distance d is an algorithm that given streaming access to
a word u:

accepts if u ∈ L with probability 1,
rejects with probability at least p if u is ε-far from L w.r.t. d,
accepts or rejects otherwise.

If p = 1, we say that a streaming ε-property testing algorithm is deterministic. If p = 2/3,
we say that it is randomised. The space complexity of the algorithm is defined to be the total
space used (in bits) including the space needed to store any information about the input.
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4.1 Upper bound
François et al. [5] showed that streaming property testing of visibly pushdown languages
can be reduced to the problem of (approximately) encoding words as relationships in finite
automata3. Consider a (non-deterministic) finite automaton A = (Σ̂, Q̂, Q̂in, Q̂f , ∆̂). For
Σ̂′ ⊆ Σ̂, define a distance function wedΣ̂′ as the weighted edit distance where the insertions
are restricted to symbols in Σ̂′. For a word u, let Ru = {(p, q) | p, q ∈ Q̂, p

u−→∆̂ q}.

▶ Definition 20 (ξ-approximation). A relation R ⊆ Q2 is an (ξ, Σ′)-approximation of Ru if
the following two conditions are satisfied:

For all p, q such that p
u−→∆̂ q, (p, q) ∈ R,

If (p, q) ∈ R, then there exists a word v such that wedΣ̂′(u, v) ≤ ξ ·weight(u) and p
v−→∆̂ q.

We call A Σ̂′-closed if p
u−→

Q̂
q for some u ∈ (Σ̂)∗ iff p

u′

−→
Q̂

q for some u′ ∈ (Σ̂′)∗. The
Σ̂′-diameter of A, denoted by d, is the maximum over all pairs of states p, q of min{|u| : u ∈
(Σ̂′)∗, p

u−→∆̂ q}, whenever this minimum is not over the empty set. Finally, for a fragment F

and S ⊆ Q̂, let reachΣ̂′(F, S) denote the set of states that can be reached from a state of S

when following a run labelled by some word v that contains F as a fragment and such that
all symbols in v \F belong to Σ̂′. By extending our property tester for regular languages, we
obtain:

▶ Lemma 21. Let A be Σ̂′-closed. Given a query access to a word u, Algorithm 2 computes
a (ξ, Σ̂′)-approximation of Ru = {(p, q) | p, q ∈ Q̂, p

u−→
Q̂

q} correctly with probability ≥ 1− µ.

Proof. For every p, q ∈ Q̂ and every fragment F of u, if p
u−→

Q̂
q, then q ∈ reachΣ̂′(F, {p}).

Therefore, the algorithm can err only if there exist p, q ∈ Q̂ such that (p, q) ∈ R and for
every word w such that p

w−→
Q̂

q there is wedΣ̂′(w, u) ≥ ξ · weight(u). This is equivalent to
saying that wedΣ̂′(u, L(Ap,q)) ≥ ξ · weight(u), where Ap,q is the finite automaton A with a
unique initial state p and a unique final state q. As A is Σ̂′-closed, an argument analogous
to Theorem 5 shows that the algorithm errs for p, q with probability at most µ/m2. The
claim follows by the union bound. ◀

By plugging this result into the framework of François et al. [5], we obtain:

▶ Corollary 22. Let ε > 0 be a constant, A = (Q, Σ, Γ, Qin, Qf , ∆) be a VPA of constant
size over Σ = Σ+ ⊔ Σ= ⊔ Σ−, and L = L(A). There is a randomised streaming property
tester for L that uses O(ε−3 log5 n log log n) space.

Proof. François et al. showed that property testing of visibly pushdown languages can be
solved by running O(ε−1 log2 n) instances of the approximation algorithm of Lemma 21 with
ξ = ε/(6 log n) and µ = 2/3n, on an NFA of constant size [5, Theorem 5.4]. Furthermore,
sampling factors of the input strings according to the ℓ-factor distribution can be imitated in
streaming at an expense of O(ℓ · (ℓ + log n)) space per sample [5, Fact 4.6]. We implement
reachΣ̂′ similar to Lemma 13 using constant extra space. Therefore, an instance of the
approximation algorithm of Lemma 21 requires space

O(ξ−1 log(1/µ) +
∑

t

rtℓt · (ℓt + log n)) =

= O(ξ−2 log2(1/µ) + ξ−1 ln(1/µ) log(ξ−1 ln(1/µ)) log n) = O(ε−2 log3 n log log n).

The bound follows. ◀

3 In this section, we refer to a more complete arXiv version of the paper.
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Algorithm 2 Building an (ξ, Σ̂′)-approximation R of Ru. Here k is the number of strongly
connected components of A, and m = |Q̂|.

1: β ← ξ/(6m), γ ← 2/β

2: if weight(u) ≤ 6kmd/ξ then
3: Read the whole input u

4: R = {(p, q) | p ∈ Q̂, q ∈ reachΣ̂′(u, {p})}
5: else
6: Query τ = ⌈2 ln(3k2km2/µ)/β⌉ 1-factors of u

7: for t = 0 to T = ⌈log(2γ)⌉ do
8: ℓt ← 2t, rt ← ⌈2 ln(3k2km2/µ)γ/ℓt⌉
9: Query u[1, 2ℓt]

10: Query rt 2ℓt-factors of u according to the 2ℓt-factor distribution
R = {(p, q) | p ∈ Q̂, q ∈ reachΣ̂′(F, {p}}

11: return R

4.2 Lower bound
▶ Theorem 23. There exist a VPL L and a constant ε0 such that for any 1/n ≤ ε <

ε0 any deterministic streaming ε-property tester for L under the edit distance uses space
Ω̄(n(1− 16ε log(1/ε))). Any randomised streaming ε-property tester for VPLs under the edit
distance uses space Ω̄(max(ε−1, log n)).

Proof of Theorem 23. We first prove the deterministic bound, and then use it to derive the
randomised one. Let Lmirror be a VPL over Σ = {0, 1, 0̄, 1̄} defined as Lmirror = {ww̄, w ∈
{0, 1}}, where w̄ = w[n] . . . w[1]. For example, if w = 1101 then w̄ = 1̄0̄1̄1̄. Recall that the
indel distance δ(u, v) between two words u, v is equal to the minimum number of insertions
and deletions needed to transform u into v and that a lower bound for the indel distance
gives an asymptotically equal lower bound for the edit distance.

▶ Lemma 24. Assume n is even. Let u, v ∈ Σn/2. If δ(u, v) > 2εn, then δ(uv̄, Lmirror) > εn.

Proof. We prove the claim by contrapositive. We assume that δ(uv̄, Lmirror) ≤ εn and show
that δ(u, v) ≤ 2εn. Let ww̄ be a word of Lmirror such that δ(uv̄, Lmirror) = δ(uv̄, ww̄). By
the triangle inequality, we have δ(u, v) ≤ δ(u, w) + δ(w, v) = δ(u, w) + δ(w̄, v̄).

Let us start with an auxiliary claim. Consider y ∈ Σk, z ∈ Σl. Let y1 (resp. y2) denote
y[1, ⌈k/2⌉] (resp. y[⌈k/2⌉ + 1, k]), and similarly for z. We show that if δ(y, z) = 2, then
δ(y1, z1) + δ(y2, z2) ≤ 4.

We have either k = l or |k− l| = 2. If k = l, then |y1| = |z1|, |y2| = |z2|, and the two edits
are one insertion and one deletion. If the two edits occur in y1, we have δ(y1, z1) ≤ 2 and
δ(y2, z2) = 0. The case when the two edits occur in y2 is symmetric. If one edit occurs in y1
and the other in y2, then y1 is transformed into a prefix of z of length |y1| − 1 or |y1|+ 1,
and y2 into a suffix of z of length |y2|+ 1 or |y2|+ 1, respectively. Therefore, δ(y1, z1) ≤ 2
and δ(y2, z2) ≤ 2. Assume now |k − l| = 2. W.l.o.g., k = l + 2, and the two edit operations
are deletions. Since k = l + 2, we have |y1| = |z1|+ 1, |y2| = |z2|+ 1. Consider two cases:

One deletion occurs in y1, and one deletion occurs in y2. In this case, y1 is transformed
into z1, and y2 into z2. Hence, δ(y1, z1) + δ(y2, z2) = 2.
The two deletions occur in y1 (the proof for y2 is symmetrical). In this case, y1 is
transformed into a prefix of v of length |y1| − 2 = |z1| − 1, and y2 is equal to the suffix of
v of length |y2|. Therefore, δ(y1, z1) ≤ 3 and δ(y2, z2) = 1, and the claim follows.
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For simplicity, let T = δ(uv̄, ww̄). Note that T is even, as both words have even length. For
every 0 ≤ t ≤ T , let xt be the word obtained by applying the first t edit operations to uv̄ in the
sequence that transforms uv̄ into ww̄, and let xt

1 = xt[1, ⌈|xt|/2⌉] and xt
2 = xt[⌈|xt|/2⌉+1, |xt|].

For all t ≤ T − 2, δ(xt, xt+2) = 2, and therefore δ(xt
1, xt+2

1 ) + δ(xt
2, xt+2

2 ) ≤ 4. Finally, we
obtain

δ(u, w) + δ(v̄, w̄) = δ(x0
1, xT

1 )+ δ(x0
2, xT

2 ) ≤
T/2∑
t=0

δ(x2t
1 , x2t+2

1 ) +
T/2∑
t=0

δ(x2t
2 , x2t+2

2 )

≤
T/2∑
t=0

(
δ(x2t

2 , x2t+2
2 ) + δ(x2t

2 , x2t+2
2 )

)
≤ 4T/2 ≤ 2εn

In short, we have δ(u, w) + δ(v̄, w̄) ≤ 2εn, which completes the proof. ◀

▷ Claim 25. Let u ∈ {0, 1}n and B(u, k, n) = {v ∈ {0, 1}n| δ(u, v) ≤ k}. For all 2/n ≤ α < 1,
we have |B(u, αn, n)| ≤ 2αn(1+2 log 8e/α)/2.

Proof. Let 2t be the largest even number smaller or equal to αn. Let v ∈ B(u, k, n). Since
|u| = |v| = n, we can obtain v from u using t insertions and t deletions. (If δ(u, v) < 2t, we
can insert a symbol (2t− δ(u, v))/2 times, and then delete it (2t− δ(u, v))/2 times.)

W.l.o.g., assume that the insertions occur before the deletions. After t insertions, we
obtain a word of size n + t. The number of possible ways to delete t symbols in this word is
therefore

(
n+t

t

)
. We give an upper bound on the number of words that can be reached with t

insertions from a word of length n the following way: in a word of length n + t, there are t

symbols that have been inserted, and there are two options for each symbol. Therefore, there
are at most 2t

(
n+t

t

)
such words. The number of words in B(u, k, n) is at most the number of

words reached after a sequence of t insertions, multiplied by the number of sequences of t

deletions. Overall, we obtain:

|B(u, αn, n)| ≤ 2t

(
n + t

t

)2
≤ 2t

(
e(n + t)

t

)2t

≤ 2(1+2 log e)t(n

t
+ 1)2t

≤ 2(1+2 log e)t(8/α)2t ≤ 2αn(1+2 log e+2 log(8/α))/2

≤ 2αn(1+2 log(8e/α))/2 ◁

▶ Corollary 26. There exists a constant ε0 such that for any 1/n ≤ ε < ε0, any de-
terministic streaming ε-property tester for Lmirror under the indel distance uses space
Ω̄(n(1− 16ε log(1/ε))).

Proof. Assume n is even. Consider the memory state of a tester after reading two words
u, v ∈ {0, 1}n/2. Suppose that they give the same memory state. We can then continue the
streams with ū, and since the algorithm must accept uū ∈ Lmirror, it must also accept vū.
By the definition of a streaming ε-property tester and Lemma 24, we have δ(u, v) ≤ 2εn.
Therefore, the number of distinct memory states of the tester after reading n/2 symbols is at
least 2n/2/|B(u, 2εn, n/2)|. The space s(n) used by the tester is at least the logarithm of the
number of memory states. Therefore,

s(n) ≥ log(2n/2/|B(u, 2εn, n/2)|)

≥ log(2n/2/2εn(1+2 log(2e/ε))) (applying Claim 25 for α = 4ε and size n/2)

≥ n/2− εn(1 + 2 log(2e/ε)) ≥ n

2 (1− 16ε log(1/ε)) ◀
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The deterministic bound for the edit distance follows immediately. We now derive the
randomised lower bound. We show Ω̄(log n) and Ω̄(1/ε) space lower bounds separately, and
then combine them to yield the theorem.

▶ Corollary 27. Any randomised streaming ε-property tester for Lmirror under the edit
distance uses space Ω̄(log n).

Proof. A streaming ε-property tester for a VPL L with an input of length n can be viewed
as an automaton An whose states are the memory states of the algorithm. Deterministic
algorithms are deterministic automata, and randomised algorithms are probabilistic automata
(see Rabin [22] for definitions).

Consider a randomised streaming ε-property testing algorithm An for Lmirror on inputs
of length n. Let L(An) = {u ∈ {0, 1, 0̄, 1̄}n | An accepts u with probability ≥ 2/3}. By
definition, a deterministic streaming algorithm that recognizes L(An) is a streaming ε-property
tester for Lmirror. By [7, Lemma 6.4], the space complexity of An is at least the logarithm
of the space complexity of the deterministic one, that is Ω̄(log(n(1 − 16ε log(1/ε)))) =
Ω̄(log n). ◀

We now show the Ω̄(1/ε) bound. Consider a VPL Ldisj = {xȳ | x, y ∈ {0, 1}n and ∀1 ≤
i ≤ n, x[i] · y[i] = 0}.

▷ Claim 28. Let α = ⌊1/ε⌋ and assume that n is a multiple of α. Define a morphism
ϕ : Σ∗ → Σ∗ such that for any a ∈ Σ we have ϕ(a) = a6n/α. Consider a word u = xȳ, where
x, y ∈ Σα. If u ∈ Ldisj , then ed(ϕ(u), Ldisj) = 0, and otherwise ed(ϕ(u), Ldisj) > εn.

Proof. The first part of the claim is obvious. The rest of the proof is devoted to the case
u /∈ Ldisj . Assume by contradiction that ed(ϕ(u), Ldisj) ≤ εn, in other words, that there
exists a sequence of at most εn edits such that when applied to ϕ(u), we obtain a word in
Ldisj . W.l.o.g. assume that the edits are applied only to the first half of ϕ(u), i.e. to ϕ(x).
Since u /∈ Ldisj , there exists i such that x[i] · y[i] = 1. Consider the middle part of ϕ(x[i]),
i.e. the factor w = ϕ(u)[(i− 1) · (6n/α) + 2n/α + 1, (i− 1) · (6n/α) + 4n/α]. After we apply
the at most εn ≤ n/α edits to ϕ(x), there is at least one symbol of w that does not change
and therefore is equal to 1, let it be w[j]. Moreover, the index of this symbol in the resulting
word is between (i− 1) · (6n/α) + n/α + 1 and (i− 1) · (6n/α) + 5n/α. On the other hand,
ϕ(y[i]) can be shifted by at most εn positions to the left or to the right. Therefore, w[j] will
be aligned with a symbol in ϕ(y[i]) equal to 1 as well, a contradiction. ◁

The Ω̄(1/ε) bound follows immediately from the linear space lower bound for randomised
streaming 0-property testing algorithms for Ldisj [5, 15]. ◀
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